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STOCHASTIC ACCELERATION BY AN OBLIQUELY PROPAGATING WAVE-­
AN EXAMPLE OF OVERLAPPING RESONANCES 

a) . 
Gary R. Smith and Allan N. Kaufman 

Department of Physics and Lawrence Berkeley Laboratory, 
University of California, Berkeley, CA 94720 

ABSTRACT 

We .treat a simple problem exhibiting intrinsic stochasti­

city: the motion of a charged particle in a uniform magnetic 

field and a single plane wave. Our detailed studies of this 

wave-particle interaction show the following features. An 

electrostatic wave propagating obliquely to the magnetic field 

causes stochastic motion if the wave amplitude exceeds a 

certain threshold. The overlap of cyclotron resonances then 

destroys a constant of the motion, allowing appreciable momentum 

transfer to the particles. A wave of large enough amplitude 

would thus suffer severe damping and lead to rapid heating of a 

particle distribution. The stochastic motion resembles a 

diffusion process even though the wave spectrum is monochro­

matic. Our methods should.be useful for other problems showing 

stochasticity. These problems include superadiabaticity in 

mirror machines, destruction of magnetic surfaces in toroidal 

systems, and lower hybrid heating. 
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I. INTRODUCTION 

The interaction between a wave and a charged particle is of 

fundamental importance in plasma physics. In treating this 

interaction, one finds the concept of resonance to be useful. 

A problem involving a single resonance is the one-dimensional 

motion of an electron in a Langmuir wave, in which the resonance 

condition is w = kv. Such problems can be solved exactly, 1 

allowing description of the bouncing motion of trapped particles, 

for example. 

Generally, wave-particle interaction problems involve 

multiple resonances. Particle motion is qualitatively different 

depending on whether these resonances overlap (the concept of 

overlapping resonances is discussed in Sec~ VII of this paper). 

Multiple resonances which do not overlap lead to no fundamental 

difficulties, but when two or more resonances overlap, the 

motion becomes incredibly complicated. Numerical solutions 

of the motion of such systems show a complexity which clearly 

cannot be described analytically; we cannot write, for example, 

an equation describing the evolution of a distribution of 

particles when two resonances overlap. 

The term which has come into use to describe motion in the 

presence of overlapping resonances is "stochastic."2 The 

stochasticity we study is intrinsic to the dynamical system: 

\I 
\i 
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. the differential equations that determine the motion contain 

neither random coefficients nor random forces (nor are the 

initial conditions random). This intrinsic stochasticity 

arises from a fundamental mixing process: an arbitrarily small 

element of the phase-space fluid develops, exponentially in 

time, into a complicated filamentary structure, stretching 

throughout a large fraction of the accessible phase space. This 

mixing process, which accompanies the overlap of resonances, 

leads to irreversible macroscopic effects, like a coarse-grained 

entropy that increases in time. 

In this paper we treat a simple problem involving over­

lapping cyclotron resonances. The resonance conditions are 

w = k v - tn (1 )· z z ' 

where n = eB0/mc is the cyclotron (or gyro-) frequency of the 

particle of charge e and mass m, vz is the particle's 
A 

velocity parallel to a uniform, magnetostatic field .1 = B0 z, 

wand kz are the frequency and parallel wavenumber of the wave, 

and 1 is any integer. The re~onances (1) are responsible for 

cyclotron-harmonic3 (or gyro-resonant) damping and growth of 

waves in a uniformly magnetized plasma. 

Overlap of resonances can occur in many problems important 
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to the magnetic fusion energy program. In a nonuniform magnetic 

field ions can move stochastically in the presence of a wave 

driven to large amplitudes by an instability. Such problems 

have been studied for a tokamak4' 5 and for a mirror machine. 6' 7 

Stochastic ion motion may also be caused by a wave launched for 

radio-frequency heating of a tokamak plasma. This result was 

found for the lower-hybrid heating scheme by Karney and Bers8 

and by Fukuyama, et a1. 9 

For closed magnetic-confinement systems the question of the 

integrity of magnetic surfaces presents a number of important 

problems. Destruction of the surfaces (also known as magnetic 

braiding10 or stochasticity of field lines) can be caused by 

coil construction errors. 11 - 17 In the absence of coil construe-

tion errors destruction of magnetic surfaces can still occur 

because of current perturbations in the plasma. The current 

perturbations grow to large amplitudes because of unstable inter­

nal kink18•19 or tearing20 modes. Finn21 , 22 and Stix23 consid­

ered the hypothesis that the serious disruptive instability is 

caused by destruction of magnetic surfaces. Rechester and 

Stix24 studied the destruction of the outer contours of magnetic 

islands. Recent theoretical work has suggested that instabil-

ities in tokamaks might lead to overlapping micromagnetic 

islands. 25 ,26 The overlapping islands would cause anomalous 

\i 
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transport of electron heat. 27 

In reporting our work on overlapping cyclotron resonances 

we have two goalS. First, we hope to stimulate interest in the 

experimental observation of our stochastic-acceleration process. 

Second, we believe our analytical and numerical methods are use­

ful to workers studying overlapping resonances of any typ,e. 

Published accounts of our early work on the overlap of 

cyclotron resonances appear in Refs. 28 and 29. 

The remainder of this paper is organized as follows. In 

Sec. II we give the considerations involved in choosing our 

model problem. Section III introduces the canonical variables 

we have found convenient. In Sec. IV we write the Hamiltonian 

and note some consta'nts of the motion. In Sec. V we find some 

results which are valid when resonances do not overlap. In 

Sec. VI we find the behavior, in certain limits, of quantities 

which we later study numerically; the behavior is the same 

whether resonances overlap or not. In Sec. VII we apply a 
simple analytical criterion (overlap of resonances) for the 

onset of stochastic motion. To prepare for the description of 

our n~me~i~al results we briefly discuss the m~thod of numerical 

integration (in Sec. VIII) and the surface of section method 

(Sec. IX). We present our numerical results in Sec. X. Section 

XI discusses some electrostatic waves· which could cause appre-
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ciable ion acceleration due to the overlap of cyclotron 

resonances. In Sec. XII we calculate the distortion of the tail 

of a Maxwellian distribution in the presence of such a wave. 

Appendix A explores the possibility of stochastic acceleration 

due to an electromagnetic wave. In Appendix B we mention the 

problem of motion in a nonsinusoidal wave. Appendix C gives 

requireme~ts for observing stochastic acceleration in a labora-

tory experiment. 

