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Many variables in biological research—from body size to life-history timing
to environmental characteristics—are measured continuously (e.g. body
mass in kilograms) but analysed as categories (e.g. large versus small),
which can lower statistical power and change interpretation. We conducted
a mini-review of 72 recent publications in six popular ecology, evolution
and behaviour journals to quantify the prevalence of categorization. We
then summarized commonly categorized metrics and simulated a dataset
to demonstrate the drawbacks of categorization using common variables
and realistic examples. We show that categorizing continuous variables
is common (31% of publications reviewed). We also underscore that
predictor variables can and should be collected and analysed continuously.
Finally, we provide recommendations on how to keep variables continuous
throughout the entire scientific process. Together, these pieces comprise
an actionable guide to increasing statistical power and facilitating
large synthesis studies by simply leaving continuous variables alone.
Overcoming the pitfalls of categorizing continuous variables will allow
ecologists, ethologists and evolutionary biologists to continue making
trustworthy conclusions about natural processes, along with predictions
about their responses to climate change and other environmental contexts.

1. Introduction

Variation in morphology, physiology and behaviour is ubiquitous among
organisms [1]. Moreover, these traits interact with environmental and ecological
factors to drive individual differences in behaviour, survival and reproductive
success [2]. Many studies are designed to characterize these intraspecific
patterns and their mechanistic drivers; however, the interpretation of data
depends critically on how variables are measured and analysed [3,4]. Imagine
you are a graduate student measuring lizards to determine whether larger
lizards are more likely to inhabit shadier patches. You spend countless hours
catching and placing lizards against a measuring tape... 43 mm, 46 mm, 42
mm, 41 mm, 48 mm... 500 lizards later, you have a normal distribution with an
impressive sample size. You decide to categorize lizards into ‘small’, ‘medium’
and ‘large’ because boxplots are visually appealing and commonly used in the
literature. The 42 mm lizard is placed in the ‘medium’ category and the 41 mm
lizard is placed in the ‘small’ category. Are the two lizards really that different in
size? What if your measurement error is +3 mm because measuring active lizards
in the hot desert sun is challenging? Would you feel comfortable recommending
a land manager focus on small lizards (<42 mm) because only that size group
did not use shady habitat in the same way as the other groups? What if we told
you that by keeping your lizard size measurements as continuous predictors, all
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those long fieldwork days would pay off with sufficient statistical power and much stronger interpretation?

The lizard example highlights a prevalent issue in the fields of ecology, evolution and behaviour—categorizing variables
that are continuous during data collection or analysis. Pitfalls of categorizing continuous variables (regardless of whether the
continuous variables are linear or nonlinear) have been well-documented in the statistics and biomedical literature, including
loss of information about differences between individuals, the assumption that all individuals within a given group respond the
same way to the variable of interest, reduced power of statistical tests resulting in the need for a larger sample size to detect
differences, lack of ability to make comparisons or conduct meta-analyses in studies that categorize variables in different ways,
risk of overlooking nonlinear effects, increased probability of type I and II errors and poor predictive ability [5-9]. Perhaps most
importantly, conclusions made from inappropriately categorized variables may not only be misleading, but may also be wrong
[7,10,11]. Despite well-recognized pitfalls of categorization, the practice persists in published research. Many researchers still
categorize continuous predictor variables under the assumption that this is a better practice for small sample sizes, skewed data,
potentially distinct groups and measurement intensive variables, or because they believe the simplicity of interpretation outweighs
the costs of categorization [5]. Scientists encourage mentees and students to develop a priori predictions for their research that often
involve categorizing continuous predictor variables for simplicity. However, analysing variables as continuous does not preclude
testing of these categorical predictions. Further, while management decisions, much like biomedical ones, are often dichotomies
(to treat/not treat a symptom, to list/not list a species as endangered), this does not mean predictor variables should be analysed as
dichotomies.

Our goal is to create a guide on improving data collection, analysis and interpretation that we wish we had when we first tackled
statistical analyses in independent research projects. To do this, we: (i) review the prevalence and current practices of categorizing
continuous variables; (ii) discuss when or if categorization is appropriate using specific examples of common predictor variables;
(iii) provide three examples from simulated field data to show how statistical power, model fits and interpretation are impacted
by categorization of a continuous variable using various categorization breakpoints (e.g. median, arbitrary intervals), nonlinear
data and different sample sizes; and (iv) provide a step-by-step guide on how to keep variables continuous throughout the entire
scientific process. The manuscript and its associated code could be used as a practical laboratory for students and teachers to
develop valuable programming and research skills including data simulation, plotting, model comparisons and interpretation.

