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Abstract: We study and construct spacetimes, dubbed planar AdS-dS-wormholes,

satisfying the null energy condition and having two asymptotically AdS boundaries

connected through a (non-traversable) inflating wormhole. As for other wormholes,

it is natural to expect dual descriptions in terms of two disconnected CFTs in appro-

priate entangled states. But for our cases certain expected bulk entangling surfaces

used by the Hubeny-Rangamani-Takayanagi (HRT) prescription to compute CFT

entropy do not exist. In particular, no real codimension-2 extremal surface can run

from one end of the wormhole to the other. According to HRT, the mutual infor-

mation between any two finite-sized subregions (one in each CFT) must then vanish

at leading order in large N – though the leading-order mutual information per unit

area between the two CFTs taken as wholes may be nonzero. Some planar AdS-dS-

wormholes also fail to have plane-symmetric surfaces that would compute the total

entropy of either CFT. We suggest this to remain true of less-symmetric surfaces

so that the HRT entropy is ill-defined and some modified prescription is required.

It may be possible to simply extend HRT or the closely-related maximin construc-

tion by a limiting procedure, though complex extremal surfaces could also play an

important role.

Keywords: AdS-CFT Correspondence
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1 Introduction

The AdS/CFT correspondence [1, 2] offers a remarkable insight into properties of

large-N , strongly coupled conformal field theories (CFTs): Many quantities of inter-

est in the CFT are related to simple geometrical objects in the gravitational bulk.

Familiar examples include correlators of scalar fields with large conformal dimension

that may be computed from the length of bulk geodesics [3] and Wilson loops given

by the areas of bulk string worldsheets [4].

Our interest here concerns the bulk dual of CFT entanglement entropy. Gener-

alizing the Ryu-Takayangi (RT) prescription [5, 6] to time-dependent contexts, the

Hubeny-Rangamani-Takayanagi (HRT) proposal [7] states that at leading order in

N the entropy of a region A of a holographic CFT is given by

S(A) =
Area(Ξ)

4GN

, (1.1)
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Figure 1. A sample conformal diagram for an AdS-dS-wormhole. The surface labeled Ξ

(blue in color version) is a putative wormhole-spanning surface (which we will show cannot

exist if the spacetime obeys the null energy condition). The surface Σ (red in color version)

is an achronal surface that approaches close to IdS and thus has large volume element. The

dashed lines indicate the boundary of the past of the dS-like part IdS of the conformal

boundary. The wormhole shown has a right/left Z2 reflection symmetry. The explicit

wormholes of section 2 will share this symmetry, though it is not needed for our general

arguments. The edges of IdS are marked E .

where GN is the bulk Newton constant and Ξ is the minimal-area (spacelike) extremal

surface anchored on the set ∂A. Here we think of both A and ∂A as appropriate

subsets of the timelike conformal boundary of an asymptotically locally AdS bulk

spacetime. Because Ξ reaches the AdS boundary, the two sides of (1.1) are both

infinite; a more meaningful equality of finite quantities follows when the two sides

are properly renormalized. As emphasized by Headrick and Takayanagi [8], one

should restrict attention to bulk surfaces appropriately homologous to A (viewed as

part of the conformal boundary). We therefore use the term HHRT to refer both to

the entire framework and to codimension-2 spacelike extremal surfaces homologous

to some given A (whether or not the surface has minimal area within this class).

The purpose of this work is to discuss HHRT for a new class of geometries,

termed planar AdS-dS-wormholes. These spacetimes describe plane-symmetric black

holes with two asymptotically AdS regions connected by a wormhole that in turn

contains an inflating region – and in particular a de Sitter-like (spacelike and smooth)

region IdS of the conformal boundary; see figure 1 for an example and section 2 for

details. We show below that codimension-2 extremal surfaces cannot span any such

wormholes, by which we mean that they cannot connect one side to the other. It

follows that HHRT predicts the leading-order large-N mutual information I(A,B)

to vanish between two finite-sized regions A and B lying on opposite conformal

– 2 –



boundaries1. This is in sharp contrast to the behavior of thermofield double states

studied by Hartman and Maldacena [9].

However, the leading order I(A,B) is non-zero when A and B are the entirety

of their respective boundaries since, for that case, the empty set is also homologous

to A ∪ B. Despite the time-dependent nature of our interior geometries, the pre-

dicted entanglement is thus similar to that of both generic entangled states (see e.g.

[9–12] for holographic discussions) and a naive interpretation of extreme Reissner-

Nordström black holes [12, 13].

At least when interpreted as a suitable large-torus limit of wormholes with

toroidal cross sections (see section 4.3), we see no inherent inconsistency in this

prediction. Indeed, further investigation of this feature may provide insights into the

holographic description of inflation (see also [14–17]2). But the lack of wormhole-

spanning codimension-2 surfaces makes our AdS-dS-wormholes a natural context in

which to investigate possible corrections to HHRT. In particular, while the two AdS

boundaries cannot be connected by any HHRT surface lying in the real Lorentz-

signature spacetime, there is no obstacle to finding complex such surfaces in a com-

plexified AdS-dS-wormhole. Indeed, we argue below that such complex extremal

surfaces exist, though we leave their detailed analysis for future work. We remind

the reader that complex saddle points often dominate the evaluation of integrals

along the real axis, so that derivations of RT via saddle-point approximations to Eu-

clidean bulk path integrals [19–23] naturally suggest that complex extremal surfaces

be incorporated into HHRT, which would in any case require analytic continuation

to make contact with the Euclidean calculation in time-dependent contexts. See [24]

for a discussion of these points, some confusions they raise, and a study of complex

codimension-2 extremal surfaces in bulk duals of thermofield double states. To leave

open the question of whether (1.1) is really the CFT entropy, in what follows we will

use the term “HHRT entanglement” to refer to the bulk quantity calculated by (1.2)

using real surfaces, without implying any particular interpretation in the dual CFT.

The term “HHRT surface” will similarly imply the surface to be real unless explicitly

stated otherwise.

We begin by constructing examples of planar AdSd+1 dS-wormholes in section

1We remind the reader that this mutual information can be defined in terms of the von Neumann

entropies S(A), S(B), and S(A ∪B) as

I(A,B) = S(A) + S(B)− S(A ∪B). (1.2)

2 These references study time-symmetric spacetimes. Our wormholes cannot be time-symmetric,

as a moment of time-symmetry is a totally-geodesic surface. Any wormhole-spanning minimal

subsurface would thus be a wormhole-spanning extremal surface of the full spacetime. Indeed, with

planar symmetry a Raychaudhuri-equation argument like that of [18] shows that no piece of IdS

on the future boundary can lie to the future of any piece of IdS on the past boundary.
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2. We use a cut-and-paste procedure based on simpler and more familiar geome-

tries. The junctions where the cut-out pieces are sewn together contain distributional

sources (null shells) whose stress tensors we compute. For all d ≥ 2 we identify cases

where the result satisfies the null energy condition (NEC), both in the original space-

time from which the pieces were cut and on these null shells.

Section 3 then shows that d ≥ 2 planar AdSd+1 dS-wormholes obeying the NEC

admit no real wormhole-spanning HHRT surfaces. In fact, the main result is slightly

more general: in any asymptotically AdS spacetime respecting the null energy con-

dition, the light cone (boundary of the past or future) from any real codimension-2

spacelike extremal surface Ξ anchored at the AdS boundary can intersect a de Sitter-

like region of the conformal boundary only on a set of measure zero. This turns out

to forbid wormhole-spanning HHRT surfaces for our planar wormholes. Regulating

the geometries by allowing inflation to proceed only to a finite extent can restore

theses surfaces, but their area must diverge as the regulator is removed. Either ar-

gument leads to the HHRT entanglement properties described above when A, B are

finite-sized subsets of opposite boundaries.

The case where A and B are entire boundaries is discussed in section 4, where the

associated HHRT surfaces are termed total entropy surfaces. Interestingly, it appears

that total entropy surfaces also fail to exist in many AdS-dS-wormholes. We show

that there are no plane-symmetric total entropy surfaces in a large class of examples

from section 2, and we conjecture that less symmetric total entropy surfaces also fail

to exist. If so, the HHRT proposal becomes ill-defined and requires improvement.

The conceptually-simplest change would replace the HHRT surfaces with limits of

families of surfaces that exist in a regulated geometry. These limiting surfaces can

be thought of as living on the conformal completion of the unregulated spacetime,

so we refer to this proposal as HHRT.

An alternative and tempting modification, discussed in section 5, is the inclu-

sion of complex codimension-2 extremal surfaces living in complexified wormhole

geometries. Unfortunately, our cut-and-paste spacetimes are not analytic, so their

complexification is far from unique. We thus save analysis of complex surfaces in

actual AdS-dS-wormholes for future work. Instead, we analyze complex surfaces in

pure de Sitter space where real surfaces again fail to exist with widely separated

anchors and where we may expect a similar structure. With help from appendix

B we also note that a sum over complex geodesics accurately reproduces two-point

functions of quantum fields in the de Sitter vacuum state. Since the geodesic approx-

imation to two-point functions shares many superficial similarities with HHRT, this

provides some partial support for the idea that complex surfaces contribute to holo-

graphic entanglement for AdS-dS-wormholes. We close with some final discussion in

section 6.
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2 Cut and Paste AdS-dS-wormholes

We define an AdS wormhole to be a connected solution M of the Einstein equations

(with a matter source respecting the null energy condition) which has two causally

disconnected asymptotically (locally) AdS boundaries3. AdS-dS-wormholes are those

particular examples which admit a conformal extension M in which some piece IdS

of the conformal boundary is, smooth, spacelike, and has diverging conformal factor.

We require IdS to contain an open set of the conformal boundary, and smoothness of

some part the conformal boundary is taken to mean smoothness there of M as defined

by an additional conformal factor that vanishes linearly. In the usual way these

conditions imply thatM is asymptotically de Sitter in the region near IdS. Reasoning

as in section 4.1 of [27], one may show that IdS must be causally inaccessible from

(i.e., outside both the past and future of) any region of the AdS boundary IAdS.

With enough symmetry – and in particular for planar symmetry as defined below

– this follows particularly quickly from the Raychaudhuri equation in parallel with

the spherical case studied in [18]; see also [28]. Since such spacetimes cannot be

time-symmetric (see footnote 2), we will generally assume that IdS lies on the future

conformal boundary as in figure 1.

The goal of this section is to construct simple examples of plane-symmetric AdS-

dS-wormholes. This shows that such solutions exist and helps to make the discussion

in the remaining sections more concrete; they are of particular use in section 4.