II. CHOICE OF MODEL 

The motion of a particle in a uniform magnetic field and a 

sinusoidal plane wave exhibits a set of resonances which can 

overlap. From (1) we find the resonant parallel velocities 

these velocities are finite if kz * 0. The resonances have a 

non-zero width when the wave amplitude is not infinitesimal and 

the gyroradius.is finite (k1 p > 0). Overlap of the resonances 

is thus possible if the wave propagates at an oblique angle to 

the magnetic field: kz, k1 * 0. 

Our work assumes the wave spectrum is so narrow that a 

single wave is a good represent~tion of the spectrum. This 

situation is easiest to treat analytically and leads to the most 

·,:_ . 
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. striking results. 

We usually assume that the wave is electrostatic (k U E). 
1'1'1 Wol 

An electromagnetic wave can also cause stochastic acceleration 

since the same resonances occur as in the electrostatic case. 

The widths of the resonances are different and, as is shown in 

Appendix A, a wave amplitude large enough to cause overlap of 

the resonanc~s is more difficult to achieve in the electromag-

netic case. 

Appendix B mentions the_analytical complications which 

would arise if we relaxea our assumption that ~he wav~ is 

sinusoidal. 

Finally, we assume that the amplitude <P0 of the electro­

static wave is constant in tim~. An antenna ~hich launches a 

wave in a steady-state plasma will produce a constant wave 

amplitude. If, instead, the wave is due to an instability, then 

an equilibrium will be reached in which the linear growth rate 

y~ balances the nonlinear damping rate ys{<P0) caused by stochas­

tic accel~ration of the particles. (We assume here that sto­

chastic'acceleration saturates the instability before any other 

nonlinear effect is important; this assumption must be investi­

gated separately for each physical situation). We will find 

that stochastic acceleration is a very rapid process (character­

istic rates comparable to the gyrofrequency n). Therefore, even 
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a variation in the wave amplitude at a quite rapid (-0.1 n) 

rate will not alter our results qualitatively. 

III. CHOICE OF VARIABLES 

To describe the motion of a particle, we could use the 

Cartesian variables (x, y, z, vx, vy' vz). Our work is 

simplified by choosing other variables and by using a Hamilto­

nian formulation. The simplest formulation is found by choosing 

generalized coordinates .s, and momenta p such that the -
motion in the magnetic field with no wave is described by a 

Hamiltonian depending on the momenta only: H0 = H0(p) 

We derive the uniform magnetic field s0 z from the vector 

potential ~0 (y) = -B0 y x . The unperturbed (i.e., ~0 = 0) 

Hamiltonian is 

We transform the perpendicular variables (x, y, Px' Py) to a 

new set of variables that describe the position of the guiding 

center and the gyration about it. We use the variables 

q = ( z, cp, Y) 
'VW 

p = (pz, Pep' mnX) , 
'W'I 
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where ~ is the gyrophase, p~ the canonical angular momentum 

of gyration, and X and Y the components of the guiding 

center. These variables are defined in terms of the Cartesian 

variables by 

; -~ = tan-1 · [(px + mny}/py] 

·. p~ = [ {px + mQy} 2. + Py 2J/2mn 

· Y = -Pxfmn 

-~ = x + PyfmQ . '· . 

The requirements for these variables to be canonical are ~asily 

verified by computing the Poi-sson brackets ... 

[~, p~] = {Y, mQX] = 1 

[~, Y] = [~, X] = [p~, Y] = [p~, X] = 0 

The gyroradius p, the perpendicular velocity v1 , and the 

magnetic moment ~ are defined in terms of p~ by 

_ 1 l'"'l 2 - 212 /'"'l - ( /e) p ~ = "2 m ~GP = mv 1 . ~G = me J.l • 

We write 

0 
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¢ = sin-1(-vx/v1 ) = cos-l (-vy/v1 ) 

Y = y + p sin ¢ 

X = X - p cos ¢ 

to show that our names for ¢, p, X, and Y correspond to their 

conventional meanings. However, we must warn the reader that 

when a time-varying electric field is present, as in this paper, 

our X and Y differ from the conventional guiding-center 

positions by the polarization shift, which equals the time 

integral of the polarization drift. We illustrate in Fig. 1 our 

definition of the gyrophase ¢. 

The unperturbed Hamiltonian is now written 

(3) 

In terms of the chosen variables the unperturbed motion is 

extremely simple: 

Ao 
. . . . 

= Pz = p¢ = X = y = 0 

. 
Pz/m z = = vz . 

¢ = n . 

(The dot denotes a total derivative with respect to time.) 

~ 

~ 
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IV. HAMILTONIAN 

The total Hamiltonian is 

H = H0 + V (4) 

where H0 is the unperturbed part (3) and V is the perturba­

tion due to the wave. We use canonical variables that measure 

the position z' = z - {w/kz) t and parallel momentum 

Pz' = Pz - mw/kz in the wave frame. This reference frame moves 

at velocity {w/kz)z with respect to the center of mass of the 

plasma. The canonical transformation to the wave-frame variables 

is a mathematical, not a physical (Galilean) transformation, 

and.there is no requirement~ as noted by Palmadesso,30 that· 

w/k << c~ Nevertheless, we apply the transformation only to z 
waves.for· which w/kz « c, because these slow waves seem to lead 

to the strongest stochastic effects. For simplicity of notation· 

we henceforth drop the primes on the wave-frame variables. 

In the wave frame the perturbation due to the sinusoidal 

electrostatic wave is 

V = e~0 sin (k • x) 
vw """ 

(5) 

We choose the direction of the x-axis so that 
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~ = kzz + k1y, k1 > 0. Then, in terms of the variables 

discussed in Sec. III 

We redefine the origin of z by performing a canonical trans­

formation to the new variables 

yu = Y, 

pu = p z z 

xu = X - k p jk mn 
1 z z 

Since yu and xu do not appear in the transformed Hamiltonian, 

they are each constants of the motion. y•• is constant because 

there is no Ex to cause an,&, x! drift of the guiding center in 

the y-direction. xu is constant because the electric field 

components EY and Ez, which are related by kzEy = k1 Ez, 

cause, respectively, an!, x ~drift in the x-direction and an 

acceleration in the z-direction. The constancy of yu and 

xu has been shown earlier31 using less powerful methods. We 

drop the primes on the new variables and write the perturbation 

in the final form 

I 

t 

i.-' 
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The Hamiltonian given by (3), (4), and (6) does not depend on 

time; therefore 

(6) 

H(z, cp, Pz' Pep) = P/12m + pcpn + e<P0 sin(kzz- k1 p sin cp) (7) 

= E = const, 

the particle's energy in the wave frame is constant. In the 

plasma frame (7) becomes 

This result has been noted previously by several authors. 30 ,32 

V. PARTICLE MOTION IN A SMALL-AMPLITUDE WAVE 

We prepare for our discussion of stochastic acceleration, 

which requires a large wave amplitude,, by studying here the case 

of a small-amplitude wave. 

