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STOCHASTIC ACCELERATION BY AN OBLIQUELY PROPAGATING WAVE--
N AN EXAMPLE OF OVERLAPPING RESONANCES

a)

Gary R. Smith and‘A11an N. Kaufman

Department of Physics and Lawrence BerkeTey Labofatory, ‘
University of California, Berkeley, CA 94720
ABSTRACT

We treat a simple problem exhibiting intrinsic stochasti-
city: the motion of a charged particle in a uniform magnetic
field and a single plane wave. Our detailed studies of this
wave-particle interaction show the following features. An
electrostatic wave propagating obliquely to the magnetic field
causes stochastic motion if the wave amplitude exceeds a
certain threshold. The overlap of cyclotron resonances then
destroys a constant of the motion, allowing appreciable momentum
transfer fp the particles. A wave of large eﬁough amplitude
would thus suffer severe damping and lead to rapid heating of a
particle distribution. The stochastic motion resembles a
diffusion process even though the wave spectrum is monochro-
matic. Our methods shou]dibe useful for other problems showing
stochasticity. These problems 1nc}ude superadiabaticity in
mirror machines, destruction of magnetic surfaces in toroidal

systems, and Tower hybrid heating.



I. INTRODUCTION (
The interaction between a wave and a charged particle is of
fundamental importance in plasma physics. In treating this ¥
interaction, one finds the concept of resonance to be useful.
A problem involving a single resonance is the one-dimensional
motion of an e]ectfon in a Langmuir wave, in which the resonance
condition is w = kv. Such problems can be solved exact]y,]
allowing description of the bouncing motion of trapped particles,
for example. |
Generally, wave-particle interaction problems involve
multiple resonances. Particle motion is qualitatively different
depending on whether these resonances overlap (the concept of
overlapping resonances is discussed in Sec. VII of this paper).
Multiple resonances which do not overlap lead to no fundamental
difficulties, but when two or more resonances overlap, the
motion becomes incredibly complicated. Numerical solutions
of the motion of such systems show a complexity which clearly
cannot be described analytically; we cannot write, for example,
an equation describing the evolution of a distribution of
particles when two resonances overlap.
The term which has come into use to describe motion in the v

2

presence of overlapping resonances is "stochastic."™ The

stochasticity we study is intrinsic to the dynamical system:
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. the differential equations that determine the motion contain

neither random coefficients nor random forces (nor are the
initial conditions random). This intrinsic sfochasticity
arises from a fundamental mixing procéss: an arbitrarily small
element of the phaée-space fluid déve]Ops, exponentially in
time, into a complicated ff]amentary structure, stretching
throughouf a large fraction of the accessible phase space. This
mixing process, which accompanies the overlap of resonances,
leads to irreversible macrdscopié effects, 1ike a coarse-grainad
entropy that increases in time.

In this paper we treat a simple problem involving over-

lapping cyclotron resonances. The resonance conditions are
w=Kkyv, -9, ' (1) -

where Q = eBO/mc is the cyclotron (or gyro-) frequency of the -

particié of charge e and mass m, v_ is the particle's

z
velocity parallel to a uniform, magnetostatic 1’1‘eldml§“'= B, zZ,
w and kZ are the frequency and parallel wavenumber of the wave,
and 2‘1S'ahy integer. The resonances (1) are responsible for
cyc]otron-harmonit3 (or gyro-resonant) damping and growth of

waves in a uniformly magnetized plasma.

Overlap of resonances can occur in many problems important
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to the magnetic fusion energy program. In a nonuniform magnetic
field ions can move stochastically in the presence of a wave \

driven to large amplitudes by an instability. Such problems

4,5 6,7

have been studied for a tokamak and for a mirror machine.

Stochastic ion motion may also be caused by a wave launched for
radio-frequency heating of a tokamak plasma. This resu]t was

found for the lower-hybrid heating scheme by Karney and Ber58

and by Fukuyama, et a].g

For closed magnetic-confinement systems the question of the
integrity of magnetic surfaces presents a number of important
problems. Destruction of the surfaces (also known as magnetic

braiding]O or stochasticity of field lines) can be caused by

11-17

coil construction errors. In the absence of coil construc-

tion errors destruction of magnetic surfaces can still occur
because of current perturbations in the plasma. The current

perturbations grow to large amplitudes because of unstable inter-

18,19 20 21,22 23

nal kink or tearing  modes. Finn and Stix™™ consid-

ered the hypothesis that the serious disruptive instability is

caused by destruction of magnetic surfaces. Rechester and

24

Stix”" studied the destruction of the outer contours of magnetic v

islands. Recent theoretical work has suggested that instabil-

ities in tokamaks might'lead to overlapping micromagnetic

25,26

islands. The overlapping islands would cause anomalous
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transport of electron heat.27

In-reporting our work on.oVerlappingcyclotrQn resonances
we have fwo goals. First, we hqpe to stfmu]ate interest in.the
experimental observation of our stochastic—acce]eraﬁion process.
Sec0nd,:we‘be11éve our'anélytical and numerical methods are use-
ful to WOrkers studying overlapping resonances of any tjpe.

Published accounts of our early work on_fhe overlap of
cyclotron resonances appear in Refs. 28 and 29.

The remainder of this paper is organized as follows. In
Sec. II we give the considerations involved in choosing our
model prdblem.' Section III introduces the canonical variables

we have found convenient. In Sec. IV we write the Hamiltonian

’and note some constants of the motion. In Sec. V we find some

results which are valid when resonances do not overlap. In
Sec. VI we find the behavior, in certain 1imits, of quantities
which we later study numerically; the behavior is the same
whether resonances overlap or not. In Sec. VII we apply a
simple analytical criterion (overlap of resonances) for the
onset of stochastic motion. To prepare for the description of
our numerical results we briefly discuss the method of numerical
integration (in Sec. VIII) and the surface of section method
(Sec. IX). We pfeéent our numerical results in Sec. X. Section

XI discusses some electrostatic waves which could cause appre-
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ciable ion acceleration due to the overlap of cyclotron
resonances. In Sec. XII we calculate the distortion of the tail

of & Maxwellian distribution in the presence of such a wave.

-

Appendix A explores the possibility of stochastic acceleration
due to aﬁ electromagnetic ane. In Appendix B we mention the
problem of motion in a nonsinusoidal wave. Appendix C gives
requirements for observing stochastic acceleration in a labora-

tory experiment.