2. Current practices in categorizing continuous variables

(a) Mini-review methods

To examine the frequency with which researchers categorize continuous predictor variables, we evaluated 72 publications in
six popular journals: Proceedings of the National Academy of Sciences (Ecology and Evolution section), Ecology, Evolution, Journal of
Experimental Biology, Behavioral Ecology and Animal Behaviour. We chose these journals because they were a mix of high-impact
general and subject-specific journals, and included both observational and experimental studies. Starting with the newest issue
available, we examined the 12 most recent empirical articles in which continuous predictor variables were included in the final
model (electronic supplementary material, table S1). Twelve articles were chosen to obtain a sufficient sample size per journal and
across all journals. Publications (1 =98) were excluded from the review (i.e. not included in the tally) if they did not have a predictor
variable in the final model that could be treated as continuous, or if they were theoretical, meta-analyses, or phylogenetic analyses.
The final set of publications varied in taxa (e.g. birds, arthropods, reptiles, mammals, plants) and response variables (e.g. molting,
occupancy, leaf damage, niche breadth, fecundity), and included both experiments and observational studies.

(b) Frequency of categorization

Of the 72 articles, 31% included categorical predictor variables in their final model that could have been left as continuous data.
Although we acknowledge that in behaviour, researchers often use ordinal scales that group different behaviours, and these may be
kept as categories, we did not observe these types of scales as predictor variables in our review. Instead, the presence of categories
was most often related to habitat and distance. The frequency of categorization varied substantially amongjournals and was notably
higher in the behaviour journals as compared to the other journals (figure 1). Nevertheless, sample sizes in our mini-review were
small; a larger review would be needed to adequately determine which discipline has more prevalent categorization. Here, our
take-away is that categorizing predictor variables is a common practice across disciplines.

Our estimate of categorization was an underestimate of the true categorization present in journal publications because we took a
narrow sense of categorization. We only counted an article as a “yes’ for categorizing a continuous predictor variable if that predictor
variable was included in the final model. Nevertheless, in many of the articles, categorization came much earlier on in the data
processing stage or during data collection (and thus the publication was assigned as ‘no’ for categorization in our review or was not
included if continuous predictor variables were absent in the final model). For example, one study used a 10 cm cut-off to categorize
whether a conspecific was ‘near’ versus ‘far’ during data collection and near/far were used as a categorical predictor variable [12].
This article was not assigned a “yes’ for categorization because categorization was done during the data collection phase.
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Figure 1. The number of publications in a selection of science journals that include categorized continuous variables, ordered by prevalence. J. Exp. Biol, Journal of
Experimental Biology; PNAS, Proceedings of the National Acadamy of Sciences; Behavioral Ecol., Behavioral Ecology.

Across the 22 publications that categorized continuous variables, the justification for choosing a breakpoint (where scientists decide
to split the data into categories) varied widely from citing previous studies as precedent, biological rationale, statistical rationale,
arbitrary rationale or no rationale at all. Statistical reasons were the most common and were based on a variety of breakpoints,
including: intervals (flexible number of categories through even increments across range of values), median (two categories split by
50% pointin data), uneven (three categories,<25%, 25-75%, >75%), quartiles (four categories, 0—25%, 26-50%, 51-75%, 76—-100%) and
bimodal (two categories, ‘natural’ break in portion of distribution with no values). Biological reasons varied, but tended to be based
on elevation, habitat, diet and season [13-18]. Justification for choosing a particular breakpoint was rarely provided, even in the case
of statistical rationale (e.g. why did the researcher choose quartiles instead of another method?).

Although we did not include experiments with categorical treatments as a ‘yes’ in terms of being a study that categorized
continuous predictor variables, experimental treatments were often based on categorizing continuous variables (e.g. high or low
temperature treatments) and many researchers made decisions to categorize continuous predictor variables in the early stages of
data processing. For example, re-using the study mentioned above, the authors set a breakpoint to define whether a conspecific
animal was near (<10 cm) or far (>10 cm) from the focal individual and then used this value to create a forced categorical predictor
variable in the study, rather than using distance itself [12]. If 10 cm is based on the sensory cues of the species (e.g. perhaps an
individual cannot detect individuals farther than 10 cm away), then a breakpoint may be justified, but in this case, a justification
was not given. One experimental study showed the original trait distribution of hindlimb length in lizards and then justified
their groupings (short versus long hindlimb length) by choosing the extremes of the trait distribution [19]. However, for most
experiments, justifications of treatments were not given. Justification of breakpoints is critically important to facilitate transparency
and ensure reproducibility, which are critical to the future of our field [20,21].