We use the Bessel-function identity 

00 

exp(i a sin cp:) = ·~ JR.(a) exp(i.R.cp) 
R,=-oo 

(8) 
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to write the perturbation (6) as 

(9) 

Most of the terms in this sum over ~ vary rapidly in time and 

are not expected, on physical grounds, to have a significant 

effect on the particle motion. We identify the rapidly varying 

terms by substituting into (9) the expressions 

(1 0) 

derived from the unperturbed Hamiltonian H0. (In (10) the 

subscript zero denotes the value of a quantity at t = 0.) We 

find that (9) contains the oscillating functions 

sin[(kzvzO - ~n)t + kzzo - ~~0]. The particle is in exact 

resonance with the ~th component of the wave if 

(11) 

This condition is the same as (1) but is expressed in terms of 

the parallel velocity in the wave frame instead of the plasma 

frame. 

If vzO is far from satisfying (11) for any ~' then all 

'J 
't 
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the terms in (9) vary rapidly and the unperturbed motiot;t,. (10) 

together with v% = vzO , is a reasonable approximation to the 

exact motion. 

If vzO is close to satisfying (11) for a P!irticular 

J/, = L but far from satisfying it for all.other J/,, then the 

motion is approximately that given by the truncated Hamiltonian 

Two constants of the motion exist in this approximation. Since 

HL is independent of time, one constant is HL itself. The 

coordinates z and <P appear only in the combinati9n ; 

kzz - L<P, so we can trivially derive the second constant by 

transforming to new.variables using the generating function33 

In terms of the old variables, the new ones are 

~ = aF2/ap~ =.kz~- L<f>, <1>• = aF2/aiL = <P 

P ~ = (pz - mU~/kz )/kz, IL = p<P + Lp~ . 

The Hamiltonian is 

( 12) 
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which is independent of~·, show~ng that IL is a constant of 

the motion. Other constants, combinations of the two constants 

HL and IL' have been derived previously30 ,34 using other 

methods. 

We now derive a measure of the width of the resonance L, 

i.e., how close vzO must be to Ln/kz for the Lth term in (9) to 

be slowly varying in time. We write the approximate Hamiltonian 

where we have suppressed the dependence on IL and dropped 

constant terms. If the dependence of JL on p~ is negligibly 

weak, then equation (13) is the Hamiltonian found in several 

(13) 

other familiar problems, e.g., the one-dimensional motion of a 

particle in a Langmuir wave and the motion of a (nonlinear) 

pendulum. A separatrix divides the ~p~-plane into regions in 

which the motion is qualitatively different. Inside the 

separatrix the particle is 11 trapped 11
: ~ is confined to and 

oscillates within a finite internal (< 2n) during the motion. 

Outside the separatrix the particle is 11 Untrapped 11
: ~ increases 

(I . 

..... 
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(or decreases) monotonically in time. On the separatrix the 

value of·HL is e~0 JL, and the maximum deviation of p~ from 

zero is 

~P = 2 lme~ J 1112/k 
~ 0 L z ' 

Using (12), we derive 2~vz = 2~pz/m = wl , which we refer to 

as the trapping width: 

(14) 

Three trapping widths are indicated on Fig. 2, which was produced 

·by the surface of section method described in Sec. IX. Near the 
. . . . 

stable eq'uilibrium point (~ = ±~TI, if e~0 JL :S 0) the particle 

· ·. has a bounce' frequency 

( 15) 

To derive (14) we have eliminated terms from ~he complete 

Hamiltonian by using our physical intuition that rapidly varying 

terms ~o not significantly affect the particle motion. This 

elimination can be done rigorously using any of several averaging 

methods, as discussed by Nayfeh. 35 Higher-order effects of the 
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rapidly varying terms can be computed using these methods. 

VI. ••DIFFUSION" AND CORRELATIONS IN A LINEAR THEORY 

In Sec. X we present numerical calculations showing 

particle diffusion when resonances overlap. Here we define 

the diffusion coefficient that we studys and show that, for 

short times, apparent "diffusion" can occur regardless of 

whether resonances overlap. True diffusion, for long times, 

is possible only when overlapping resonances cause loss of 

memory of initial conditions. The results of this section 

allow us to properly interpret the numerical calculations to 

be presented later. 

Diffusion, whether true or only apparent, occurs when a 

correlation function decays in time. We begin this section by 

studying the temporal behavior of the autocorrelation function 

of the parallel acceleration: 

c(T, t•) = <v <t· + T) v <t•)> z z ( 16) 

The brackets denote an average over the phases kzzo and ~0 , 

with the subscript zero indicating that the value of a variable 

' 
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at t = 0 is used.· This average mimics the situation often 

found in the laboratory: the initial phases are uniformly 

distributed over the physically distinct values. 

To calculate (16) we use the unperturbed (<P0 ;, 0) 

orbits (10). These are the orbits used in linear theory 

(e.g., to find the growth rate at' an unstable wave of 

infinitesimal amplitude), and it is clearly impossible to· 

describe nonlinear effects, like resonance overlap,. using them. 

The parallel acceleration is found from (9): 

• · · · 1 av 
v =---=-z m az 

k e<P 
z 0 ~ J (a) cos(k z m i i z (18) 

where a- k1 p0. Inserting (10) into (18) and calculating (16), 

we find 

C(T) = C(O) ~~ Ji2(a) cos[(kzvzo - in)T] 

= C(O) cos(kzvz0T) J0(2a sin ~nT); 

·; ...... ., 

(19a) 

(19b) 

where C(O) =~(kze<P0/m) 2 . Note that (19) is independent of t•. 

Formula 8.531.3 of Ref. 36 has been used to rewrite (19a) in 

the form ( 19b) . 