IT. CHOICE OF MODEL
The motion of a particle in a uniform magnetic field and a
sinusoidal plane wave exhibits a set of resonances which can

overlap. From (1) we find the resonant parallel ve]ocities
v, = (0 + 20)/k, ; | (2)

these velocities are ffnite if k; # 0. The resonances have a
non-zero width when the wave amplitude is not infinitesimal and
the gyroradius.is finite (klp > 0). Overlap of the resonances
is thus possible if the wave propagates at an oblique angle to
the magnetic field: kz’ k, # 0.
Our work assumes the wave spectrum is so narrow that a ¥
single wave is a good representation of the spectrum.  This

situation is easiest to treat analytically and leads to the most



striking results.

We usually assume that the wave is electrostatic (k va).
An e]ettromagnetic wave can also cause stochéstic acce]ekation
since the same resonances occur as in the electrostatic case.
The widths of the resonances are different and, as is shown in
Appendix A, a wave amplitude large enough to cause overlap of
the resonances is more difficult to achieve in the electromag-
netic case.

Appendix B mentions ‘the analytical complications which
would arise if we relaxed our assumption that the wave is
sinusoidal.

Finally, we assume that the amplitude ¢0 of the electro-
static wave is constant in time. An antenna which launches a
wave in a stéady-state plasma will produce a constant wave
amplitude. If, instead, the wave is due to an instability, then
an equilibrium will be reached in which thé linear growth rate
0} balances the nonlinear damping rate ys(éo) caused by stochas-
tic acceleration of the particles. (We assume here that stoQ
chastic ‘acceleration saturates the instability béfore any other
nonlinear effect is important; this assumption must be investi-
gated separately for each physical situation). We will find
that stochastic acceleration is a very rapid process (character-

istic rates comparable to the gyrofrequency Q). Therefore, even
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a variation in the wave amplitude at a quite rapid (~0.1 Q)

rate will not alter our results qualitatively.

ITI. CHOICE OF VARIABLES
To describe the motion of a particle, we could use the

Cartesian variables (x, y, z, Vys V ). Our work is

y' 'z
simplified by choosing other variables and by using a Hamilto-

nian formulation. The simplest formulation is found by choosing

generalized coordinates 9 and momenta p such that the

ww

motion in the magnetic field with no wave is described by a
Hamiltonian depending on the momenta only: H0 = Ho(p)

‘We derive the uniform magnetic field B, z from the vector .
potential Aj(y) = -Byy X . The unperturbed (i.e., ¢y = 0)
Hamiltonian is
2

, pz) =Lmv- = (p + mﬂyﬁ)z/Zm .

wv

Hy (Vs pys Py

We transform the perpendicular variables (x, y, p ) to a

x? py
new set of variables that describe the position of the guiding

center and the gyration about it. We use the variables @

(z, ¢, Y)
= (pZ’ pd)s mQX) ’

{'c E.o



- where ¢ 1is the gyrophase,
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p¢ the canonical angular momentum
of gyration, and X and Y the components of the guiding -
center. These variables are defined in terms of the Cartesian

variables by

o
¢ = tan " [(p, ; mﬂy)gpy]

+ Py = [lpy + mty)™ + p "1/2m0
Y= -p, /mQ
',X’=

= x + Q- .
X py/m

The requirements for these variables to be canonical are easily -

verified by computing the Poisson brackets -

1= (Y, mRX] =1

Lo, Py | .
[6, X] = [py, Y1 = [pys X1 =0

[o, Y]

The gyroradius p, the perpendicular velocity v,, and the -~ -

magnetic moment u are defined in terms of p¢ by

Py = %mﬂp2 z mvlz/ZQ = (mc/e)u .

We write
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6 = ;in'](-vx/vl) = cos'] (-vy/vl) )
Y=y +psin¢ ¥
X=x-pcos ¢

o

to show that our names for ¢, p, X, and Y correspond to their
conventional meanings. However, we must warn the reader that
when a time-varying electric field is present, as in this paper,
our X and Y differ from the conventional guiding-center
positions by the polarization shift, which equals the time
integral of the polarization drift. We illustrate in Fig. 1 our
definition of the gyrophase ¢.

The unperturbed Hamiltonian is now written
Hy(p,. p,) = p.2/2m +p2 . | (3)
0'Pz> Py P_Z Py't -

In terms of the chosen variables the unperturbed motion -is

extremely simple:.

Ne o
L

o

~

3
1]

<

-©-
il
2
%

(The dot denotes a total derivative with respect to time.)
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IV. HAMILTONIAN

The total Hamiltonian is
H=H,+V , (4)

where Hj is the unperturbed part (3) and V 1is the perturba-
tion due to the wave. We use canonical variables that measure |
the position z' = z - (w/kz) t and parallel momentum

pz' =p, - mw/kz in the wave frame. This reference frame moves
at velocity (w/kz)g with respect to the center of mass of the
plasma. The canonical transformation to the wave-frame variables
is a mathematical, not a physical (Galilean) transformation,

30 that-

and.thé?e'ié no requirement, as noted by Palmadesso,
w/kZ << ¢. Nevertheless, we apply the transformation only to -
waves for which w/k, << ¢, because these slow waves seem to lead -
to the strongest.stochastic effects. For simplicity of notation-
we henceforth drop the pfimes on the wave-frame variables.

In the wave frame the perturbation due to the sinusoidal

electrostatic wave is
V=e®os1n(v|\<~6v§’) . (5)

We choose the direction of the x-axis so that
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“£ = kzz + kly, kl > 0. Then, in terms of the variables

discussed in Sec. III
V= ed, sin(kzz + kY - kpsin ¢)

We redefine the origin of 2z by performing a canonical trans-

formation to the new variables

N—
I

z + le/kZ > Py = P,

Y=Y, X" =X - Kk p,/k me

Since Y" and X" do not appear in the transformed Hamiltonian,

they are each constants of the motion. Y" 1is constant because

there is no EX to cause an £;><J§ drift of the guiding center in

the y-direction. X" s constant because the e]ectric field

components E_ and Ez’ which are related by szy = klEz,

y ,
cause, respectively, an £ x B drift in the x-direction and an

acceleration in the z-direction. The constancy of Y" and

X" has been shown ear]ier3]

using less powerful methods. We
drop the primes on the new variables and write the perturbation

in the final form
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V(z, ¢, p¢) = ed, sih(kzz - kp sin ¢) . | (6):

The Ham11ton1an given by (3), (4), and (6) does not depend on

time; therefore

H(z, ¢» P, b¢) = p22/2m + 0,0 + €9y sin(k,z - ko sin ) (7)

E = const,

the particle's energy in the wave frame is constant. In the

plasma frame (7) becomes

?zm[(vz - m/kz)2 + ylz] + ed, ;in(&;- &%-(gt) = cqnst .

This result has been noted prev1ous]y by several authors 30,32

V. PARTICLE MOTION IN-A SMALL-AMPLITUDE WAVE

We prepare for our discussion of stochastic‘acceleratfon,
which requires a large wave amplitude,by studying here the case
of a small-amplitude wave.