We will build planar AdS-dS-wormholes by pasting together regions cut from

more familiar spacetimes satisfying the vacuum Einstein equations with cosmolog-

ical constant, though the value of this cosmological constant will vary from region

to region. We will think of each local cosmological constant as set by a distinct ex-

tremum in the potential V (φ) of some scalar field φ which is constant in each patch.

Each junction will be a null surface, which by the Einstein equations is associated

with some thin shell of matter. For appropriate choices of parameters these null

shells satisfy the null energy condition and may be interpreted as shock waves in the

scalar field φ.

We take each region to admit an additional Killing field ξ beyond those involved

in the planar symmetry, though the vector field ξ will generally fail to be continuous

across the junctions and, as a result, will not define an isometry of the full wormhole

spacetime. Our examples will be built from three such patches, but we impose a Z2

reflection symmetry exchanging the ends of the wormhole so that these regions are

of only two distinct types (called I and II, see figure 2).

Region I will be the part of the familiar planar AdSd+1-Schwarzschild black

hole (or BTZ for d = 2) lying to the past of one AdS boundary, while region II is

(part of) an analytic continuation of the planar AdSd+1-Schwarzschild black hole to

3With enough assumptions about the nature of these two boundaries their causal disconnection

in fact follows from the null energy condition [25, 26].
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IAdS IAdS

IdS
I I
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HCauchy HCauchy

H− H−

A A

E E

(a)

IAdS IAdS

IdS

I I

II

HCauchy HCauchy

H− H−

A A

E E

(b)

Figure 2. Our cut-and-paste AdS-dS-wormholes. The two types of regions are pasted to-

gether along null shells, indicated by the dotted lines labeled A, which are taken to lie along

(parts of the) Killing horizons of the patches I and II. The dashed lines labeled HCauchy are

Killing horizons of patch I and are Cauchy horizons of the full spacetime; the dashed lines

labeled H− are the past event horizons. The two patches labeled I are isometric under a

left/right reflection. (a): A case where the edges E of IdS lie on the past event horizons of

IAdS. (b): A less extreme case where IdS lies below the past event horizon.

positive effective cosmological constant (studied in [29]; see (2.1) and (2.2) below).

The conformal diagrams of these spacetimes and the indicated regions are shown in

figure 3. Each patch extends to the relevant part of the future and/or past Killing

horizon.

The junctions are two copies of a single null shell (drawn as dotted lines and both

labeled A in the figure) which lie on parts of the would-be Killing horizons of ξ. Note

that our wormhole has Cauchy horizons HCauchy along other pieces of the would-be

Killing horizons. In analogy with the Reissner-Nordström case [30–32], we expect

our Cauchy horizons to be unstable to forming null singularities. They should thus

be considered an artefact of our cut-and-paste construction.

We also introduce a coordinate r defined at each point by the scale factor of the

corresponding plane of symmetry, and which must be continuous across each shell.

This requires the black hole horizon in patch I to have the same “radius” r+ as the de

Sitter horizon in patch II, though the effective cosmological constant (parametrized
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I

r = 0

r = 0

r = ∞ r = ∞r = r+

II

r = ∞

r = ∞

r = 0 r = 0r = r+

Figure 3. Conformal diagrams for the spacetimes from which we cut our (shaded) regions I

and II. The dashed lines on both diagrams correspond to the Killing horizons at r = r+.

For simplicity we do not show the relative bending between the singularity and boundary.

by the associated length scales `I , `II) and black hole mass-density may differ. As

noted above, one may think of the associated jumps as modeling gravity coupled to

a scalar field whose potential has both AdS and dS extrema.

In both patches the metric thus takes the form

ds2
n = −fn(r)dt2n +

dr2

fn(r)
+ r2 d~x2

d−1, (2.1)

where n = I, II, each of the fn have a zero at the same value r = r+, and the

coordinates tn will generally differ from patch to patch. In particular, we take

fI(r) =
r2

`2
I

(
1−

(r+

r

)d)
, (2.2a)

fII(r) = − r
2

`2
II

(
1−

(r+

r

)d)
. (2.2b)

In regions I and II, we have 0 < r < ∞ and r+ < r < ∞ respectively, as shown in

figure 3.

Assembling these patches as in figure 2 yields a planar AdSd+1 dS-wormhole.

But the result is far from unique, as we must specify the manner in which each pair

of regions is sewn together at the relevant junction. In our context, it is convenient

to do so using Eddington-Finkelstein coordinates

dun = dtn −
dr

fn(r)
, dvn = dtn +

dr

fn(r)
. (2.3)

Recall that the past event horizon in region I is vI = −∞, with vI running from ∞
to −∞ below this horizon and then again from −∞ to ∞ above. We sew patch II

to the part of patch I below the past horizon using

vII =
1

κII
gA (κIvI) , (2.4)
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where gA(x) is an arbitrary continuous monotonic function. The fact that we placed

the boundaries of our regions at Killing horizons means that the induced metric is

continuous across the junction for any gA. To construct figure 2(a), we choose gA to

map (−∞,∞) 7→ (−∞,∞), and in particular take gA(−∞) = −∞. This takes the

two edges E of IdS to lie precisely on the past event horizons H− of IAdS, as shown

in figure 2(a). Recall from earlier that, as in [18], the null energy condition prevents

IdS from being to the future of any point of IAdS, so this current case is a threshold

case. We may move IdS lower (as in figure 2(b)), but no higher.

That the spacetimes of figure 2 obey the NEC is easily verified by calculating the

stress tensor of our shells. The key quantities are their energy density µ and pressure

p. We wish to find examples satisfying µ + p ≥ 0; this condition is equivalent to

the NEC in our context. The computations are described in appendix A. For the

spacetime of figure 2(a), we take gA(x) = βx; then using (A.7) the condition µA +

pA ≥ 0 becomes equivalent to

κII ≥ βκI

[
1− 1 + β

d− 1
κIr+

]
. (2.5)

Choosing, for instance,

κIr+ =
1

4
, κIIr+ =

1

4

(
1− 1

2(d− 1)

)
, β = 1 (2.6)

yields µA + pA = 0 for all d ≥ 2, giving a patched AdS-dS-wormhole that saturates

the NEC everywhere.

To construct figure 2(b), we instead set gA(x) = ln(edx − edκIv0) and take the

domain of vI to be (v0,∞); this places the edges E of IdS at a finite advanced

time vI = v0 and yields

µA + pA =
1

8πGNr+

[
2d

edκI(vI−v0) − 1
+ 2 +

(
1− e−dκI(vI−v0)

)(
1− 1

d

)]
, (2.7)

which is positive4 for all vI > v0 and d ≥ 2.

As noted above, our cut-and-paste construction led to a Cauchy horizon HCauchy.

While not a problem for our later discussion and likely unstable, we nevertheless

mention that it is easy to shrink this horizon or even remove it entirely by including

further simple matter sources. For example, one can fire null dust (obeying the null

energy condition) from the AdS boundary, as shown in figure 4(a). This replaces

the pure AdS-Schwarzschild metric in the part of patch I above H− with an ingoing

4One may ask if in analogy with the threshold case there exists some choice of parameters that

saturates the NEC; that is, for arbitrary finite v0, is there a choice of κI > 0, κII > 0, and smooth

monotonic gA(x) with domain (v0,∞) that sets µA + pA = 0? The answer is no: using (A.7) the

condition µA + pA = 0 becomes a differential equation for gA, whose only solutions do not obey the

monotonicity requirement.
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IAdS IAdS

IdS

HCauchy HCauchy

A AH− H−

(a)

IAdS IAdS

IdS

Ia Ia

Ib Ib

II

BB A A

H− H−

(b)

Figure 4. Firing in matter from the AdS boundaries modifies the cut-and-paste wormholes

of figure 2. The spacetimes shown are based on figure 2(a), though corresponding results

also hold for figure 2(b). (a): Patch I is replaced by an AdS-Vaidya metric representing

pressureless null dust (shaded) falling in from IAdS. This adds a future singularity that

cuts off part of the Cauchy horizon HCauchy. (b): One can remove the Cauchy horizon

completely by firing in a thin null shell B (light gray lines beneath dashed lines) along H−.

The shell further divides region I into subregions Ia and Ib on either side. This shell cannot

be pressureless (see footnote 5) and is not a simple limit of the Vaidya case shown at top.

planar AdS-Vaidya metric (i.e., the ingoing planar AdS analogue of [33, 34]) of the

form

ds2
I = −fI(r, vI)dv2

I + 2 dvI dr+ r2 d~x2
d−1, where fI(r, vI) =

r2

`2
I

(
1− r̃d(vI)

rd

)
, (2.8)

where r̃(vI) is an arbitrary function satisfying r̃′(vI) ≥ 0 and r̃(−∞) = r+.

In principle, the Cauchy horizon can be made to disappear entirely by firing

in a thin null shell along H− itself. The spacetime then becomes the one shown

in figure 4(b). Furthermore, as the new null shell runs along a would-be Killing

horizon, each of the (now five) patches Ia, Ib, and II still admits a timelike Killing

field ξ. In appendix A we show by explicit construction that the resulting spacetime

does indeed obey the null energy condition, though since the new null shell is not

pressureless, it is not in any simple sense a limiting case of the Vaidya spacetime5.

5 That the shell cannot be pressureless follows from the fact that the pressure of the shell is a

measure of the discontinuity in the acceleration of its generators across it [35]. Since its generators

are future inextendible (extendible) with respect to patch Ia (Ib), this discontinuity must be nonzero

and the shell pressure cannot vanish everywhere.
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3 No localized HHRT entanglement

We turn now to HHRT surfaces and entanglement. The goal of this section is to

show for all d ≥ 2 that, according to HHRT, planar AdSd+1-dS-wormholes describe

states defined on two CFTs in which the CFTs are jointly pure at leading order in

large N but which have vanishing leading-order mutual information between finite-

sized subregions of opposing boundaries. The leading-order purity of the total state

is straightforward: the pair of AdS boundaries taken together is homologous to

the empty set so that the total leading-order entropy vanishes. And the mutual

information (1.2) will vanish between finite-sized subregions A, B if S(A ∪ B) =

S(A) + S(B).

We show below that AdS-dS-wormholes have no wormhole-spanning codimension-

2 extremal surfaces. So when A, B are finite-sized subregions of opposite boundaries,

every extremal surface anchored on ∂(A∪B) is in fact the union of two disconnected

surfaces – one anchored on ∂A and the other on ∂B. A naive application of HHRT

thus yields S(A ∪ B) = S(A) + S(B) and I(A,B) = 0. In order to take a bit more

care, we also consider regulated versions of our spacetimes where wormhole-spanning

surfaces do exist and show that this behavior is reproduced in the limit where the

regulator is removed.