There is rarely a good reason to categorize continuous predictor variables, irrespective of what statistical method is used [7,9].
However, there are some cases in which there exists solid justification or no other choice, depending upon the research question.
For example, studies frequently use existing trait databases, such as Mammal Diversity Database, FishBase and AVONET, that
often categorize traits and species (e.g. migratory strategy, diet, dominant habitat). In these situations, obtaining continuous data
is difficult (although see EltonTraits [22] for an example of a database that estimates foraging attributes continuously). Land
cover classes (e.g. grassland, woodland, bare soil), land use classes (e.g. agricultural land, urban), ocean zones (e.g. epipelagic,
mesopelagic, bathypelagic) and ecoregions are other examples of commonly categorized data. These categories may be justified,
depending upon the research question and study design constraints. However, in many cases, continuous data are better suited to
address research questions and even if using these categories, distance to a particular land or water class may make more biological
sense given we know that edge effects (changes that occur at the boundary of two or more habitats) are fundamentally important
[23]. For example, categorizing the habitats of two animals into ‘forest” when one is on the forest/grassland boundary and the other
is in the middle of the forest may result in misleading conclusions about the impact of habitat on fitness (for an example, see Powell
et al. [24,25]). Likewise, using distances to particular land use and cover classes may be informative for understanding at what point
animals are impacted by these habitats [23]. Thus, many of the studies that use land or water classes often use both the categories
alone (e.g. likelihood a bird species is found in riparian habitat) and a continuous variable of distance (e.g. likelihood a bird species
is a given distance from riparian habitat) because these two variables may tell a different story. For example, Ribic ef al. [26] relate
seabird species’ densities, biomass and diversity to categorical water masses (High Antarctic versus Low Antarctic water mass), but
augment the categorical data with a continuous analysis of distance to respective water masses.



Categorization may be justified if the research question is focused on a mechanistic break, such as whether an animal is foraging [ 4 ]
on/off the continental shelf or above/below tree line. Still, we urge researchers to think critically about the rationale behind these
breakpoints. For example, the distance from shore to the continental shelf varies globally, and while abiotic variables, species
behaviour and predation rates may change rapidly near the shelf, edge effects still exist. Similarly, when thinking about modelling
(above/below) tree line, we encourage researchers to think about the precise question of interest. Is the researcher simply interested
in tree line, such that they want to group together all variables that are associated with tree line, or does the researcher care about
disentangling the mechanisms (e.g. changes in temperature or moisture levels during the growing season [27])? Further, similar
to the continental shelf, tree lines can occur at various elevations and can be abrupt boundaries or transition zones [27]. These
different factors and the precise research question need to be considered when deciding whether to categorize predictors, even
when mechanistic breaks are used.

(b) How commonly categorized predictor variables can be examined continuously

Table 1 describes predictor variables that are often categorized, provides examples of how they could be analysed as continuous,
and cites an example paper that analysed each as continuous.

(c) Additional details on commonly categorized predictors

Based on our mini-review, we wish to provide additional detail about how two specific predictors (a third on diet is in electronic
supplementary materials) were categorized, and underscore why the biological rationale provided may not be appropriate.
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(i) Elevation

It was common to bin elevation (high/low), rather than using the continuous variable of metres above sea level. However, it is
well-known that abiotic and biotic variables change along elevational gradients [46]. If there are only two study sites, one higher and
one lower in elevation, then using elevation is synonymous with using study site as a categorical predictor. However, if multiple
study sites exist, we suggest including elevation as a continuous predictor, or include other variables (e.g. slope, aspect, oxygen
and temperature) to get closer to the mechanisms driving patterns. Even if study sites are grouped with a few at higher elevations
and a few at lower elevations, as long as there is some variation between them, using elevation or continuous abiotic variables is
often preferred over categorization. In addition to providing more statistical power, changes in the variables of interest may not be
the same within similar elevation sites because we often do not know the scale at which abiotic and biotic variables are changing.
For example, in a bird species, there are substantial differences in the demography of two nearby populations owing to only a
1-2 m difference in elevation [47-49]. In this habitat, a 1 m change is the difference between being seasonally flooded versus dry
[49]. Likewise, variables may change in inconsistent and nonlinear ways, with threshold effects potentially occurring at different
elevations [50,51]. In these situations, testing for nonlinearity in the continuous predictor variables using generalized additive
models (GAMEs) or fitting different polynomial terms (e.g. quadratic, cubic) would allow the evaluation of how environmental
variables change with elevation, without making assumptions about how to categorize the environmental variables (and whether
those variables are linear). Although not discussed here, other environmental metrics such as aspect should also remain continuous
when possible.