We use the Besse]—funct%on identity

exp(i a sin ¢) = éi: Jg(a exp(iLe) : (8)
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to write the perturbation (6) as
V = edg Iy, Jz(kip) sin(kzz - 2) . (9)

Most of the terms jn this sum over £ vary rapidly in time and
are not expected, on physical. grounds, to have a significant
effect on the particle motion. We identify the rapidly varying

terms by substituting into (9) the expressions

Z = vt + 25 ¢ =0t + ¢y, P =0p (10)‘

derived from the unperturbed Hami1tonian Hy- (In (10) the
subscript zero denotes the value of a quantity at t = 0.) We
find that (9) contains the oscillating functions
sin[(kzvZO - W)t + k,zg - 2¢0]. The particle is in exact

resonance with the 2th component of the wave if

This condition is the same as (1) but is expressed in terms of
the parallel velocity in the wave frame inétead of the plasma
frame.

If v,q is far from satisfying (11) for any 2, then all
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the terms.ih (9) Vary répid]y and fhe unperturbed motion,, (10)
together with V, = Vg s is a reasonable approximaiion to the
exact motion. |

If V.0 is close to satisfying (11) for a particular
£ = L but far from satisfying it for all other & , then the

motion is approximately that given by the truncated Hamiltonian
Ho=Hy+ g@o JL[klp(p¢)] sin(kzz - L¢)

Two constants of the motion exist in this approximation. Sinée‘ v

HL is independent of time, one constant is HL itself. The

coordinates z and ¢ appear only in the combination .

kzz - L$, so we can trivially derive the second constant by

transforming: to new variables using the generating fpnction33_
Fplzy 0 pys 1)) = (ko + mle/k,) z + (1) - Lpy)o
In terms of the old variables, the new ones are

Y = 3F2/3Pw ="k2% - Lo, o' = 3F2/31L = ¢ ' .
Pq) = (pZ - mLQ/kz)/_kz:' IL = p¢ + Lp‘p . , (]2)

The Hamiltonian is
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which is indepehdent of ¢', showing that IL is a constant of
the motion. Other constants, combinations of the two constants

30,34 using other

HL and IL, have been derived previously
methods.

We now derive a measure of the width of the resonance L,
i.e., how close v,; must be to LQ/k, for the Lth term in (9) to
be slowly varying in time. We write the approximate Hamiltonian

HL as

H (s py) = Bk F/2m +eag d siny (1)

where we have suppressed the dependence on IL and dropped
constant terms. If the dependence of JL on pw is neg]igibly
weak, then equation (13) is the Hamiltonian found in several
other familiar problems, e.g., the one-dimensional motion of a
particle in a Langmuir wave and the motion of a (nonlinear)
pendulum. A separatrix divides the wpw—plane into regiqns in
which the motion is qualitatively different. Inside the
separatrix the particle is "trapped": ¢ is confined to and
oscillates within a finite internal (< 2m) during the motion.

Qutside the separatrix the particle is "untrapped": ¢ increases



methods, as discussed by Nayfeh.

-17-

(or decreases) monotonically in time. On the separatrix the

value of'HL is e¢0 JL » and the maximum deviation of pw'from

zero is

pr =2 ]me@o JLII/Z/k

Using (12), we derive 2sz = 2Api/m =W o whichvwe refer to

as the trapping width:
W = f'IeQ L(k p) /ml]/2 | | '” (14)

Three trapping widths are indicated on Fig. 2, wh1ch was produced

by the surface of section method described in Sec IX; Near the
" stable equilibrium point (¢ = +im if e@o 0) the part1cle

" “has a bounce freguency

w, =k, |evy J (kp)/m| /2

= '-G kz WL . (]5)
To derive (14) we have e11m1nated terms from the complete

Ham11ton1an by using our physical 1ntu1t1on that rap1d1y vary1ng

terms do not significantly affect the particle motion. This

elimination can be done rigorously using any of several averaging

35'_Higher-order effects of the
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rapidly varying terms can be computed using these methods.

VI. "“DIFFUSION" AND CORRELATIONS IN A LINEAR THEORY

In Sec. X we present numerical calculations showing
particle diffusion when resonances over1ép. Here we define
the diffusibn coefficient that we study, and show that, for
short times, apparent "diffusion" can occur regardiess of
whether resonances overlap. True diffusion, for long times,
is possible only when overlapping resonances cause loss of
memory of initial conditions. The results of this section
allow us to proper]y interpret the numerical calculations to
be presented later.

Diffusibn, whether true or}only apparent, occurs when a
corre]ationAfunction decays in time. We begin this section by
studying the temporal behavior of the autocorrelation function

of the parallel acceleration:
C(t, t') = <02(t' + 7) Gz(t‘)> . ' (16)

The brackets denote an average over the phases kzz0 and ¢0,

2 d(kzzo) f2n Eﬁg

2T 27 .A ’ (17)

<A> =

0 0

with the subscript zero indicating that the value of a variable
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_ ét t =0 is used."This:averagé mimics the ;jtuétion often
found in the 1ab6ratory: the iniffaT phaseé a#e uhiform]yA
distributed over the physically distinct values.

To calculate (16) we use the unperturbed (& d'¥ 0)
orbits (10) These are the orb1ts used in linear theory
(e.g., to find the growth rate of an unstab]e wave of
1nf1n1tes1ma1 amp]1tude), and it is c]ear]y impossible to |
describe non11near effects, 11ke resonance over]ap, u51ng them
The para]]el acce]erat1on is found from (9):

o k_ed - : o o
v z 0 o
5—-— -1, Jz(a) cos(kzz - 20) , ¢ (1?)

<o
"
]

m

N
5[—-'

where a = klpo. Insérting (10) into (18) and Caicdfafihg.(16);

we find

2

(@]

—
~

g
|

= C{0) ¢ a) cos[(k,v 4 - 20)t] (19a)

c(0) cos(kzvzor)vJO(Za sin%Qt); (19b)

wheféHC(O)'ééa(kzeQO/m)z. Note that (19) is independent of f';
Formula 8.531.3 of Ref. 36 has been used to rewrite (19a)‘ih.
the form (19b).

| Many of our'numeriéa1 calculations use a=5, so we study

the shape of (19) for short times in the 1imit a >> 1. For
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initial conditions such that szzo << afl = klv10’ and for

T < min(2n/Q, (kzvzo)']), (19b) simplifies to
C(t) = C(0) JO(aQT) . (20)

From (20) we see that the correlation function falls to zero
in the short time 1= 2,4/a9¥vo.5/9 and then oscillates with a
period ™ 2n/af = 1.3/f. We have made p]ots4 comparing
the correlation function C(t) found analytically from (19),
and from the approximation (20), and C(t, t' = 0) found
from numerical integration (see Sec. VIII) of the equations of
motion. The behavior predicted by the approximate expression
(20) is indeed observed for sufficiently short times.