The arguments of this section do not in fact require the full planar symmetry;

it is enough to have the translation subgroup. We refer to this as planar-translation

symmetry in order to distinguish it from full planar symmetry.

3.1 No wormhole-spanning extremal surfaces

We first show that the intersection of de Sitter-like regions of the conformal boundary

with the light cone (boundary of the past or future) from any real codimension-2

extremal surface Ξ must have measure zero when the only boundaries of Ξ lie at the

AdS boundaries. We will refer to this latter property saying that Ξ is anchored at the

AdS boundary. As for IdS above, we define de Sitter-like regions of the conformal

boundary to be those that are smooth and spacelike with divergent conformal factor.

We assume the spacetime to satisfy the null convergence condition Rabk
aka ≥ 0,

which holds for solutions of the Einstein-Hilbert equations of motion for gravity

coupled to matter that respects the null energy condition. The argument is closely

related to the methods of [36]. Where not specified, we will use the conventions and

definitions of [37].

To begin, consider a real codimension-2 extremal surface Ξ anchored at the

AdS boundary whose light cone intersects a de Sitter-like region of the conformal

boundary. Since the only boundary of Ξ lies at the AdS boundary, and since any

extremal surface intersects the AdS boundary orthogonally, the light cone of Ξ is

generated by a congruence of null geodesics fired orthogonally from Ξ. Furthermore,

since Ξ is extremal and codimension-2, the expansion of this congruence vanishes at

– 10 –



Ξ. No new generators can join the light cone as one moves away from Ξ, and the

null convergence condition implies that the expansion can only decrease. Thus, just

as in the proof of the Hawking area theorem [38], the area of the light cone can only

decrease as one moves away from Ξ.

On the other hand, any piece of this light cone which intersects a de Sitter-like

region of the conformal boundary on a set of non-zero measure has infinite area. If

Ξ has finite area this immediately implies that the intersection must have measure

zero. If Ξ has infinite area (as in the case of interest), the same conclusion is reached

by considering a compact set of null geodesics in our congruence that reach the

de Sitter-like infinity; they must have been fired from a compact subset of Ξ with

finite area. And if all compact subsets have zero measure then the total measure of

the intersection must vanish as well. This argument assumes the light cone to be

piecewise C2 in parallel with Hawking’s original derivation [38] of the area theorem,

but we expect that this assumption can be dropped using the methods of [39].

One may use the above result to exclude wormhole-spanning HHRT surfaces in

an AdS-dS-wormhole with an an everywhere-spacelike freely-acting Rd−1 translation

symmetry (which we call planar-translation symmetry), or in any quotient of such

a spacetime by any subgroup of these translations. For such a translation-planar

AdS-dS-wormhole M , it is natural to consider conformal extensions M containing

IdS for which the relevant conformal factor and thus M are also invariant under

this planar-translation symmetry. This means that M cannot be compact, but we

will choose conformal extensions that become so under any quotient by a discrete

translation subgroup group that takes Rd−1 to the torus T d−1.

The planar-translation symmetry implies that any wormhole-spanning extremal

surface Ξ must pass through the region to the past of IdS, see figure 1. But the light

cone of Ξ can expand only with finite speed in the conformally extended spacetime

M , while M remains infinite in the planar directions. Thus the part of IdS to

the future of Ξ can be of only finite extent in the planar directions. Since IdS is

invariant under the full infinite planar-translation symmetry, the future light cone

of Ξ (i.e., the boundary of its future) must intersect IdS along some surface that

spans IdS from one end to the other. And since IdS is non-trivial, the measure of

this intersection is non-zero. This contradicts the result above and shows that Ξ

cannot exist. It also follows that wormhole-spanning extremal surfaces cannot exist

in any quotient as they would then lift to a wormhole-spanning extremal surface in

the covering spacetime M .

We note that this same result can be derived directly using the maximin pre-

scription of [36] (which was shown to be equivalent to HHRT in certain contexts).

The maximin construction considers all achronal surfaces Σ satisfying appropriate

boundary conditions, such as the one shown in figure 1. One then finds the minimal

surface on each Σ and then maximizes the area of this surface over all Σ. So the

area of the maximin surface is bounded below by the area of the minimal surface on
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any given Σ. Since IdS is outside the light cone of any point on any AdS boundary,

we may choose Σ to lie arbitrarily close to IdS over a finite portion of its length as

shown in figure 1. In the limit where Σ approaches IdS in this way the area of the

minimal wormhole-spanning surface on Σ grows without bound. We see that the

area of any maximin surface must be infinite, and that no actual maximin surface

can exist in M . This argument works directly in both translation-planar spacetimes

and their quotients.

On the other hand, there is no obstruction to having extremal codimension-

2 surfaces outside the horizon. Indeed, we may take the exterior regions of our

wormhole to be just planar AdS-Schwarzschild in which extremal surfaces have been

extensively studied (e.g. in [5, 6]). Considering finite-sized subregions A and B of

opposite boundaries, the lack of wormhole-spanning extremal surfaces means that,

when the translation-symmetry is non-compact, a naive application of HHRT finds

the minimal area surface computing S(A∪B) to be disconnected, with each connected

component giving just S(A) or S(B) separately6. In other words, our result implies

S(A ∪ B) ≈ S(A) + S(B) so that I(A,B) ≈ 0, where ≈ denotes equality at leading

order in large N .

We now pause to evaluate this conclusion more carefully. In particular, we

consider regulated versions of our AdS-dS-wormholes in which inflation proceeds only

for a finite time before the wormhole recollapses to a singularity. Simplified models of

such spacetimes are constructed and studied in detail in appendix B. Removing IdS

in this way allows wormhole-spanning HHRT surfaces to exist. Indeed, the arguments

of [36] tell us that they do, and that they coincide with maximin surfaces7.

The maximization step in the maximin procedure suggests that wormhole-spanning

extremal surfaces lie near the surface of maximal inflation in the regulated wormhole.

More precisely, we argue in appendix B that at late times they approach a surface

of maximal effective scale factor in behavior analogous to that found by Hartman

and Maldacena in AdS-Schwarzschild [9]. This surface recedes to IdS and becomes

of infinite size in any limit where our regulator is removed. In contrast, the area of

disconnected surfaces that lie outside the horizon will remain finite as the regulator

is removed. So, as above, when the translation symmetry group is appropriately

6The reader may note that A ∪ B is homologous to Ā ∪ B̄ where Ā, B̄ are the complements

of A,B within their respective boundaries. As a result, there are also disconnected surfaces with

each piece separately homologous to Ā, B̄. But when the translation symmetry is non-compact

and A,B are finite-sized, these latter surfaces will have infinite area and do not contribute. For

toroidal wormholes, they will again fail to contribute when A,B are sufficiently small but make the

leading-order I(A,B) non-zero for large enough A,B.
7 The theorems in [36] address Kasner-like singularities. The singularities of our regulated

wormholes are naturally either of Kasner-like or of the ‘big crunch’ form where all directions shrink

to zero size. Since all surfaces near the big crunch are small, it is manifest that the maximization

step of the maximin procedure keeps one well away from such singularities. It is thus even easier

to apply the arguments of [36] in this case than for Kasner-like singularities.
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non-compact, HHRT again predicts S(A∪B) ≈ S(A) +S(B) for AdS-dS-wormholes

and I(A,B) ≈ 0.

4 No total entropy surfaces in M , but finite total entropy

We have seen that planar AdS-dS-wormholes have vanishing HHRT entropy between

finite-sized subregions of opposite boundaries. This raises the question of taking A

and B to be (opposite) boundaries in their entirety. Since A∪B is then homologous

to the empty set, HHRT finds S(A ∪ B) = 0 and I(A,B) = S(A) + S(B) = 2S(A).

But it remains to compute S(A) by finding the associated HHRT surfaces. Such

(putative) surfaces are called total entropy surfaces below.

For a broad class of planar AdS-dS-wormholes from section 2, section 4.1 will

demonstrate that plane-symmetric total entropy surfaces do not exist in the phys-

ical spacetime M . This argument uses the full planar symmetry and not just the

translation subgroup, though corresponding results follow immediately for toroidal

quotients. We conjecture that less-symmetric total entropy surfaces also fail to exist

and that the HHRT entropy is ill-defined. More complicated examples similarly sug-

gest that a strict application of HHRT gives physically incorrect results even when

a total entropy surface exists in M .

Consideration of regulated spacetimes in section 4.2 nevertheless argues that

HHRT be extended to assign a finite entropy to each boundary of our AdS-dS-

wormholes. The non-zero entropy implies a positive mutual information between the

two boundaries. We also locate an effective HHRT surface lying in the conformal

boundary at the edge of IdS. The implications for entanglement are summarized in

section 4.3.

4.1 Planar wormholes without planar total entropy surfaces

The example wormholes of section 2 have full planar symmetry, including reflections

as well as translations in each (spacelike) planar direction. This implies that our

wormholes admit unique (future-directed) left- and right-moving null congruences

orthogonal to every orbit of the planar symmetry group; i.e., whose velocity field has

only r, t components. Since a codimension-2 surface is extremal if and only if the

expansion vanishes at the surface for each of the two orthogonal null congruences,

plane-symmetric total entropy surfaces arise only when the left- and right-moving

congruences define zero-expansion surfaces (θL = 0, θR = 0) that intersect.

One can certainly find AdS-dS-wormholes where this intersection exists. For

example, this occurs when the wormhole exterior is precisely AdS-Schwarzschild up to

and including the bifurcation surface. The left- and right-moving AdS-Schwarzschild

Killing horizons have respectively θL = 0, θR = 0 and intersect at a total entropy

surface (i.e. the bifurcation surface). But there are other choices where the zero-

expansion surfaces do not intersect.
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For planar congruences in planar spacetimes the sign of the expansion is positive

when r increases along the congruence and negative when it decreases. So it is

straightforward to draw θL = 0, θR = 0 contours for the simple cases shown in

figures 2(a) and 4(b) in which the matter consists only of thin shells. The results are

shown in figure 5. Since the expansions are generally not continuous at the junctions,

in most cases what we have actually drawn is the boundary between the region of

positive expansion (below the indicated lines) and the region of negative expansion

(above the indicated lines)8.

