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A Physics-Constrained Data-Driven Approach Based on Locally Convex Reconstruction for 

Noisy Database 

Qizhi He, Jiun-Shyan Chen0F

∗ 

Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA 

Abstract 

Physics-constrained data-driven computing is an emerging hybrid approach that integrates 

universal physical laws with data-driven models of experimental data for scientific computing. A 

new data-driven simulation approach coupled with a locally convex reconstruction, termed the 

local convexity data-driven (LCDD) computing, is proposed to enhance accuracy and robustness 

against noise and outliers in data sets in the data-driven computing. In this approach, for a given 

state obtained by the physical simulation, the corresponding optimum experimental solution is 

sought by projecting the state onto the associated local convex manifold reconstructed based on 

the nearest experimental data. This learning process of local data structure is less sensitive to 

noisy data and consequently yields better accuracy. A penalty relaxation is also introduced to 

recast the local learning solver in the context of non-negative least squares that can be solved 

effectively. The reproducing kernel approximation with stabilized nodal integration is employed 

for the solution of the physical manifold to allow reduced stress-strain data at the discrete points 

for enhanced effectiveness in the LCDD learning solver. Due to the inherent manifold learning 

properties, LCDD performs well for high-dimensional data sets that are relatively sparse in real-

world engineering applications. Numerical tests demonstrated that LCDD enhances nearly one 

order of accuracy compared to the standard distance-minimization data-driven scheme when 

dealing with noisy database, and a linear exactness is achieved when local stress-strain relation is 

linear. 

Keywords: data-driven computing; locally convex reconstruction; manifold learning; noisy data; 

local convexity data-driven (LCDD); reproducing kernel (RK) approximation  
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1. Introduction 

With the proliferation of high-resolution datasets and the significant advances in 

numerical algorithms, the emerging idea by utilizing both data-driven models and physical 

models simultaneously to enhance traditional scientific computing and engineering design 

procedures [1,2] has attracted increasingly attentions. This general approach is usually termed as 

data-driven modeling [3] or data-driven engineering science. Data-driven modeling has a close 

connection with the various areas such as statistics, data mining, and machine learning, which 

allow the extraction of insightful information or the hidden structures from large volumes of data 

[4] for enhanced scientific computing. The data-driven approaches, such as machine learning 

[5,6], have been widely applied to computational biological [7] and medical diagnosis [8], 

material informatics [9,10], and other predictive physics problems [4,11]. 

Recently, these approaches have been extended to the field of engineering mechanics, 

such as learning constitutive models in solid mechanics [12–14], surrogate models in fluid 

mechanics [15–17] and physical models or governing equations purely extracted from the 

collected data [18–20]. In conjunction with machine learning techniques such as manifold 

learning [21] or neural networks [22], the recent studies [23–25] offer a new paradigm for data-

driven computing for various applications such as design of materials [26]. There is a vast body 

of literature devoted to these subjects, including the recent developments based on nonlinear 

dimensionality reduction [24], nonlinear regression, deep learning [27–29], among others. 

Nevertheless, pure data-driven methodology in the area of simulation-based engineering 

sciences (SBES) [30] is ineffective since in many physical systems well-accepted physical laws 

exist while useful data in SBES are very expensive to acquire [20,31]. Thus, it is imperative to 

develop data-driven simulation approaches that can leverage the physical principles with limited 

data for highly complex systems. A solution to develop effective predictive models for complex 

real-world problems is to combine physics-based models with data-driven techniques under a 

hybrid computational framework. There are three types of hybrid physics-data approaches, 

depending on the roles of physics laws and data play in the hybrid model. The first approach 

enforces known physical constraints into data-driven models [32,33], which can be considered as 

a data-fit type surrogate model. In the second approach, on the contrary, the existing physical 

models are enriched by the information learned from data. This general framework can be used 
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for obtaining data-enhanced physical models [34,35], online updating dynamical system in a 

manner similar to data assimilation [36], or constructing reduced-order model [25,37–40]. The 

third approach is to apply data-driven models and physical models separately to approximate 

different aspects of the physical system and be connected consistently to perform numerical 

simulation. 

