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A Discrete Ion Stochastic Continuum Overdamped Solvent Algorithm for Modeling
Electrolytes
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S. R. Natesh and A. Donev
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

(Dated: March 24, 2021)

In this paper we develop a methodology for the mesoscale simulation of strong electrolytes. The
methodology is an extension of the Fluctuating Immersed Boundary (FIB) approach that treats a
solute as discrete Lagrangian particles that interact with Eulerian hydrodynamic and electrostatic
fields. In both algorithms the Immersed Boundary (IB) method of Peskin is used for particle-field
coupling. Hydrodynamic interactions are taken to be overdamped, with thermal noise incorporated
using the fluctuating Stokes equation, including a “dry diffusion” Brownian motion to account for
scales not resolved by the coarse-grained model of the solvent. Long range electrostatic interactions
are computed by solving the Poisson equation, with short range corrections included using a novel
immersed-boundary variant of the classical Particle-Particle Particle-Mesh (P3M) technique. Also
included is a short range repulsive force based on the Weeks-Chandler-Andersen (WCA) potential.
The new methodology is validated by comparison to Debye-Hückel theory for ion-ion pair correlation
functions, and Debye-Hückel-Onsager theory for conductivity, including the Wien effect for strong
electric fields. In each case good agreement is observed, provided that hydrodynamic interactions
at the typical ion-ion separation are resolved by the fluid grid.
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I. INTRODUCTION

Understanding transport properties in electrolytes is important for the study of fundamental processes such as
electrophoresis, electro-osmosis and electrochemistry that arise in both biological systems [1] and engineered devices
[2] such as catalytic micropumps [3, 4], batteries [5, 6], and fuel cells [7–9]. Many of these phenomena occur at the
mesoscale, where the effects of thermal fluctuations must be captured correctly. This has previously motivated the
development of fluctuating hydrodynamics [10] methods for electrolytic flows [11–13], in which the system is described
using stochastic partial differential equations, which are solved on a grid. Using this approach, thermal fluctuations
are captured while avoiding the computational expense inherent in direct molecular simulations [14]. However, one
drawback of a purely continuum model is that it is not suitable for mesoscopic systems that contain features that occur
on a molecular scale, but which still have an important effect on the overall dynamics. In the context of electrolytes
the electrical double layer [15] effect is an important example of such phenomena.1

In order to capture this behavior while avoiding the computational expense of molecular dynamics, an approach
is required that combines a particle model for the solutes with a coarse-grained model of the solvent. Currently, the
most well established numerical method that uses this approach is Brownian dynamics (BD) [16]. The key feature of
this technique is the use of Green’s functions to represent particles immersed in an implicit solvent. These Green’s
functions describe the effects of single particles, which can be joined together in groups to form complex molecules
such as polymers, or even structures such as flexible membranes. While this approach works well in many cases, it
has a range of shortcomings. First, in a basic implementation, the calculation of inter-particle hydrodynamic forces
has computational complexity O(N2), where N is the number of particles being simulated. Further, the calculation
of the thermal noise applied to each particle scales as O(N3) (from the Cholesky factorization of the mobility matrix),
making simulation of large systems infeasible. Additionally, the application of boundary conditions is complicated to
implement in all but the simplest cases.

More recently, an approach referred to as General Geometry Ewald-like Method (GGEM) [17, 18] has been proposed.
Similar in principle to the Particle-Particle Particle-Mesh (P3M) method [19] used in electrostatics, short range
hydrodynamic interactions are computed using Green’s functions, and long range interactions are computed using
a grid-based discretization of the relevant PDE, in this case Stokes’ equation. With suitable preconditioning of the
Stokes solver and choice of the splitting parameter, this achieves near linear scaling for deterministic hydrodynamics by
limiting the calculation of pairwise interactions to small subsets of particles. In principle, GGEM allows for handling of
nontrivial boundary conditions, although some approximations are introduced [17, 18] to handle the boundaries in the
near field;2 see Ref. 20 for exact handling of a bottom wall geometry with Ewald splitting. Importantly, the handling
of Brownian motion in GGEM is based on methods introduced in the 1970s by Fixman, and these methods increase
the computational cost over deterministic simulations many-fold [21]. First, generating the Brownian displacements
uses an iterative method, which ideally employs preconditioners [22, 23] in order to control the number of iterations.
Second, when boundaries are present, generating the correct stochastic drift required to achieve discrete fluctuation-
dissipation balance relies on a method of Fixman that requires generating the action of the square root of the resistance
matrix, which itself requires a slowly-converging iterative method.

A related approach that addresses these issues is the Fluctuating Immersed Boundary (FIB) [24] method. This
technique uses Immersed Boundary (IB) [25] kernels instead of Green’s functions to couple particles to an explic-
itly simulated solvent. Importantly, whereas both the original IB and GGEM methods use standard deterministic
hydrodynamics to represent the solvent, in FIB the solvent is simulated using an incompressible fluctuating hydro-
dynamics methodology [26]. Using this approach, thermal noise arises directly from the fluid, avoiding the complex
per particle calculations required by GGEM and other Brownian dynamics methods. In FIB, no iterative methods
are required to generate either the Brownian increments or the stochastic drift (rather, they are computed together
with the deterministic displacements or generated by a simple “random finite difference” midpoint scheme inspired
by but different from Fixman’s), and discrete fluctuation-dissipation balance is ensured exactly by construction even
in the presence of boundaries. Linear time complexity, in both domain size and particle number, is achieved for the
calculation of hydrodynamic interactions and Brownian motion under all conditions. Additionally, the application of
confining boundary conditions, such as no-slip walls, is trivial when using FIB. We note a similar approach is taken in
the Stochastic Eulerian Lagrangian Method (SELM), described in Ref. 27; some comments regarding the relationship
between FIB and SELM are given in Ref. 24.

Recently, the FIB approach to Brownian motion has been combined with the Ewald splitting used in GGEM for
periodic systems in the Positively Split Ewald (PSE) method [21]; we note that the Hasimoto splitting used in PSE is

1 For example, the thickness of the double layer is roughly one Debye length, λD, and for a molar concentration of 1.0M there is only one
ion per (3λD)3.

2 In particular, in GGEM, the boundary condition imposed in the Stokes solver involves the near field, which varies on scales that cannot
be resolved by the grid. A further point-particle approximation is made in the boundary conditions to keep the mobility positive
semi-definite [17, 18].
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the Fourier space equivalent of the real-space splitting used in GGEM [28]. PSE is a linear-scaling, spectrally-accurate,
and grid-independent method that has been shown [21] to be an order of magnitude faster than traditional approaches
based on the techniques developed by Fixman. However, including boundaries in spectral-Ewald methods relying on
Fourier transforms such as PSE is nontrivial and has not, to our knowledge, been done yet even for deterministic
simulations.

In this paper, we extend the FIB method to the simulation of electrolytic flows. Using this approach, individual
charged ions are described using immersed boundary kernels, and the solvent is treated using fluctuating hydrody-
namics. In doing so we incorporate two new contributions to the FIB methodology: (i) a “dry diffusion” process which
implements a coarse-grained model for small ions (e.g., Na+), based on the approach derived in Ref. 29, and (ii) the
incorporation of electrostatic effects with an immersed-boundary P3M implementation for efficiently and accurately
computing the electric field. We refer to this approach as Discrete Ion Stochastic Continuum Overdamped Solvent
(DISCOS).

The layout of this paper is as follows. In Sec. II, we summarize the Brownian dynamics approach and describe
its relationship to the FIB method. In Sec. II E we discuss the dry diffusion process. Sec. III contains a description
of electrostatic and close range forces (with additional detail given in appendices A and B), while Sec. IV details
the numerical methodology used to implement the DISCOS algorithm. In Sec. V the DISCOS method is tested by
comparison to theoretical results for the radial distribution function and electrical conductivity. This includes an
analysis of the effect of the dry diffusion approach described in Sec. II E. Finally, some concluding remarks are given
in Sec. VI. Note that in this article, to fully detail and test the novel aspects of the method without introducing
additional complications, we describe the application of DISCOS to unbounded/periodic systems. The inclusion of
boundaries will be the subject of a future publication, however we have included a brief discussion in Appendix C.

II. STOCHASTIC HYDRODYNAMICS

This section formulates stochastic hydrodynamics for Brownian particles, and Sec. III describes the additional
intermolecular forces present when these particles are ions. First we briefly review the Brownian dynamics and
fluctuating immersed boundary approaches to simulating particle-fluid systems; more detailed descriptions can be
found in Refs. 16, 17, 24, 30 and 31. Both approaches assume an infinite Schmidt number,

Sc =
η

ρD
→∞, (1)

where D is the diffusion coefficient of a particle, and η and ρ are the viscosity and density of the fluid, respectively. In
this asymptotic regime, the diffusion time of the particles is large compared to the relaxation time of the fluid, and the
flow can therefore be treated as quasi-steady. A detailed discussion of the relationship between particle diffusion and
Schmidt number is given in Ref. 32, and the validity of this approximation in the context of electrolytes is discussed
in Sec. V.

The FIB method was originally intended as a fast algorithm for performing Brownian dynamics with hydrodynamic
interactions for colloidal suspensions; the reader can consult Refs. 21 and 33 for related state-of-the-art spectrally-
accurate methods for periodic suspensions. Here we adapt this methodology to ionic solutions. This necessitates some
important changes to account for the fact that ions are much smaller than typical colloids, as we describe in detail in
Sections II B and II E.

