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Abstract

Since 8th March 2020 up to the time of writing, we have been producing near real-time

weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19

for all countries with evidence of sustained transmission, shared online. We also developed

a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a

4-week horizon. Here we present a retrospective evaluation of the forecasts produced

between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of

the forecasts produced in real-time using relative error, coverage probability, and compari-

sons with null models. During the 39-week period covered by this study, both the short- and

medium-term forecasts captured well the epidemic trajectory across different waves of

COVID-19 infections with small relative errors over the forecast horizon. The model was

well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval

in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our

models shows that simple transmission models calibrated using routine disease surveil-

lance data can reliably capture the epidemic trajectory in multiple countries. The medium-

term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortal-

ity as a useful planning tool as countries continue to relax public health measures.

Introduction

As of June 2022, more than 6 million deaths have been attributed to COVID-19 with over 52

million cases reported globally [1]. The scale of the current pandemic has led to a widespread
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adoption of data-driven public health responses across the globe. Outbreak analysis and real-

time modelling, including short-term forecasts of future incidence, have been used to inform

decision making and response efforts in several past public health challenges including the

West African Ebola epidemic and seasonal influenza [2–11]. In the current pandemic, mathe-

matical models have helped public health officials better understand the evolving epidemiology

of SARS-CoV-2 [12–14] and the potential impact of implementing or releasing interventions.

Short-term forecasts of key indicators such as mortality, hospitalisation, and hospital occu-

pancy have played a similarly important role [15–21], contributing to planning public health

interventions and allocation of crucial resources [22–26]. At the same time, the unprecedented

level of public interest has placed epidemiological modelling under intense media scrutiny. In

light of the prominent role mathematical models have had in policy planning during the

COVID-19 pandemic, retrospective assessment of modelling outputs against later empirical

data is critical to assess their validity.

With the aim of improving situational awareness and providing a global overview during

the ongoing pandemic, since the 8th March 2020, we have been reporting weekly estimates of

transmissibility of SARS-CoV-2 and forecasts of the daily incidence of deaths associated with

COVID-19 for countries with evidence of sustained transmission [27] (published online

https://mrc-ide.github.io/covid19-short-term-forecasts, and on the updated interface https://

mriids.org). We have developed three models that were calibrated using the latest reported

daily incidence of COVID-19 cases and deaths in each country. Transmissibility estimates and

forecasts were based on an ensemble model comprising of the three models. Ensemble models,

which combine outputs from different models, are a powerful way of incorporating the uncer-

tainty from a range of models and can produce more robust forecasts than individual models

[28–32].

Forecasts are typically produced under the assumption that the trend in growth remains the

same over the forecast horizon. While this is a plausible assumption for the 1-week forecast

horizon that we used for our short-term forecasts, it is likely to be violated over a longer fore-

cast horizon. We have developed a novel approach relying on a simple heuristic that combines

past estimates of the reproduction number, explicitly accounting for the predicted future

changes in population immunity, to produce forecasts over longer time horizons.

Here we summarise the key transmission trends from our work on global short-term fore-

casts between 8th March to 29th November 2020. We provide a rigorous quantitative assess-

ment of the performance of the ensemble model that was used to produce near real-time

transmissibility estimates. We also present medium-term forecasts using our approach and

retrospectively assess the performance of our method. Forecasts from infectious disease mod-

els of indicators such as incidence of cases or hospitalisations are used to inform a range of

public health objectives. These objectives in turn determine model complexity, the data

sources used for model calibration, and acceptable model performance thresholds. Since our

work was aimed at generating situational awareness and provide a global overview of the pan-

demic, we implemented simple models calibrated using easily available data. As such, we did

not specify a priori performance thresholds. Instead, we have used multiple metrics to explore

model performance in relation to the underlying epidemiological situation.

Methods

The instantaneous reproduction number is frequently used to quantify transmissibility. It is

defined as the average number of secondary cases that an individual infected at time t would

generate if conditions remained as they were at time t [33]. The interpretation of case numbers

across countries during the pandemic was challenging because of differences in testing policies
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etc. Since the ascertainment of deaths is less likely to vary across countries and over time, we

used the daily reported number of deaths to estimate transmissibility. Thus, we implicitly

assumed that at any time, a proportion of cases result in deaths so that the reported number of

deaths is a proxy for the cases in a country.