When the matter shells enter along the past event horizons of IAdS (as in fig-

ure 5(a)) we find that θL = 0, θR = 0 surfaces coincide over a finite piece of these

horizons near IdS. But this is an artefact of the associated fine tuning. Taking

the shell to enter later (as in figure 5(b)) displaces the outgoing zero-expansion sur-

face toward the future so that the two surfaces no longer intersect in the physical

spacetime M . For appropriate choices, this remains true when we smooth out the

thin shell by passing to the Vaiya wormhole shown in figure 4(a); see figure 6 for an

explicit example which takes d = 2 and

r̃(vI) = r+

√
5 + 4 tanh(vI/`I), (4.1)

with r̃(v) defined as in (2.8). The Cauchy horizons in these examples should be

unstable and non-generic as described in section 2, though we see no reason that

such instabilities should restore the missing total entropy surfaces.

In such cases there can be no planar total entropy surface. The same is clearly

true of toroidal quotients. We expect that less-symmetric total entropy surfaces fail

to exist as well9.

4.2 Regulated wormholes

The lack of total entropy surfaces in these cases renders the HHRT entropy of ei-

ther boundary ill-defined. So this prescription clearly requires modification. When

wormhole-spanning extremal surfaces did not exist in section 3, we argued that they

could equivalently be assigned infinite entropy. But taking the xi coordinates peri-

odic turns each boundary into a finite torus (at each time). So since the bulk clearly

has finite energy, it would be physically incorrect to assign infinite entropy to either

CFT. Some other resolution is needed.

Useful insight can again be obtained by considering the regulated and smoothed-

out wormholes of section 3; the key point is again that they inflate only to a finite

8The exception occurs at shell A, where on either side the congruence along this shell has positive

expansion that vanishes as the shell is approached.
9In the past domain of dependence of IdS, extremal surfaces that extend in the planar directions

will tend to bend toward the singularities. But closed surfaces in M will have points (locally)

“closest” to the singularity. So one need only exclude extremal surfaces from other regions of the

conformal diagram.
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IAdS IAdS

IdS

(a)

IAdS IAdS

IdS

(b)

Figure 5. Surfaces of θR = 0 (dashed lines; red in color version) and θL = 0 (dotted

lines; blue in color version) for the AdS-dS-wormholes shown in figure 4. Note that since

affine parameters diverge at IdS and IAdS, the Raychaudhuri equation guarantees that

θR, θL both vanish on these surfaces. We take the ingoing matter to consist of null shells

(solid gray lines). (a): The spacetime of figure 4(b). Null shells with non-zero pressure

are fired in along the past horizons of IAdS; this fine-tuning leads the θR = 0, θL = 0

surfaces to overlap along portions of these past horizons. (b): When the incoming shells

are displaced to the future the surfaces θR = 0, θL = 0 no longer intersect in M and total

entropy surfaces do not exist in M . Here the shell may be chosen pressureless so that this

case is a simple limit of figure 4(a). A version in which this new null shell is smoothed out

is shown in figure 6.

IAdS

IdS

Figure 6. Surfaces of zero expansion in the d = 2 AdS-Vaidya dS-wormhole with the mass

function (4.1). Conventions are the same as in figure 5, except that singularities are now

drawn as solid lines (green in color version). Note that we only show the left half of the

spacetime, and that only surfaces to the future of the past horizon H− have been calculated

and plotted explicitly; the past singularity and IdS have been drawn as straight lines by

hand. The Cauchy horizon intersects the singularity at advanced time v0 = −`I ln
√

3. As

in figure 5, this Cauchy horizon can also be removed by adding a null shell along H−.
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extent before recollapsing to a singularity. Thus all desired extremal surfaces will

exist (see footnote 7). Furthermore, in these regulated spacetimes, theorem 16 of [36]

guarantees total entropy surfaces to have smaller area Areg
TE than the area Abif of the

smallest bifurcation surface of either the right or left event horizon. So holding Abif

fixed as the regulator is removed gives a regulator-independent upper bound on Areg
TE.

In particular, since the Hawking area theorem guarantees the late-time area of the

event horizon to be even larger, the bound on Areg
TE is consistent with the expected

CFT density of states at the given energy.

This suggests that Areg
TE may approach some limit Alim

TE as the regulator is re-

moved. Using Alim
TE to calculate entropy for AdS-dS-wormholes would be a simple

extension of HHRT that we christen HHRT, though we will not study convergence

of this limit in any detail. However, we mention that more complicated variations

on the above examples suggest that the original HHRT prescription can assign the

wrong entropy even when a total entropy surface does exist. For example, we could

modify the spacetimes of figure 4 by adding a further AdS-Schwarzschild region with

unmolested bifurcation surfaces that introduce new extremal surfaces. If the area

Anew of this new surfaces exceeds the above Alim
TE, then HHRT will use a smaller sur-

face to compute our entropy in any regulated spacetime. Strict use of HHRT would

then predict the entropy to be discontinuous as the regulator is removed while by

construction HHRT gives a continuous result. And, as above, in many cases the strict

HHRT result will give Anew > Abif which will often conflict with the CFT density of

states as set by the total energy (while consistency of HHRT is guaranteed).

It also is useful to discuss the above limit in terms of the maximin prescription of

[36], which is equivalent to HHRT in our regulated context (see again footnote 7). We

once more recall that a maximin surface is constructed by first studying all achronal

surfaces Σ, identifying the minimal surface on each, and maximizing the associated

area over all Σ. Now, the proposal that AdS-dS-wormholes have no maximin total

entropy surface in the physical spacetime M would mean that this final maximum

does not exist. But since [36] guarantees that the minimal surface on any Σ has area

smaller than Abif , we may still discuss the least upper bound Alub
TE of the areas over

all achronal surfaces. And for the above toroidal wormholes this Alub
TE must be finite,

as it is also bounded above by the area of the horizon bifurcation surface.

For simplicity, let us suppose that IdS lies in the future conformal boundary.

Then our regulator deforms the AdS-dS-wormhole only in the far future. In par-

ticular, any achronal surface in the AdS-dS-wormhole is also an achronal surface

in regulated wormholes with sufficient amounts of inflation. It thus persists as the

regulator is removed and gives a lower bound on the limit Alim
TE. It follows that Alim

TE

is at least Alub
TE.

On the other hand, suppose that some regulated spacetime had Areg
TE greater

than Alub
TE. Then the achronal surface containing this maximin surface can have

no counterpart in the unregulated wormhole. One thus expects to be able to use
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regulators where Areg
TE converges precisely to Alub

TE as the regulator is removed; i.e.,

for which Alim
TE = Alub

TE. It is therefore natural to extend the maximin prescription to

our AdS-dS-wormholes by assigning entropy Alub
TE/4GN to each CFT and to term the

associated scheme maximin regardless of the conditions under which this coincides

with a limit of Areg
TE. We remark that for the spacetimes of figure 4 this Alub

TE is

precisely the area AH− = rd−1
+ Vd−1 of the past horizon H− of IAdS. Here Vd−1 is

the coordinate volume of the xi directions and we have already argued Alub
TE ≤ AH− .

Since achronal surfaces close to the future boundary have r > r+ − ε everywhere for

any ε > 0 we also have Alub
TE ≥ AH− and thus Alub

TE = AH− .

A useful feature of the original HHRT framework was that it associated the

entropy calculation with a specific surface in the bulk. In particular, we recall that

this observation has led to proposals [36, 40] for the bulk region dual to subregions

of a CFT; see also [41, 42]. It would thus be nice to locate a surface to which we can

assign area Alub
TE.

There is of course no natural candidate in the physical unregulated spacetime M .

But we can ask if the total entropy surfaces of the regulated spacetimes converge in

any sense to a surface in the conformal extension M . Note that, since our regulator

deforms the AdS-dS-wormhole only in the far future, removing the regulator must

send the total entropy surfaces to the future conformal boundary. And since their

area remains bounded, they cannot approach the interior of IdS. But there is no

need to regulate the spacetime far from IdS, so any limiting surface can have no

finite separation from IdS. The limiting total entropy surface must thus lie at one of

the edges E in figure 1 that mark the boundary between IdS and the singular part of

the future conformal boundary. For similar reasons we expect that studying minimal

surfaces on achronal surfaces Σ converging to the future conformal boundary in the

unregulated AdS-dS-wormhole will also lead to effective maximin surfaces located at

one of the edges E ; i.e., that the maximin procedure naturally defines a surface in

the conformal extension M . In examples with right/left symmetry we should assign

two surfaces, one at each edge. In other cases the choice of left edge vs. right10 will

depend on details of the AdS-dS-wormhole, though we expect that it will not depend

on the choice of regulator.

4.3 Implications for entanglement

Let us now return to the discussion of entanglement. We begin with toroidal AdS-dS-

wormholes in which the translation symmetry is compact. We argued above that the

corresponding dual CFTs have non-zero leading-order mutual information. We also

showed in section 3 that I(A,B) ≈ 0 for regions A, B on opposite boundaries having

sizes much smaller than the size of the torus. However, the mutual information can

be non-zero at this order for A,B sufficiently large.

10Here we assume that IdS is connected.
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To discuss the uncompactified case we take the large-torus limit while holding

fixed the size of our regions A, B. The part of the opposite CFT strongly entangled

with A then recedes to infinity, while the total mutual information per unit area

between the two CFTs remains constant. This suggests that one think of each

infinite plane in the non-compact case as the limit of entire tori so that, although

finite-sized subregions in opposite CFTs have no leading-order entanglement, the

resulting planar CFTs retain finite leading-order mutual information per unit area;

i.e., although correlations recede to infinity we do not allow any information to be lost

in taking the limit11. Repeating this discussion for effective total entropy surfaces

lying in the future conformal boundary of the toroidal wormholes leads us to consider

similar effective total entropy surfaces for the planar wormholes, and of course the

limit of empty sets remains empty. For the finite tori, the former compute the

entropy of each boundary separately while the latter (empty set) surfaces compute

the total entropy of both boundaries together. So it is in the above sense that, in

the case of non-compact cross-section, our effective HRRT surface and the empty set

respectively compute the leading order total entropy of each CFT separately and for

the joint state on the pair of CFTs.