The third class of methods is particularly attractive for computational mechanics because 

it preserves the well-accepted physical laws under the variational framework and the prerequisite 

of big data is much relaxed. In contrast, most other data-driven methods for solid or fluid 

simulation directly construct machine learning surrogates to link the input-output relation with 

approximated physics laws [17, 24, 33] or with the constitutive models replaced by supervised 

learning models such as neural networks [12-14, 27], which could over-parameterize the material 

relation and lead to numerical instability. In addition, the setting of training and architecture 

hyperparameters for neural networks is not straightforward. 

Under the framework of the third approach mentioned above, Kirchdoerfer and Ortiz 

[41–43] have proposed a material model-free data-driven method, so called distance-minimizing 

data-driven computing (DMDD), for modeling elasticity problems. This data-driven method 

enforces equilibrium and compatibility and directly utilizes the material database, e.g. stress and 

strain data, under a modified variational framework, aiming to eschew the empirical models that 

inevitably involve incomplete experimental information [41,42] and the process of material 

parameter identification [44–46] that remains numerically intractable. In DMDD, the data-driven 

problem is solved by minimizing the distance between the computed physical solutions (i.e. the 

set of equilibrium admissible stress and kinematically admissible strain jointly) and a given set of 

experimental data under a proper energy norm. A similar idea was proposed by Ibañez et al. [47] 

where manifold learning techniques are applied to material database to construct the tangent 

stiffness approximation of constitutive relation, with which the convergent solution could be 

attained by using directional search solvers [48,49]. In these methods, the data selection or 

automated machine learning techniques on material data are carried out during the computation 

of the associated initial-boundary-value problem, thus bypassing the traditional construction of 

constitutive models. Again, these methods fall into the third class of the data-driven approaches 

discussed above, and they are usually defined as data-driven computational mechanics (DDCM) 
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[41,47]. This data-driven paradigm has been recently extended to dynamics [43], nonlinear 

elasticity [35,50,51,82], material identification [52], and data completion [53]. Overall, the key 

idea of the above mentioned methods is to seek the intersection of the hidden constitutive 

(material) manifold represented by experimental data and the physical manifold by using 

iterative processes with appropriate search directions, as shown in Fig. 1. 

 

 

Fig. 1. Schematics of data-driven computing for predictive modeling, where a set of data points 

ˆ{ , 1,2,...}i i =s  are given to represent the material behavior, E  is an imaginary manifold of the 

material database representing the underlying constitutive relation, and C  is the physical 

manifold of admissible stress and strain states . ( , )s = ε σ . satisfying equilibrium and 

compatibility. The data-driven solution ∗s is solved by a fixed point iteration that searches the 

physical states ( )v ∈s C  and the local data solutions ( )ˆ v∗ ∈s E  via iterative projections, where the 

subscript ‘v ’ is the step indicator. In this study, only stresses and strains are considered in the 

material database. 

 

Despite the major advancement made in the field, it remains challenging in dealing with 

noisy and sparse data [1]. The standard DMDD paradigm [41] is shown sensitive to noisy data 

and outliers [42,54], while the approaches based on manifold learning [47] or local regression 

[55] may fail to converge due to the over-relaxed manifold constrsuction and lack of convexity. 

To enhance robustness, the DMDD approach was extended to the max-ent data driven computing 

[42], which utilizes entropy estimation to analyze the statistics information of data. However, as 
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simulated annealing algorithms are used to solve the resulting data-driven minimization problem, 

the solution procedures become computationally intensive. Alternatively, Ayensa-Jimenez et al. 

[54] proposed to consider data uncertainty by explicitly incorporating statistical quantities into 

the standard DMDD approach and defined a stochastic analogous problem. In this approach, the 

expected value and variance-covariance matrix need to be estimated and the local data structure 

is still not taken into consideration and hence it becomes ineffective in dealing with high-

dimensional dataset. 