Many of our numerical calculations use a=5, so we study 

the shape of (19) for short times in the limit a>> 1. For 
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initial conditions such that kzvzO << an = k1 v10, and for 

T ~ min(2w/S1, (kzVzQ)-1), (19b) Simplifies to I 

From (20) we see that the correlation function falls to zero 

in the short time T"'=~ 2 .4/an "'=~ 0. 5/n and then asci 11 ates with a 

period Tl "'=~ 2w/an "'=~ 1.3/P-. We have made plots4 comparing 

the correlation function C(T) found analytically from (19), 

and from the approximation (20), and C(T, t• = 0) found 

from numerical integration (see Sec. VIII) of the equations of 

motion. The behavior predicted by the approximate expression 

(20) is indeed observed for sufficiently short times. 

Using our knowledge of the correlation function, we next 

study the diffusion <(~vz) 2> in parallel velocity, where 

(21) 

and the brackets are again defined by (17). 

(16) we have 

From the definition 
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t t-t' 
<(Av )2> ~ f dt' f dT C(T, t') 

z 0 -t' 

·t t-T 
= 2f dTf dt' C(T, t') 

0 0 
t 

= 2 f dT (t - T) C(T) 
0 

In (22b) we first used the syrmnetry property· C(T, t') 

= C(-T~ t' + i) and then interchanged the order of.the 

integrations . 

. ·To predict the time..;dependence of <(/w )2> for' short z 

(22a) 

(22b) 

(22c) 

t, we use (20). ··For very short times, t ~To~ (an)-1, (20) 

is nearly constant and (22c) yields 

(23) 

For To < t < 2rr/n, the main contribution to (22c) comes 

from 0 < T < T0, since C(T) is small and rapidly oscillatin9 

for larger T . Thus 

(24) 

and the predicted "diffusion" coefficient is 
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~ C(O)T0 = (kze~0/m) 2/2an ~ 0.1 (kze~0/m} 2/n. 

Tetreault37 reached the same conclusion that apparent 

(25a) 

(25b) 

11 diffusion 11 can occur for short times even though motion is not 

stochastic. He pointed out the role in this 11 diffusion 11 of the 

nonresonant terms in (18). Each term causes constant accelera-

tion of the particle, which would lead to the quadratic behavior 

seen in (23), but the number of nonresonant terms decreases as 

1/t, resulting in the linear behavior in (24). 

VII. CHIRIKOV CRITERION FOR STOCHASTICITY 

In Sec. V we treated particle motion in a wa~e of amplitude 

small enough that at most one term in the perturbation (9) was 

slowly varying in time. Two terms can be slowly varying if a 

particle lies within a trapping half~width of each of two adja­

cent resonances (11): 

for both i = L and L + l. The constants of the motion HL 

and IL' found when only the term i = L was retained, are not 

expected to remain constant when two terms are slowly varying. 

Numerical integrations of the equations of motion verify (see 

I 
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Sec. X) that, in large regions of phase space, no constant 

exists except the Hamiltonian if the wave amplitude is large. 

The particle is thus free to move almost anywhere on the energy 

(hyper)surface. This freedom can result in important physical 

consequences; in the presence of a single, obliquely propagating 

wave, particles can be accelerated to high velocities (i.e., a 

distribution can be heated to high temperatures). 

The criterion that resonances overlap has been studied 

. extensively by Chirikov38 and found to predict the disappearance 
' ~ $ 

of constants of the motion (i,e., the onset of stochasticity) 

with accuracy sufficient for physical applications. The crite­

rion is simply that the sum of the half-widths of adjacent 

resonances exceed the separation o between them: 

(26) 

The separation (in parallel velocity) follows from the resonance 

condition (11): 

The Chirikov criterion for stochastic particle motion in an 

oblique, electrostatic wave is thus 

~I 

(27) 
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If the Bessel functions have comparable amplitudes, then (28) 

can be replaced by the simpler formula 

(29) 

We interpret (29) as follows. Particles with parallel velocity 

(in the wave frame) such that lkzvz/n-LI <~will tend to move 

stochastically if (29) is satisfied but nonstochastically if it 

is not. We compare (28) to the findings of our numerical 

experiments in Sec. X. 

VIII. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION 

To test various aspects of the theory of stochasticity as 

applied to particle motion in an oblique, electrostatic wave, 

we perform numerical integrations of the equations of motion. 

The equations are derived from Hamiltonian (7): 

i = 3H/3pz , ¢ = 3H/3p¢ , 

~z = -3H/3z, ~¢ = -aH/3¢ . 
(30) 

We choose units such that m = kz = Q = 1 and write (30) explic­

itly as 

' 
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. 
z = Pz 
• -1 
cp = 1 - £k.r: p sin <P cos x 

• p = -£ cos X z . . 
Pep = £k1 p cos <P cos x, 

2 2 
£ - kz eq,9;mn 
x = z - k1 p sin cp , 

(31a) 

(31b) 

(31c) 

(31d) 

(32) 

and p = (2p<P) l/2. We avoid taking a square root by replacing 

(3ld) by 

. 
p = £ k1 cos cp cos X . (31e) 

" 

The four equations of motion (3la, b, c, e) are integrated 

on a CDC 7600 computer. The integration scheme (Gear-Hindmarsh) 

utilizes standard predictor-corrector methods. The order of the 

method and the size of the integration step are adjusted 

automatically to optimize the efficiency of the integration. 

The maximum order available is twelve~ ·In our integrations, a 

typical order is eight and a typical integration step is 
-1 l\t '\, o. osn . . 
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Several checks of the integration accuracy were made. 

Since the Hamiltonian is independent of the time, its numerical 

value should be nearly conserved during the integration. The 

percentage change in the value of the Hamiltonian was 0.0005% 

in a typical integration time of 50 n-1. A different integration 

scheme was used in the early stages of this work. During the 

changeover from the old to the new scheme we checked that the 

particle trajectories found by the two schemes were very close 

to each other. Also, the equations of motion could be inte­

grated forward and then backward in time to see if 'the initial 

conditions were recovered. For stochastic trajectories, the 

most difficult ones to in.tegrate, we could integrate forward for 

a time ~ lOn-l and still recover the initial conditions fairly 

well. 

Further comments on integration of the equations of motion 

can be found in Ref. 4. 

IX. SURFACE OF SECTION METHOD 

A particle trajectory resulting from integration of (31) 

lies on a three-dimensional energy surface which is contained 

in the four-dimensional phase space. Attemp~ing to represent 

a trajectory by a curve in a three-dimensional space would be 

needlessly difficult and confusing. To answer the important 

' 
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physical question of whether motion is stochastic, we need . 

trajectory information only at certain, well-separated instants .. 

of time. In this section we describe the technique, known as 

the surface of section method, for selecting these instants of 

time and for constructing a plot using the retained.trajectory 

inform·ation; we also discuss the utility of the method. 