(ii) Season

Seasons are often categorized based on abiotic conditions or life cycle events. For example, seasons may be based on abiotic
conditions, such as dry/wet, or they may be based on breeding/non-breeding or growing/non-growing. Seasons based on abiotic
conditions are challenging because the definition of the start and end of a season is often arbitrary and the end of a particular season
may be more similar to the start of the next season than to its own season [52]. Instead, we suggest using day of year rather than
season to reduce bias [52]. If day of year is not a suitable variable owing to how data were collected, then month could suffice and
still be analysed continuously. If the main research question is focused on seasonal changes, then we suggest picking the mechanistic
variable that is thought to be driving patterns, and using that data to define a meaningful variable of season. For example, Rutt &
Stouffer [53] were interested in changes in interaction networks across seasons and they followed Li & Fu [54] and Fu et al. [55] to
empirically determine the onset of the wet season based on hourly precipitation data. We urge researchers to keep in mind that when
using day of year and other similar variables, these are cyclic in nature (day 365 is closely related to day 1) and should be analysed
as such (e.g. GAMs with a cyclic cubic regression spline). When seasons are based on life stages, we would argue that ideally, they
would be based on individuals being followed rather than what is typically the beginning and end of seasons. For example, many
studies show the start and end dates of seasons are highly variable [47,56], and with climate change, fluctuations in the timing of
seasons are predicted to worsen [57,58].



Table 1. Common covariates to bin, and examples of publications (including response variable, predictor variable, study species, citation) that avoid pitfalls of B
categorizing continuous variables. (Note that these publications are a broader set than those included in our mini-review.)

i3
AN
predictor variable categories continuous example of continuous %
Y
abiotic IS
........................................................................................................................................................................................................................................................................ =
temperature cold versus warm L=
........................................................................................................................................................................................................................................................................ g
climate state ElI Nifio versus neutral versus La =
Nifia =
dr g
summer versus winter, dry i
versus wet 8
........................................................................................................................................................................................................................................................................ : (=n
........................................................................................................................................................................................................................................................................ <
large versus small centimetres abundance~body size, marine and terrestrial vertebrates PR
and invertebrates [32] =
........................................................................................................................................................................................................................................................................ <
........................................................................................................................................................................................................................................................................ .DD
shallow versus deep metres depth lifetime fitness~dive depth, seals [33] -4
early versus late days since life-history event diving depth~weeks since fledging, penguin [34] 2
........................................................................................................................................................................................................................................................................ §
bold versus shy exploration score faecal cortisol~exploration score, squirrels [35] §
frugivore versus granivore % of diet fledging rate~diet (% occurrence of garbage), birds [36]
migration/dispersal near versus far metres body mass loss~dispersal distance, beetles [37]
distance
landscape habitat high versus low metres high height growth~elevation, trees [38]
seascape habitat selection  coastal versus offshore kilometres from coast abundance~distance from coast, whales [39]
aeroscape habitat selection ~ canopy versus midstory versus  altitude (metres above the predation risk~altitude, birds [40]
understory ground)
site fidelity low versus high Bhattacharyya’s affinity variability in mass gain~site fidelity index, seals [41]
diurnal activity patterns day versus night solar position diving depth~solar illumination, fur seals [42]
demography
age young versus old years behaviour and physiology~age, birds [43]
quality high versus low lifetime reproductive success aging~LRS, birds [44]
(LRS)
lifespan short versus long years LRS~reproductive lifespan, birds [45]