A. Brownian dynamics with hydrodynamic interactions

We consider a solute (ions) represented as N particles with positions x(t) = {x1, · · · ,xi, · · · ,xN}. The equation
of motion for the particles is

dx

dt
= MF +

√
2kBTM1/2 �W (2)

= MF +
√

2kBTM ◦M−1/2W . (3)

Here, F (x, t) = {F 1, · · · ,F i, · · · ,FN} are the net forces acting on the particles (in this article they consist of short-
ranged intermolecular as well as long-ranged electrostatic forces), W(t) = {W1, · · · ,Wi, · · · ,WM} are independent
Gaussian white noise processes,3 kB is Boltzmann’s constant, and T is the temperature. The stochastic product symbol

3 Note that it is not required that M = N .
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� indicates the kinetic interpretation [34, 35] of the stochastic integral, which can be viewed a mixed Stratonovich-Itô
interpretation, with ◦ denoting the Stratonovich and the absence of a symbol denoting the Itô stochastic product. The
symmetric positive-definite mobility matrix M(x) encodes the hydrodynamic interactions between particles. Here,

we define M1/2 and M−1/2 to be (not necessarily square4) matrices such that

M = M1/2
(
M1/2

)?
,

M−1 = M−1/2
(
M−1/2

)?
, (4)

where the ? indicates L2 adjoint (conjugate-transpose). When the kinetic interpretation of the stochastic integral is
applied this property ensures fluctuation-dissipation balance is obeyed, i.e., that the equilibrium dynamics are time
reversible with respect to the Gibbs–Boltzmann distribution. When we recast Eq. (2) as a system of Itô stochastic
differential equations for numerical simulation, it is necessary to include a stochastic drift term, yielding

dx

dt
= MF + kBT∇x ·M +

√
2kBTM1/2W , (5)

where ∇x· is the divergence with respect to the particle position variables.
In Brownian dynamics the main considerations in the numerical integration of Eq. (5) are the construction and fast

application of M, and the subsequent application of M1/2 and calculation of ∇x ·M. The action of a point force
at the origin on the fluid is given by the Green’s function solution to the steady Stokes’ equation, the Oseen tensor

O(r) =
1

8πηr

(
I +

r ⊗ r
r2

)
. (6)

Here, r is the position vector with r = |r| and I is the identity tensor. This can be modified to include finite size [36]
and close range corrections, giving the Rotne-Prager-Yamakawa (RPY) tensor [37],

R(r; a) =
1

6πηa

C1I + C2
r ⊗ r
r2 r > 2a

C3I + C4
r ⊗ r
r2 r ≤ 2a

, (7)

with

C1 =
3a

4r
+

a3

2r3 , C2 =
3a

4r
− 3a3

2r3 ,

C3 = 1− 9r

32a
, C4 =

3r

32a
, (8)

where we have assumed all particles have the same hydrodynamic radius a. The 3 × 3 block of the mobility matrix
yielding the velocity of particle i due to a force applied to particle j is then

Mij = R(xij ; a), (9)

where xij = xi−xj . The complete mobility matrix is assembled by computing Eq. (9) for all particle pairs. We note

that M is symmetric positive-definite by construction. Having obtained M, the matrix M1/2 can be calculated
exactly using Cholesky decomposition or applied using a more rapid iterative method of approximation [22, 38].

Rather than directly calculating the divergence of the mobility matrix to obtain the stochastic drift, the drift
is traditionally included via the Fixman [16, 39] midpoint time stepping algorithm. This can also be viewed as a
direct discretization of the kinetic version of the stochastic integral [35] or, equivalently, a direct discretization of the
mixed-integral in Eq. (3):

xn+1/2,? = xn +
∆t

2
M(xn)F n +

√
∆tkBT

2
(Mn)1/2W n,

xn+1 = xn + ∆tM(xn+1/2,?)

(
F n+1/2,? +

√
2kBT

∆t

(
M(n)

)−1/2

W n

)
. (10)

Here, ∆t is the discrete time step and W is a vector of independent Gaussian random variables. The superscripts n
and n+ 1 denote values at consecutive time steps, with n+ 1/2, ? indicating a midpoint update.

4 One may view the FIB/FHD approach as corresponding to a non-square decomposition of the mobility matrix. In this case the number
of noise terms will be proportional to the number of grid points, rather than to the number of particles; by construction the noise will
have the correct covariance.
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B. Fluctuating Hydrodynamics Formulation

As discussed in Sec. I, the FIB method differs from Brownian dynamics principally in that it explicitly simulates a
coarse grained model of the solvent [29] on an Eulerian grid. The solvent is taken to be isothermal and incompressible,
and is therefore modeled by the fluctuating Stokes equations [29, 40],

ρ
∂v

∂t
+ ∇rp− η∇2

rv =f +
√

2kBTη∇r ·Z, (11a)

∇r · v = 0, (11b)

where ∇r is the gradient operator with respect to r, v(r, t) is the fluid velocity, p(r, t) is the pressure, and f(r, t) is a
force density applied to the fluid; this is the mechanism by which the immersed Brownian particles interact with the
solvent. Finally, Z(r, t) is a random, symmetric, spatio-temporal Gaussian tensor field (the stochastic stress tensor)
whose components are white in space and time, i.e., they have mean zero and covariances

〈Zij(r, t)Zkl(r′, t′)〉 = (δikδjl + δilδjk)δ(t− t′)δ(r − r′) (12)

≡ Σ δ(t− t′)δ(r − r′).

Here, δij is the Kronecker delta function, δ is the Dirac delta function, Σ is the pointwise covariance of the noise,
and 〈· · · 〉 denotes an ensemble average. This time-dependent system is a set of linear, stochastic partial differential
equations with additive noise, and it therefore has a well-defined mathematical interpretation [41]. Furthermore, it
can be shown to satisfy fluctuation-dissipation balance [27, 29].

In Refs. 24, 27, 40 the diffusing particles are coupled directly to the continuum equations, Eq. (11). However,
as discussed in detail in Refs. 29, 42, fluctuating hydrodynamics (FHD) is a coarse-grained description that only
has a clear interpretation once the conserved fluid quantities (mass, momentum, energy) are spatially coarse-grained
on a discrete grid. Each hydrodynamic cell should contain a sufficiently large number of solvent molecules for the
coarse-grained description to be justified. Since our particles are (solvated) ions of size comparable to the solvent
molecules, this implies that the fluid grid size must be larger than a diffusing “nano-particle”. This is exactly the case
analyzed in Ref. 29 using the theory of coarse-graining, where the discrete FHD equations are derived by coupling a
single nano-particle with compressible, isothermal FHD. We base our discrete equations on this derivation, and take
advantage of the flexibility of the framework to improve numerical properties, such as grid-independence of physical
observables and preservation of translational invariance.

One key conclusion of the analysis in Ref. 29 is that the total or effective diffusion coefficient of an immersed particle
consists of two pieces. The first comes from the random advection of the particle by the coarse-grained stochastic
fluid velocity; we will refer to this process as “wet diffusion”, with the diffusion coefficient Dwet. The second comes
from the additional random motion of the particle relative to the coarse-grained fluid velocity; we will term this “dry
diffusion”, with the coefficient Ddry. The sum of these two terms gives the total diffusion coefficient of the particle,
Dtot. One can formally write a Green-Kubo formula expressing the dry diffusion coefficient as the integral of the
autocorrelation function of the particle velocity relative to the coarse-grained fluid velocity [29]; we discuss how we
set the value of the dry diffusion coefficient in Sec. II E.

C. Steady, overdamped limit

For high Schmidt numbers the fluid relaxation time is fast on the time scale of particle diffusion, so the time-
dependent system Eq. (11) can be accurately approximated by a (quasi-)steady Stokes system. This limiting behavior,
referred to as the overdamped limit, can be derived by a rigorous analysis of the limit as Sc → ∞; this is shown in
Appendix A of Ref. 40. In the overdamped limit, the dynamic variables are just the positions of the immersed
particles, and they follow an equation that is identical in structure to the overdamped Langevin equation, Eq. (2).

Taking the subscript h to indicate a discrete operator, in the overdamped limit we take the discrete fluid velocity
and pressure to satisfy the steady-state form of Eq. (11) given by

∇hp− η∇2
hv =f +

√
2kBTη

∆V
∇h ·Z, (13a)

∇h · v = 0, (13b)

where Z(rh, t) is a finite dimensional collection of white noise processes representing the spatial discretization of Z
on a regular grid with positions rh, and ∆V is the cell volume. Preserving the fluctuation-dissipation property then
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requires that the discrete divergence be the negative of the L2 adjoint of the discrete gradient, ∇?
h = −∇h·, and that

∇2
h = ∇h ·Σ∇h = −∇?

hΣ∇h. (14)

The spatial discretization scheme describing the relationship between the continuum operators/fields of Eq. (11) with
discrete versions in Eq. (13) is given in Sec. IV; it is designed to ensure that the above properties hold. Note also
that comparing Eqs. (11) – (13) indicates the variance of the noise term Z is 1/∆V. Intuitively this follows from the
fact that a larger cell volume represents a coarse graining over a larger number of solvent particles; this is discussed
further in Ref. 29.

D. Particle-fluid coupling

In the FIB method the spatial extent of each particle is defined by a compact kernel function δhy(r), where the
superscript “hy” indicates that this kernel applies to hydrodynamic fields (the analogous electrostatic kernel will be
denoted δes). The kernel is used to interpolate the local fluid velocity to the particles’ locations xi, and to define
the region over which force on the particle is transmitted (spread) to the fluid; the functional form of the kernel
is discussed in Section IV A. To perform these operations, we define discrete interpolation and spreading operators,

J hy
h (xi) and Shy

h (xi), such that

V i =J hy
h (xi)v =

∫
δhy(xi − rh)v(rh)drh, (15)

f s(rh) =
(
Shy
h (xi)F

)
(rh) =

N∑
i=1

δhy(xi − rh)F i, (16)

where the hydrodynamic (advective) part of the particle velocity, i.e., the velocity of the fluid at the location of the
particles, is denoted by V = {V 1, · · · ,V i, · · · ,V N}. The force density spread to the fluid from the particles is given
by f s, and as above, we use the subscript h to indicate discrete operators. Note that the integral in Eq. (15) is just
a short-hand notation for a weighted sum over the grid points; the exact form of the discretization is discussed in
Sec. IV A.

It is important to note that this coupling of the particles to the coarse-grained fluid, taken from immersed boundary
methodology, is different from (though closely related to) that used in the theory of coarse-graining given in Ref. 29.
The FIB formulation is advantageous because it is simpler to implement, achieves much better translational invariance
in practical numerical implementations, and allows flexibility in choosing δhy.

In addition to advection by the velocity given by Eq. (15), particles move by the dry diffusion process, giving the
complete overdamped equations of motion for the DISCOS method (see also Appendix B.1 in Ref. 43),

dxi
dt

= V i

wet

+
Ddry
i

kBT
F i +

√
2Ddry

i Wdry
i

dry

, (17)

where Wdry
i (t) is another independent Gaussian white noise process. Note that here we have written the equation of

motion for a single particle, since Ddry
i depends on the particle’s species.

We define the discrete Stokes operator Lh such that the solution of Eq. (13) is

v = L−1
h

(
f +

√
2kBTη

∆V
∇h ·Z

)
, (18)

so that the particles’ hydrodynamic velocity is

V i =J hy
h (xi)L−1

h

(
Shy
h (xi)F (x) +

√
2kBTη

∆V
∇h ·Z

)
. (19)

This allows us to relate the DISCOS method to Brownian dynamics (Eqs. (2) and (5)) by observing tha

M = Diag

{
Ddry

kBT

}
+ J hy

h L−1
h Shy

h , (20)
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where Ddry =
{
Ddry

1 , · · · , Ddry
i , · · · , Ddry

N

}
, and Diag{X} denotes a diagonal matrix with the values of X on the

diagonal. The Brownian velocity is expressed as

M1/2W ≡ Diag


√
Ddry

kBT

Wdry
i +

√
η

∆V
J hy
h L−1

h ∇h ·Z, (21)

where
√
Ddry =

{√
Ddry

1 , · · · ,
√
Ddry
i , · · · ,

√
Ddry
N

}
. In Ref. 24 (see also Appendix B of Ref. 43) it is demonstrated

that this combination satisfies fluctuation-dissipation balance, provided Eq. (14) holds, and the spreading and inter-

polation are related by the adjoint property
(
J hy
h

)?
= ∆VShy

h , which is assured by the immersed-boundary method.