Poincare•s39 surface of section method considers the inter-

section of a trajectory with a cross-section of the phase space. 

The chosen cross-section must be crossed repeatedly by the 

trajectory; a·convenient choice jn our work is defined by the 

gyrophase-~ = ~. The intersection of the trajectory with ~, = ~ 

yields a set of points in a thr~e-dimensional spac~with axes 

z,pz, and p~ . We. then ignore the p~-coordinates of the points 

and plot the points in the zpz-plane (i.e.~ we project them 

onto the plane).· 

As we integrate the equations of motion forward. in time, 

successive points on the.surface of section·plot are generated 

roughly once each gyroperiod~ The points are iterates· of an 

area-preserving mapping ·Of the zpz~plane onto itself. Calcu­

lating the iterates using the Hamiltonian equations of motion 

. t t• 11 t• . d t k 38,40-43 1s compu a 1ona. y 1me-consum1ng, an pas wor ers 

have often replaced a Hamiltonian system by a discrete mapping 

thought to mimic more or less closely the actual physical 
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systems of interest. These mappings display transitions from 

nonstochastic to stochastic behavior as a pa~ameter is varied, 

just as Hamiltonian systems do. Generally we prefer to use the 

Hamiltonian equations of motion and thereby eliminate uncer­

tainty about the relation between the given physical system and 

a chosen mapping. 

By looking at a surface of section plot we can tell 

immediately whether a particular trajectory shows stochastic 

motion (nonexistence of a constant.of the motion). By examining 

plots for several values of the stochasticity parameter (our ~) 

and for various initial conditions we can quickly gain a compre­

hensive· understanding of the dynamical system being studied. 

The utility of a surface of section plot arises from its 

method of construction. If a constant of the motion I exists 

for a particular orbit, that orbit will be confined to a two­

dimensional surface, the intersection of the energy hypersurface 

with the hypersurface I=const. The intersection of this two­

dimensional surface with the surface of section ~ = rr is a 

curve in zpzp~-space, and projection onto the zpz-plane yields 

a curve on which the set of trajectory points must lie. If no 

constant I exists, an orbit will visit a three-dimensional 

region of the energy hypersurface. That region intersects 

~ = rr in a two-dimensional surface, which, after projection 

' 
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appears as an area of the :zpz-plane. Thus, a constant of 

the motion exists if trajectory points lie on~ curve, while 

a constant does not exist if the points fill an area. Note 

that the surface of section method does not tell us the 

analytic form of the constant, if one exists. 

X. DISCUSSION OF NUMERICAL RESULTS 

To validate the theoretical work, we integrate (31) 

numerically, presenting many of the results as surface of 

section plots. 

We first illustrate, in Fig. 2, three of the resonances 
. ' 

(11) for,a wave amplitude 10 small enough that the resonances 

do not overlap. The positivity of the gyroradius limits the 

motion of a particle with a given energy to the region between 

the dashed lines. 

Next, in Fig. 3, we plot trajectories when the wave 

amplitude is large enough for resonances to overlap. Points 

representing nonstochastic trajectories have been connected by 

smooth curves. Th.is plot illustrates the 11 divided phase space .. 

which occurs at intermediate values of the wave amplitude: 

regions in which a constant of the motion (in addition to the 

energy) exists are interspersed with regions in which it does not 

exist. The shapes of some of the smooth curves in Fig. 3 were 
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calculated by Taylor andlaing. 44 Other curves, representing 

resonances other than (11), appear in Fig. 3 but cannot be 

calculated by their simple theory. Near each of the three 

11 primary .. resonances (11) we see a set of five smooth curves; 

each set represents a single trajectory and is referred to as 

a chain of islands. Each chain shows the existence of a 

11 secondary 11 or bounce resonance, which we have studied in 

detail in Ref. 4. 

To demonstrate the possibility of heating a distribution 

of particles by applying a single, obliquely propagating wave, 

we use the plots in Fig. 4. The plots are constructed by the 

surface of section method, but in contrast to Figs. 2 and 3, the 

trajectory points are projected onto the v1 vz-plane instead of 

the zp_-plane. Fig. 4 shows the motion in velocity space 
L 

(i.e., the acceleration) of a group of particles that is 

specified precisely in the figure caption; the group is chosen 

to represent particles with certain values of the perpendicular 

and parallel velocities at t = 0. We consider a wave of 

frequency w = 3.6n and choose a value v = -w/k for the z z 
parallel velocity (as measured in the wave frame). The 

chosen particles thus have zero parallel velocity (as measured 

in the plasma frame) at t = 0. 

• 
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Fig~ 4 contra~ts the particle acceleratiqn in a wave of 

relatively small (e: = 0.25) or large (e: :::; 0.75) amplitude .... 

In the small amplitude case no particles in the chosen group 
.~ ' . ' . ': . 

move stochastically, and the .particle velocities remain near . 

their initial.values. In. the large amplitude case all of the 

particles. move ftochastically, appearing to diffu~e throughout 

much of the s.emicircular annulus bounded by the dashed curves. 

The dash~d curves give .the lim~ts o~ the particle motion which 

follow from conservation of energy (as measured in the wave 

frame): the wave.can change the kinetic energy of a particle 

by 2e4>0 at most, _giving curves at speeds (v2 ± 4 e4>0/ln) l/2, .. 

where v is the initial speed. The time-averaged value of a 

particle's kinetic e~ergy~. as measured in the plasma frame, 

increases substantially in the large amplitu~e case. The 

vertical axis at the far left of Fig. 4 helps us.see.the extent 

of the iricrease in parallel kinetic energy. 

Our numerical results indicate a transition to stochastic ' : . 
motion~.a.t .e: ~ 0.50 .when the propagation angle and)nitial 

particle velocity have the values used in Fig. 4. To compare 

.this numerical result to the theoretic.al formula (28) we i.nsert 

the values J_3 = -0.17 .and J_4 = 0.051 for Bessel functions 

of argument ~P = 2.24 and find the condit~on for stochastic 

motion to be 
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E > Q, 61 

The agreement is as good as can be expected considering the 

crudeness of both· the numerical measurement and the theory. 