We developed three different models, each of which estimated transmissibility in the recent

past and produced forecasts of COVID-19 deaths (Sec. 2.1 to 2.3 in S1 File). Each model was

calibrated using the daily reported incidence of deaths and/or cases. For each week, we com-

bined the outputs of these models to build an unweighted ensemble (Sec. 2.4 in S1 File). We

produced short-term forecasts (i.e. 1-week ahead), for which changes in the population immu-

nity level could be ignored. Over the course of the epidemic, the effect of the potential deple-

tion of the susceptible population on the trajectory of the epidemic may become more

pronounced. Inherently, by estimating transmissibility in real-time, our models account for

any general decrease in the proportion of population being susceptible. However, the forecasts

produced do not account for any further decrease in this proportion, which may become sub-

stantial when forecasting over a medium- to long-term time horizon.

We also produced medium-term forecasts (up to 4-weeks ahead) accounting for the deple-

tion of the susceptible population due to the increased levels of natural host immunity. In

order to estimate transmissibility for medium-term forecasts, we combined past estimates of

transmissibility into a single weighted estimate Rw
t as follows. Let T denote the last time point

in the existing incidence time series of cases or deaths and let Rcurr
T refer to the the most recent

estimate of reproduction number for a given model. Starting with the transmissibility esti-

mates of Rcurr
T from the ensemble model, we went back one week at a time, for as long as the

95% credible interval (CrI) of Rcurr
T0 (where T 0 < T) overlapped the 95% CrI of Rcurr

T . We then

sampled from the posterior distribution of Rcurr
T0 in each of those weeks, with a probability that

decays exponentially in the past to favour the more recent estimates (Fig 1d). Each week, the

rate of decay β was optimised by minimising the relative error in the predictions for the previ-

ous week.

Since our heuristic for obtaining weighted reproduction number Rw
t accounts for the stabil-

ity of the epidemic trajectory in a country, it resulted in the inclusion of a variable number of

weekly estimates for each country and each week. For instance, if the transmission levels in a

country had been consistent for a long period, weekly estimates of reproduction number from

a greater number of weeks contributed to the weighted reproduction number than if the trans-

mission levels had changed in the recent weeks.

As the weighted reproduction number Rw
t already accounts for the population immunity at

time t, we first estimated an effective reproduction number defined as the reproduction num-

ber if the entire population were susceptible (Eq. 10 in S1 File). We then estimated the repro-

duction number RS
t accounting for the effect of population immunity at time t due to infection

(Eq. 11 in S1 File).

Forecast horizon

The short-term forecast horizon was set to be 1 week. We produced forecasts for the week

ahead (Monday to Sunday) using the latest data up to (and including) Sunday. We did not

model the potential changes in the population immunity levels as any such change is not

expected to affect the trajectory of the epidemic over this short time horizon.

The medium-term forecasts were made over a 4-week horizon using RS
t . Since estimates of

the weighted reproduction number could only be obtained once we had sufficient weekly esti-

mates to combine, medium-term forecasts were produced from 29th March to 29th November

2020.
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Epidemic phase

Adapting the categorisation by Abbott et al. [34], we categorised the broad epidemic trends in

each country into epidemic phases using the estimated reproduction numbers. Epidemic

phases were defined prospectively using RS
T , and retrospectively using Rcurr

T . That is, Rcurr
T was

used to define the phase for the most recent week for which we had data.

For the week ending at time T, we defined the epidemic phase in a country to be:

• ‘definitely growing’ if Rcurr
T < 1 in less than 5% of the samples of the posterior distribution;

• ‘likely growing’ if Rcurr
T < 1 in between 5% and 25% of the samples of the posterior

distribution;

• ‘definitely decreasing’ if Rcurr
T > 1 in less than 5% of the samples of the posterior distribution;

• ‘likely decreasing’ if Rcurr
T > 1 in between 5% and 25% of the samples of the posterior

distribution;

If 25–75% of the samples of the posterior distribution of Rcurr
T were less than 1, we used the

uncertainty of the estimates to classify the phase. If the width of the 95% CrI was less than 0.5,

we classified the phase as ‘likely stable’, otherwise we deemed it ‘indeterminate’.