Using our knowledge of the correlation function, we next

study the diffusion <(sz)2> in parallel. velocity, where
t L]
av,(t) = v, (t) - v,q =£ dt' v (t') (21)

and the brackets are again defined by (]7).v From the definition

(16) we have
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2 t t't' .
<(av,)%> E,g dt'ftl dt C(t, t') (22a)
t o teT - '
=2f duf dt' c(r, tY) (22b)
0 0
t .
2'{ dt (t - 1) C(1) . 0 (22¢)

In (22b)’we'first used the symmetry property C(t, t')

= C(-15 t' + T) and then interchanged the order of the
integrations. |

: Tolﬁredict the time-depéndence of <(sz)2> for short

(a2)”', (20)

t, we use (20). For very short times, t g 10

is nearly constant and (22c) yields

<)ot . | - (23)
~For 1y <t <2nm/Q, the main contribution to (22c) comes
from 0 < 1 < Tge since C(t) s small and rapidly oscillating
for larger t . Thus

<(sz)2> ~ 2 C(0) Tt s f (24)

and the predicted "diffusion“_coefficient is
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D = <(sz)2>/2t (25a)

- _ 2 ~ m)2 25b;

C(0)ty = (k,edy/m)°/2a2 ~ 0.1 (k,edy/m)/Q . (, )
Tetreau]t37 reached the same conclusion that apparent

"diffusion" can occur for short times even though mofion is not
stochastfc. He pointed out the ro]é in this "diffusion" of'the
nonresonant terms in (18). Each term causes constant acce]éra-
tion of the partic]e,‘which would lead td,the quadratic behavior )
seen in (23), but the number of ndnresonant terms decreases as

1/t, resu]ting in the linear behavior in (24).

VII. CHIRIKOV CRITERION FOR STOCHASTICITY

In Sec. V we treated particle motion in a wave of amp]itudé
-small enough that at most one term in the perturbation (9) was
slowly varying in time. Two terms can bé slowly varying if a
particle lies within a trapping half-width of each of two adja-

cent resonances (11):

|vz - Qﬂ/kz| < 3w,
for both 2 =L and L + 1. The constants of the motion HL

and IL’ found when only the term 2 = L was retained, are not
~ expected to remain constant when two terms are slowly -varying.

Numerical integrations of the equations of motion verify (see
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"Sec. X) that, in large regions of phase space, no constant

exists except the Hamiltonian if the wave amplitude is large.
The particle is fhué free to hd?e almost anywhere on the energy
(hyper)surface. This freedoh can result in important physical
consequences; in the presence of a single, obliquely propagating
wé?e, particles can be acce]érated to high velocities (i.e., a
distribution can be heated to high temperatures).

The criterion fhaf resonances overlap has been studied

38 and found to predict the diséppearance

" of constants of the motion (i,e., the onset of stochasticity)

with accuracy sufficient fbr physical applications. .The crite-
rion is simply that the sum of the half-widths of adjacent

resonances exceed the separation & between them:
1/2(wL + wL+]) >8 . : ' R (26)

The separation (in parallel velocity) follows from the resonance

condition (11):
s = a/k, . (27)

The Chirikov criterion for stochastic particle motion in an

oblique, electrostatic wave is thus
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I]/Z

2leag/ml /2 T13 (ko) 12 + [3 47 (o) 1721 > a/k,. (28)

L+1
If the Bessel functions have comparable amplitudes, then (28)

can be replaced by the simpler formula
16]ea, 3, (k p)/m| > (2/k ) . (29)

We interpret (29) as follows. Particles with parallel velocity
(in the wave frame) such that |ksz/Q-L| <% will tend to move

stochastically if (29) is satisfied but nonstochastically if it
is not. We compare (28) to the fihdings of our numerical

experiments in Sec. X.

VIII. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

To test various aspects of the theory of stochasticity as
applied to particle motion in an oblique, electrostatic wave,
we perform nymerica] integrations of the equations of motion.

The equations are derived from Hamiltonian (7):

3H/3p, . &
= -3H/5z, 5¢

Ne
[}

BH/8p¢ 5
-3H/3¢, .

(30)

e
N
1

We choose units such that m = kZ = Q=1 and write (30) explic-

itly as
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z= P, o (31a)
b =1 - ek[p'] sin ¢ cos ¥ | “: (31b)
ﬁz = -€ cOS X ' 0 (31¢)
6¢ = ek, p cos ¢ cos x, | C(31d)
where
_ 2 ' ' o 3
e =k, e@o/mn2 . | (2
X =2z-Kkpsing¢,
and o = (2p¢)]/2. We avoid takiﬁg.a square root By»keplacfng
(31d) by | | |
p=c k, cos ¢ cos X (31e)

The four equations of motion (31a, b, é,“e) are integrated
on a CDC 7600 computer. The integration scheme (Gear-Hindmarsh)
utilizes standard predictor-corrector methods. The order of the
method and the size of the integration step are adjusted
automaticé]]y to optimize the efficiency of the integration.

The maximum order available is twelve. -In our integrations, a
typical order is eight and a typical integration step is

At v 0.05% T].
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Several checks of the integration accuracy were made.
Since the Hamiltonian is independent of the time, its numerical
value should be nearly éonserved during the integration. The
percentage change in the value of the Hami]tbnian was 0;0005%

1. A different fntegration

in a typical integration time of 50 @
scheme was used in the early stages of this work. During thé
changeover from the old to the new scheme we checked that the
particle trajectories found by the two schemes were very close.
to each other. Also, the equations of motion could be inte-
grated forward and then backward in time to see if the initial‘
conditions were recovered. For stochastic trajectories, the
most difficult ones to ihfegrate, we could integrate forward for

1 and still recover the initial conditions fairly

‘a'time 10Q°
well.
Further comments on integration of the equations of motion

can be found in Ref. 4.

IX. SURFACE OF SECTION METHOD

A particle trajectory resu]ting'from-integration of (31)
lies on a thrée-dimensiona] energy surface which is contained
in the four-dimensional phase space. Attempting to représent
a trajectory by a curve in a three-dimensional space would be

needlessly difficult and confusing. To answer the important
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physica]_question of whether motion* is stochastic, we need .

: trajectory infprmatidn only at certain, well-separated instants..
of time. In this section wé describe the technique, known as
the surface of section methdd, for selecting these instants of
time and for constructing a plot-using the retained. trajectory
information; we also discuss the utility of the method.