In Fig. 4 the numbers 0, 1, 2, 5, 6, 7 show the 

positions of a particle (with a certain z0) after the 

indicated number of gyroperiods. The process of diffusion over 

the semicircular annulus seems quite rapid, and we now inves-

tigate this process more carefully. We numerically calculate 

the trajectories of 50 to 200 particles which have unique 

initial values v1 and vz but initial values kzz and 

<t> arranged in a regular array (see Fig. 5). In Fig. 6 we 

plot, for a subset of the trajectories, the para·llel velocity 

vz vs. time. We first note the diffusion of vz away from 

its initial value; in the next paragraph we study this diffusion 

quantitatively. Interesting features of some trajectories in 

Fig. 6 are periods of rapid change in vz (large parallel 

acceleration) separated by periods of relatively constant vz. 

These features can be understood by noting that, under some 

circumstances, the Hamiltonian system (7} resembles a discrete 

mapping (see Ref. 4 for details). 

To study the diffusion process quantitatively, we use the 

numerically calculated trajectories to compute <(~vz) 2> , a 

quantity introduced in Sec. VI. The time variation of this 

' 
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quantity typically has the form-·shown in Fig. 7. Quadratic 

and then 1 i near dependences on time·, as predicted by (23) and 

(24), are ob~~rved·during the first gyroperiod or so. There~ 

after;·~ a .deviation from the 1 inear behavior, indicat1ng either 

a larger or a smaller diffusion rate, generally occurs. An 

interpretation'bf this ·deviation which is consistent.with ou~ 

numerical results is the following. The rate of diffusion of 

a group of particles is ·primarily determined by their present 

velocities rather than by the past history of the group (i.e., · 

a Markovian assumption has ·some validity). As a group of 

particl~s diffuses; some particles re~ch velocities for·which the 

diffusion ·rate is, say~ larger than it was at the initial 

velocity. The diffusion ·rate of the whole group then appears 

to increase. This interpretation is indicated ori Fig. 7. · For 

long times the diffusion process ceases because the group has 

spread out to fill the entire stochastic region of velocity 

space (see Fig. 4). 

Only limited studies of the correlation function (16) were·,· 

carried out because of difficulties described· in Ref." 4. 

XI. OBLIQUE, ELECTROSTATIC WAVES FOR ACCELERATION OF IONS 

In Sec. X we used, as an example, an electrostatic wav~ 

with frequency w = 3.6n, propagation angle 8 = 45°_, and 

various amplitudes measured by E = k~2e~0;mn2 We identify 
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here a particular wave with these properties and show that the 

amplitudes used are not unreasonably large. 

We concentrate on waves appropriate for heating ions, but 

we note that often there exists, for each ion wave, an electron 

wave with analogous parameters which is appropriate for heating 

electrons. In Appendix C we collect the experimental require-

ments necessary for observing heating of either ions or electrons. 

A plasma in a uniform magnetic field can support an 

obliquely propagating, electrostatic wave which we call an 

ion-acoustic wave. This wave is indicated in Fig. 8. The name 

11 intermediate-frequency acoustic wave 11 is used in the old, but 

still useful, review by Stringer. 45 As long as 8 is not too 

close to 90?, the frequency w is given approximately by the 

unmagnetized formula 

w ~ kc s ' 

where k2 = kz2 + k1 
2, and the sound speed is given by 

c 2 _ (T + 3T. )/m. . Given the wave parameters w = 3.60
1
. s e 1 1 

and 8 = 45° and the temperature ratio Te/Ti' we calculate 

the damping rate of the wave using the formula (4.68) in 

Ichimaru46 appropriate for Maxwellian distributions of electrons 

and ions. Just as in an unmagnetized plasma, we find a 

• 
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weakening_of the damping as Te/Ti increases. The damping 

reaches a fairly small value when Te/Ti is increased to 16: 

y R:: -0.04w. Such a large temperature ratio would not be 

required in an unmagnetized plasma to reach this damping rate. 

With the temperature ratio 16 chosen we can calculate the ion 

thermal speed. vTi = (Ti/mi) 112 • to be 

This speed is indicated on Fig. 4 by the hatched semicircle. 

The group of ions studied in Fig. 4 would thus have an initial 

perpendicular velocity 3.8 times the thermal speed. 
(. 

We now express the wave amplitude given by £ = 0.5 in 

more familiar terms. From the fluid equations describing an 

ion-acoustic wave, one easily derives a relation between the 
~ • t 

potential amplitude <I>0 and density amplitude on/n: 

. .... 

on e<I>o 
- = n 2 (34) 

m.c 
1 s 

Using the standard formulas for the dielectric function D 

and the D~bye length >-.o, we also find the expression 

(35) 
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for the wave energy density W. 

allows us to write £ = 0.5 as 

Use of (33) and Te/Ti = 16 

Substitution of (36) into (34) and (35) yields 

on/n ~ l/13, w ~ nTi/15 

The moderate numerical values in (37) appear to justify our 

use of the linear dispersion relation for the wave. Also, 

(37) gives the important result that stochasticity ·can occur 

at smaller amplitudes than nonlinear effects requiring 

on/n 1\, 1. For other wave parameters, however, stochasticity 

might not occur for any physically reasonable wave amplitude. 

The low-frequency ion-acoustic wave 

w ~ k c < Q. z s 1 

(36) 

(37) 

which is shown in Fig. 8, might also be used to heat ions. A 

large temperature ratio is again required to reduce the linear 

damping rate. This wave seems to lead to less dramatic heating 

of an ion distribution than the ion-acoustic wave with w > ni. 

• 

" 
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The difference between parallel velocities. in the plasma frame 

and in the wave frame decreases as w· decreases (see Fig.·4). 

For small w the constant energy curves in the two frames are 

close together, implying less possibility of dramatic changes 

in the distribution of parallel kinetic energy (as measured 

in the plasma frame). 

We have considered other waves of a plasma in a uniform 

magnetic field but have found no wave with more favorable . 

parameters than those given here. Lacking a definite optimi­

zation criterion, we have not performed a systematic variation 

of w and e. ,Values of e close to 90° are of particular 

interest si.nce many waves propagate nearly per,pendicular to 

the magnetic field; the lower hybrid wave, importan,t in rf 

heating studies for tokamaks, is one example. For parameters 

typical of Jower-,.hybrid-heating experiments the condition (29) 

for overlap of cyclotron resonances cannot be satisfied .. Ion 

motion may be stochastic, nevertheless, because.of the overlap 

of other resonances, as shown in Refs. 8 and 9. 

XII. HEATING OF A DISTRIBUTION FUNCTION 

In Sec. X we showed that a group of particles with given 

parallel and perpendicular velocities at t = 0 may be heated 

by a single, oblique wave. Here we consider a Maxwellian 

•'!. 
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distribution of velocities at t = 0 and find the distortion 

of that distribution caused by the wave. 