Fig 1. Schematic of the models. (a) Model 1 assumes a single value for R½T � tþ 1;T�. The model is fitted using only

the data in this window (T − τ + 1 to T) to jointly estimate the initial incidence of deaths and R½T � tþ 1;T�. For

details, see Sec. 2.1 in S1 File. (b) Model 2 optimises the window over which Rt is assumed to be constant by

minimising the cumulative predictive error over the entire epidemic time series. Estimates from R½T � t∗ þ 1;T� are

used to forecast into the future, with τ* the window of optimal length. See also Sec. 2.2 in S1 File. (c) Model 3 uses data

from both cases and deaths (Sec. 2.3 in S1 File). The dashed blue curve represents the incidence of reported cases

weighted by the case-report to death delay distribution, where μ is the mean delay. ρt is the ratio of the observed deaths

and the weighted cases at time t and is analogous to an observed case fatality ratio. Forecasts of deaths are obtained by

sampling from a binomial distribution using the most recent estimate of ρT. See also Fig. 3 in S1 File. (d) To obtain

medium-term forecasts, we combine the most recent transmissibility estimate Rcurr
T (shown in dark blue) with estimates

of transmissibility in the previous weeks to produce a weighted estimate of transmissibility Rw
T (filled in pink) at time T.

Estimates from previous weeks are combined with the most recent estimates if the 95% CrI of estimates in week k,

Rcurr
T� 7k overlaps the 95% CrI of Rcurr

T . Estimates for weeks where the 95% CrI overlap are shown in light purple, and

where the 95% CrI do not overlap in grey. The dashed horizontal lines represent the 2.5th and 97.5th quantile of Rcurr
T .

We combine the estimates by sampling from the posterior distribution of Rcurr
T� 7k with probability proportional to e−β*k,

where β is a rate at which the probability decays as we go back in time.

https://doi.org/10.1371/journal.pone.0286199.g001
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When defining the phase prospectively, we used RS
T instead of Rcurr

T for the classification.

Since RS
T was updated for each day of the forecast horizon, we first assigned an epidemic phase

to each day using the classification scheme above. We then used the most often assigned phase

in a week to define the weekly phase.

Assessing model performance

The model forecasts were validated against observed deaths as these became available. To

quantitatively assess the performance of the model for both short- and medium-term forecasts,

we used the following metrics:

• Mean relative error The mean relative error (MRE) is a widely used measure of model accu-

racy [35]. MRE for the forecasts D̂t at time t is defined as:

MREtðDt; D̂tÞ ¼

PN
s¼1
jDt � D̂t;sj

N∗ðDt þ 1Þ
;

where Dt denotes the observed deaths at time t, N is the number of simulated trajectories

and D̂t;s denotes the sth simulation at time t [36]. That is, MRE at time t is the error in fore-

casts averaged across all simulated trajectories and normalised by the observed incidence.

We add 1 to the observed value to prevent division by 0. A MRE value of k means that the

average error is k times the observed value. MRE will be 0 for a perfect model; it should be as

small as possible.

• Comparison with null model Ratio of the absolute error made by the model with the abso-

lute error made by a null model that uses the average of the last 10 observations as the fore-

cast for the week ahead. We also compared the model error with the error made by a linear

model (forecasts from a line fitted to the last 10 observations). A ratio greater than 1 indi-

cates that the model error was larger than that made by the null model i.e., the model per-

formed no better than the null model.

• Coverage probability Coverage probability refers to the proportion of observations that are

contained in given credible interval (CrI) of the distribution of forecasts. For a well-cali-

brated model, 50% of the observations should be contained in the 50% CrI [37] (analogous

criterion applies to other CrI) i.e., coverage probability should be 0.5. For a X% CrI, coverage

probability higher than X% indicates that the model is under-confident with wide CrIs. Sim-

ilarly, a value less than X% suggests that the model is over-confident with narrow CrIs.