39 surface of section method considers the inter-

Poincare's
section of a trajectory with-a cross-section of the phase space.
The chosen cross-section must be crossed repeatedly by the
trajectory; a convenient choice-in our work is defined by the -
gyrophase-¢ =-7. -The intersection of the trajectory with ¢: =
yields a set of points in a thrée-dimehsiona] space. with axes
Z,p, and p¢ . We. then ignore the p¢-coordinates of.the points
and plot the points in the zpz—plane (i.e., we project them
onto the plane).” - | : : o o

As we integrate the equations of motion forward in time,
suécessive points on the.surface of section-plot are generated
roughly once each gyroperiod. The points are iterates of an
area-preserving mapping of the zpz¢p1ane onto itself. Calcu-
'lating the iterates using the Hamiltonian equations of motion
is computationally time-consﬁming, and past workers38’40_43

have often replaced a Hamiltonian system by a discrete mapping

thought to mimic more or less closely the actual physical



-28-~

systems of interest. These mappings display transitions from
nonstochastic to stochastic behavior as a parameter is varied,
just as Hamiltonian systems do. Generally we prefer to use the

- Hamiltonian equations of motion and thereby eliminate uncer-
tainty about the relation between the given physical system and
a chosen mapping.

By 1ooking at a surface of seﬁtion plot we can tell
immediately whether a pafticu]ar trajectory shows stochastic
motion (nonexistence of a constant of the mdtfon). By examining
plots for several values of the stochasticity parametér (our €)
and for various initial conditions we can quickly gain a compre-
hensive”Uhdekstanding of the dynamical system being studied.

The utility of a surface of settion plot arises from its
method of construction. If a constant of the motion I exists
for a particular ofbit, that orbit will be confined to a two-
dimensional surface, the intersection of the energy hypersurface
with the Hypersurface I=const. The intersection of this two-
dimensional surface with the surface of section ¢ =mis a
curve in zpzp¢-space,:and projection onto the zpz-plane yie1ds
a curve on which the set of trajectory pdints must lie. If no
constant I exists, an orbit will visit a three-dimensional
regfon of fhe energy hypefsurface. That region'intérsects

¢ = m in a two-dimensional surface, which, after projection
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appears as an area of the ’sz-p1ane. Thus, a constant of

the motion exists if trajectory points lie on a curve, while

a constant does not exist if the points fill an area. Note

that the surface of section method does not tell us the

anaTytic form of the constant, if one exists.

X. DISCUSSION OF NUMERICAL RESULTS | ,

To validate the theoreticaj work, we integrate (31)
numerically, presenting many of the results as surface of
section p]ops. | |

We fir#t}i]]qstr&te, in fig. 2, three of the resonances
(11) for a wave amplitude &, small enough that the resonances
do not oVér]ap. (Therpositivity of the gyroradius 1imits the
motion of a particle with a given energy to the region between
the dashed Tines. | |

Next, in Fig. 3, wevplot trajectories when the wave
amplitude is Tlarge enough for resonances to overlap. Points
representing nonstochastic trajectories havé been connected by |
smooth curves. This piot illustrates the "divided phase space"
which occurs at intermediéte values of the wave amplitude:
regions in which a constént of the motibn (in addition to the
energy) exist§ are interspersed with regions in which it does not

exist. The shapes of some of the smooth curves in Fig. 3 were
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44 Other curves, representing

calculated by Taylor and. Laing.
resonances oth;r than (11), appear in Fig. 3 but cannot be
calculated by fheir simple theory. Near each of the three
"primary" resonances (11) we see a set of five smooth curves;
each set represents a single trajectory and is referred to as

a chain of islands. Each chain shows the existence of a
"secondary" or bounce resonance, which we have studied in

detail in Ref. 4.

To demonstrate the possibility of heating a distribution
of partic1es by applying a single, obliquely propagating wave,
we use the plots in Fig. 4. The plots are constructed by the
surfacé of section method, but in contrast to Figs. 2 and 3, the
trajectory points are projected onto the vlvz—plane instead of
the zpz-p]ane. Fig. 4 shows the—motion in velocity space
(i.e., the acceleration) of a group of particles that is
specified precisely in the figure caption; the group is chosen
to represent particles with certain values of the perpendicular
and parallel velocities at t = 0. We consider a wave of
frequency w = 3.60 and choose a value v, = -w/kZ for the
parallel velocity (as measured in the wave frame). The

chosen particles thus have zero parallel velocity (as measured

in the plasma frame) at t = 0.
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Fig. 4 contrasts the particle acceleration in a wave of
relatively sma]]_(;.= 0.25) or71arge (€ ;;0.75)“ampljtude.l..
In the small amplitude case no particles in the .chosen group
move stochastically, and the .particle velocities remain near
their ipitial‘va1ues. ,Iﬂ:the large amplitude case all of the
partjc]es,move_;tochastica]]y,,appearing to diffuse throughout
much of the semicircular annuTus bounded by the dashed curves.
The dashed curves give the limits on the particle motion which
follow from conservation of energy:(as measured in the wave
frame): ‘the wave .can change the kinetic energy of a particle
by 2ed, at most, giving cur?es at speeds (v2 + 4 eéo/m)]‘z,“
where v is the initial speed. The time-averaged value of a
particle's kinetic energy, as measured in the plasma frame,
increases. substantially in the 1arge;amplitu§e case. The
vertical axis at the far left of Fig. 4 helps us:seelthe_extent
of the increase in parallel kinetic energy. .

| Our*numerica1 results indicate a transition to stochastic
motion.at e~ 0.50 when the propagation angle and initial
particle velocity have the values used in Fig.'4. To compare
hthis.numerica] result to the theoretiqa] formu]a.(28) we insert

the values J_5 = -0.17 and J_, = 0.051 for Bessel functions

4
of argument klp = 2.24 and find the‘condition for stochastic

motion to be
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e > 0.61

The agreement is as good as can be expedted considering the

crudeness of both the numerical measurement and the theory.

In Fig. 4 the numbers 0, 1, 2, 5, 6, 7 show the
positions of a particle (with a certain zo) after the
indicated number of gyroperiods. The process of diffusion over
the semicircular annulus seems quite rapid, and we now inves--
.tigate this process more carefully. We numerically calculate
the trajectories of 50 to 200 particles which have unique
initial values v

1
¢ arranged in a regular array (see Fig. 5). In Fig. 6 we

and v, but initial values kzz and

plot, for a subset of the trajectories, the parallel velocity
v, Vs. time. We first note the diffusion of v, away from
its initial value; in the next paragraph we study this diffusion
quantifative]y. interesting features of some trajectories in
Fig. 6 are periods of rapid change in v, (large parallel
acceleration) separated by periods of relatively constant 'Vz’
These features can be understood by noting that, under some
circumstances, the Hamiltonian system (7) resembles a discrete
mapping (see Ref. 4 for details).