We use the following qualitative picture suggested by Fig. 

4. An ion whose velocity satisfies (29) moves stochastically, 

ranging over that portion of the constant-energy semicircle 

defined by (29). An ion whose velocity does not satisfy (29) 

remains nearly fixed in velocity space. In the presence of 

a single, oblique wave of large amplitude the steady-state ion 

distribution must therefore be constant along the stochastic 

portions of the constant-energy semicircles and nearly 

Maxwellian in the nonstochastic regions of velocity space. 

This picture is implemented by a computer program which 

modifies an initially Maxwellian distribution to obtain the 

steady-state distribution. The modification is accomplished 

by successively considering semicircular annuli in v1 vz-space, 

each of which represents particles with a small range of 
I 

speeds. For each annulus the Maxwellian is integrated over 

the stochastic portion of the annulus to find the total number 

of stochastic ions in the annulus. This number is then 

redistributed over the stochastic portion of the annulus with 

a weighting proportional to the perpendicular velocity v1 . 

This weighting results in a distribution that is uniform over 

the three-dimensional (vxvyvz) kinetic energy surface. 

, 
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The steady-state distribution in v1 vz-space is integrated 

over vz to obt~in the perpendicular distribution and over 

v1 to obtain the parallel distribution. In Fig. 9 we plot 

these distributions on a logarithmic scale. The horizontal 

(velocity) axes use a quadratic scale so that a Maxwellian 

appears as a straight lin~. The same wav~ freq~ency and 

propagation angle and the same ion thermal speed are used as 

for the ion-acoustic wave of Sec. XI. 

The wave is s~en to distort only the tails of the 

perpendicular and parallel distributions, not the bodies. 

The perpendicular distribution is distorted for v1 2: 3vTi 

in the case £ = 0.75. The'distortion of the parallel distri­

bution is highly asymmetric because ions tend to be accelerated' 

to the· parallel velocity of the wave frame, which is positive 

and much larg·er than the thermal speed. Although the dis'tor­

tions shown fn Fig. 9 involve only a tiny fraction of the total 

number of ions, the changes in the populations of tail ions 

are quite dramatic. 

The.tiny fraction of ions which is stochastically acceler~ 

ated bythe wave can gain a substantial amount of energy as 

a result of the large velocitY changes produced during 

stochastic· acceleration. · As a numerical example we consider the 

smarler ;amplitude case s = 0'.25 for which 0.03% of the ions 

move stochastically. These ions increase their kinetit energy 
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by an amount roughly equal to half of the energy in the wave. 

We thus expect the propagation characteristics of the wave to 

be altered significantly when stochastic acceleration occurs. 

XIII. CONCLUSIONS 

We have studied the motion of a charged particle in 

a single (monochromatic) wave that is propagating obliquely 

to a uniform magnetic field .. As the wave amplitude is 

increased, a constant of the motion--disappears, 'allowing 

the motion to become stochastic. The Chirikov criterion of 

overlapping resonances gives a prediction for the onset of 

stochasticity in good agreement with the results of numerical 

integration of the equations of motion. 

The resemblance of stochastic motion to a diffusion process 

has been observed numerically. The "diffusion" which occurs 

even in linear theory has been distinguished from the true 

diffusion caused by overlap of resonances. 

We have considered the possibility of using the overlap 

of cyclotron resonances as a mechanism for heating a particle 

distribution. Choice of an electrostatic wave, the ion-acoustic 

wave, allows parameters satisfying the requirements of our 

analysis. The analysis predicts rapid transfer of wave energy 

to ions in the tails of the perpendicular and parallel distribu­

tions. Heating of ions by this mechanism does not appear impor-

;I 

.w 



-41-

tant in fusion plasmas but might be used in a small-scale 

laboratory experiment to observe stochastic acceleration by 

a single wave. 
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APPENDIX A: STOCHASTIC ACCELERATION BY AN ELECTROMAGNETIC WAVE 

Stochastic acceleration by an electrostatic wave is treated 

in detail in this paper. Here we discuss the possibility that 

an electromagnetic wave could cause stochastic acceleration. 

A charged particle in a uniform magnetic field plus a 

small-amplitude electromagnetic wave can be trapped near the 

resonances ·(1), 30 in complete analogy with the electrostatic 

case treated in Sec. V. Palmadesso30 gives the constant of 

the motion analogdus to (13); from his formulas we can deduce 

the trapping width in an electromagnetic wave of arbitrary 

polarization and propagation direction. 

As an example of a particular electromagnetic wave we 

consider a high-frequency Alfven wave propagating in the yz-

plan e. By this name we refer to a wave on the same branch as . 

the magnetosonic (compressional Alfveh) and whistler waves 

but with a frequency a few times the ion gyrofrequency. The 

dispersion diagram in Fig. 8 shows the location of the high­

frequency Alfven wave. When the propagation angle e = 0° 

(i.e., k1 = 0), this wave is right-hand-circularly-polarized, 

and the trapping width is 

(Al) 

" 
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where Bx is the amplitude of th-e x-component of the wave • s 
magnetic field. When the wave propagation is oblique (kz' 

~ * 0), (Al) is still a good approximation for certain 

combinations of wave frequency w and angle e. When (Al) 

is valid,· the condition of overlapping cyclotron resonances 

appears difficult to satisfy. Using the same values of 

~P and k;vzjn (~hi~h de~etmines 1) as in 'Fig. 4, we find 

the Besse 1 function J 
1

_1 ; to be sma 11 er than J 
1 

by a factor 

of about thr~e~· ·A high-frequency Aifven wave· with ·amplitude 

given by 

(A2) 

could thus· be expected to c'ause ion ~·eating simila·r to that 

caused by the .. ion...;acousfic wav·e· of Sec. 'XI which Jhas ·· 

To check whether.(A2) is a reas'onable wave amplitude-we calcu-. 

late the ·fra·ctieihal:change in Bz due to the wave: 
·. ~ .... - ·. ·.' ' . 

(A3). 
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For the linear cyclotron-harmonic damping of the wave to be 

weak we use the crude condition that the ion thermal speed 

satisfy 

vT. < O.S n./k 
1 - 1 z (A4) 

this condition means the distribution function 11 fits 11 between 

the resonant parallel velocities ini/kz (compare (33)). 