A direct comparison of daily forecasts, which are smooth by definition, to daily data which

are noisy can be potentially be misleading. At the same time however, comparing weekly fore-

casts to aggregated weekly data can lead to artifically lower error through over-smoothing.

Therefore we first smoothed the time series of observed deaths for each country and for each

week by taking a 3-day rolling mean. The average of the daily MRE was used as the weekly

MRE.

Data

We used the daily number of COVID-19 cases and deaths reported by the World Health Orga-

nisation (WHO) [1]. Any data anomalies were corrected using data published by the European

Centre for Disease Prevention and Control [38], or other sources (Sec. 4 in S1 File). All data

used in the study are available at the github repository associated with this article (https://

github.com/mrc-ide/covid19-forecasts-orderly).
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Results

Methods for estimating transmissibility during epidemics typically rely on the time series of

incident cases combined with the natural history parameters of the pathogen [39, 40]. How-

ever, in the current pandemic, interpretation and comparison of estimates across countries

based on the number of cases was made difficult by the differences in case definitions, testing

regimes, and variable reporting across countries as well as over time within each country [41].

We therefore developed three different models that relied on the number of reported deaths to

estimate COVID-19 transmissibility and to produce short- and medium-term ensemble fore-

casts of deaths (1- and 4- week ahead respectively). The methods underlying the individual

models are illustrated in Fig 1a to 1c (see Methods and Sec. 2 in S1 File for details).

Beginning 8th March 2020, we produced weekly forecasts for every country with evidence

of sustained transmission. As the pandemic rapidly spread across the world, the number of

countries included in the weekly analysis grew from 3 in the first week (week beginning 8th

March 2020), to 94 in the last week of analysis included in this study (week beginning 29th

November 2020) (Fig. 1 in S1 File). Our results are based on the analysis done for 81 countries

(see Sec. 4 in S1 File for exclusion criterion) over the 39 week period from 8th March to 29th

November 2020.

Short-term forecasts and model performance

Overall, the ensemble model performed well in capturing the short-term trajectory of the epi-

demic in each country (Fig 2). Across all weeks of forecast and all countries, an average 58.7%

(SD 32.4%) of the observations were in the 50% credible interval (CrI) and 89.4% (SD 21.7%)

of the observations were in 95% CrI (for a breakdown by country and week of forecast see Sec.

7.5 in S1 File).

The mean relative error (MRE) across all countries and all weeks was 0.4 (SD 0.4) (Fig 3).

That is, on average the model forecasts were 0.4 times lower or higher than the observed inci-

dence. In most countries, the reporting of both cases and deaths through the week was vari-

able, with fewer numbers reported on some days of the week (typically, Saturday and Sunday).

The variability in reported deaths strongly influenced the model performance. The MRE scaled

linearly with the coefficient of variation (ratio of the standard deviation to the mean) in the

reported deaths for the week for which forecasts were made. Thus, the error in forecasts was

on average similar to the variability in the reported deaths (Fig. 6 in S1 File). The MRE of the

model scaled inversely with the weekly incidence i.e. the error was relatively large when the

incidence was low (Fig. 6 in S1 File). This might reflect that either small absolute errors trans-

late into large relative error when observed values are small, or inherently more unstable esti-

mates of reproduction number when the incidence is low [42], or a combination of these

factors.

The model performance was largely consistent across epidemic phases (growing, likely

growing, decreasing, likely decreasing, likely stable, and indeterminate with similar coverage

probability and MRE (Table 1 in S1 File). The slightly larger proportion of observations in the

50% and 95% credible intervals for the ‘indeterminate’ phase and the larger MRE in this phase

together suggest that the model was ‘under-confident’ with large credible intervals [43].