To study the diffusion process quantitatively, we use the

numerically calculated trajectories to compute <(sz)2> s a.

quantity introduced in Sec. VI. The time variation of this
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quantity typically has the form-shown in Fig. 7. Quadratic
and then linear dependences on time, as predicted by (23) and
(24), are observed-during the first gyroperiod or so.. There-
after;za:devfation»from the linear behavior, indicating either
a larger.or -a smaller diffusion rate, generally occurs. An
interpretation of this ‘deviation which is consistent with our '
nurerical results is the following. - The rate of diffusion of
a group of particles is primarily determined by their present'
velocities rather than by the past history of the group (i.e., - |
a Markovian assumption has some validity). As a group of
particlés diffuses, some particles reach velocities for which the
diffusion rate is,séy; larger th;n it was at the initial
velocity. The diffusion rate of the whole group then appears
to increase. This interpretation is indicated on Fig. 7. For
long times the diffusion process ceases because the group has
spread out to fill the entire stochastic region of velocity
space (see Fig. 4).

Only limited studies of the correlation function (16) were \

carried out because of difficulties described: in Ref: 4.

XI. OBLIQUE, ELECTROSTATIC WAVES'FOR ACCELERATION QF'IONS
In Sec. X we’uéed, as an.exahp1e, ah eiectrosfatic_wéVg
with freqdency w = 3.6Q, _propégatiop ang]e_ 6 = 45°, and

2 2

various amp]ifudes measured by € = kZ e@O/mQ . We identify
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here a particular wave with these properties and show that the
amplitudes used are not unreasonably large.

We concentrate on waves appropriate for heating ions, but
we note that often there exists, for each ion wave, an electron
wave with analogous parameters which is appropriate for heating
e]ectroné. In Appendix C we collect the experimental require-
ments necessary for observing heating of either ions or electrons.

A plasma in a uniform magnetic field can support an
obliquely propagating,-e]ectrostatic wave which'we call an
jon-acoustic wave. This wave is indicated in ng. 8. The name
"intermediate-frequency acoustic wave" is used in the old, but

still useful, review by Siringer.45

As long as 6 is not too
close to 90°, -the frequéncy w 1is given approximately by the

unmagnetized formula

kaCS .
2 _, 2 2 .
where k= = kZ + kl » and the sound speed is given by
C52 = (Te + 3Ti)/mi . Given the wave parameters w = 3.6%

and 6 = 45° and the temperature ratio Te/Ti’ we calculate
the damping rate of the wave using the formula (4.68) in
Ichimaru46 appropriate for Maxwellian distributions of electrons

and ions. Just as in an unmagnetized plasma, we find a
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weakening of the damping as Te/T increases. The damping
reaches a fairly small value when .Te/Ti is 1ncreased to 16
Y = -0.04w. Such a large temperature ratio would not be
required in an unmagnetized plasma to reach this damping rate.
with‘the temperature ratio 16 chosen we can ca]cu]ate'the ton

)1/2

thermal speed, Vyi = (Ti/mi . to be

Vps ~ 0.580./k, . | | | - (33)
This speed is 1nd1cated on F1g 4 by the hatched sem1c1rc1e
The group of 1ons stud1ed in F1g 4 would thus have an 1n1t1a1 o
perpend1cu1ar ve10c1ty 3. 8 t1mes the therma] speed.

We now express the wave amp11tude g1ven by € = 615 th\.
more fam111ar terms From the f1u1d equat1ons descr1b1ng ah
ion- acoust1c wave, one eas11y der1ves a re]at1on between the

potential amp11tude @0 and dens1ty amplitude 6n/n:

ed
én _ 0 . (34)

Using the standard formu]as for the dielectric function D

and the Debye 1ength AD’ we a]so find the expression

e B9

W= §l' 55 <E7> = > = % n (ed)



-36-
for the wave enekgy density W. Use of (33) and Te/Ti = 16
allows us to write € = 0.5 as

~3 1.~ b :

Substitution of (36) into (34) and (35) yields
sn/n ~ 1/13, W~ nT1./15\. | (37)

The moderate numerical values in (37) appear to justify our
use of the linear dispersion relation for the wave. Also,
(37) gives the important result that stochasticity can occur
at smaller amplitudes than nonlinear effects requiring

én/n ~ 1. For other ane-parameters; however, stochasticity
might not occur for any physically reasonable wave amplitude.

The Tow-frequency ion-acoustic wave

which is shown in Fig. 8, might also be used to heat ions. A
large temperature ratio is again required to reduce the linear
damping rate. This wave seems to lead to less dramatic heating

of an ion distribution than the ion-acoustic wave with w > Qi‘
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The difference between parallel. velocities in the plasma frame
and in the wave frame decreases as w- decreases (see Fig.-4),
For small w the constant energy curves in the two frames are
close together, implying less possibility of dramatic changes
in the distribution of :parallel kinetic energy (as measured
in the plasma frame).

We have considered other waves of a plasma in a uniform
magnetic field but have found no wave with more favorable

parameters than those given here. Lacking a definite optimi-

zation criterion, we have not performed a systematic variation - -

of w and 6. -Values of ©6 close to 90° are of particular
interest since many waves propagate nearly perpendicular to .
the magnetic field; the lower hybrid wave, important.in rf
heating studies for tokamaks, is one example. For parameters .
typical of lower-hybrid-heating experiments the condition (29)
for overlap of cyclotron resonances cannot be satisfied. Ion
motion may be stochastic, nevertheless, because.of the overlap

of other resonances, as shown in Refs. 8 and 9.

XII. HEATING OF A DISTRIBUTION FUNCTION
In Sec. X we showed that a group of barticTes with giVen '
parallel and perbendicd]ar velocities at t = 0 may bé'heéted‘

by a sing]e; oblique wave. Here we consider a Maxwellian
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distribution of velocities at t = 0 and find the distortion
of that distributfon caused by the wave.

We use the following qualitative picture suggested by Fig.
4. An ion whose velocity satisfies (29) moves stochastically,
ranging over that portion of the constant-energy semicircle
defined by (29). An ion whose ve]oéity does not satisfy (29)
remains nearly fixed in velocity space. In the presence of
a single, oblique wave of large amplitude the steady-state ion
distribution must thefefore be constant along the stochastic
portions of the constant-energy semicfrc]és and nearly
Maxwellian in the nonstochastic'regions of velocity space.