In this paper, we propose a novel data-driven approach which utilizes the intrinsic local 

data structure to enhance accuracy and robustness against noisy data while computationally 

feasible. By assuming that each data point and its neighbors lie on or close to a locally linear 

patch of the manifold, the proposed approach approximates the underlying constitutive manifold 

near the physically admissible state by locally constructing a convex envelop based on the 

associated experimental neighbor data points. As a result, the proposed approach can utilize the 

local data structure without explicitly constructing the local manifold or regression models 

needed in the approaches [47,54,55] utilizing the associated tangent spaces for data-driven 

iterations. With this locally convex construction, the solution space for searching optimum local 

data is regularized onto a bounded, continuous, and convex subset (polytope) for enhanced 

robustness and convergence stability in data-driven computing. The proposed approach is, thus, 

referred to as local convexity data-driven (LCDD) computing. In this approach, a cluster of 

experimental data associated with the physical solution (e.g., the pair of strains and stresses) is 

first identified by the k-nearest neighbor (k-NN) algorithm, and the optimum data solution is 

searched within the associated locally convex hull instead of the discrete material set. To solve 

this local search problem efficiently, we recast the approach into a non-negative least squares 

(NNLS) problem [56] by introducing the invariance constraint into the objectivity function. 

Because of the inherited manifold learning capacity in the NNLS solvers, the proposed LCDD 

permits the locally linear approximation for the underlying material manifold, which means that 

LCDD could reproduce the solutions given by the classical model-based simulation if the 

constitutive relation represents a locally linear pattern.  

On the other hand, LCDD can be viewed as a generalization of DMDD by equipping a 

suitable manifold learning technique that naturally takes the local data information into account 
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and retains a simple computing framework. In the solution phase on the physical manifold, a 

constrained minimization problem is solved by introducing a reproducing kernel approximation 

(RK) [57,58] in conjunction with a stabilized conforming nodal integration (SCNI) [59] such that 

the displacements, stresses and strains are computed at the nodal points. This approach 

significantly reduces the needed search for the optimal stress-strain data from the data set. The 

employment of the RK approximation also introduces higher order smoothness to the solution 

space of the physical manifold, making it consistent to the continuous and convex solution space 

of the regularized LCDD learning solver. It is noted that there is no assumption of isotropy and 

homogeneity in the proposed LCDD data-driven computational framework. The learning 

algorithm can identify the intrinsic properties of the given dataset. In this study, we only consider 

the modeling of homogeneous material, that is, the same dataset is used to characterize the 

material behavior at every evaluation point over the domain. 

The objective of the present work is to study the main issues of data-driven approaches 

when dealing with noisy data in high-dimensional space. The paper is organized as follows. In 

Section 2, a generalized data-driven computational formalism is reviewed. In Section 3, locally 

convex reconstruction is introduced and the local manifold learning for data-driven solver 

formulated under the NNLS framework is presented. Section 4 provides numerical tests of truss 

structures to demonstrate the effectiveness of LCDD against noisy data. In Section 5, continuum 

mechanics with elastic solid is considered to assess the accuracy and convergence properties of 

LCDD when the noisy data is of high-dimensional phase space. Finally, concluding remarks and 

discussions are given in Section 6.   
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2. Physics-constrained data-driven modeling  

In this section, we revisit the methodology of data-driven computational mechanics 

(DDCM) in [41,47,60] and formulate the associated data-driven problem under the variational 

framework for distance-minimizing between a physical set and an experimental data set. 

The deformation of an elastic solid occupying the domain Ω  bounded by Neumann 

boundary tΓ  and Dirichlet boundary uΓ  can be described by two basic laws:  

(i) Equilibrium 

 ,  in ,= Ω⋅ +σ b 0∇   (1a) 

 ,  on ,t⋅ = Γtnσ   (1b) 

(ii) Compatibility 

 ( )1 ,  in ,
2

T= + Ωε u u∇ ∇   (2a) 

 ,  on ,u= Γu u   (2b) 

where σ , u , ε , and b  are the Cauchy stress, displacement, strain, and body force, respectively, 

and u  and t  are the prescribed displacement and the applied traction on uΓ  and tΓ , 

respectively.  

Traditionally, to solve a boundary value problem (BVP) in (1) and (2), the constitutive 

law, e.g. ( )=σ σ ε , is required to relate σ  and ε . In data-driven computing, the equilibrium and 

compatibility equations in (1) and (2) are solved numerically, while the constitutive relation is 

given by a set of experimental data, ˆ{( ), 1,..., }ˆ,i i i p= =σεE , where p  is the number of 

measurement data collected from experiments.  

