Lawrence Berkeley National Laboratory

Recent Work

Title

Spatially Distributed CO2, Sensible, and Latent Heat Fluxes over the Southern Great Plains

Permalink

https://escholarship.org/uc/item/0xq827md

Authors

Biraud, S.C. Riley, W.J. Fischer, M.L. <u>et al.</u>

Publication Date 2005-04-05

<u>Title:</u> Spatially Distributed CO₂, Sensible, and Latent Heat Fluxes over the Southern Great Plains

SC Biraud, WJ Riley, ML Fischer, MS Torn, JA Berry

Author List:

Sébastien C. Biraud, William J. Riley, Marc L. Fischer, Margaret S. Torn, and Joe A. Berry

Sébastien C. Biraud	William J. Riley	Marc L. Fischer
SCBiraud@lbl.gov	<u>WJRiley@lbl.gov</u>	<u>MLFischer@lbl.gov</u>
Phone: 510-486-6084	Phone: 510-486-5036	Phone: 510-486-5539
Fax: 510-486-5686	Fax: 510-486-7070	Fax: 510-486-5928
Margaret S. Torn <u>MSTorn@lbl.gov</u> Phone: 510-486-2223 Fax: 510-486-7070	Joe A. Berry joeberry@GlobalEcology.stanford.edu phone: 650-462-1047 (x203) fax: 650-462-5968	

Abstract:

Vegetation strongly influences the spatial distribution of sensible and latent heat fluxes, and also controls the ecosystem to atmosphere CO₂ exchanges. We describe here a methodology to estimate surface energy fluxes and Net Ecosystem Exchange (NEE) of CO_2 continuously over the Southern Great Plains, using (1) data from the Atmospheric Radiation Measurement (ARM) program in Oklahoma and Kansas; (2) meteorological forcing data from Mesonet facilities; (3) USGS soil database; (4) MODIS NDVI; and (5) a tested carbon and isotope land-surface model (ISOLSM). The need for distributed ecosystem modeling was demonstrated by the large spatial variability in CO₂ fluxes across the region, which is typically modeled as homogeneous cropland. Comparisons were good between interpolated and independently measured meteorology (using four portable meteorological stations). We compare site-level modeled NEE to measurements made with (1) four portable eddy correlation flux systems located in the dominant vegetation covers and (2) ten permanent eddy correlation sites distributed throughout the Southern Great Plains domain. Predicted CO₂, latent heat, and sensible heat fluxes were in good agreement with measurements. We also performed a sensitivity analysis for NEE varying spatial and temporal resolution of land cover description and meteorological inputs. Our approach will allow us to estimate fluxes in periods and areas where meteorological forcing data are unavailable.