This picture is implemented by a computer program which
modifies an initially Maxwellian distribution to obtain the
steady-State distribution. The modification is_accomp]ished
by successively considering semicircular annuli in vlvz-space,
each of which represents particles with a small range qf |
speeds. For each annulus the Maxwellian is integrated over
the stochastic portion of the annulus to find the total number
of stochastic ions in the annulus. This number is then
redistributed over the stochastic portion of the annulus with
a weighting proportional to the perpendicular velocity V) -
This weighting results in a distribution that is uniform over

the three-dimensional (vayvz) kinetic energy surface.
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The steady-state distribution in V| v, -space is integrated
over 'vzﬂ to obtain the perpendicular distribution and over
Vi
these distributions on a logarithmic scale. The horizontal

to obtain the parallel distribution. In Fig. 9 we plot

(velocity) axes use a quadratic scale so that a Maxwellian
appears as a straight line. The same wave frequency and
_prdpagatidﬁ angle and the same ion thermal speed are used as
for the ion-acoustic wave of Sec. XI.

The wave is seen to distort only the tails of the
perpendicular ‘and parallel distributions, not the bodies.
The perpendicular distribution is distorted for v 2'3vTi
in the case".é = 0.75. The distortion 6f the parallel distri-
bution is highly asymmetric because ions tend to be accelerated -
to the parallel velocity of the wave frame, which is positive
and much larger than the thermal speed. Although the distor-
tions shown in Fig. 9 involve only a tiny fraction of the total
number of ions, the changes in the populations of tail ions
are quite dramatic.

The tiny fraction of ions which is stochastically acceler-
ated by the wave can gain a substantial amount of energy as
a result of the large velocity change$ produced during
stochastic acceleration. - As a numerical example we consider the
smallér amplitude case e = 0.25 for which 0.03% of the ions

move stochastically. These ions increase their kinetic energy
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by an amount roughly equal to half of the energy in the wave.
We thus expectbthe propagation characteristics of the wave to

be altered significantly when stochastic acceleration occurs.

XITI. CONCLUSIONS

" We have studied the motion of a charged pértic]é in
a single (monochromatic) wave that is propagating obliquely
to a uniform magnetic field. As the wave amp]ifude is
increased, a constantvof_the motion“diSappears,’a]]owing
the motion to become stocha;tic. The Chirikov criterion of
overlapping resonanceé gives a prediction for the onset of
stochasticity in good agreement with the results of numerical
integration of the equations of motion.

The resemblance of stochastic motion to a diffusion process
has been observed numerically. The "diffusion" which occurs
even in linear theory haé been distinguished from the true
diffusion caused by overlap of resonances;

We have considered the possibility of using the overlap
of cyclotron resonances as a mechanism for heating a particle
distribution. Choice of an electrostatic wave, the ion-acoustic
wave, allows parameters satisfying the requirements of our
analysis. The analysis predicts rapid transfer of wave energy
to ions in the tails of the perpendicular and parallel distribu-

tions. Heating of ions by this mechanism does not appear impor-



-41-

tant in‘fusioh‘plashas>but might be used in a small-scale
laboratory experiment to observe stochastic acceleration: by

a single wave.
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APPENDIX A: STOCHASTIC ACCELERATION BY AN ELECTROMAGNETIC WAVE

Stochastic acceleration by'an electrostatic wave is treated

in detail in this paper. Here we discuss the possibi]ity'that

an electromagnetic wave could cause stochastic acceleration.

A charged particle in a uniform magnetic field plus a

small-amplitude electromagnetic wave can be trapped near the

0 in complete analogy with the electrostatic

30

resonances-(]),3
case treated in Sec. V. Palmadesso gives the constant of
the motion analogous to (13); from his formulas we can deduce
the trapping width in an electromagnetic wave of arbitrary
polarization and propagation direction.

| As an example of a particular electromagnetic wave we
consider a high-frequency Alfvén wave propagating in the yz-
p]ane.v By this name we refer to a wave on the same branch as -
the magnetosonic (compressional Alfvén) and whistler waves

but with a frequency a few times the ion gyrofrequency. The'
dispersion diagram in Fig. 8 shows the 1ocationrof the high-
frequency Alfvén wave. when the propagation angle 6 = 0°

(i.e., k

y = 0), this wave is right-hand-circularly-polarized,

and the trapping width is

1/2 : |
W, = 4 |ev, B J, (K p)/mick, | e, (A1)
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where B, is the amplitude of the x-component of the wave's -
magnetic field. When:the wave propagation is oblique (kz, =
kl # 0), (A1) is still a good approximation for certain
combinations of wave frequency w and angle 6. When (A1)
is va]id,'the‘condition of overlapping cyclotron resonances
appears difficult to satisfy. Using the same values of

k. p and k"v 79 '(Whith'de%Ermines %) as.in Fig. 4, we find

1

the Bessel function J, , “to be smaller than J, by a factor

Q- 1
of about three. - A h1gh-frequenéy ATfvén wave with:amplitude
given by e
|k_v, eB /m,c:2| = 1.5 (A2)
z'l b S | '
could thus be expected to dahéé‘1bhiﬁéating'3imi1dr'td'that
caused by the “ion-acoustic wave  of Sec. “XI which ‘has

s -2 a2
.kz e@o/miﬂi

= 0.5 .

To check whether (A2) is a reasonable wave amplitude we calcu-- -

late the fractiohal change in B, due ‘to the wave:

| 68,/8B), 1=y Bx/szol = 1.5 K /k, 2, . - (A3)
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For the linear cyclotron-harmonic damping of the wave to be
weak we use the crude condition that the ion thermal speed
satisfy

Vii S 0.5 Qi/kz : | (A4)
this condition means the distribution function "fits" between
the resonant parallel velocities Qni/kz (compare (33)).

Combining (A3) and (A4) and taking kZ = k

| > We find that ions

with v, = 4vr; are stochastically accelerated if
- 18B,/Byl 2 0.75 . (A5)

A high-frequency Alfvén wave with amplitude (A5) would not obey
the requirements of our analysis that the wave be sinusoidal

and satisfy the Tinear relations for the frequency and
polarization. On the basis of this example we conclude that

an electromagnetic wave of reasonable amplitude is less likely

to cause stochastic acceleration by overlap of cyclotron
resonances than is an electrostatic wave. It is clear, however,"
that many choices of parameters were made in arriving at (A5),
and the possibility of strong stochastic effects due to an

electromagnetic wave cannot be ruled out.
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APPENDIX B: -STOCHASTIC ACCELERATION BY A NONSINUSOIDAL WAVE

The problem treated in detail in this paper fﬁvdlves‘
stochastic motion caused by a sinusoidal wave. We note here
that such motion can occur as well for a ggg§{nusoida1 wave.
Stochast1c1ty might appear at a 1ower value of the wave
amp11tude in the nons1nuso1da] case.