While the above notion of limit is essentially unique for finite-sized regions A

and B, it should be mentioned that there is an alternate way of interpreting what is

meant by the limiting planar CFTs taken as wholes. In this second interpretation,

each entire plane is the limit of a family of additional (larger) subregions of the

growing tori. These larger regions are taken to grow in size without bound, but at a

rate much slower than the size of the torus itself. In other words, one “zooms in” on

a smaller and smaller fraction of the torus as the torus grows. Since each resulting

plane is built from the limit of “small” regions of the large-but-finite tori, the total

leading-order mutual information between the two CFTs must vanish. For a finite

torus, the corresponding HHRT surfaces are then anchored to “small” regions of the

boundary IAdS and cannot enter the past of IdS. Moreover, two such regions on

opposite boundaries are not homologous and require distinct HHRT surfaces. Taking

the large torus limit then implies that we continue to assign the total entropy of each

planar CFT a distinct HHRT surface12 lying entirely on its side of the wormhole,

and that the union of these surfaces describes the total entropy of the two CFTs

together. The total leading-order mutual information between the two CFTs then

vanishes as desired under the alternate interpretation just described for the limiting

11A theorem of [43] (Lemma 3, Remark 1) shows that one may successfully approximate any

relative entropy defined on a von Neumann algebra by describing this algebra as a limit of smaller

algebras. The same thus holds for mutual information. The above interpretation is consistent with

this theorem, as the algebra it assigns to the plane effectively contains many operators “at infinity”

which are not limits of operators in finite regions. This “algebra at infinity” corresponds to the

distant parts of the finite tori used to take the limit.
12This may be only an effective surface in a sense similar to that of the HHRT proposal.
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planar CFTs.

The highly delocalized entanglement characteristic of toroidal AdS-dS-wormholes

thus leads to two physically-distinct notions of the planar limit, both described by the

same limiting (planar AdS-dS-wormhole) spacetime. The preceding analysis suggests

that non-compact wormholes generally admit at least two correspondingly distinct

interpretations of the homology constraint, associated with different possible roles

being played by the region “at infinity” in directions transverse to the dimensions

displayed in our figures. But we leave further development of this proposal for future

work and content ourselves here with the discussions above.

5 Complex wormhole-spanning Surfaces?

While we see no inherent inconsistencies in the CFT entropies predicted by HHRT,

the infinite area of real wormhole-spanning HHRT surfaces makes our AdS-dS-wormholes

a natural context in which to investigate further possible improvements. In particu-

lar, one might ask if complex extremal surfaces could play a role. This is suggested

by the superficial analogy with the geodesic approximation to two-point functions

where a lack of real geodesics does indeed indicate the importance of complex ones

[44]; see also [3, 45, 46] for more general discussions. It would be very interesting

to investigate complex extremal surfaces in particular example AdS-dS-wormholes

(as done for static planar black holes in [24]) and to see if the results inform any of

the conceptual puzzles associated with the use of complex surfaces (see again [24]

for discussion). However, since the cut-and-paste spacetimes of section 2 are not an-

alytic, it is unclear in what complexification such complex extremal surfaces might

live. Indeed, analogy with the geodesic approximation to two-point functions raises

the question of whether any HHRT-like prescription can apply to geometries that

are not analytic; see e.g. [47].

We thus save analysis of complex surfaces in actual AdS-dS-wormholes for future

work and make no attempt to study them here. Instead, we briefly discuss complex

codimension-2 surfaces in pure de Sitter space. This section thus represents a slight

aside from the main theme of this work and may be skipped without loss of continuity.

In pure de Sitter settings analogous to spanning our wormholes, real such surfaces

again do not exist. But we shall see that complex surfaces are readily found.

Of course, the existence of complex such surfaces does not immediately imply

their relevance to the computations at hand. For example, if they describe complex

saddles approximating some path integral, complex surfaces will contribute only if

one can appropriately deform the contour of integration to include them. While it

is unclear how to analyze this in detail for the entropy problem, it is interesting to

consider the superficially-related problem of computing free-field two-point functions

in the Bunch-Davies vacuum using the geodesic approximation. Using an expansion

of this two-point function from appendix C, we show explicitly below how it is given
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t = t0

IdS

Figure 7. The cosmological patch of de Sitter spacetime. The solid black curves are

sketches of extremal surfaces ending on a t = t0 = const slice, shown as a solid red curve.

As the endpoints of the surfaces are taken farther apart, the surfaces approach the dotted

null curve. At even larger separations real extremal surfaces cease to exist.

by an infinite set of complex geodesics in dS3 and that these geodesics lie on an

infinite number of sheets of the associated Riemann surface in the sense of [24].

5.1 Complex Extremal Surfaces in dS

It is well known that pure de Sitter space contains pairs of points that cannot be

connected by geodesics (see e.g. [48]). Indeed, geodesics tend to bend down and away

from future infinity, as shown in figure 7. So if the ends of the extremal surface are

taken far enough apart, the geodesic becomes null and “bounces” off future infinity in

a manner pictorially similar to the bouncing geodesics of AdS-Schwarzschild [24, 44]

– though the null limit of bouncing geodesics retains finite length in dSd+1 while it

vanishes in AdS-Schwarzschild as measured from any finite points in the spacetime.

Real geodesics cease to exist when the separation is increased beyond this critical

point, leaving only complex ones. This occurs in particular for d = 2, where geodesics

are codimension-2 extremal surfaces. Extremal surfaces of any codimension turn out

to behave similarly for all d, though the area diverges in the null limit for extremal

surfaces whose dimension exceeds 1 (i.e., for any case except geodesics).

We now study this phenomenon in detail for a class of codimension-2 extremal

surfaces analogous to the would-be wormhole-spanning surfaces of section 3. Below

we anchor our surfaces at the de Sitter horizon as opposed to at a spacetime boundary.

This allows us to work entirely in the dS patch. We study pure de Sitter for simplicity,

but analogous results should also hold for patch II as defined in section 2.

Consider the inflating spatially-flat patch of pure de Sitter in the familiar coor-

dinates where the metric takes the form

ds2 = −dt2 + e2Htd~x2
d ≡ −dt2 + e2Ht

(
dr2 + (dx1)2 + (d~x

‖
d−2)2

)
. (5.1)
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We take our surfaces to be anchored on infinite strips defined by t = t0, r =

±L/2, x1 = const. Conservation of x1 momentum implies that x1 remains con-

stant across the entire extremal surface. The surface can thus be parametrized

by the coordinates x‖ and a yet-to-be-specified parameter λ; i.e., (t, r, x1, x‖) =

(t(λ), r(λ), const., x‖). The resulting area functional is

A = Vd−2

∫
dλ e(d−2)Ht

√
e2Htṙ2 − ṫ2 ≡ Vd−2

∫
dλL

(
t, r, ṫ, ṙ

)
, (5.2)

where Vd−2 ≡
∫
dd−2x‖ is the volume of the space spanned by the x‖ coordinates.

Since the effective Lagrangian L = e(d−2)Ht
√
e2Htṙ2 − ṫ2 contains no explicit

dependence on r(λ), there is a conserved conjugate momentum

p =
∂L
∂r

=
edHtṙ√

e2Htṙ2 − ṫ2
. (5.3)

Choosing the parameter λ so that e2Htṙ2 − ṫ2 = 1, we obtain

ṙ = e−Ht∗e−dH(t−t∗), (5.4a)

ṫ2 + Veff(t) = 0, (5.4b)

in terms of an effective Newtonian potential

Veff(t) = 1− e−2(d−1)H(t−t∗). (5.5)

Here t∗ ≡ ln p/((d − 1)H) is the real root of Veff(t) and describes the turning point

of real extremal surfaces. Relating t∗ to the coordinate displacement L between the

anchor points through

2L = 2

∫ t∗

t0

ṙ

ṫ
dt (5.6)

yields

eHt0L =
i

dH
e−H∆t

[
edH∆t

2F1

(
1

2
,

d

2(d− 1)
;

3d− 2

2(d− 1)
; e2(d−1)H∆t

)
− 2F1

(
1

2
,

d

2(d− 1)
;

3d− 2

2(d− 1)
; 1

)]
, (5.7)

where ∆t ≡ t∗ − t0 and 2F1 is the ordinary hypergeometric function written using

standard conventions (e.g. [49]). Likewise, the area (5.2) becomes

e−(d−2)Ht0A =
2iVd−2

(d− 2)H

[
e(d−2)H∆t

2F1

(
1

2
,− d− 2

2(d− 1)
;

d

2(d− 1)
; 1

)
− 2F1

(
1

2
,− d− 2

2(d− 1)
;

d

2(d− 1)
; e2(d−1)H∆t

)]
. (5.8)
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Figure 8. The coordinate displacement L (a, at left) and the area A of codimension-

2 extremal surfaces (b, at right) in pure dS as functions of ∆t. The plots show results

for d = 3, though the qualitative behavior is unchanged for d ≥ 3 (for d = 2, the area

remains finite at large H∆t). Note that L approaches a constant e−Ht0/H at large H∆t,

consistent with the fact that real extremal surfaces do not exist for larger L.

These L and A are plotted in figure 8 as functions of ∆t. It is clear that L approaches

a finite value as ∆t→∞. Indeed, expanding (5.7) at large ∆t, we obtain

eHt0L =
1

H
+O

(
e−H∆t

)
. (5.9)

As advertised, the surface becomes null in the limit t∗ → ∞ (L → H−1e−Ht0).

As shown in figure 7, for L < H−1e−Ht0 the entire extremal surface lies within the

past light cone of a set on IdS of vanishing length in the r-direction. This is in fact

required by the same reasoning as in section 3. Such arguments imply that a null

surface fired orthogonally from an extremal surface can intersect IdS only in some

zero-measure set. But continuity requires that the image of our null geodesics on

IdS must span some interval in r. Thus the length of this interval must vanish.

In contrast, for L > H−1e−Ht0 causality would require this interval have non-

vanishing length. So real codimension-2 surfaces can no longer exist. But it is

straightforward to find complex extremal surfaces in this regime (and indeed for ar-

bitrary L when d > 2). One simply analytically continues expressions (5.7) and (5.8)

to the entire complex ∆t-plane. From (5.7) we see that L is periodic in ∆t with

period 2πi/H, so it suffices to study L in a finite strip around the real axis. Fig-

ure 9 shows the complex-valued function L(∆t) in this strip for d = 2, 3, 4, 5, 6, 7;

in particular, we indicate contours along which L is real. One of these runs along

the real positive ∆t-axis, looping tightly around the branch cut, but the others lie

at complex ∆t. We see that one may obtain large positive L-values by taking Re ∆t

large and negative along one of the real L contours in the lower half plane. For d > 2

this contour clearly also reaches L = 0 (and in fact passes to negative L), providing

a complex extremal surface for all physically relevant L.
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In parallel with the results of [24] for black holes, we expect additional contours

of real L to exist on other sheets of the Riemann surface for L(∆t). This function

and its Riemann surface is defined by analytic continuation through the branch cuts

in figure 9. The branch points are of logarithmic type for d > 2 where they lead to

an infinite number of sheets. The d = 2 case is special in that the branch points

of L(∆t) are only two-sheeted square-root type branches; though in that case there

are additional infinite-sheeted logarithmic branchings of the physically-interesting

function A(L) that make the overall structure much the same.