What is now needed is a way to evaluate the stochastic drift. Direct implementation of the Fixman method
(Eq. (10)) is complicated by the fact that it requires the inverse of the mobility matrix, which is difficult to obtain
in the context of FIB. As demonstrated in Ref. 24, the divergence of the mobility can be evaluated numerically using
a finite difference method. However this would require multiple evaluations of M per step, which requires multiple
applications of L−1

h , i.e., multiple solves of Stokes equation. This can be avoided by re-writing the stochastic drift
using the chain rule

∇x ·M = J hy
h L−1

h ∇x · Shy
h +

(
∇xJ hy

h

)
:
(
L−1
h Shy

h

)
(22)

where, in summation notation, the double dot product is defined as{(
∇xJ hy

h

)
:
(
L−1
h Shy

h

)}
ij
=(∂j(J hy

h )ik)(Lh)−1
kl (Shy

h )lj . (23)

Defining the thermal forcing

f th = kBT∇x · Shy
h , (24)

the first term on the right hand side of Eq. (22) is then accounted for by including f th as part of the force density in
Eq. (13),

f = f s + f th. (25)

The divergence of the spreading operator can be evaluated with a single application of L−1
h ; the details are discussed

in Sec. IV. The second part of the stochastic drift (corresponding to the second term on the right hand side of Eq. (22))
is obtained by a midpoint temporal integrator described in Sec. IV D, similar in spirit to how the Fixman midpoint
scheme (Eq. (10)) obtains the total stochastic drift. Some alternative approaches to evaluating the stochastic drift
correction are discussed in Refs. 44 and 45.

E. Total, wet, and dry diffusion

At the end of Sec. II B we describe two diffusion processes: wet diffusion, which arises from fluctuations in the
coarse grained hydrodynamic solution, and dry diffusion, which represents additional Brownian motion that is not
resolved by the coarse graining process. Here we explain how we set the dry diffusion coefficient.

Consider a single freely diffusing isolated spherical nanoparticle suspended in a quiescent fluid. The particle will
perform a standard Brownian motion with a “total” diffusion coefficient Dtot. From the Stokes-Einstein relation, the
total diffusion coefficient for a sphere with radius at is

Dtot =
kBT

ςηat
, (26)

where ς is a constant depending on the boundary condition on the particle; here we take ς = 6π, corresponding to a
no slip boundary condition. Note that as long as Dtot is held fixed the relative value of ς and at will have no bearing
on the dynamics. Note also that the radius a used in Eq. (7) corresponds to at.

As described in Sec. II B, when simulating such a particle using the FIB method the fluctuations in the hydrodynamic
velocity will yield a wet diffusion process with coefficient Dwet. Because these fluctuations are transmitted to the
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particle via the interpolation operator, J hy
h , the effective hydrodynamic radius of the particle will depend on the form

of the kernel function δhy; we designate this wet radius aw, where

Dwet =
kBT

ςηaw
. (27)

The value of aw is determined by the grid used to solve Eq. (13) – coarsening this grid will result in an increase of aw
and a reduction in the diffusion experienced by the particle.

If the discretization is such that aw > at, then the additional dry diffusion process to be added is such that

Ddry =
kBT

ςηad
, (28)

where the dry radius ad is

ad =
awat
aw − at

, (29)

giving

Dtot = Dwet +Ddry. (30)

In order for the dry diffusion to remain positive, the total radius at must be smaller than the wet radius aw. In
practice, Dwet is set by the mesh spacing and the choice of kernel. We then specify Ddry so that each species diffuses
with the desired total diffusion coefficient. Using this approach, the diagonal terms in an under-resolved mobility
matrix are corrected with the dry diffusion terms; see Eq. (20). This has the effect of greatly improving computational
speed, at the cost of neglecting short range hydrodynamic contributions. For electrolytes, in many cases we expect
these contributions to be small compared to the electrostatic effects; this is discussed further in Section V B.

The above procedure was suggested, though not implemented, in Ref. 29, where the total, wet, and dry diffusion
coefficients are referred to as the renormalized, enhancement, and bare diffusion coefficients, respectively. A similar
approach is also used for inertial systems in Refs. 43, 46, 47. Note that here we have taken the dry diffusion coefficient
to be isotropic and spatially homogeneous, which is true only in the case of unbounded/periodic domains. In this
case, no stochastic drift correction is necessary for the dry component of Eq. (17). For other boundary conditions
the dry diffusion coefficients can be spatially dependent, and a corresponding stochastic drift term would have to be
included.

III. IONIC FORCES

As discussed in Sec. I, we are considering long range electrostatic and short range repulsive forces acting on the
ions. For a given ion i, the total force is given by

F i = FE
i +

∑
j∈ΩR

i

FR
ij + F ext

i , (31)

where FE
i is the electrostatic force, F ext

i indicates forces due to an applied field (e.g., gravity, an external electric field

from a source outside the simulation domain), FR
ij is the short range repulsive force between particles i and j, and

ΩR
i indicates all particles within a given range of the ith particle.

A. Electrostatic Forces

First, we describe our immersed-boundary variant of the classical Particle-Particle, Particle-Mesh (P3M) approach
[14, 19] in detail, since we are not aware of prior work that implements an IB-P3M algorithm. We employ an
approach that is essentially linear in system size to evaluate electrostatic interactions, while recovering a point charge
representation of the ions which cannot be captured using purely grid based methods. For periodic systems, the
current state-of-the-art are variants of the Spectral Ewald method described in Ref. 48; a key advantage of our IB
approach is the ease of handling other types of boundary conditions that are crucial for modeling confined systems,
as we will explore in future work. Some additional numerical results are presented in Appendix A.
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In the quasi-electrostatic approximation assumed here, the electrostatic force is found by solving Poisson’s equation
for the electrical potential φ,

∇2
rφ = −%/ε, (32)

where the charge density is

%(r) =

N∑
i=1

δ(xi − r)qi, (33)

with qi being the charge of ion i, and ε the electrical permittivity of the solvent. The resulting electric field is then
given by

E = −∇rφ, (34)

with the electrostatic force on ion i being FE
i = qiE(xi); note that the singular self-induced electric field is defined

to be zero.
The P3M approach entails solving for the electrical potential on a grid, and then making local close range corrections

to the force in order to treat the ions as point charges. Note that for triply-periodic domains, the Spectral Ewald
method described in Ref. 48 is the most accurate technique. However, this method is based on Fourier transforms
and is nontrivial to generalize to other boundary conditions and domain configurations.

In the initial stage of the electrostatic force computation we map the particle charges to a mesh, discretize and
solve Eq. (32) on the mesh, and interpolate the resulting field back to the particle locations. Analogous to the
hydrodynamics, the Lagrangian particles interact with the Eulerian electrostatic mesh via interpolation and spreading
operators.

EP
i =J es

h (xi)E =

∫
δes(xi − rh)E(rh)drh, (35)

%(rh) =Ses
h (xi)q =

N∑
i=1

δes(xi − rh)qi, (36)

where the integral in Eq. (35) is a short-hand notation for a weighted sum over grid points, just as for the hydrodynamic

interpolation operator. Here EP =
{
EP

1 , · · · ,E
P
i , · · · ,E

P
N

}
is the smoothed value of E at the particle locations,

q = {q1, · · · , qi, · · · , qN} is the vector of particle charges, and δes is the kernel used for the electrostatic grid; we note
that δes can be chosen independently from δhy. The numerical solution of Eq. (32) is discussed in Sec. IV C. The
smoothed electrostatic force on particle i is then given by

FP
i = qiE

P
i . (37)

A local correction is needed because a point charge representation of the ions would require an unreasonably fine
mesh when solving Eq. (32); for finite, non-zero ∆r, the force calculated between two particles, i and j, on the mesh
becomes less accurate as the distance between the particles becomes smaller. This effect becomes particularly severe
when the kernels overlap and the particles no longer appear as points, i.e., xij < ψ, where ψ is on the order of the
diameter of the kernel. The P3M method accounts for such situations by replacing the Poisson solution with a direct
calculation of the Coulomb force,

FC
ij =

1

4πε

qiqj
x2
ij

x̂ij , (38)

where xij = |xij |, and the unit vector x̂ij = xij/xij . Specifically, the electrostatic force is computed as

FE
i = FP

i +
∑
j∈ΩE

i

F LC
ij , (39)

where ΩE
i indicates all particles within a range of ψ from particle i. Here the local or near-field correction is

F LC
ij = FC

ij − F
P
ij , (40)
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where FP
ij is the force computed by the immersed-boundary method if only the charges i and j were present. As

mentioned above, ψ is of the order of the diameter of the electrostatic kernel, and is therefore a function of the cell
size. In this work we apply an upper limit of ψ ≤ L/2, where L is the length of the periodic domain, so that for each
pair of charges the local correction is only applied for the nearest periodic image of one of the charges.

Following previous P3M and (Spectral) Ewald methods, the local correction is approximated as a radially-symmetric
short-ranged force using

FP
ij ≈

qiqj
4πε(∆r)2

FP
(xij

∆r

)
x̂ij , (41)

where the dimensionless scalar function FP(y) is tabulated for 0 ≤ y ≤ ψ/(∆r) in a pre-computation step, which is
done once and only once for a given kernel δes. The values used for the results in this work are given in Table II
in Appendix B. This table is computed using two charges in a domain which is large enough that boundary effects
are negligible. Because there is a small degree of translational variance, the solution for each separation distance
is calculated many times using random placements and orientations of the pair relative to the grid, and the results
averaged. We show numerical results for the near-field corrections in Appendix A.

It is important to emphasize a key difference between the IB approach described here and that used in other P3M-
style methods, including the spectral Ewald method [48]. In the latter, the smearing/smoothing of the delta functions
in Eq. (33) is done at the continuum level, using a smooth kernel function such as a Gaussian. For an unbounded

domain, the correction potential F LC
ij can easily be computed analytically using Fourier-space integration. The smooth

continuum density is then spread to the grid on which the Poisson equation is solved (using, e.g., a spectral method in
the Spectral Ewald method or a finite-difference approach as done here), and the solution is interpolated back on the
particles just as we do. The spreading and interpolation operations to and from the grid are done to spectral accuracy
using the non-uniform FFT in the Spectral Ewald method, while in classical P3M methods it is done using a separate
“window” or “charge assignment function,” such as a power of the sinc function [19]; a plethora of methods exist with
different choices of how this step is done [14]. By contrast, in our approach there is only one kernel, δes, that is used
both to smear the charge and to communicate between particles and grid. In Appendix A, we study the accuracy of
our IB-P3M approach and isolate the contributions to the dominant error coming from the loss of translational and
rotational invariance from the Poisson solver and from the spreading and interpolation using a compactly-supported
kernel.