We cons1der a p]ane e1ectrostat1c wave for which the
potent1a1 is an arb1trary per1od1c funct1on of the phase |
K X - wt As in Sec. IV we e11m1nate the t1me dependence by

us1ng wave frame var1ab1es and wr1te the perturbat1on as

which replaces (5). The operations performed in Sec. IV allow

us to write the equation
V(z,¢,p¢) =el 9o sin(nkzz - nk p sing + 6n) R
which replaces (6). Use of (8) now yields

V=oe¢e Zy 8 Iy Jg(nklp)sin(nkzz - 2+ Gn) . (B1)
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Analysis of (B1) by the mefhod of Sec. V shows the existence

of resonant velocities
VZ = (l/n)ﬂ/kz s

which are distributed along the real number line as the rational
numbers are distributed. The complications implied by this
distribution have deterred us from sthdy of nonsinusoidal

waves. One might expect, however, that a nonsinusoidal wave
would lead more easily to stochastic motion than a sinusoidal
one because of the presence of the large number of additional

resonances of finite width (proportional to on]/z),
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APPENDIX C: - EXPERIMENTAL REQUIREMENTS FOR OBSERVING STOCHASTIC |
ACCELERATION
Stochastic a¢celeration of ions by a single jon-acoustic
wave was seen in Secs. XI and XII' to lead to the heating of a
Maxwellian distribution. We believe a fairly simple
laboratory experiment could observe these effects. When
stochasticity occurs one should see a change in propagation
characteristics of a launched, obliquely propagating wave,
and one might observe a high-energy tail in the parallel
distribution. Some care must be taken experimentally in
launching an ion-acoustic wave in order to avoid effects
mentioned in Refs. 47 and 48. Assuming that the desired
wave can be launched, we give here the experimental requiré-
ments suggested by our theoretical work.
To observe'iOn*tai1-heating by ‘an ion-acoustic wave,
the following requirements must be met.
1. The wave frequency w(~ kec.) should be a few times
the ion gyrofrequency Qi’ but not too close to a
multiple of Qi to avoid cyclotron-harmonic dampihg;“
2. The propagation angle © with respect to the magnet-
ostatic field Qv should be in the vicinity of 45°.
3. The temperature ratio Te/Ti should be high enough

that the wave damping is small, but there must be
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ions with gyrbradii comparable to the perpendicular
wavelength (klpi > 1).

The ion collision frequency vy must be less than
about 0.191 so the collisionless theory is applicable.
The wave amplitude should be uniform in theb X E’
direction over a distance Lx satisfying kzLx > “/Qif
Otherwise, ions ‘E x‘& drift out of the wave before

significant acceleration occurs.

The density amplitude must be as large as &n/n ~ 0.1.

To observe electron tail-heating by a Langmuir wave, the

analogous requirements are the following,

1.

w(zwpe) a few times 2y but not too close to a multiple
of Qe'

6 ~ 45°,

The Debye length .AD should be small enough

(kxD < 0.25) that the wave damping is weak, but elec-
trons with gyroradii such that kp, > 1 must exist.
Vo < 0.1-Qe.

kzLx > m/Qe.

6ne/ne ~ 0.1.
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 FIGURE CAPTIONS

FIG. 1. Specification of the particle position (x, y) in

terms of the canonical variabTes used in the text.

FIG. 2. Surface of section plot illustrating three non-
overlapping resonances.  The initial conditions, indicated

by X's, were chosen to yield trajectories very close to the
three separatrices. The points representing the trajectories
have been connected with hand-drawn curves. The wave
amplitude is given by € = 0.025, the other parameters are

ky pp = kl(ZE/m)]/z/Q = 1.48, and 0 = tan'](kl/kz) = 45°.

FIG. 3. Surfacg of section plot showing a divided phase space.

The parameters are the same as in Fig. 2, except ¢ = 0.1.

FIG. 4. Surface of section plots contrasting the motion in
velocity space in the presence of a small- or of a large-
amplitude wave. The wave has frequency w = 3.6Q and
propagation angle 6 = 45°., Trajectories of a group of ten
particles are represented. At t = 0 this group has values

of kzz = Nm/5, N =0,1,2, ..., 9, _but‘has unique values

of ¢ (= m), Vs and vV,. The chosen value of the perpendicular
velocity 1is given by kzvl/Q = klp = 2.24 and of the parallel

velocity by kaZ/Q = -3.6. The hatched semicircle shows the
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extent of the thermal ions considered in the wave-heating

example of Secs. XI and XII.

'FIG. 5. Array of 100 initial values of kZz and ¢ used

to approximate numerically the average defined by (17).

FIG. 6. Particle trajectories, represented by plotting the
parallel velocity vs. time. The wave amplitude is given by

e = 0.75 and the propagation angle by 6 = 45°. The initial
speed (v = SQ/kZ) and parallel velocity (vz = 0) are the same
for all trajectories, but the initial phases kzz and ¢

differ.

FIG. 7. The mean square deviation in parallel velocity vs.

time. Parameters are the same as in Fig. 6.

FIG. 8. Dispersion diagram (w vs. k) for a plasma in a
uniform maghetic field, showing the high-frequency Alfvén
wave (Appendix A), the ion-écoustic wave (Secs. XI and XII),
and the low-frequency ion-acoustic wave (Sec. XI). Adapted

from a figure in Ref. 45.

FIG. 9. The perpendicular (f,) and parallel (f")
distribution functions in the presence of}a finite-amplitude,.
obliquely propagating,-e]ectrostatic wave. The distortions

to Maxwellian distributions (e = 0) are shown for two wave
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FIG. 5. Array of 100 initial values of kzz and ¢ used

to approximate numerically the average defined by (17).

FIG. 6. Particle trajectories, represented by plotting the
parallel velocity vs. time. The wave amplitude is given by
e = 0.75 and the propagation angle by 6 = 45°, The initial
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for all trajectories, but the initial phases kzz and ¢

differ.

FIG. 7. The mean square deviation in parallel velocity vs.

time. Parameters are the same as in Fig. 6.

FIG. 8. Dispersion diagram (w vs. k) for a plasma in a
uniform magnetic field, showing the high-frequency Alfvén
wave (Appendix A), the ion-acoustic wave (Secs. XI and XII),
and the low-frequency ion-acoustic wave (Sec. XI). Adapted

from a figure in Ref. 45.

FIG. 9. The perpendicular (fl) and parallel (f")
distribution functions in the presence of a finite-amplitude,
obliquely propagating, electrostatic wave. The distortions

to Maxwellian distributions (¢ = 0) are shown for two wave
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amplitudes, ¢ = 0.25 and 0.75.
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Trajectories begin
to reach limits
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Diffusion rate increases —
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