Of course, the mere existence of complex extremal surfaces need not imply that

they are relevant to our study of entropy. For bulk spacetimes constructed via

some Euclidean path integral, one could plausibly use analytic continuation and the

argument of [22] to write the desired entropy in terms of extremal surfaces. But for

a given complex extremal surface to appear in this calculation it must be possible to

appropriately deform the original contour of integration. A priori, this is far from

guaranteed – though since there are no real extremal surfaces for L > H−1e−Ht0 , any

contours that are allowed must be complex.

For d = 2 our codimension-2 surfaces are geodesics and the area becomes a

length. As noted earlier, the length of bulk geodesics can also be used to approximate

two-point functions of CFT operators with large dimension (so long as it is still small

enough to ignore gravitational back-reaction). This is of course closely related to

our entropy problem, since entropy can be calculated from the two-point function

of twist operators [50]. These twist operators do indeed have large dimension –

though, since acting with appropriate twist operators is equivalent to replicating

the entire large N CFT in the sense of the replica trick, their dimension is in fact

large enough the gravitational back-reaction is generally non-trivial. So while the

two calculations are not precisely the same, it is interesting to write the well-known

exact two-point functions in dS3 as a sum over complex geodesics. This result is

presented in appendix C, which finds this sum to use an infinite number of terms

from an infinite number of sheets of the Riemann surface for A(L). The analogue for

d > 2 would be to use an infinite number of complex geodesics on an infinite number

of sheets of the Riemann surface for L(∆t). So at least in this context there is no

problem deforming the relevant path integral to take advantage of complex saddles.

It is tempting to suggest that related contours will be relevant for studying the

entropy of AdS-dS-wormholes, leading to non-zero leading-order mutual information

between localized regions on opposite boundaries.

6 Discussion

This work considered two-sided AdS-dS-wormholes, which are spacetimes that con-

tain a region of unbounded inflation. In particular, the future conformal boundary

of the wormhole interior contains a smooth spacelike piece IdS as shown in figure 1.
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Figure 9. L as a function of complex ∆t in dSd. From left to right and top to bottom,

the plots show d = 2, 3, 4, 5, 6, 7. Hue indicates arg(L) (with real positive [negative] L in

red [turquoise]), while shade indicates the magnitude of |L| (with |L| = 0 in black and

increasing |L| in lighter shades). The white horizontal strips mark the locations of branch

cuts, and the black lines are contours along which L is real. |L| is bounded in the right

half-plane, but grows without bound in the left half-plane; thus the only contours that can

reach arbitrarily large real L are the two complex ones that run to large negative Re(∆t).

Explicit examples satisfying the null energy condition were constructed in section 2.

While our smooth examples contain Cauchy horizons, we expect such solutions to

be unstable to decay into a more generic class of AdS-dS-wormholes which otherwise
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retain all of the properties discussed below.

Our main result is that these geometries fail to admit HHRT surfaces (i.e., pos-

sibly non-minimal Hubeny-Rangamani-Takayanagi surfaces with the homology con-

straint emphasized by Headrick) that would exist in more familiar black hole space-

times. In particular, section 3 showed that no HHRT surface can span the wormhole,

connecting one side to the other. Instead, HHRT surfaces for the associated entropy

problems must be disconnected, with one piece on each side of the wormhole. Section

4 showed that certain of our wormholes have plane-symmetric HHRT surface homol-

ogous to an entire boundary – which we termed total entropy surfaces – there is also

a large class that do not. We suggested that less-symmetric such surfaces also fail

to exist, so that there are no extremal codimension-2 surfaces in the entire homol-

ogy class. If so, the HHRT proposal becomes ill-defined and requires improvement.

We also gave related examples where HHRT surfaces would exist but give physically

incorrect results.

The conceptually-simplest possible changes to HHRT were discussed in section

4. These involve first regulating the dS-wormhole by allowing only a finite amount of

inflation. After the inflating phase, the wormhole is required to collapse to a future

singularity; see appendix B for details. We argued that, at least in our examples,

the limit in which the regulator is removed gives natural wormhole-spanning and

total entropy HRRT surfaces lying in the future conformal boundary; i.e., they lie in

the conformally extended spacetime M instead of the physical spacetime M . In the

wormhole-spanning case this surface has infinite area and so is never the minimal-

area surface. But in the total entropy context any limiting surface must have finite

entropy density consistent with the CFT density of states. This regulate-and-take-

limits approach was called HHRT. But we did not investigate the convergence of

these limits in detail, so it remains to determine the extent to which they are well-

defined.

We also suggested an extended maximim prescription maximin that takes lim-

its directly in the unregulated wormhole spacetime and may give results identical to

HHRT. The maximin procedure clearly assigns well-defined (though perhaps infinite)

area to each entropy problem, and in appropriate cases may also yield a well-defined

maximin surface in M . But we did not analyze precisely when this surface con-

struction succeeds, and it again remains to study when this area will agree with

regulate-and-take-limits procedures.

Under either HHRT or maximin one finds that toroidal AdS-dS-wormholes are

dual to highly entangled pure states on a pair of CFTs, and that this remains true for

planar CFTs obtained through an appropriate large-torus limit13. But the associated

mutual information is as delocalized as possible. In particular, for CFTs on infinite

13Though there is another large-torus limit where it does not. Both limits are described by the

same planar AdS-dS-wormhole but with different notions of the homology constraint. See section

4.3.
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spacetimes, the leading-order mutual information vanishes between any finite-sized

regions A,B of opposite CFTs.

A strictly vanishing mutual information between finite-sized subregions would

contradict the non-vanishing correlators 〈OCFT1(x1, t1)OCFT2(x2, t2)〉 associated with

taking appropriate boundary limits of bulk two-point functions14; see e.g. [51]. But

the claim is only that the mutual information vanishes at leading order in large N ,

so some finite mutual information may remain. Indeed, according to [52] (see also

[53]) it is precisely the O(1) correction that is encoded in the state of bulk quantum

fields to which the supergravity approximation applies. Such fields are dual to CFT

operators whose dimensions are not too large. The implication is thus only that

generic operators of large dimension (e.g., of order N2 in 3+1 N = 4 super Yang-

Mills) have vanishing correlators between the two CFTs.

We see no inherent contradiction with this interpretation. Indeed, the physics is

quite similar to that naively obtained from the extreme limit of Reissner-Nordström

black holes. There the large area of wormhole-spanning surfaces is associated with

the infinite throat that develops at zero temperature (T = 0). The most apparent

difference is that for Reissner-Nordström the two-boundary spacetime becomes dis-

connected at T = 0, making it somewhat more natural to consider quantum states

of the linearized bulk fields having vanishing correlators between the two sides. But

there are also states with non-vanishing correlators, and for fields with fine-tuned

values of the bulk charge and mass such states are in fact naturally constructed by

the bulk path integral dual to charged thermofield-double states in the CFT [13]. A

more critical difference may be that small T Reissner-Nördstrom black holes tend to

be unstable in top-down models, while causality forbids any instability of our exte-

rior (the left and right copies of region I) being activated by starting inflation in the

interior of our wormhole.

Intriguingly, the physics is also quite similar to that expected for generic entan-

gled states (see e.g [9–12] for holographic discussions). This is even more so when

one chooses quantum states for the bulk fields where 〈OCFT1(x1, t1)OCFT2(x2, t2)〉 = 0

(see again footnote 14). The one point of tension is that [11] predicted wormholes as-

sociated with such generic states to have time-independent interiors – though there

is no actual contradiction so long as all implications for the CFTs remain time-

independent.

It is possible that such physical predictions are correct and will provide insights

14If our wormhole can be found as the Wick rotation of a saddle that dominates the Euclidean path

integral, this integral defines a state in which the correlator can be computed using the geodesic

approximation (and where it will be non-zero). But in any case the linearized bulk equation of

motion would allow the above CFT correlator to vanish identically only if the corresponding bulk

correlator 〈φ(x1, r1, t1)φ(x2, r2, t2)〉 vanishes for all (x1, r1, t1) in the left region I and all (x2, r2, t2)

in the right region I. This is a very fine-tuned property and we are free to consider bulk quantum

states on our wormhole background for which it does not hold.
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into the holographic description of inflation. But the paucity of real codimension-2

surfaces makes our AdS-dS-wormholes a natural context in which to investigate fur-

ther possible modifications of HHRT. For example, one might ask if our wormholes

might have no dual interpretation at all, or more conservatively if dual descriptions

might require more than just a pair of CFTs; e.g., despite the HHRT claim that

the state on both CFTs is pure at leading order in large N , one might suppose

that the natural two CFTs are both highly entangled with some third system. This

latter option would be analogous to the mixed-state proposal of [14], and the third

system might correspond to the superselection sectors of [54, 55]. The present un-

derstanding of gauge/gravity duality is sufficiently coarse that we cannot exclude

such suggestions, though as in [14], it is natural to take the constructions of [56]

and related work as suggesting that a dual interpretation does in fact exist. And if

one can construct our wormholes from (due to the lack of time-symmetry, complex)

saddle points for Euclidean path integrals then one should be able to argue as in the

thermofield-double discussion of [57] that it is given by a pure state on two CFTs.

Indeed, one should then also be able to argue as in [22] that something like HRRT

does in fact hold.

The discussion of complex saddles naturally motivates a milder possible modi-

fication of HHRT that, at least in analytic spacetimes, would make use of complex

extremal surfaces in addition to real ones. For bulk black holes dual to thermofield

double states this option was studied in [24], and for AdS-dS-wormholes it was briefly

addressed in section 5. In particular, noting that HHRT is superficially similar to the

the geodesic approximation for two-point functions motivated a study of this latter

context. We considered the case of dS3 – where geodesics are also codimension-2

extremal surfaces – and found complex geodesics to be critical in constructing a

stationary-phase approximation to the exact result. In particular, in the two-point

function calculation it appears that one can deform the contour of integration to

take advantage of complex geodesics living on an infinite number of sheets of the

associated Riemann surface.

It would be very useful to study complex HHRT surfaces in full AdS-dS-wormholes.

One would specifically like to understand whether the results might shed light on

the confusions surrounding the use of complex surfaces that were discussed in [24].