B. Steric Repulsion

To compute the short range repulsive force FR
ij , we model the finite size and excluded volume of the ions using a

mollified Weeks-Chandler-Andersen (WCA) interaction potential [49], which is a shifted and truncated Lennard-Jones
potential; it has been selected to approximate hard sphere repulsion whilst remaining numerically tractable. This
potential is given by

U sr(x̃;σ, ξ) =


4ξ

(
6σ6

x̃7
m

− 12σ12

x̃13
m

)
(x̃− x̃m)− 4ξ

(
σ6

x̃6
m

− σ12

x̃12
m

)
+ ξ, x̃ ≤ x̃m

4ξ

((
σ
x̃

)12

−
(
σ
x̃

)6
)

+ ξ, x̃m < x̃ < 21/6σ

0, 21/6σ ≤ x̃

(42)

where ξ is the magnitude of the potential, σ is the van der Waals diameter, and x̃ is the radial distance between the
particles. Note that this potential has been selected to produce a constant force for x̃ ≤ x̃m, equal to that at x̃ = x̃m,
in order to reduce numerical stiffness; specific values of these parameters are discussed in Section V. The cutoff at
21/6σ ensures that only the repulsive part of the potential is used and shifting the potential by ξ ensures that there
is no discontinuity in the potential and in the force at the cutoff. The short range repulsive force is then

FR
ij = −x̂ij

d

dx̃
U sr
ij (xij ;σij , ξij), (43)

where σij is the average of the diameters of particles i and j, and in this work we set ξij = ξ for all pairs of ions.
Note that the repulsion diameter is distinct from the hydrodynamic radius at discussed in Sec. II E, however, both are
related to the solvation layer formed around an ion [50]. The potential and repulsive force are illustrated in Fig. 1.
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FIG. 1. Illustration of short range potential and repulsive force due to Eq. (42). For ease of viewing, here we have set x̃m = 0.7σ.
Note that the actual value used in the simulations, discussed in Sec. V, is x̃m = 0.25σ.

IV. DETAILS OF NUMERICAL METHODOLOGY

In this section we discuss the details of the discretization and solution methods of the hydrodynamic and electro-
static5 equations, Eqs. (13) and (32), and the associated particle time stepping algorithm. These are all implemented
in the AMReX framework described in Ref. 51 and available at https://amrex-codes.github.io/.

A. Peskin Kernels

In sections II B and III, we define kernel functions that describe the interaction of the particles with continuous
fields; see Eqs. (15), (16), (35), and (36). These functions are represented numerically by Peskin kernels [25], which
approximate Gaussian functions on a discrete grid. The four-point kernel is defined using

δPe(ζk) =



3− 2|ζk|+
√

1 + 4|ζk| − 4|ζk|2

8∆r , 0 ≤ |ζk| ≤ 1

5− 2|ζk| −
√
−7 + 12|ζk| − 4|ζk|2

8∆r , 1 < |ζk| ≤ 2

0, 2 < |ζk|

, (44)

where ζ = (xi − r)/∆r, ζk indicates a single Cartesian component of ζ, (ζx, ζy, or ζz), and ∆r is the grid spacing,
which is the same in each direction. Peskin kernels attempt to maximize certain ideal properties of a continuum
Gaussian, notably isotropy and translational invariance; a detailed discussion is given in Ref. 25. Recently kernels
with a greater number of points in their support, including five and six grid points [52], have been computed. These
have improved smoothness and come closer to the ideal case at the cost of increased computation time. Conversely,
using a smaller number of points will result in a less accurate kernel but reduced computational cost.

Although it is not necessary to use the same kernels for the hydrodynamic and electrostatic fields, for simplicity in
this article we use the same four point kernel in both cases,

δhy(ζ) = δes(ζ) = δPe(ζx)δPe(ζy)δPe(ζz). (45)

5 Note that the hydrodynamic equations are in the quasi-hydrostatic approximation (neglect inertial terms) while the electrostatic equa-
tions are in the quasi-electrostatic approximation (neglect magnetic fields).

https://amrex-codes.github.io/
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We further use the same cell size, ∆r for all fields, although again this is not a necessity.
The discretized interpolation operation for a single Cartesian component of the hydrodynamic velocity (vk) is

J hy
h,k(xi)vk = ∆V

∑
j∈ΩPe

i

δhy(xi − rj)vk(rj), (46)

where ∆V = (∆r)3, and j ∈ ΩPe
i indicates summation over discrete grid points rj that lie within the support of

δhy(xi − rj) centered on xi, and on which the discrete velocity is defined. The spreading operation for a single
component of force is given by

Shy
h (xi)F k =

N∑
i=1

∑
j∈ΩPe

i

δhy(xi − rj)Fi,k. (47)

Similarly, the discretized electrostatic interpolation and spreading operators are, respectively,

J es
h,k(xi)Ek = ∆V

∑
j∈ΩPe

i

δes(xi − rj)Ek(rj), (48)

and

Ses
h (xi)q =

N∑
i=1

∑
j∈ΩPe

i

δes(xi − rj)qi. (49)

As mentioned above, one reason for using Peskin kernels is to maximize translational invariance. However a
small degree of variance remains – the four point kernel used here has a position dependent hydrodynamic radius
of (1.255 ± 0.005)∆r. Were perfect translational invariance achieved, for unbounded/triply periodic domains the
stochastic drift term in the particle equation of motion, Eqs. (17) and (19), would be zero everywhere, as the divergence
of the mobility would be zero [40]. However the slight lack of invariance of the kernels renders the stochastic drift
term necessary even in domains without solid boundaries; this is discussed in detail in Ref. 24.

B. Fluid solver

We discretize the fluid velocity on a uniform Cartesian grid with mesh spacing ∆r. We use a staggered grid system
with normal velocities and force density defined at cell faces, and pressure defined in cell centers, i.e., a standard
marker-and-cell (MAC) discretization [53]. Multiple discretizations are used for differential operators representing the

gradient, divergence, and Laplacian. Each of these operators use centered second-order differences. We use ∇c→f
h to

represent the face-centered gradient of a cell-centered field, ∇c
h to represent the cell-centered gradient of a cell-centered

field, ∇f→c
h · to represent the cell-centered divergence of a face-centered field, (∇2

h)f to represent the face-centered

Laplacian of a face-centered field, and (∇2
h)c to represent the cell-centered Laplacian of a cell-centered field. Finally,

∇̃h· is used to represent the face-centered divergence of a field defined on control volumes corresponding to the shifted
(staggered) velocity grid. This is illustrated in two dimensions in Fig. 2. Using these operators, the discrete fluid
equation solved at each time step is (see Eqs. (13) and (25)),

−η(∇2
h)fv + ∇c→f

h p = Shy
h F +

√
2ηkBT

∆t∆V
∇̃h · Ẑ +

[
Shy
h

(
x+

∆R

2
Ŵ

)
− Shy

h

(
x− ∆R

2
Ŵ

)]
kBT

∆R
Ŵ , (50a)

∇f→c
h · v = 0. (50b)

Here, Ẑ represents Gaussian random numbers of mean zero and variance one, defined such that their divergence can

be calculated at the locations where v is defined. This is illustrated in two dimensions in Fig. 2, where Ẑ is stored on

cell nodes and centers. In three dimensions Ẑ is stored on cell edges and centers. This is described in detail in Ref. 26.

The vector Ŵ =
{
Ŵ 1, · · · , Ŵ i, · · · , ŴN

}
consists of independent random vectors Ŵ i =

(
Ŵi,x, Ŵi,y, Ŵi,z

)
, where

each Ŵ is an independent Gaussian random number of mean zero and variance one.
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FIG. 2. Left: A 2D illustration of the MAC [53] discretization used for Eq. (50). Right: 2D illustration of the ∇̃h ·Z term in
Eq. (50a), which is the discretization of the term ∇r · Z from Eq. (11). Random numbers, Z, are generated at the faces of
control volumes around the points where velocities v are defined so that the divergence of the field Z can be calculated.

The second line of Eq. (50a) represents the thermal forcing term given by Eq. (24). As discussed in Ref. 24, it
is essentially a finite difference representation of the divergence of the spreading operator. It is implemented by

spreading a random force, kBTŴ /∆R, at locations randomly offset from the particle positions, x + ∆RŴ /2, and

the negative of that force at positions x −∆RŴ /2. The distance ∆R should be smaller than the length scale over

which Shy varies, but large enough to avoid issues due to numerical roundoff. In this article we have used the value
∆R = 10−4∆r.

The system of discrete equations formed by Eq. (50) can be solved by a range of approaches, here we have used a
preconditioned Generalized Minimal RESidual (GMRES) method [53, 54].

C. Electrostatic solver

The electrostatic potential and charge density, φ and %, are defined on a cell centered grid. The Poisson equation,
Eq. (32), is discretized by

(∇2
h)cφ = −%/ε. (51)

In this case, the resulting system of equations are solved using the geometric multigrid [55] method.
The resulting electric field is also stored at cell centers, and is found by

E = −∇c
hφ. (52)

The choice of a cell centered differencing in Eq. (52) has some advantages over other options that are worth noting.
Importantly, it can be shown6 that Eq. (52), together with the IB interpolation and spreading, ensures that, at least
for periodic domains, Newton’s third law is obeyed. That is, the force on ion i due to ion j is equal and opposite to
that on ion j due to ion i,7 and momentum is conserved.8 This implies that there is strictly no self-force of one ion
on itself, which is an important property desirable in any P3M method. It may appear more natural for staggered

6 We thank Charles Peskin for sharing with us an analytical proof of this property.
7 Note that this force is, however, not strictly central. That is, the Weak Law of Action and Reaction (Newton’s Third Law) is obeyed

but not the Strong Law of Action and Reaction, which requires that the forces act along the line joining the particles.
8 Note that in the overdamped limit there is no momentum conservation per se, however, the steady Stokes equation would not be solvable

in triply-periodic domains if the forces did not sum to zero.
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grids to compute electric field not at cell centers using ∇c
h, but on cell faces using ∇c→f

h , in particular because

(∇2
h)c = ∇f→c

h ·∇c→f
h . However, this choice does not lead to equal and opposite action/reaction forces and can

generate spurious self-forces.
One thing that is lost with the discretisation employed in Eq. (52) is that the force is no longer a negative gradient

of an electrostatic potential. That is, the IB-P3M approach followed here cannot be used for applications where both
forces and energies matter and need to be consistent with each other; in BD or DISCOS we only need forces, and
since the system is isothermal there are no issues regarding energy conservation. It is possible to ensure consistency
between electrostatic forces and energy if one uses the derivative of the Peskin kernel to interpolate −φ at the particle
positions to obtain the electric field/force. However, this requires using a smoothly-differentiable kernel such as the
6pt Peskin kernel [52], and also does not lead to momentum conservation.