Remark 2.1 For modeling homogeneous material, the same dataset E  is used to 

characterize the material behavior at every evaluation point over the domain. Note that this 

data-driven computing can be applied to heterogeneous materials if space-dependent databases 

are available. In this approach, there is no predefined material models or material parameters 

that need to be identified, which makes data-driven computing different from the classical 

simulation methods and material identification problems. 
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 It is convenient to introduce the notion of phase space Z  as the space of the strain-stress 

pairs ( , )ε σ , and denote C  as the admissible set for elements ( , )∈ε σ Z  that satisfy the physical 

constraints in (1) and (2), which is also called the physical manifold. Ideally, the data-driven 

solution is the intersection of the global data set emE  and the physical manifold set C , i.e. 

em IE C , where ...em= × × ⊂Ev E E Z  denotes the ensemble of the experimental set E  over Ω . 

Since E consists of a finite set of discrete data points which could lead to non-existence of the 

intersection em IE C , a distance-minimizing relaxation is usually employed.  

 

2.1. Distance-minimizing data-driven problem  

Data-driven computing [41,47] and data-enabled applications, such as dynamics data-

driven application systems (DDDAS) [1] and parameter identification for pre-defined material 

models [44–46], introduce distance-minimization between the simulation data and the 

measurement data. The main difference between these approaches is that data-driven computing 

is a forward problem while parameter identification is an inverse problem for material 

calibration. We refer interested readers to the literatures for more details of parameter 

identification [44–46]. Data-driven computing can be stated as one of the following double-

minimization problems:  

  
ˆ ˆ( , ( ,) )

ˆ ˆ  ( , )min min , ,
em u σ∈ ∈ ×ε σ u σ

u σ ε σ
E C C

H  or 
ˆ ˆ( ) ( , ),

ˆ ˆ ( , )min mi , ,n
u emσ∈ × ∈ε σu σ

u σ ε σ
EC C
H  (3) 

where H  is a given functional to define a distance measure, which is to be elaborated in the next 

section, and σC  and uC  denote the sets of equilibrium admissible stress fields and kinematically 

admissible displacement fields, respectively, i.e., 

 { }|   in ,  and  on ,tσ σ= ∈ + = Ω ⋅ = Γ⋅τ τ b 0 tnτC V ∇   (4a) 

 { }|  on ,u u u= ∈ = Γv v u C V   (4b) 

in which 2 6[ ( )]Lσ = ΩV  is the symmetric stress space, and 1 3([ ])u H= ΩV  is the displacement 

space. Then the physical manifold set is defined as 

 { }( [ ], ) | , .u σ= ∈ ∈ε σu σuC V V   (4c) 
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Note that strain ε  is obtained from the displacement u∈u C  using (2a), which is denoted by 

[ ]ε = ε u .  

Corresponding to the strain-stress state ( , )∈ε σ C  obtained from the physical manifold C , 

ˆ ˆ( , ) em∈ε σ Ev  is used to denote the data from the experimental data set emEv . As illustrated in Fig. 

1, the data-driven computing in (3) is to find the state ( , )ε σ  constrained to the physical set C  

while closest to the dataset emE  under a certain “distance” measure defined by the functional H , 

such that the system response is determined directly from the experimental data without 

specifying any constitutive models. 

 The data-driven problem in (3) can be decomposed into a two-step problem:  

Global step: 
),(

ˆ ˆˆ ˆ( , ) ( , ),, ,min
u

J
σ∈ ×

=
u σ

u σε σ ε σ
C C

H   (5a) 

Local step: 
ˆ ˆ( , )

ˆ ˆˆ ˆ( , ) ( , )argmin
em

J
∈

∗ ∗ =
ε σ

ε σ ε σ
E

  (5b) 

where ˆ ˆ( , )∗ ∗ε σ  is the optimum experimental point closest to the computed state ( , )ε σ  given in (5

a). From an optimization perspective, the solution procedures of this data-driven problem involve 

an alternate-direction search where a minimization with respect to ( , )u σ  is followed by a 

minimization with respect to ˆ ˆ( , )ε σ , denoted as a global step and a local step, respectively.  

Compared to the problem setting in material parameter identification [45], the data-driven 

computing in (5) does not rely on any pre-assumed elasticity tensor to relate ε and σ . Instead, it 

iteratively searches a representative stress-strain pair from the experimental dataset for 

performing simulation. 