We compared the performance of the model with that of a null no-change model. In most

instances, the ensemble model outperformed the null model. In 76.8% of the weeks in ‘defi-

nitely decreasing’ phase and 74.4% of weeks in ‘definitely growing’ phase, the absolute error of

the model was smaller than the error made by the null model (Fig 3, Sec. 7.2 and Table 2 in S1

File). The null model performed better when the trajectory of the epidemic in a country was

relatively stable exhibiting little to no change over the time frame of comparison. This is to be
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expected as the null model describes precisely this stable dynamic. Indeed, in 69.3% of the

weeks in the ‘likely growing’ phase and 75.3% weeks classified as ‘indeterminate’ phase, the

absolute error of the model was larger than the error made by the null model. However, the

relative error of the model remained small (MRE 0.50, SD 0.62) even in countries and weeks

where it did not perform as well as the null model. Similarly, our model performed better than

a linear growth model across all phases, specifically in 90.8% of the weeks in ‘definitely decreas-

ing’ phase and 79.6% weeks in ‘definitely growing’ phase (Sec. 7.3, Table 2 in S1 File).

Medium-term forecasts and model performance

The rapidly changing situation and the various interventions deployed to stem the growth of

the pandemic make forecasting at any but the shortest of time horizons extremely challenging

Fig 2. Short-term forecasts. The short-term forecasts and observed deaths for six countries: Brazil, India, Italy, South

Africa, Turkey and the United States of America (USA). For each country, the top panel shows the observed deaths in

gray; the solid green line shows the median forecast. The shaded interval represents the 95% CrI of forecasts. The

forecasts were produced using the most recent estimates of Rcurr
T assuming that the transmissibility remains constant.

The bottom panel for each country shows the effective reproduction number (Rcurr
T ) used to produce the forecasts. The

solid green line in the bottom panel for each country is the median estimate of Rcurr
T while the shaded region represents

the 95% CrI. The dashed red line indicates the Rcurr
T ¼ 1 threshold. Note that the y-axis is different for each subfigure.

See Fig. 3 in S1 File for results for all other countries.

https://doi.org/10.1371/journal.pone.0286199.g002
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[44, 45]. Despite these challenges, we found that our medium-term forecasts robustly captured

the epidemic trajectory (Fig 4) in all countries included in the analysis (Fig 4).

Overall, the MRE remained small over a 4-week forecast horizon, with errors increasing

over the projection horizon (Sec. 8.1 in S1 File). We therefore restricted the projection horizon

to 4 weeks. The MRE across all countries in 1-week ahead forecasts was 0.4 (SD 0.3), increasing

to 2.6 (SD 28.3) in 4-week ahead forecasts (Fig 5, Fig. 10 in S1 File). The MRE for 1-week

ahead forecasts was less than 1 (indicating that the magnitude of the error was smaller than the

observation) in 91.1% of weeks for which we produced forecasts. The corresponding figure for

4-week ahead forecasts was 66.0% (Table 3 in S1 File).

The proportion of observations in the 50% CrI remained consistent across the forecast hori-

zon and varied from 56.3% (SD 33.4%) in 1-week ahead forecasts to 45.6% (SD 40.9%) in

4-week ahead forecasts (Figs. 11 and 12 in S1 File).

Across the 81 countries for which we produced both short- and medium-term forecasts, the

epidemic phase estimated prospectively using the reproduction number estimates from

medium-term forecasts, RS
T:Tþ28

(Sec. 3 and Eq. 11 in S1 File), was consistent with the retro-

spective phase assigned using the estimates from the short-term forecasts (Rcurr
T ) in 41.7% (873/

2094) weeks in 1-week ahead forecasts and in 28.9% (521/1804) weeks in 4-week ahead fore-

casts (Fig 6). When the phase definitions using RS
T:Tþ28

and Rcurr
T were different, the medium-

term estimates most frequently misclassified them as a phase that had greater uncertainty. For

instance, in 601 weeks when the epidemic phase was identified as ‘definitely decreasing’ using

weekly estimates and incorrectly characterised using medium-term estimates, it was misclassi-

fied as ‘likely decreasing’, ‘likely stable’ or ‘indeterminate’ in 71.3% (429/601) weeks. Similarly,