When applying the close range correction to the electrostatic solution (and the steric repulsion), near linear scaling
is maintained by using the neighbor list feature included with AMReX.

D. Temporal Algorithm

The time stepping scheme employed in DISCOS builds on that of the FIB method with the addition of electrostatic
forces and dry diffusion. A time step is then defined by the following four steps:

1. The charge density % is computed on the grid using the spreading operation defined by Eqs. (36) and (49).
Equation (51) is then solved using the geometric multigrid method, and Eq. (52) used to obtain the coarse
electric field, E.

2. This electric field is interpolated to the particle locations using the operation defined by Eqs. (35) and (48). The
corresponding force on the particles is found using Eq. (37). For particles at close range, this force is corrected
as per Eqs. (38) and (39). Close range WCA interactions are also calculated in this step, and the total force on
the particle calculated as per Eqs. (31)-(43), including the effect of any external fields.

3. The force on the particles, F , is spread to the grid storing the force density using the operations defined in
Eqs. (16) and (47), recovering f s. The random finite difference term is spread as per the second line of Eq. (50a),

yielding the thermal forcing f th. The resulting system, Eq. (50), is solved via the GMRES method to compute
the velocity at time step n, vn.

4. The fluid velocity vn is interpolated to particle locations using the operations defined in Eqs. (15) and (46)
to obtain the “wet” component of the particle velocities, Eq. (17). The temporal discretization of the particle
diffusion is then given by the midpoint update scheme

x
n+1/2,?
i = xni +

∆t

2
(J hy

h (xni )vn), (53)

xn+1
i = xni + ∆t

[
J hy
h (x

n+1/2,?
i )vn +

Ddry
i

kBT
F ni +

√
2Ddry

i

∆t
W n

i

 . (54)

As discussed in Sec. II B, the purpose of the midpoint update is to incorporate the part of the stochastic drift
not accounted for by the random finite difference force density f th.

This algorithm is first order in time, as illustrated in Ref. 24, where higher order schemes are also discussed.

V. NUMERICAL RESULTS

In this section we test the DISCOS algorithm by comparison with theoretical results for the radial pair correlation
function and electrical conductivity. Additionally, we analyze the effect of changing the ratio of wet and dry diffusion.

In our numerical tests we model a 1:1 strong electrolyte solution, similar to salt water, with species labeled A and B,
with charges q = qA = −qB = 1.6×10−19 C. The solvent is taken to be water at T = 295 K, viscosity η = 0.01 g/(cm s),
and permittivity ε = εrε0, with relative permittivity εr = 78.3 where ε0 is the vacuum permittivity. The diffusion
coefficients of the ions in water are Dtot

A = 1.17 × 10−5 cm2/s and Dtot
B = 1.33 × 10−5 cm2/s, corresponding to

hydrodynamic radii of at = 0.185 nm, and at = 0.162 nm, respectively. In all cases the close range potential
parameters are ξ = 10−16 ergs, σ = 0.4 nm, and x̃m = 0.1 nm. Note that the above parameters yield Schmidt
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numbers of 854 and 752 for species A and B, respectively. This justifies the use of the infinite Schmidt number
approximation discussed above.

For each problem the time step, ∆t, was selected by successive refinement until a negligible change in the result
was observed. Note that the ion diffusive time scale, a2

t/D, is on the order of 10 picoseconds. The time steps used for
the simulations below were typically constrained to the order of 0.1 ps by the stiffness of the steric and electrostatic
interactions. We are currently examining how the time step may be increased by varying the parameters of these
potentials.

In each case the system size was selected to avoid significant finite size effects. When considering electrostatic
interactions, the relevant length scale is the Debye length [56, 57],

λD =

√
εkBT∑Ns

j=1 njq
2
j

, (55)

where Ns it the number of species, and nj is the number density of species j. This is a measure of how far electrostatic
effects persist before they are screened by clouds of opposite charges. For hydrodynamic effects, it should be noted that
the diffusion coefficient of an isolated particle in a triply-periodic domain has well-known strong finite-size corrections
of order aw/L [43], where L is the length of the cubic domain. This is because the mobility of an isolated particle is
determined by applying a force on it, and a force monopole interacts with its periodic images with 1/r hydrodynamic
interactions. However each ion diffuses with its Debye cloud, which experiences an equal but opposite force, so that
an ion interacts with its periodic images hydrodynamically as a force dipole [58], which has a finite size correction
of order (aw/L)3. We are not aware of any systematic analysis of finite-size effects in the literature; here we have
systematically increased the system size until no significant change in the result is observed.

A. Radial Pair Correlation Function

We first validate the equilibrium properties of the DISCOS method by measuring radial pair correlation functions
between ions of like and opposite charge. In general, the radial pair correlation function is the normalized time-
average density of particles as a function of radius from an arbitrary reference particle. For a binary system, the pair
correlation function between species α and β is defined as [14]

gαβ(x̃) = lim
τ→∞

V
Nαβ(Nαβ − 1)4πx̃2τ

∫ τ

0

N∑
i,j,i 6=j

δ(x̃− xij) δα,siδβ,sjdt, (56)

where V is the system volume, si and sj are the species of particles i and j, Nαβ is the number of species pairs, and
xij is the radial distance between particles i and j. In practice, for each snapshot in time, for each ion of type α, we
count the number of ions of type β in thin spherical shells with a specified bin width, and compute a number density
in each bin by dividing by the volume of the shell. We average the results over all α ions and over many time steps,
and normalize the result with the average number density of β.

For low to moderate ion concentrations Debye-Hückel theory [56, 57] gives

gαβ(x̃) ≈ exp(−Uαβ(x̃)/kBT ), (57)

where the potential is

Uαβ(x̃) =
qαqβ
4πε

e−x̃/λD

x̃
+ U sr

αβ(x̃). (58)

The first term in Eq. (58) is the screened Coulomb potential [56, 57] and the second is the short-ranged repulsion.
In Figs. 3 and 4, we compare the approximate theoretical expression of Eq. (57) with results obtained from DISCOS.

In Fig. 3, the comparison is shown for molarity (moles of cation or anion per liter of solvent) of 0.1 M; excellent
agreement is observed. Fig. 4 shows the comparison for a molarity of 1.0 M for two different ratios of wet and dry
diffusion. A negligible difference is observed between second and third simulations; this is unsurprising as we can
see from Eq. (57) that the pair correlation function does not depend on the hydrodynamic properties of the solvent.
Reasonable agreement is observed, with the largest deviation observed in the peak of the opposite charge result.
We note that Eq. (57) is derived in the low concentration limit so we expect decreasing agreement with increasing
concentration. At the higher concentrations the Percus-Yevick and hypernetted chain (HNC) approximations are
more accurate [59].
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FIG. 3. Radial distribution for a molarity of 0.1 M. The right plot shows the pair correlation for ions of like charge; also
indicated is the Debye length. The left plot shows the pair correlation for ions of opposite charge. The solid line shows the
approximate analytical solution given by Eq. (57), and the squares show the numerical result from DISCOS. These results were
collected using a bin width of 0.025 nm, with a sample size of 50,000 – the simulation was run for 100,000 steps, with the first
50,000 steps used for equilibration. This sample size resulted in negligible statistical error. For visual clarity, only every fourth
point is displayed. The grid size was set such that the total diffusion of species A was 14.7% wet and 85.3% dry, and for species
B, 12.9% wet and 87.1% dry. This corresponds to ∆r = 1nm, with a 32 × 32 × 32 cell periodic domain, and 3946 ions. The
time step was ∆t = 0.1 ps.

B. Electrical Conductivity

For an applied electric field of magnitude E the total current density in an electrolyte solution is

I =

Ns∑
j=1

njq
2
jµjE, (59)

where µj is the mobility of species j. The conductivity is defined by Ohm’s law as C = I/E and from the Nernst-
Einstein relation [57] the mobility in the limit of infinite dilution is µ0

j = Dtot
j /kBT . In this limit, the uncorrected

total conductivity C0 is the sum of the species conductivities C0
i ,

C0 =

Ns∑
j=1

C0
j =

Ns∑
j=1

njq
2
jD

tot
j

kBT
. (60)

Debye-Hückel-Onsager (DHO) theory gives the electrolyte conductivity [57, 60] as the sum of the uncorrected total
conductivity, electrophoretic contribution, and a contribution due to the relaxation effect,

C = C0 + Cep + Crelx. (61)

See Ref. 12 for the relationship of this theory to fluctuating hydrodynamics.
The electrophoretic contribution is due to screening charges of opposite sign about each ion imparting a retarding

viscous stress on the ion, given by

Cep = −
Ns∑
j=1

njq
2
j

6πηρλD

λD
λD + aDH

j

. (62)
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FIG. 4. Radial distribution for a molarity of 1.0M. The right plot shows the pair correlation for ions of like charge; also
indicated is the Debye length. The left plot shows the pair correlation for ions of opposite charge. The solid line shows the
approximate analytical solution given by Eq. (57), and the boxes and circles show numerical result from DISCOS. The numerical
parameters are the same as those described for Fig. 3, except that two different grid resolutions are shown. The black circles
show the case where the grid size was set such that the total diffusion of species A was 14.7% wet and 85.3% dry, and for
species B, 12.9% wet and 87.1% dry. This corresponds to ∆r = 1nm, with a 16 × 16 × 16 cell periodic domain, and 4932 ions.
The red squares show the case where the grid size was set such that the total diffusion of species A was 58.9% wet and 41.1%
dry, and for species B, 51.8% wet and 49.2% dry. This corresponds to ∆r = 0.25nm, with a 32 × 32 × 32 cell periodic domain,
and 618 ions.

The last term is a Debye-Hückel correction to account for the finite ion size, which we take to be aDH
j = 0.4 nm for

both ions. The relaxation effect refers to the average force experienced by an ion from its asymmetric ionic cloud
relaxing due to thermal fluctuations. For binary electrolytes the contribution due to the relaxation effect is

Crelx = −
2∑
j=1

C0

12π(2 +
√

2)

q2
j

εkBTλD

λD
λD + aDH

j

. (63)

For aDH
j � λD both the electrophoretic and relaxation contributions go as the square root of the ionic concentration.