Unfortunately, since the cut-and-paste examples of section 2 are not analytic, the

complexification of these particular spacetimes is far from unique and any notion

of complex surfaces may be ill-defined. This places a detailed analysis of complex

extremal surfaces in any AdS-dS-wormhole beyond the scope of this work, making it

an interesting challenge for future investigation.
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A Shell Stress Tensors

We now compute the stress tensors on the null shells of section 2. Following [35],

we embed each shell in each associated patch of the spacetime via parametric rela-

tion xα = Xα(ya), where the ya are a set of d coordinates on the shell and the xα

are the spacetime coordinates of the patch in which the shell is to be embedded. We

take d − 1 of the ya to be the transverse coordinates xi associated with the Rd−1

translation symmetry and the remaining coordinate to be some parameter η along

the null direction. The parameter η is arbitrary and need not be affine; indeed, for

a non-trivial null shell the affine parameter is discontinuous across the shell and one

cannot take η to be affine on both sides.

We also introduce tangent vectors

eαi ≡
∂Xα

∂xi
, kα ≡ eαη ≡

∂Xα

∂η
, (A.1)

and an auxiliary null vector Nα which satisfies Nαk
α = −1. Note that both kα

and Nα are orthogonal to the transverse tangent vectors eαi .

The relevant results from [35] are as follows. The induced metric on a shell is

σij = gαβ (Xα) eαi e
β
j , (A.2)

which for regularity is required to be the same when calculated from either side of a

given shell. The transverse extrinsic curvature of a shell is

Cab ≡ −Nαe
β
a∇βe

α
b , (A.3)

which need not be the same on the two sides. The difference in transverse curvature

across the shell gives the shell stress tensor. It is convenient to decompose this tensor

into a surface energy density µ, energy current ji, and pressure p:

µ = − 1

8πGN

σij
(
C+
ij − C−ij

)
, ji =

1

8πGN

σij
(
C+
jη − C−jη

)
, p = − 1

8πGN

(
C+
ηη − C−ηη

)
,

(A.4)

where the +(−) superscripts imply that the quantity is calculated on the side of the

shell into (away from) which kα points, and G is the full (d+1)-dimensional Newton’s

constant.
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Since our shells lie on horizons r = r+, the induced metric on each shell is just

ds2
shell = r2

+ d~x
2
d−1. (A.5)

To construct the single-shell spacetime of figure 2 with the edges E of IdS at advanced

time vI = v0, we use the embeddings

r = r+, vI = ηA, vII =
1

κII
gA (κIηA) , (A.6)

where κn ≡ |f ′n(r+)|/2 are the surface gravities of each horizon, ηA is a parameter

along the generators of the shell, and as stated in the main text gA(x) is an ar-

bitrary continuous and monotonically increasing function with range (−∞,∞) and

domain (v0,∞). The density, current, and pressure of shell A are then

µA =
d− 1

8πGNr+

[
κII

κIg′A(κI ηA)
− 1

]
, (A.7a)

jiA = 0, (A.7b)

pA =
κI

8πGN

[
1 + g′A(κIηA)− g′′A(κIηA)

g′A(κIηA)

]
. (A.7c)

To instead construct the doubly-patched spacetime shown in the lower panel of

figure 4, we leave patches Ib and II and shell A untouched (that is, patch Ib is just

the corresponding piece of the original patch I with `Ib = `I), and we take patch Ia

to be the exterior of a Schwarzschild-AdS black hole with horizon size r+ and AdS

radius `Ia. The three patches we stitch together are shown in figure 10, and their

metrics are as in (2.1) with

fIa(r) =
r2

`2
Ia

(
1−

(r+

r

)d)
, (A.8a)

fIb(r) = − r
2

`2
Ib

((r+

r

)d
− 1

)
, (A.8b)

fII(r) = − r
2

`2
II

(
1−

(r+

r

)d)
. (A.8c)

In terms of the Eddington-Finkelstein coordinates (2.3), the embeddings of shellB

in patches Ia and Ib are

r = r+, uIa = − 1

κIa
ln (−κIaηB) , uIb =

1

κIb
gB (κIaηB) , (A.9)

where as for shell A, gB(x) is an arbitrary continuous and monotonically increasing

function that maps (−∞,∞) 7→ (−∞,∞). Note that with this embedding, ηB is an

affine parameter along the shell with respect to the metric of patch Ia. The density,
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Ia

Ib

II

Figure 10. Conformal diagrams from which we cut our (shaded) regions Ia, Ib, and II.

current, and pressure of shell B are then

µB =
d− 1

8πGNr+

[
κIaηB +

κIb
κIa g′B(κIaηB)

]
, (A.10a)

jiB = 0, (A.10b)

pB =
κIa

8πGN

[
g′′B(κIaηB)

g′B(κIaηB)
− g′B(κIaηB)

]
. (A.10c)

Note that pB vanishes only if gB(x) = const. or gB(x) = − ln(x + c), neither of

which is compatible with the continuity and monotonicity of gB. So as claimed in

footnote 5, shell B cannot be pressureless, and this spacetime is not a limiting case

of AdS-Vaidya.

Nevertheless, the null energy condition can be satisfied for an appropriate choice

of parameters. Indeed, for any d ≥ 2, let

κIar+ = 1, κIbr+ = 1, gB(x) = arcsinh(x). (A.11)

Then we find that

µB + pB =
d

8πGNr+

P (κIaηB)

(
1− ∆(κIaηB)

d

)
, (A.12)

where

P (x) = x+
√

1 + x2 and ∆(x) = 1 +
1

1 + x2
(A.13)

satisfy P (x) > 0 and ∆(x) ≤ 2 everywhere. It then follows that µB + pB ≥ 0 for

all d ≥ 2.

B Regulated Wormholes

This appendix considers simple models of the regulated wormholes mentioned in

sections 3 and 4 in which inflation ends on a finite surface, after which the worm-

hole collapses to a singularity. The simplification made here is that sections 3 and

4 required this singularity to be everywhere of Kasner or of big crunch type (see
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Regulated IdS

amax

Ξ

C

E E

Ia Ia

Ib IbII

Figure 11. A regulated AdS-dS-wormhole with a finite amount of inflation followed by

collapse to a singularity. The dotted line labeled amax indicates the surface on which the

effective scale factor (B.3) in patch II reaches a maximum; this slice serves as an accumu-

lation surface for wormhole-spanning extremal surfaces. In the cut-and-paste geometry,

the proper distance between any point in patch II and either of the boundary points E is

infinite; this is an artefact of the cut-and-paste construction, and will no longer be true

for appropriately smoothed out null shells. Such smoothed cases lead to the existence of

finite-area HHRT surfaces such as the one labeled Ξ (solid line, blue in color version).

footnote 7), but the examples below will violate this condition at the regulated ana-

logues of the edges E of IdS. The point is that it is convenient to retain symmetry of

patch II under the Killing field ξ of section 2. But since the orbits of ξ approach E ,

this means that surfaces of constant scale factor will also approach E in the regu-

lated spacetimes. The singularity of our regulated spacetimes thus fails to be either

Kasner-like or of big crunch type at E .

Retaining symmetry along ξ takes the above singularity to lie at a proper time τ

along the worldline of any freely falling observer chosen to start at τ = 0 from the

point labeled C on the past boundary of figure 11. In the limit τ → ∞, we recover

the original AdS-dS-wormhole.

Such regulated wormholes can be constructed as in Section 2 above by replacing

the metric in patch II with

ds2 = −dρ2 +R2(ρ)dt2 +X2(ρ)d~x2
d−1, (B.1)

where ρ ∈ [0, τ) is the proper time along worldlines of freely falling observers with

constant t, xi. Near ρ = 0, we impose that X = r++· · · and R = κIIρ+· · · where · · ·
represent terms that vanish as ρ → 0. Then to good approximation ρ = 0 remains

a horizon with surface gravity κII , and in particular the regulated spacetime (B.1)

can be patched into the wormhole using the same null shells (with precisely the same

stress tensor) as in section 2. In these coordinates, the patch II metric (2.1) of the

original unregulated spacetime corresponds to

R(ρ) =
r+

`
tanh

(
dρ

2`

)
cosh2/d

(
dρ

2`

)
, X(ρ) = r+ cosh2/d

(
dρ

2`

)
. (B.2)
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It is straightforward to identify extremal surfaces for which t and d − 2 of the

~xd−1 are constant. These are the analogue in region II of surfaces found by Hartman

and Maldacena [9] to be attractors for more generic extremal surfaces in the two-

sided planar AdS-Schwarzschild black hole in the limit where both boundaries of the

extremal surface are anchored to very late times on the two AdS boundaries. The

area of our highly symmetric surfaces is governed in region II by the effective scale

factor

aeff(ρ) = R(ρ)Xd−2(ρ), (B.3)

and extremal such surfaces lie at extrema of aeff(ρ). In parallel with [9], in the

fully-regulated case we expect one of these extrema to be a late-time attractor with

the actual wormhole-spanning extremal surface staying very close to one of these

surfaces across most of region II, as shown in figure 11. The maximin argument of

section 3 suggests that the desired extremal surfaces in fact accumulate along the

global maximum of aeff(ρ) = amax. In fact, note that our cut-and-paste construction

renders the area of the attractor surface amax infinite, since any point in patch II

is an infinite distance from either of the boundary points marked E . As a result,

the wormhole-spanning extremal surfaces in this geometry still have infinite area.

However, it is clear that this is simply an artefact of our patching procedure, which

causes E to violate the conditions of footnote 7. By smoothing out the null shells, the

distance to any E from patch II becomes finite, and thus so does the area of the amax.

These smoothed-out regulated AdS-dS-wormholes thus have HHRT surfaces with

finite areas that grow without bound as we increase amax.

We now construct explicit examples of the above (unsmoothed) regulated worm-

holes and verify the above conjecture concerning wormhole-spanning extremal sur-

faces. To do so we couple gravity to a scalar field φ, so that the action is

S =
1

16πGN

∫
ddx
√
−g R−

∫
ddx
√
−g
(

1

2
gµν∇µφ∇νφ+ V (φ)

)
. (B.4)

We set φ = φ(ρ) and take the metric to be (B.1), in which the coordinate ρ plays

the role of a proper time. The equations of motion obtained from the action (B.4)

can be rearranged into

2X ′R′

XR
+ (d− 2)

(
X ′

X

)2

− 8πGN

d− 1

(
(φ′)

2
+ 2V (φ)

)
= 0, (B.5a)

X ′′

X
− X ′R′

XR
+

8πGN

d− 1
(φ′)

2
= 0, (B.5b)

R′′

R
+ (d− 3)

X ′R′

XR
− (d− 2)

(
X ′

X

)2

+
8πGN

d− 1
(φ′)

2
= 0, (B.5c)

φ′′ +

(
R′

R
+ (d− 1)

X ′

X

)
φ′ + V ′(φ) = 0. (B.5d)
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Note that (B.5a) is a constraint equation, while the other three are dynamical. As

usual, the constraint is conserved by the dynamical equations, so that there are only

three independent equations that must be solved.