4. Examples
(a) Background

We simulated data to quantify the detrimental impact of categorizing continuous variables using various statistical breakpoints
and sample sizes (details below). To give the example biological relevance, we created a dataset that illustrates the complexity
of life-history theory and climate change impacts, and contains a predictor variable that is frequently categorized (table 1)—
reproductive timing in one year and its effect on body mass in the following year. This simple model has only one predictor. A
reasonable research question would be: how does timing of reproduction in year t influence body mass at the start of the breeding
season in year t + 1? For illustrative purposes, let us say we collected data from individually banded penguins in Antarctica. Based
on the mechanistic relationships between seasonally available sea ice and food availability, we hypothesize that late reproductive
timing could negatively impact the abilities of penguins to accumulate body mass before the next breeding season. Let us say
we wander around the penguin colony recording the initiation date of first nest of each banded penguin (reproductive timing,
measured as ‘day of year’, continuous), and then return to Antarctica the following year to weigh those same penguins using a
platform scale (body mass, kilograms, continuous). For all simulations, we used a Gamma distribution from the rgamma() function,
which randomly generates numbers with a Gamma distribution from specified shape and scale parameters, because our data
are positive continuous and we would expect a long distributional tail where there are only a few tiny breeding penguins. We
conducted two linear simulations shown below and a nonlinear simulation (electronic supplementary materials). Further details
on modeling can be found in the electronic supplementary materials. With these data, we will answer the questions: how does
the relationship between reproductive timing and body mass change if reproductive timing data are categorized using different
breakpoints, and the dataset contains different sample sizes? We used R v. 4.3.1 [59] for all analyses. For the linear models, we used
the glm() function (Gamma, link="log") for model fitting, the AIC() function for Akaike information criterion model comparisons



[60], the emmeans() function to calculate 95% confidence intervals (CIs +1.96 * s.e. back-transformed from the log scale), and the cld() n
function to create compact letter displays. We calculated R* using McFaddens’ pseudo-R*[61]. Code to reproduce data, analyses and
figuresis available at[62,63].

(b) Simulated categorization breakpoints in a linear continuous variable

(i) Model performance

We categorized the continuous predictor variable reproductive timing that we “collected” (figure 2a) with three breakpoints
commonly found in publications: median (figure 2b,¢), uneven (figure 2¢,f ) and interval (figure 24,g). The continuous model
outperformed all methods of categorization as indicated by lower AIC and higher proportion of variance explained (R (figure 2;
table 1). The ClIs around the continuous predictor was relatively low (1.29 at the mean predictor) and the ClIs around the categorical
predictors became progressively larger with more categories, as the number of estimated parameters increased. For example, the
range in CIs (upper CI-lower CI) for the earliest reproductive timing category in each method spanned 1.39 in the median example,
1.95 in the uneven example and 3.09 in the interval example (figure 2e—¢). Depending on the breakpoint method used, a single value
(e.g. 60th day of the year) could be assigned to several different categories (e.g. ‘late’ using the median method, ‘mid’ using the
uneven method and ‘60-65" using the interval method). Likewise, categorizing continuous variables often increases the number of
estimated parameters, which is penalized by AIC and functionally reduces the sample size. Note: we include multiple commonly
used model comparison methods (AIC, p-values) for illustrating the results, but do not recommend using them together. Likewise,
we include R?, but do not recommend using R* to decide the ‘best’ model. In figure 2f,¢, the small letters above the plots indicate the
p-values based on pairwise comparisons.
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(i) Model interpretation

In this penguin example, the continuous predictor variable would be used to conclude that individuals that begin breeding later in
the year have smaller body masses the following year (slope or  in model =0.985, meaning that body mass decreases by 1.5% every
day their breeding start is delayed), suggesting that there is a cost to breeding later. Specifically, a 10 day later start to reproduction
(e.g. a shift from a reproductive timing of day 55 (the 10th percentile) to day 65 (the 90th percentile)) would be associated with a
14% smaller body mass the following year (from 43 to 37 kg; figure 2a). We would also conclude that 67% of the variance in body
mass could be explained by reproductive timing the previous year. By contrast, the categorical predictor methods would be used
to conclude that 36-59%, depending upon method, of the variance in body mass could be explained by reproductive timing the
previous year. For the median categorization model, we would conclude that individuals which start breeding between days 60 and
81 have lower body mass (mean mass: 38 kg) the following year compared with individuals that start breeding days less than 60
(mean mass: 41 kg). For the uneven categorization model, we would conclude that individuals that start breeding between days
63 and 80 (mean mass: 37 kg) have lower body bass the following year compared with individuals that start breeding earlier (days
57-63, mean mass: 40 kg), and compared with individuals that breed even earlier (days: <57, mean mass: 43 kg). For the interval
categorization model, the general interpretation is the same, but what keeps changing in each of these categorization models is the
day of year in which individuals have lower body mass, and what that mean body mass is.

(iii) Conclusions

In this scenario, irrespective of the statistical method used, penguins that breed later in the year have lower body mass the following
year than individuals that breed earlier in the year. However, what is lost in the interpretation when using categorical predictors is