The C0 term contains no hydrodynamic interactions between ions; it is therefore correctly captured by a simulation
with any wet/dry diffusion ratio. The same is true for the Crelx term, as this arises entirely from electrostatic
interactions which are well-resolved using the P3M approach. The Cep term arises from the collective hydrodynamic
effect of an ion and its screening cloud of opposite charge, it is therefore only completely captured by a simulation
using 100% wet diffusion; the relative importance of this effect is discussed in the next section.

When the applied electric field is sufficiently strong the distortion of the ionic clouds results in an increased electrical
conductivity, which is known as the first9 Wien effect. For a 1:1 strong electrolyte solution the Wien corrections to
the conductivity are [61]

Crelx
W (a) = AW(a) Crelx, (64)

Cep
W(a) = BW(a) Cep, (65)

where

AW(a) =
3(1 +

√
1/2)

2a3

(
a
√

1 + a2 −
√

2a + arctan(
√

2a)− arctan(a/
√

1 + a2)
)
, (66)

9 Note that there is a “second Wien effect” which applies to weak electrolytes.
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BW(a) =
1√
2

+
3

8a3

(
2a2arcsinh(a)− a

√
1 + a2 +

√
2a −(1 + 2a2)

[
arctan(

√
2a)− arctan(a/

√
1 + a2)

] )
, (67)

and a = (qλDE)/(kBT ) is a dimensionless parameter for the electric field strength. These correction factors are shown

in Fig. 5. Note that AW(a)→ 0 and BW(a)→ 1/
√

2 as a→∞.
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FIG. 5. Wien corrections to the DHO relaxation effect and electrophoretic contribution as a function of a = (qλDE)/(kBT ).

In the presence of an applied electric field, the conductivity vector can be computed by

C = lim
τ→∞

1

EVτ
[Z(τ)− Z(0)] , (68)

where the ion polarization (displacement of the “center of charge”) is

Z(t) =

N∑
i=1

qixi(t). (69)

An alternative way to measure conductivity in the absence of an applied field is given by the Einstein-Helfand
formula [62], in terms of the long-time diffusion coefficient of the center of charge,

CEH = lim
τ→∞

1

6kBTVτ

∫ τ

0

[Z(t)− Z(0)]
2
dt. (70)

This is derived from the Green-Kubo relation [63, 64], and is discussed in Refs. 62 and 65.
Formally, Eqs. (68) and (70) hold when τ is large enough to ensure that the short time correlations have decayed;

increasing τ beyond this point has no effect on the statistical convergence, as the variance of Z does not decrease with
time. An accurate result can be obtained by increasing N , or averaging an ensemble of simulations. We find that
the mean-square displacement of the center of charge is perfectly linear in time on our overdamped time scales for all
τ examined, so the conductivity is not sensitive to the choice of τ . The correct result can therefore be obtained by
setting τ ∼ ∆t to maximize the statistical sample size. To ensure de-correlation between simulation measurements
the conductivity was sampled at intervals of 10 ps, which is on the order of the ion diffusion time, when calculating
the time average in Eq. (68). For Eq. (70), the displacement in Z was measured and then reset every 10 ps. Note
that this has no impact on the result itself, but it influences the calculation of the statistical error.

Three sets of conductivity simulation measurements were performed at a concentration of 0.1 M: (i) Measurements
with zero applied field using Eq. (70), (ii) using a weak applied field of 105 V/cm (a = 0.377), and (iii) using a strong
applied field with a value of 107 V/cm (a = 37.7), each using Eq. (68). In each case a range of diffusion ratios,
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i.e. values of Dwet and Ddry, were tested. Tests using case (i) with Eq. (70) were also performed at concentrations of
0.0115 M, 0.5 M, and 2 M. The results are summarized in Table I and illustrated in Fig. 6.

All simulations were performed in a cubic domain with length L = 10.043 nm. For concentrations 0.0115 M, 0.1 M,
0.5 M, and 2 M, the domain contained 14, 122, 610, and 2440 ions, respectively. For comparison, a molecular dynamics
simulation of this system would contain roughly 30,000 water molecules.

To vary the wetness, the computational domain was divided into 83, 163, 323, or 643 grid cells for both the Stokes
and Poisson solvers; simulations with fully dry diffusion used a 323 grid for the Poisson solver. The 83 grid cell cases
correspond to wetness percentages of 11.8% and 10.3% for ion A and B, respectively, while the 643 grid cell cases
correspond to wetness percentages of 93.8% and 82.6%. Most simulations for molar concentrations of 0.5 M and below
used a time step size of 0.1 ps, while for the high molarity 2 M cases ∆t was typically between 0.01 and 0.02 ps.
It is important to note that while a Stokes grid as coarse as 83 does little to accelerate the far-field calculations for
nearest image particles, the use of a periodic Stokes solver is crucial to account for the hydrodynamic interactions
with periodic image particles; the same applies also to the Poisson solver.

In all cases, good agreement is observed between the results with the highest Dwet value and the theoretical
prediction, for both high and low field cases, and at all concentrations. The weak and strong field results are in
particularly good agreement with the theory for both fully dry and fully wet simulations. Note that DHO theory may
not be accurate at high molarities, especially since we do not tune the value of the finite-size radius aDH for either
species. The dry (Dwet=0) cases also compare reasonably well with the theoretical result with the electrophoretic
component removed, in agreement with the discussion above.

For the weak field simulations, the strength of the field has been set such that the Wien effect is negligible; we
therefore expect the same results for the weak and zero field cases. Interestingly, a difference of about 3% is observed
for the highest wet percentage, and 5% for the lowest. The cause of this discrepancy is not apparent, but warrants
further investigation.

Measured in case wet% A, wet% B
Theory 0% 11.75% 23.5% 46.9% 93.8% Theory
No EP 0% 10.33% 20.65% 41.3% 82.6% With EP

Zero E-field
0.01147 M 0.106 0.1086(18) 0.1013(6) 0.1020(21) 0.1002(21) 0.1010(18) 0.100
0.1 M 0.897 0.946(12) 0.869(27) 0.837(21) 0.813(9) 0.803(12) 0.776
0.5 M 4.33 4.70(6) 4.21(9) 3.95(6) 3.63(6) 3.54(15) 3.34
2 M 16.8 18.5(6) 16.7(9) 14.8(9) 12.8(6) 11.6(9) 11.4

Weak E-field
0.1 M 0.897 0.898(6) 0.831(6) 0.785(6) 0.785(9) 0.777(6) 0.776

Strong E-field
0.1 M 0.943 0.943(3) 0.870(3) 0.851(3) 0.841(3) 0.837(3) 0.850

TABLE I. Conductivity simulation measurements in siemens per meter for zero E-field (by Einstein-Helfand, Eq. (70)) and
weak and strong E-field (center of charge displacement, Eq. (68)). The uncertainty notation is defined such that the numbers in
parenthesis indicates the error bar for the final digits, e.g., 0.898(6) indicates 0.898±0.006, and 0.946(12) indicates 0.946±0.012.
The right column is calculated from DHO theory including Wien effect corrections for the strong E-field cases. For comparison
with the 0% wet case, the theory prediction without the electrophoretic (EP) correction is also included in the table. A plot of
these results is given in Fig. 6.

C. Effect of wet vs. dry diffusion

The results in the previous section show that while some wet diffusion is needed to capture the electrophoretic
contribution to conductivity, in most cases increasing the wet diffusion above 50% has a relatively small impact. Fur-
thermore the relative effect depends on concentration, with wet diffusion making a greater contribution at higher molar
concentrations; this can be clearly seen in Fig. 6. As mentioned in Sec. II E, reducing the hydrodynamic resolution
(by reducing Dwet) neglects short range hydrodynamic interactions. It seems clear that short range hydrodynamic
interactions should increase in importance as concentration increases, i.e., as the particles are on average closer to-
gether. However it must be noted that this will also increase the relative importance of electrostatic interactions,
which decay more rapidly than hydrodynamic influence.

To estimate the importance of these effects, and obtain an estimate for the required Dwet value for a given con-
centration, we consider two ions, 1 and 2. In Fig. 7, the effect of dry diffusion on the particle mobility matrix is
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FIG. 6. Relative difference in conductivity from DHO theory including Wien corrections for the strong field case), as a function
of wetness percentage, for a range of molarities; based on data from Table I.

illustrated as a function of particle separation. The mobility parallel and perpendicular to the vector connecting the
particles is shown, measured from 100% wet and 50% wet simulations. These are compared to the solution obtained
from the RPY tensor, Eq. (7). As discussed above, increasing the percentage of dry diffusion amounts to neglecting
short range hydrodynamic interactions; as per Eqs. (26)–(30), changing from 100% wet to 50% wet is equivalent to
doubling the hydrodynamic radius.

To represent the dry component of the particle mobility, we introduce the dry tensor

Mdry(a) =
1

6πηa
I. (71)

The velocity of particle 1 has two contributions: that directly induced by the Coulomb force, Eq. (38),

V dir
1 =

(
R(0, aw) + Mdry(ad)

)
FC

12

= R(0, at)F
C
12 = Mdry(at)F

C
12. (72)

and the disturbance in the fluid induced by particle 2, which is subject to the opposite force,

V dst
1 = −R(x21, aw)FC

12, (73)

with the total velocity of particle 1 (parallel to the vector x12) being

V 1 = V dir
1 + V dst

1 . (74)

In Fig. 8 we plot V1 as a function of particle separation. Five curves are shown, ranging from 0% to 100% wet,
with increments of 25%. Also marked, with vertical lines, are the measured average nearest particle separations for
two concentrations, 0.1 M (black) and 2 M (red). At 0.1 M varying the wetness from 50-100% produces only a 2%
change in particle velocity. At 2 M the same range produces a change in velocity of 33%, suggesting a higher wetness
percentage is necessary to accurately capture the solution at higher molarities, as expected.

In Fig. 9 particle velocity is shown as a function of wet percentage, for a range of ion separations using the same
two ion system; the curves are normalized by the value at 0% wet. In addition to the measured nearest ion separation
(solid lines), for comparison we have also indicated the average nearest particle distance obtained by assuming the
particles are in a random configuration (dashed lines), and in a cubic lattice (dotted lines). For randomly distributed
particles the average nearest particle distance is [68]

x12 = Γ( 4
3 )( 4

3πn)−1/3 ≈ 0.55 n−1/3, (75)
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FIG. 7. Left: Mobility of particle 1 when a force is applied on particle 2, in the direction parallel to the vector connecting
particles 1 and 2. Right: Mobility of particle 1 when a force is applied on particle 2, in the direction perpendicular to the
vector connecting particles 1 and 2. The red circles are values measured from a 100% wet simulation, the black crosses from a
50% wet simulation. In each case the values are normalized by the particle self mobility, and the separation is shown in terms
of the average particle radius of species A and B, i.e., āt = (aAt + aBt )/2, āw = (aAw + aBw)/2, ād = (aAd + aBd )/2. Each set of
data is compared to the result from the RPY tensor calculated using aw, shown with the red and black solid lines. Also shown
for comparison is the RPY result corresponding to the 75% wet case (dashed line). The approach of using the average particle
radius has been used for simplicity because the two species are of similar size; we note that a polydisperse version of the RPY
tensor is described in Ref. 66. Simple fits of the pair mobility for the 6-point Peskin kernel is given in Ref. 67.