Combining (A3) and (A4) and taking kz = k1 , we find that ions 

with v1 ~ 4vTi are stochastically accelerated if 

(AS) 

A high-frequency Alfv~n wave with amplitude (AS) would not obey 

the requirements of our analysis that the wave be sinusoidal 

and satisfy the linear relations for the frequency and 

polarization. On the basis of this example we conclude that 

an electromagnetic wave of reasonable amplitude is less likely 

to cause stochastic acceleration by overlap of cyclotron 

resonances than is an electrostatic wave. It is clear, however, 

that many choices of parameters were made in arriving at (AS), 

and the possibility of strong stochastic effects due tq an 

electromagnetic wave cannot be ruled out. 
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APPENDIX B: STOCHASTIC .ACCELERATION BY A .NONSINUSOIDAL WAVE 

The problem treated in detail in this paper involves 

stochastic motion caused by a sinusoidal wave. We note here 

that such motion can occur as well for a nonsinusoidal wave. 

Stochasticity might appear at a lower value of the wave 

ampli~ude in the nonsinusoidal case. 

We consider a plane electrostatic wave for which the 
' potential is an arbitrary periodic function of the phase 

k • x - wt. As in Sec. IV we eliminate the time dependence by· 
vw """( 

using wave~frame variables and write the perturbation as 

V = eEn 4>n sin(n k•x + 6,) 
<+~ V</<1 n 

which replaces (5). The operations performed in Sec. IV allow 

us to write the equation 

which replaces (6). Use of (8) now yields 
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Analysis of (Bl) by the method of Sec. V shows the existence 

of resonant velocities 

which are distributed along the real number line as the rational 

numbers are distributed. The complications implied by this 

distribution have deterred us from study of nonsinusoidal 

waves. One might expect, however, that a nonsinusoidal wave 

would lead more easily to stochastic motion than a sinusoidal 

one because of the presence of the large number of additional 

resonances of finite width {proportional to ~nl/ 2 ). 



-47-

APPENDIX C: · EXPERIMENTAL REQUIREMENTS FOR OBSERVING STOCHASTIC 
ACCELERATION 

Stochastic acceleration of ions by a single ion-acoustic 

wave was seen in Sees. XI and XII to lead to the heating of a 

Maxwellian distribution. We believe a fair1y simple 

laboratorY experiment could observe these effects. When 

stochasticity occurs one should see a change in propagation 

characteristics of a launched, obliquely propagating wave, 

and one might obser~e a high-energy tail in the parallel 

distribution. Some care must be taken exp'erimet'ltally in 

launching an ion-acoustic wave in order to avoid effects 

mentioned in Refs. 47 and 48. Assuming that the desired 

wave can be launched, we give here the experimental require-

ments suggested by our theoretical work. 

To observe ·ion tail-heating by ·an ion-acoustic wave, 

the following requirements must be met. 

1. The wave frequency w(~ kcs) should be a few times 

the ion gyrofrequency ~i' but not too close to a 

multiple of ~i to avoid cyclotron-harmonic damping. 

2. The propagation angle e with respect to the magnet­

astatic field B should be in the vicinity of 45°. 
wv 

3. The temperature ratio Te/Ti should be high enough 

that the wave damping is small, but there must be 
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ions with gyroradii comparable to the perpendicular 

wavelength (kip. > 1). 1 ~ 

4. The ion collision frequency vi must be less than 

about O.lni so the collisionless theory is applicable. 

5. The wave amplitude should be uniform in the k x B 
WI .,.N 

direction over a distance Lx satisfying kzLx ~ w/ni~ 

Otherwise, ions E x B drift out of the wave before 

significant acceleration occurs. 

6. The density amplitude must be as large as on/n ~ 0.1. 

To observe electron tail-heating by a Langmuir wave, the 

analogous requirements are the following. 

1. w(~pe) a few times ne' but not too close to a multiple 

of ne. 

2. e~45°. 

3. The Debye length AD should be small enough 

(kA0 :s 0.25) that the wave damping is weak, but elec­

trons with gyroradi i such that k1 Pe ~ 1 must exist. 

4. ve :s 0.1 ne. 

5. kzLx ~ w/ne. 

6. one/ne ~ 0.1. 
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FIGURE CAPTIONS 

FIG. 1. Specification of the particle position (x, y) in 

terms of the canonical variables used in the text. 

FIG. 2. Surface of section plot illustrating three non-

overlapping resonances.· The initial conditions, indicated 

by x•s, were chosen to yield trajectories very close to the 

three separatrices. The points representing the trajectories 

have been connected with hand-drawn curves. The wave 

amplitude is given by £ = 0.025, the other parameters are 

k1 pE = k1 (2E/m) 112;n = 1.48, and e = tan-1(k1 /kz) = 45°. 

FIG. 3. Surface of section plot showing a divided phase space. 

The parameters are the same as in Fig. 2, except £ = 0.1. 

FIG. 4. Surface of section plots contrasting the motion in 

velocity space in the presence of a small- or of a large­

amplitude wave. The wave has frequency w = 3.6n and 

propagation angle e = 45°. Trajectories of a group of ten 

particles are represented. At t = 0 this group has values 

of k z = Nn/5, N = 0, 1, 2, ... , 9, but has unique values z 

of ¢ (= n), v1 , and vz. The chosen value of the perpendicular 

velocity is given by kzv1 ;n = k1 p = 2.24 and of the parallel 

velocity by kzvz;n = -3.6. The hatched semicircle shows the 
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extent of the thermal ions considered in the wave-heating 

example of Sees. XI and XII. 

FIG. 5. Array of 100 initial values of kzz and ~ used 

to approximate numerically the average defined by (17). 

FIG. 6. Particle trajectories, represented by plotting the 

parallel velocity vs. time. The wave amplitude is given by 

£ = 0.75 and the propagation angle by a= 45°. The initial 

speed (v = 5Q/kz) and parallel velocity (vz = 0) are the same 

for all trajectories, but the initial phases kzz and ~ 

differ. 

FIG. 7. The mean square deviation in parallel velocity vs. 

time. Parameters are the same as in Fig. 6. 

FIG. 8. Dispersion diagram (w vs. k) for a plasma in a 

uniform magnetic field, showing the high-frequency Alfven 

wave (Appendix A), the ion-acoustic wave (Sees. XI and XII), 

and the low-frequency ion-acoustic wave (Sec. XI). Adapted 

from a figure in Ref. 45. 

FIG. 9. The perpendicular (f1 ) and parallel (f11 ) 

distribution functions in the presence of a finite-amplitude, 

obliquely propagating, electrostatic wave. The distortions 

to Maxwellian distributions (£ = 0) are shown for two wave 
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amplitudes, £ = 0.25 and 0.75. 
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