Fig 3. Short-term forecasts MRE and comparison with null model. (a) The mean relative error of the ensemble

model for each week of forecast (x-axis) and for each country (y-axis). Dark blue cells indicate weeks where the relative

error of the model was greater than 2. (b) The ratio of the absolute error of the model to the absolute error of a no-

change null model that uses the average of the last 10 days as a forecast for the week ahead. Shades of green show weeks

for a given country where the ratio was smaller than 1 i.e., the ensemble model error was smaller, and weeks where the

ratio was greater than 1 i.e. the ensemble model error was larger than the null model error are shown in shades of red

(yellow to red). Dark blue indicates weeks when the ratio was larger than 2. In order to present a representative sample,

we first ranked all countries by the percentage of weeks in which ensemble model error was smaller than the null

model error. We then selected every third country from the top 75 countries in this list. Results for the selected 25

countries are shown here. See Fig. 4 in S1 File for the results for other countries. Ordering of countries in the figure

reflects the order in the ranked list i.e. countries with the highest percentage of weeks with model error smaller than

null model error are shown on the top.

https://doi.org/10.1371/journal.pone.0286199.g003
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in the misclassified weeks, when the epidemic phase using weekly transmissibility estimates

was ‘definitely growing’, the medium-term classification was ‘indeterminate’ in 38.3% (367/

959) and ‘likely growing’ in 37.8% (362/959) weeks. This mis-characterisation is expected as

the uncertainty in estimates of RS
T:Tþ28

grows over the forecast horizon. Crucially, in the weeks

where the epidemic phase was misclassified using RS
T:Tþ28

, the prospective classification indi-

cated the opposite trend (growing classified as decreasing or vice versa) in only 14.8% weeks

(737/4992). This finding shows that the medium-term transmissibility estimates can be used a

reliable indicator of the overall direction of the epidemic trajectory.

Fig 4. Medium-term forecasts. The medium-term forecasts and observed deaths for six countries: Brazil, India, Italy,

South Africa, Turkey and the United States of America (USA). For each country, the top panel shows the observed

deaths in grey; the solid green line shows the median the 4-weeks ahead forecast. The shaded interval represents the

95% CrI of forecasts. The bottom panel for each country shows the median (solid black line) and the 95% CrI (grey

shaded area) of weekly estimate of Rcurr
t from the short-term forecasts and the median (green line) and the 95% CrI

(shaded green area) of RS
t i.e. the reproduction number accounting for depletion of susceptible population from the

medium-term forecasts over a 4-week horizon (Methods). The dashed red line indicates the RS
t ¼ 1 threshold. Note

that the y-axis is different for each subfigure. The forecasts were produced every week over a 4-week forecast horizon.

The figure shows all non-overlapping forecasts over the course of the pandemic. See Fig. 3 in S1 File for results for all

other countries and weeks.

https://doi.org/10.1371/journal.pone.0286199.g004
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Discussion

Models used to forecast COVID-19 cases and/or deaths vary in complexity in the data used for

model calibration. More complex and/or granular models rely on multiple data streams

including data on hospital admissions and occupancy, testing, serological surveys and data on

patient clinical progression and outcomes [22]. Such complex location-specific models can

provide crucial insights into the ongoing epidemic and inform targeted public health interven-

tions by synthesising evidence from different data streams. However, scaling such analysis to

include multiple geographies is challenging because of the variability in availability and reli-

ability of local surveillance data. The computational time needed to fit complex models make

scaling them difficult and delays the timely provision of risk estimates.

Furthermore, the wide-scale societal and behavioural changes brought about by the pan-

demic impose practical constraints on utilising data that are available for multiple countries.

Fig 5. Relative error of medium-term forecasts. The mean relative error of the model in 1-week, 2-week, 3-week and

4-week ahead forecasts for each week when a forecast was made (x-axis) and for each country (y-axis). Blue cells

indicate weeks where the relative error of the model was greater than 2. For ease of presentation, results are shown for

the same 25 countries as Fig 2. See Sec. 7 in S1 File for the results for other countries.

https://doi.org/10.1371/journal.pone.0286199.g005
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For instance, widely available data on the changes in mobility inferred from mobile phone

usage released by Google and Apple were informative of the changes in transmission in the

early phase of the COVID-19 pandemic and were used in several modelling studies [46, 47].