Solutions to (B.5) will be characterized by some ρ at which X, R, and φ become

singular; without loss of generality we take this time to be ρ = 0. Then one can show

that for polynomial V (φ), the solutions near such singular points behave like

X(ρ) = ρr

[
X00 +

∞∑
n=1

nN∑
m=0

Xn,mρ
2n (ln ρ/ρ0)m

]
, (B.6a)

R(ρ) = ρ1−3r

[
R00 +

∞∑
n=1

nN∑
m=0

Rn,mρ
2n (ln ρ/ρ0)m

]
, (B.6b)

φ(ρ) = φ00 + φ01 ln ρ/ρ0 +
∞∑
n=1

nN∑
m=0

φn,mρ
2n (ln ρ/ρ0)m , (B.6c)

where ρ0 is some arbitrary scale, the integer N is the highest power of φ appear-

ing in V (φ), and r, X00, R00, φ00, and φ01 are free parameters subject to the con-

straint 8πGNφ
2
01 = 6r(1− 2r).

The near-horizon behavior requires r = 0 (and therefore φ01 = 0) as well as X00 =

r+ and R00 = κII . The condition φ01 = 0 can be interpreted as the statement that the

energy density of the scalar field must be finite at the horizon, or else backreaction

would destroy the near-horizon geometry. Furthermore, r = 0 implies that φ′(0) = 0,

so that the scalar field starts at rest at the horizon and evolves according to the form

of V (φ).

By choosing V (φ) = const. > 0 and φ′(0) = 0, we obtain the unregulated

solution (B.2). In order to obtain a regulated solution that crunches in finite proper

time, we require a potential V (φ) with extrema at both V (φ) > 0 and V (φ) < 0. We

therefore consider a potential of the form shown in figure 12; explicitly, we take

V (φ) = h2

[
1

20
− 3

16

(
φ

φ∗

)2

+
7

5

(
φ

φ∗

)4

− 4

(
φ

φ∗

)6

+ 3

(
φ

φ∗

)8
]
, (B.7)

where h is an overall scale that sets the height of the potential and φ∗ is a reference

scale. This potential has local maxima at the origin and some φ2, and local minima

at some φ1 and φ3. In particular, it satisfies V (0) > 0, V (φ1) > 0, V (φ2) > 0,

but V (φ3) < 0.

To construct a solution, the scalar field is released at some initial value φ0 at

which V (φ0) > 0. If φ0 is smaller than some critical value φcrit, the scalar field rolls

past the extrema φ1 and φ2 and into the AdS extremum φ3, where V (φ3) < 0. This

produces a negative effective cosmological constant, causing the solution to become

singular in finite ρ. As φ0 is increased closer to φcrit, the scalar field spends more

and more time near the maximum φ2, yielding a spacetime with a longer and longer
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φcrit φ1 φ2

φ3

V (φ)

φ

Figure 12. A sketch of the potential we consider. At the horizon, the scalar field is at rest

at some φ0 and is then allowed to roll down the potential. If φ0 < φcrit, the scalar field falls

into the minimum at φ3; if φ0 = φcrit, the scalar field stops at φ2, and if φcrit < φ0 < φ2,

the scalar field falls into the minimum at φ1.

expanding region before the singularity. Eventually, when φ0 = φcrit, the initial

conditions are tuned such that the scalar field remains at φ2 indefinitely, yielding a

version of the unregulated AdS-dS-wormhole15. Thus the regulator τ can be made

arbitrarily large by taking φ0 arbitrarily close to φcrit.

Finally we consider wormhole-spanning extremal surfaces in smoothed, regu-

lated wormholes that satisfy the conditions of footnote 7 everywhere. Note that

any wormhole-spanning surface Ξ must pass through patch II, entering and leaving

this patch through the de Sitter horizon ρ = 0. For our unsmoothed cut-and-paste

geometries, Ξ will cross the de Sitter horizon in the far future in order to run along

the entire (infinite) length of the accumulation surface amax. Smoothing out the null

shells to obtain a finite-area Ξ will keep these anchors at a finite place. The ex-

act point of crossing is determined by balancing the tendency to maximize the area

in patch I (which tends to flatten Ξ in this region) with the tendency to run along

the amax surface in patch II. So as the anchors on IAdS move to the far future, so does

the intersection of Ξ with the dS horizon. It is thus sufficient to study codimension-2

extremal surfaces anchored at ρ = 0 in the limit where these anchors are taken to

the far future. Sample such surfaces are plotted numerically16 in figure 13 for d = 4

in comparison with surfaces on which aeff(ρ) (defined in (B.3)) attains its maximum.

We find φcrit ≈ 0.21φ∗.

15For φcrit < φ0 < φ2, the scalar field comes to rest at φ1, again producing an unregulated

AdS-dS-wormhole.
16These solutions were found by integrating the equations of motion (B.5) using Mathematica’s

built-in NDSolve command, which is more than sufficient for generating the desired figures.
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Figure 13. The regulated asymptotically dS patch for d = 4 and various values of φ0;

from left to right, top to bottom, the figures have (φcrit−φ0)/φ∗ = 10−1, 10−2, 10−3, 10−5,

corresponding to
√

8πGN hτ ≈ 2.5, 3.2, 3.9, 5.5. The dotted lines mark the maxima amax

of aeff , while the solid curves (blue in color version) show extremal surfaces that enter

through the horizon. The solid horizontal lines are singularities, which the extremal surfaces

are prevented from reaching. For φ0 = φcrit, τ =∞ and amax merges with the singularity

to create future dS infinity IdS. The extremal surfaces then cease to exist in the Lorentzian

section.

C Correlators in dS3

We now show how the geodesic approximation in dS3 reproduces the large-mass

behavior of the Wightman function of a free massive scalar field in the Hadamard

de Sitter-invariant (Bunch-Davies) vacuum. As is well known (see e.g. [58, 59] for

d = 1, 3), for dSd+1 this two-point function is

G(x, x′) =
Hd−1

(4π)(d+1)/2

Γ(−c)Γ(c+ d)

Γ((d+ 1)/2)
2F1

(
−c, c+ d;

d+ 1

2
;
1 + Z

2

)
, (C.1)

where

c = −d
2

+

√
d2

4
− m2

H2
, (C.2)

H is the Hubble constant, m is the mass of φ, and Z is the de Sitter invariant given

by the inner product of unit vectors associated with the standard embedding of dSd+1

into d+ 2 Minkowski space. In the coordinates of (5.1) we have

Z(x, x′) = 1 +
(e−Ht − e−Ht′)2 −H2(~x− ~x′)2

2e−Hte−Ht′
. (C.3)

We wish to study (C.1) for d = 2 and m/H � 1. Using the identities [49]

Γ(1 + z)Γ(1− z) =
πz

sin(πz)
, (C.4a)
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2F1

(
a, 2− a;

3

2
;−z2

)
=

1

4(a− 1)z
√

1 + z2

[(√
1 + z2 + z

)2(a−1)

−
(√

1 + z2 − z
)2(a−1)

]
, (C.4b)

for d = 2 we find

G(t0, ~x; t0, ~x
′) =

H

4π

1

L̃ sin(πν)


1√

1−L̃2/4
sin(2ν arccos(L̃/2)), L̃ < 2,

1√
L̃2/4−1

sinh(2ν arccosh(L̃/2)), L̃ > 2,
(C.5)

where ν ≡
√

1−m2/H2 and L̃ ≡ HeHt0|~x− ~x′|. For large m/H we have ν ≈ im/H

and thus

G(t0, ~x; t0, ~x
′) ∼ e−πm/H

1− e−2πm/H

{
e(2m/H) arccos(L̃/2) − e−(2m/H) arccos(L̃/2), L̃ < 2,

e(2im/H)arccosh(L̃/2) − e−(2im/H)arccosh(L̃/2), L̃ > 2,

(C.6)

where the ∼ indicates that we have dropped polynomial corrections to exponentials

in m; i.e., we have kept terms that in a saddle point approximation can come from

a sum over saddles. The remaining terms may well come from fluctuations around

these saddles, though we will not consider this in detail. Note that since the factor 1−
e2πm/H lies in the denominator of (C.6), it in fact leads to an infinite number of terms

exponential in m.

We now make explicit that spacelike geodesics can reproduce the exponential

terms in (C.6). For d = 2, expressions (5.7) and (5.8) simplify to

L̃ = 2e−H∆t
√
e2H∆t − 1, (C.7a)

A±n =
2

H

[
± arctan

√
e2H∆t − 1 + nπ

]
, (C.7b)

where now L̃ = 2HeHt0L. The ± sign and the integer n that appear in A±n repre-

sent the analytic continuation to all sheets of the square root and inverse tangent,

respectively. Writing A±n in the form

A±n =
1

H

(2n± 1)π ∓ 2 arccos
(
L̃/2

)
, L̃ < 2,

(2n± 1)π ∓ 2i arccosh
(
L̃/2

)
, L̃ > 2,

(C.8)

one may interpret each term as the length of a distinct (possibly complex) geodesic.

Comparing with the exact expression (C.6) shows that

G(t0, ~x; t0, ~x
′) ∼

∑
2n±1≥−1

c±n e
−mA±n (C.9)

for appropriate order-1 phases c±n (which in the saddle-point approximation are higher

order effects determined by fluctuations around each saddle). Since the sum is over
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precisely those n and signs± with 2n±1 ≥ −1, we conclude that these are the saddles

that contribute to the desired path integral. It is interesting that this represents a

sum over both all sheets in the Riemann surface for L̃(∆t) and an infinite number of

sheets in the Riemann surface for A(L̃), though sufficiently “negative” sheets are not

included. We note that d = 2 is a special case where A(L̃) (understood as a map from

the Riemann surface for L̃(∆t) to the Riemann surface for A(∆t)) is multi-valued;

in higher dimensions we expect that as in [24] one can take A(L̃) to be single valued,

since the Riemann surface for L̃(∆t) has an infinite number of sheets for d > 2.
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