FIG. 8. Particle velocity due to electrostatic and hydrodynamic interactions between two ions, as a function of separation.
The velocity V1 is calculated using Eqs. (72)-(74), using a radius averaged from species A and B, i.e., āt = (aAt + aBt )/2,
āw = (aAw +aBw)/2, ād = (aAd +aBd )/2. A range of wet percentages are shown, the corresponding particle radii can be found with
Eqs. (29) and (30) and the radii quoted at the start of Section V. The measured average closest ion separations corresponding
to concentrations 0.1 M and 2 M are indicated with the black and red vertical lines.
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where Γ(x) is the gamma function. Assuming a cubic lattice arrangement gives

x12 = n−1/3. (76)

Also shown are the conductivity simulation measurements from Table I, again normalized by the 0% wet value. For
both 0.1 M and 2 M the conductivity measurements follow a similar trend to the particle velocity, suggesting that
the simple particle velocity calculation from Eqs. (72)-(74) is a useful indicator of the lower bound of wet diffusion
necessary to accurately simulate a given molar concentration. For example, the change of 2% in the particle velocity
for the 0.1 M case corresponds to a 1% change in conductivity for the two highest wetness ratios, while the 33%
change in velocity for the 2 M case corresponds to a change in conductivity of 10%.
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FIG. 9. Normalized particle velocity due to Eq. (74) (lines), and normalized conductivity simulation measurements from Table I
(symbols), as a function of wet/dry ratio of species A. All values are normalized by the 0% wet value. Black signifies 0.1 M, red
2 M. The curves indicate the particle velocity, calculated at the average nearest particle separation measured from simulation
(solid), and corresponding to random (dashed), and cubic lattice (dotted) configurations. Squares are zero-field conductivity
measurements using the Einstein-Helfand formula (Eq. (70)), diamonds indicate weak-field conductivity measurements using
the center of charge displacement (Eq. (68)), and crosses are the prediction of DHO theory (Eq. (61)).

VI. CONCLUSIONS

In this article we have presented a new approach for the simulation of electrolytes at the mesoscale. The method
extends the FIB method to include electrostatic interactions, and incorporates a “dry diffusion” process to correct
for under-resolution of the hydrodynamics. The dry diffusion term allows the method to be applied to systems of
electrolytes where application of the standard FIB approach would require an excessively fine grid to resolve particles
of nanoscopic size. We note that our approach is similar to the Stochastic Eulerian Lagrangian Method [27, 69, 70]
and the stochastic Force Coupling Method [44, 71–73]; the relationship of each of these to the FIB method is discussed
in Ref. 24. In principle, some of the techniques outlined in this article could also be applied in the context of these
distinct numerical approaches.

In sections V A and V B, we have demonstrated that the DISCOS method accurately reproduces several important
properties of electrolytes. In Sec. V C, we have demonstrated that the dry diffusion approach can effectively replace
resolving the near-field hydrodynamics at scales smaller than the typical ion-ion distance. At 0.1 M, reducing the
wetness to approximately 50% produces only a 2% change in the conductivity, but at 2 M a 10% change is observed.
Dry diffusion can therefore be used to reduce the numerical resolution needed to simulate an electrolyte, but this
approach becomes less effective as the ion concentration is increased.

Our results clearly demonstrate that, for denser electrolyte solutions, near-field hydrodynamic interactions con-
tribute to macroscopic transport properties such as conductivity. As discussed in great detail in Ref. 40, wet diffusion,
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which is diffusion due to advection by a fluctuating velocity field, and standard dry diffusion, are very different both
physically and mathematically. This difference cannot be seen for a single particle since ultimately only the total
(effective or renormalized) diffusion coefficient matters; it is worth recalling that in Ref. 29 only a single nano-particle
is analyzed. The difference between wet and dry diffusion, however, manifests itself in collective properties such as
the spectrum of nonequilibrium concentrations [40]. However, experimentally distinguishing between wet and dry
diffusion based on this spectrum requires examining length scales below light-scattering reach, and, at the scales ob-
servable in typical experiments, one only sees a total (effective or renormalized) diffusion coefficient. Our work shows
that electrical conductivity, which is easily measured to high accuracy, is a sensitive probe that is affected by the
hydrodynamic interactions (equivalently, the spectrum of the fluctuating velocity field [40]) at distances comparable
to the typical ion-ion spacing. In the future, it is important to perform more detailed comparisons between simula-
tions for different degrees of “wetness” and results for denser electrolytes obtained using experiments or large-scale
molecular dynamics simulations. This will shed light on how good of a model the Rotne-Prager-Yamakawa tensor is
for solvated ions.

A key advantage of the FIB method is the ability to handle other types of boundary conditions, notably confinement
by no-slip walls. As the discussion of DISCOS in this context requires considerable exposition, of both details of the
algorithm and the physics that arises, we defer this to a future publication. However, as previously noted, we give
some brief comments in Appendix C. It is perhaps more relevant to contrast the numerical method used in DISCOS
to the state-of-the-art Positively Split Ewald (PSE) method for Brownian Dynamics with hydrodynamic interactions
developed in Ref. 21, by using some ideas from spectral Ewald methods for electrostatics [48] combined with the
idea of using fluctuating hydrodynamics to generate the far-field Brownian displacements. The PSE method includes
a spectrally-accurate implementation of the Hasimoto-Ewald splitting used in GGEM [17]; this splitting allows one
to choose the grid size arbitrarily by using the same idea of local near-field corrections that we used here for the
Poisson equation. However, at present, the PSE approach relies on Fourier-space decompositions and using the
FFT algorithm, and therefore only apply to triply-periodic domains. It remains a future challenge to find a way to
incorporate near-field hydrodynamic corrections to correct for under-resolution of the hydrodynamics by the Stokes
solver used in FIB and DISCOS, while also computing Brownian motion without expensive iterations.

In future work we intend to apply DISCOS to strong electrolyte solutions that are acids (e.g., HCl) or bases (e.g.,
NaOH) instead of salts. Also of interest are solutions in which the Wien effect is more pronounced, such as weak
electrolyte acids and bases (e.g., acetic acid, ammonium hydroxide) and strong electrolyte salts that are not 1:1 (e.g.,
MgCl2). Furthermore, recent work suggests that non-aqueous solvents with low permittivity (e.g., benzene) exhibit
unusual Wien effects [74].

Here we have described the DISCOS approach for simple mono-atomic, 1:1 electrolytes, where each ion is described
by a single IB kernel. In principle, multiple kernels may be combined to form complex molecules such as charged
polymers or DNA strands. This approach has already been tested in the context of BD, for example in Refs. 30 and
31, and for electrically neutral systems using FIB, for example in Refs. 67, 75, 76. Future work may also include the
extension of DISCOS to encompass these cases. Further, there is the possibility of simulating large molecules, such
as DNA, in a solution represented as a continuum that includes smaller ionic species. This was done previously using
a deterministic solution in Ref. 77, in this case the solution would be modeled using the fluctuating hydrodynamic
approaches outlined in Refs. 11–13.
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Appendix A: Accuracy of immersed-boundary P3M solver

In this appendix we examine the accuracy of the immersed-boundary P3M method described in Sections III A
and IV C. In particular, we focus on the degree of translational and rotational invariance of the electrostatic forces
computed by the method for a pair of ions of equal and opposite charge qi = −qj at a distance r from each other,
using a uniform regular grid of spacing ∆r. The periodic box size L� r so that periodic effects can be neglected.
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We include in our tests both the 4-point (see Eq. (44)) and 6-point [52] Peskin kernels, given by

δPe(ζk) =



0, ζk ≤ −3

ϕ(ζk), −3 < ζk ≤ −2

−3ϕ(ζk)− 1
16 +

K + ζ2
k

8 +
(3K − 1)ζk

12 +
ζ3k
12 , −2 < ζk ≤ −1

2ϕ(ζk) + 1
4 +

(4− 3K)ζk
6 − ζ3

k
6 , −1 < ζk ≤ 0

2ϕ(ζk) + 5
8 −

K + ζ2
k

4 , 0 < ζk ≤ 1

−3ϕ(ζk) + 1
4 −

(4− 3K)ζk
6 +

ζ3
k
6 , 1 < ζk ≤ 2

ϕ(ζk)− 1
16 +

K + ζ2
k

8 − (3K − 1)ζk
12 − ζ3

k
12 , 2 < ζk ≤ 3

0, 3 < ζk

, (A1)

where

ϕ(ζk) =

(
−ϑ(ζk) + sgn

(
3

2
−K

)√
ϑ2(ζk)− 112ς(ζ)

)
/56,

ϑ(ζk) = 9/4− (3/2)(K + ζ2
k)ζk + (22/3− 7K)ζk − (7/3)ζ3

k ,

ς(ζk) = −(11/32)ζ2
k + (3/32)(2K + ζ2

k)ζ2
k + (1/72)

(
(3K − 1)ζk + ζ3

k

)2
+ (1/18)

(
(4− 3K)ζk − ζ3

k

)2
,

K = 59/60−
√

29/20.