Although these data continue to be available, evidence suggests a decoupling of transmission

and mobility in most countries [48, 49]. Models that relied on such additional data or assump-

tions about non-pharmaceutical interventions [47, 50] could not fit the observed trajectory as

the situation continued to change over the course of the epidemic.

Efforts to model and forecast COVID-19 transmission dynamics must therefore meet the

challenges of a long and ongoing pandemic spread over an unprecedented scale. Modelling

groups around the world have attempted to meet one or both challenges with various analyses

conducted at a sub-national scale [51], at a national scale for a specific country [23, 52–54],

and for several countries across the globe [34, 55–58]. In contrast to models built for a region

Fig 6. Characterisation of the epidemic phase. For a given retrospective classification of epidemic phase using the

weekly estimates of the reproduction number from the short-term forecasts(x-axis), the figures in the cell show the

percentage of weeks for which the prospective characterisation was consistent using the medium-term reproduction

number estimates (show on the y-axis).

https://doi.org/10.1371/journal.pone.0286199.g006
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or country and calibrated using local data, models that aim to provide a global overview must

be sufficiently general to describe the epidemic trajectory in a range of countries/regions using

widely available data that are consistently available over time.

We have produced short-term forecasts and estimates of transmissibility for 81 countries

for more than 100 weeks at the time of writing, implementing three simple models that use

only the time series of COVID-19 cases and deaths. We have thus traded particularity for gen-

erality, to allow us to carry out analysis for a large number of countries over a long period of

time. Many other efforts that aimed to generate forecasts for multiple countries were discon-

tinued as the situation evolved rapidly [47, 50, 59, 60] (note—the webpages have been discon-

tinued). The simplicity of our methods, which make few assumptions and use routine

surveillance data, allowed us to provide weekly updates for the last two years. Our transmission

models, analysis pipeline, and the web interface can also be reused to provide similar inputs

during future outbreaks.

With the increasing use of infectious disease models and forecasts, model evaluation has

also received increasing attention from the research community and a wide variety of metrics

for scoring forecasts have been developed [61]. Some of these metrics, such as coverage proba-

bility, have well-defined targets that an ideal model should achieve. However, a “good” or

“acceptable” range for other commonly used metrics such as absolute error or mean relative

error is not always well-defined, and these metrics are typically used to generate a relative

ranking of different models [52, 62]. Future research could explore the development of stan-

dardised performance indicators and evaluation frameworks for forecasts that are tied to pub-

lic health objectives. Here we relied on a few key, interpretable metrics to retrospectively

evaluate the performance of our model.

Despite the challenges inherent in forecasting a fast-moving pandemic in the presence of

unprecedented public health interventions, our ensemble model was able to successfully cap-

ture the short-term transmission dynamics across all countries included in the analysis with

small relative error in the weekly forecasts across different COVID-19 waves in each country.

The variable performance of our model in weeks and countries with fewer deaths and/or large

variability in reported deaths over weeks reflects this trade-off. Similarly, in common with

most forecasting methods [34, 55], two of the models assumed that transmissibiity remained

unchanged over the week for which forecasts were made, which led to large relative errors

close to changes in the overall trends (growing to declining, or vice versa). In the absence of

more detailed data, we assumed that epidemiological parameters such as the delay from onset

of symptoms to death were the same across all countries and throughout the period of analysis.

These parameters are likely to vary over time and between countries, and using country-spe-

cific parameters could lead to moderate improvements in the model fits and forecast

performance.

Due to the variability in testing and reporting of cases across different countries and over

time within countries, using the reported number of cases to estimate transmissibility and pro-

duce forecasts is difficult without using more complex models. For these reasons, we primarily

used deaths to estimate the reproduction number as we assumed that reporting of COVID-19

deaths was more complete and consistent over time and across different country surveillance

systems. Although this assumption is unlikely to hold for many countries [63–65], our meth-

ods are robust to a constant rate of under-reporting over time as this would not alter the over-

all epidemic trends. A limitation of our work is that our estimates reflect the epidemiological

situation with a delay of approximately 19 days (the delay from an infection to a death [50]).