In order to compare to alternative methods, these tests were performed in Matlab using FFTs instead of multigrid to
solve the (discrete) Poisson equation. In addition to the 2nd-order electrostatic solver based on the 7-point Laplacian
(∇2

h)c and centered difference ∇c
h, we also include, for comparison, results obtained by using a fourth-order compact

isotropic 24-point Laplacian in Eq. (51) and a 4-point centered difference in Eq. (52).
In addition to the fourth-order finite-difference Poisson solver, we also implement a spectral Fourier solver, as used

in the Spectral Ewald (SE) method [48]. As explained in Section III A, the SE approach (and essentially all other
Ewald methods) uses a Gaussian of standard deviation σ as the kernel δes in Eqs. (35) and (36). This allows one
to compute the electrostatic force between the two Gaussian charge clouds analytically for an unbounded domain,10

giving the required local correction

FLC
Gaussian =

(
∆r

r

)2(
erfc

( r

2σ

)
+

r

σ
√
π

exp

(
− r2

4σ2

))
(A2)

that decays exponentially with distance. However, achieving 3-4 digits of accuracy with Gaussian kernels requires
the support of the kernel to be on the order of 10-12 grid points in each dimension, which is expensive. Therefore,
to make a more fair comparison with the 6-point Peskin kernel, here we couple the spectral Poisson solver with a
recently-developed “exponential of a semicircle” (ES) kernel [78] with width w = 6; we optimized the value of the
parameter β = 1.8w for translational and rotational invariance.11

Fig. 10 shows numerical data for the radial component of the near-field correction to the electrostatic force F LC
ij

for several kernels and Poisson solvers, expressed in terms of the dimensionless function FLC(x = r/∆r) appearing in
Eq. (41). To quantify the loss of translational and rotational invariance, we randomly generate the position of many

pairs of particles at a distance r from each other. Note that if F LC
ij were purely radial and its magnitude were purely

a function of r, the local-correction approach used here could completely correct the electrostatic force computed by
the discrete solver to match the Coulomb force between point charges. Therefore, the main cause of inaccuracy is
the loss of translational and rotational invariance. In Fig. 10 we also show the correction FLC(x = r/∆r) for a pair
of Gaussian charge clouds given in Eq. (A2). The value of the Gaussian width σ was fitted to match the numerical
results over the range 0 < x < 3, giving σ ≈ 0.78∆r for the 4-point and σ ≈ 0.89∆r for the 6-point Peskin kernels

10 Note that the periodic boundaries are implemented by using a Fourier series instead of a Fourier sum.
11 We point out again that this approach, while similar to the Spectral Ewald method [48] based on the non-uniform FFT [78] using the

ES kernel, is different because we do use the same kernel to both smear the charges and to communicate to the grid, rather than using
two different kernel functions (Gaussian for smearing and ES for grid transfers in the NUFFT).
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FIG. 10. Local correction function FLC(x = r/∆r) computed from the radial component of the near-field correction to the
electrostatic force, F LC

ij , for the Peskin 4pt kernel (top panel) and the Peskin 6pt kernel (bottom panel). Red circles are samples
for different positions and orientations of the pair of ions, while dashed blue lines indicate the continuum theoretical near-field
correction FLC

Gaussian for Gaussian charges of standard deviation σ indicated in the legend (see Eq. (A2)). The black solid line
in the top panel indicates the empirical mean used to tabulate FLC in our method. The bottom panel includes results (black
squares) for a spectral Poisson solver with a 6-point exponential of a semicircle (ES) kernel [78] with parameter β = 1.8 × 6.

with the 2nd order Poisson solver. This can be thought of as an effective width of the charges similar to the effective
hydrodynamic radius aw for Stokes flow.

The spread in the symbols in Fig. 10 shows the loss of translational and rotational invariance. We see in the top
panel that the mean correction force decays algebraically rather than exponentially as it does for Gaussian charges.
We also see that the 6pt kernel improves the invariance, especially at short distances. Using a fourth-order isotropic
Poisson solver further improves the invariance for all distances (data not shown in Fig. 10), as does using a spectral
Poisson solver with the 6-point ES kernel, as shown in the bottom panel of Fig. 10. For the 4-point kernel, we see
in the top panel of the figure that truncating the local corrections for pairs of particles further than 3-grid points
apart, ψ = 3∆r, makes the error due to loss of invariance dominate the error due to truncation of FLC(x = r/∆r),
and therefore there is no point in further increasing the cutoff distance ψ; similarly, for the 6-point kernel ψ = 4∆r
is suitable.

We further quantify the amount of translational and rotational variance in Fig. 11. The top panel shows the spread
in the symbols in Fig. 10 for each distance r, measured as two standard deviations of the samples. We normalize
the spread by 1/x2 to obtain a measure of the invariance of the radial component of the electrostatic force relative
to the true Coulomb potential, and express the error in percent; note that this is the error in the final answer for
the electrostatic force between two ions. The bottom panel shows the magnitude of the non-radial component of the
electrostatic force computed by the Poisson solver, FP

ij , relative to it’s radial component, again expressed as percent
error. The top panel of Fig. 11 shows that the second-order Poisson solver is translationally and rotationally invariant
to about 8% for the 4-point kernel and about 6% for the 6-point Peskin kernel, with the 6-point kernel being notably
more accurate at short distances. The fact that errors become comparable for large distances regardless of the width
of the kernel suggests that for large distances the error is dominated by the anisotropy of the discrete Green’s function
for the standard 7-point Laplacian. Switching to a fourth-order Laplacian drops the maximum error down to 2% for
the 6-point kernel, while the spectral solver with the 6-point ES kernel drops the error below 0.5%. The bottom panel
of the figure shows that all combinations of kernels and solvers studied here achieve a central electrostatic force to
within 1.5%, which is remarkably good.

Appendix B: P3M correction tables

The numerical results in the main body of this work were computed using a four-point Peskin kernel [25], additional
analysis in Appendix A uses a six-point kernel [52]. As per Eqs. (40) and (41), the P3M procedure uses pre-computed
tables to apply a near field correction to electrostatic forces. The values for each kernel are given below in Table II.
Note that for values of FP between the tabulated positions linear interpolation was used.
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FIG. 11. Percent error due to loss of translational and rotational invariance in the immersed-boundary P3M method based on
data shown in Fig. 10. In addition to the method used in this work, we include for comparison the improvement gained by using
a fourth-order isotropic Poisson solver, as well as a spectral Poisson solver with a 6-point ES kernel. (Left) Percent error in the
radial component of the total electrostatic force due to loss of invariance. (Right) Magnitude of the non-radial component of
the IB force FP expressed as percent of the radial component. The symbols show the empirical mean over samples of pairs of
points, while the dashed lines show the maximum value over the samples.
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xij
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0 0 0 2.0 0.165755 0.133308 4.0 0.0627171 0.0616157 6.0 0.0275866

0.1 0.0191993 0.0130335 2.1 0.162663 0.130995 4.1 0.0591556 0.0586423 6.1 0.0267607
0.2 0.0384104 0.0259347 2.2 0.156037 0.129343 4.2 0.0561682 0.0561644 6.2 0.0259347
0.3 0.0561438 0.0384891 2.3 0.148626 0.126205 4.3 0.0539003 0.0535214 6.3 0.0251088
0.4 0.0745141 0.0507132 2.4 0.144648 0.122075 4.4 0.0511791 0.0513739 6.4 0.0242829
0.5 0.0914394 0.0624416 2.5 0.138100 0.118276 4.5 0.0492405 0.0487309 6.5 0.0236221
0.6 0.106869 0.0735093 2.6 0.131473 0.115137 4.6 0.0470903 0.0469138 6.6 0.0229613
0.7 0.121719 0.0837511 2.7 0.12615 0.110677 4.7 0.0453286 0.0450967 6.7 0.0221354
0.8 0.134211 0.0931669 2.8 0.120057 0.106547 4.8 0.043644 0.0431145 6.8 0.0214746
0.9 0.145262 0.101922 2.9 0.112581 0.102748 4.9 0.0417381 0.0414626 6.9 0.0209791
1.0 0.154958 0.109521 3.0 0.106808 0.0979574 5.0 0.0399759
1.1 0.162921 0.116293 3.1 0.100863 0.0936624 5.1 0.038324
1.2 0.168841 0.121745 3.2 0.0947845 0.0898631 5.2 0.0366721
1.3 0.173264 0.126535 3.3 0.0905315 0.0860637 5.3 0.0355157
1.4 0.176417 0.130335 3.4 0.0856055 0.0816036 5.4 0.034029
1.5 0.17854 0.132978 3.5 0.0818209 0.0782998 5.5 0.0328727
1.6 0.177695 0.134134 3.6 0.0768459 0.0745005 5.6 0.0317164
1.7 0.175969 0.135621 3.7 0.0728331 0.0707011 5.7 0.0307252
1.8 0.174664 0.13529 3.8 0.0694836 0.0680581 5.8 0.0295689
1.9 0.170830 0.134629 3.9 0.0650267 0.0645891 5.9 0.0285778

TABLE II. Tabulated values for P3M correction using four-point and six-point Peskin kernels, as described in Sec. III A. Note
that data has been shown beyond the ideal cutoff range, ψ; see Appendix A.

Appendix C: Comments on non-periodic boundaries

As mentioned in sections I and VI, one advantage of the DISCOS method is the ability to handle non-periodic, or
confining, boundary conditions with relative ease. As the techniques used to do so require some exposition, and a
range of case studies are required to validate these techniques, we defer a complete description to a future publication.
However here we give a brief outline of some of the issues.
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There are two major considerations when incorporating confining boundary conditions: (i) boundary conditions
for the P3M electrostatic interactions, and (ii) boundary interactions for the dry component of the solvent. We
now describe each of these in turn, then give several example simulations. Non-periodic boundary conditions can
easily be incorporated in a finite volume discretization of Poisson’s equation. The short range corrections adjacent to
boundaries are included using image particles [79]. In this case F LC

ij , Eq. (40), is trivial to calculate using the location
of the image particles.

For the wet component of the hydrodynamic interactions, no additional steps are required to add confining bound-
aries; these are trivially incorporated into the GMRES method. In particular, extensive discussion of no slip walls in
the context of the FIB method is given in Ref. 24. An adjustment to the dry component of the particle mobility is
required to account for nearby boundaries. For some simple geometries there are analytic solutions, e.g. a formula is
available for a single infinite plane. For general geometries, the modification to the dry mobility must be pre-computed
by solving Stokes’ equation on a grid corresponding to a fully wet simulation.

Below in Fig. 12 we give two examples of simulations performed using the above approaches. In each case an infinite
slit channel is used, i.e. periodic boundaries in two dimensions and confining boundaries in the third. In the first
we show the distribution of particles when homogeneous Dirichlet and homogeneous Neumann boundary conditions
are used for the hydrodynamic and electrostatic solutions, respectively; this corresponds closely to a no slip dielectric
surface with a material of low dielectric constant on the outside of the channel. Additionally, a constant potential
drop has been applied across the channel. The DISCOS solution is compared to a molecular dynamics result from
Ref. 80, and excellent agreement is observed. In the second example an electric field is applied parallel to the channel
walls, and an inhomogeneous Neumann condition is applied to the electrical potential; this corresponds to a wall with
surface charge. To ensure overall charge neutrality an imbalance of positive and negative ions is present in the channel
itself, inducing an electro-osmotic flow. The resulting solvent velocity profile is compared to a deterministic version
of the method given in Ref. 11. Reasonable agreement is observed; the 9% difference in the peak velocity is possibly
due to the absence of thermal fluctuations in the deterministic continuum solution.
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FIG. 12. Left: Comparison of cation molarity between DISCOS (red) and MD (black), for a channel with dielectric boundaries
and a wall normal electric field. All simulation parameters have been selected to match those in Ref. 80. Right: Comparison
of electro-osmotic flow between DISCOS and the continuum electrolyte code described in Ref. 11. The red circles and black
crosses represent the DISCOS and continuum fluid velocities a short time after the electric field has been applied. The red
squares and black diamonds show the flow at large time when the system has reached steady state.
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