Nevertheless, our short-term forecasts and transmissibility estimates provide valuable global

overview and continuous insights into the dynamic trajectory of the epidemic in different

countries. They also provide indirect evidence about the effectiveness of public health
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measures. Future research could investigate integrating more data streams such as local health

capacity (e.g., from Healthsites.io) into the models. In addition to the weekly reports that we

publish, our work contributed to other international forecasting efforts [23, 43, 52].

We developed a simple heuristic to combine past estimates of transmissibility and a decline

in the proportion of susceptible population to produce medium-term forecasts. These forecasts

were produced under the assumption that the transmission trends remain unchanged over the

forecasting horizon, except for a depletion of susceptible population due to naturally-acquired

immunity. In the early phase of the pandemic, transmission dynamics of the pandemic were

likely to have been strongly influenced by the stringent interventions that were deployed in

several countries leading to rapid changes in transmissibility. Depletion of susceptible popula-

tion did not substantially affect the transmission trends in this period, especially in countries

with large populations. Therefore, model performance in early 2020 was modest with forecasts

of very large number of daily deaths for some countries Fig 4. Model performance in forecast-

ing up to 4 weeks ahead was better in late 2020. Consistent with findings from other modelling

studies [23], we found that the model error was unacceptably high beyond 4 weeks, suggesting

that forecasting beyond this horizon is difficult. Importantly, our prospective characterisation

of the epidemic phase using weighted estimates of transmissibility were largely in agreement

with the retrospecitve classification using short-term transmissibility estimates. Thus, our

method was successful at capturing the broad trends in transmission up to 4 weeks ahead. The

medium-term forecasts can therefore serve as a useful planning tool as governments around

the world plan further implementation or relaxation of non-pharmaceutical interventions.

Our method incorporates the depletion of susceptible population and hence can in princi-

ple be extended to account for increasing population immunity as vaccination is rolled out

across the world. However, inclusion of vaccine induced immunity depends on the availability

of reliable data on vaccination coverage. Further, even if such data were available, teasing apart

the impact of vaccination on transmission and mortality could be non-trivial. In light of these

issues, it might be challenging to extend our approach to rigorously assess the effect of vaccina-

tion on epidemic trajectory on a global scale. These challenges are further compounded by the

emergence of variants of concern with immune evasion characterisitcs such as Omicron,

which increase the risk of reinfection. However, our latest estimates of transmissibility indi-

rectly reflect the impact of vaccination on transmission, allowing for the delay from vaccina-

tion to full immunity, and from infection to death. As we continue to track COVID-19

transmissibility globally, any temporal changes in transmissibility would implicitly account for

the changes due to differential vaccination coverage.

Mathematical modelling and forecasting efforts have supported data-driven decision mak-

ing throughout this public health crisis. Our aim was to provide a global overview and hence

improve situational awareness, and not to provide a new modelling paradigm. We therefore

chose to use established models and in addition develop a simple model to realise our objec-

tive. Using relatively simple approaches, we produced robust forecasts for COVID-19 in 81

countries and provided crucial and actionable insights. As the world continues to grapple with

renewed waves of COVID-19 cases, and against the backdrop of an increasingly complex pop-

ulation immunity landscape, modelling outputs should continue to be evaluated to assess their

utility in informing public health response.

Code

All analysis was carried out in R version 4.0.2. The code for the analysis is available as orderly

[66] project at https://github.com/mrc-ide/covid19-forecasts-orderly. DeCa model is available

as an R package at https://github.com/sangeetabhatia03/ascertainr. The accompanying R
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package https://github.com/mrc-ide/rincewind contains utility functions for creating the fig-

ures and processing model outputs.

Supporting information

S1 File. Supplementary methods and results. The supplementary file contains a description

of the methods and details on data, epidemiological parameters, additional results on model

performance.

(ZIP)

S2 File. Web tool. An interactive web-tool available at https://shiny.dide.imperial.ac.uk/

covid19-forecasts-shiny/ presents both short- and medium-term forecasts, and reproduction

number estimates for all countries included in the analysis.

(TXT)
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