 

2.2. Data-driven solver 

The norm || ||g Z  associated to the phase space Z  has been defined as a combination of the 

energy-like and complementary energy-like functional [41] as follows: 

 2|| ( , ) || ,1 : : : : d
2

ε σ

Ω
= + Ω∫ε ε M σMσεσ Z  (6) 
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where εM  and σM are two tensors to balance the contribution of the strain and stress data 

measured in different physical units. 

For numerical implementation, the state variables ( , )ε σ  are computed at integration 

points )( (, ) , ))( ( q q
α α α α≡ ∈ ×σε ε x xσ ° ° , where 1{ }mα α=x  are the coordinates of the m  

integration points (i.e., stress-strain evaluation points) and q  is the dimension of stress and 

strain. As such, we denote 1{( , )}m h
α α α= ∈σε Z , where h ⊂Z Z  is the discrete counterpart of the 

phase space. Correspondingly, the distance minimization in the local step searches for the local 

data solution ˆ( )ˆ ,α α ∈σε E  at every integration point αx , 1,...,mα = . In the subsequent 

discussion, we define 2[ ]T T T q
α α α= ∈σs ε  °  and 2ˆˆ ˆ[ ]T T qT

α α α= ∈ε  σs °  as the computational and 

experimental strain-stress pairs, respectively, in the local phase space. 

A functional H  defined as the discrete form of (6) to measure the distance between 

1{( , )}mα α α =σε  and 1ˆ{( , )ˆ }mα α α =ε σ   is given as 

 2 2

1

ˆ, , , ,|ˆ ˆˆ ˆ( ) | ( , ) || ( , )
m

d Vα
α

α α
=

− ≈= − ∑ε σ ε σ σu σ ε s sZH   (7) 

where 1{ }mVα α =  are the quadrature weights associated with the m  integration points, and 

 2 2 1 2ˆ ˆ( , ) ( ( , ) ( , ))ˆ ,d d dε
α α

σ
α α α α= + σ σεs s ε   (8) 

where 

 
( )
( )

1/2

1/2

ˆ ˆ

.

( , )

ˆ ˆ ˆ

ˆ1 2( ) ( ) ,

1 2( )( (, ) )

T

T

d

d

ε ε
α α α α α α α

σ
α α α

σ
α α α α

−

− −=

−=ε ε ε ε M ε ε

Mσ σ σ σ σ σ
  (9) 

Here q qε
α

×∈M °  and q q
α
σ ×∈M °  are symmetric and positive-definite coefficient matrices for 

multivariate distance measures, and usually ( ) 1α
σ ε

α
−

=M M . One approach for selecting the 

coefficient matrices is by computing the covariance of the material data set and using the so-

called Mahalanobis distance for multivariate data, as proposed in [54]. Investigating the effect of 

coefficient matrices is out of the scope of this study. Numerical examples show that by using the 

proposed locally convex construction scheme with a coefficient matrix representing linear 
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elasticity, which can be extracted from stress-strain dataset at small strain range, satisfactory 

data-driven results are achieved. 

 

2.3.1. Global step of data-driven solver 

The global step of the data-driven problem (5a) is reformulated as: 

 
,

.

m ˆ ˆ( ),

subject to:      div   in ,
       

i , ,

 

,

on 

n
u

t

σ∈ ∈

+ = Ω
⋅ = Γ

u σ
ε σ

σ b 0
                      σ n

u σ

t

C V
H

 (10) 

This global step searches for the physically admissible state ( [ ], )= ∈s σuε C  closest to a given 

experimental data )ˆ ˆ ˆ( ,=s ε σ  by means of Lagrange multipliers 

 ˆ ˆ( , ) ( ) (div )d ( )d , , , , , ,
t

DD Ω Γ
= + ⋅ + Ω+ ⋅ ⋅ − Γ∫ ∫λ η ε σ λ σ b η σ n tu σ u σL H   (11) 

where λ  and η  are the Lagrange multipliers in proper function spaces. The Euler-Lagrange 

equations of (11) reveals  on t= − Γη λ  [61]. Considering the equations (6) - (9), and [ ]ε = ε u , 

the variational form is 

 

( )ˆ, , [ ] : : ( [ ] ) : : ( )

: [

,

] [ ]

ˆ( ) ( d

        d ( ) d d

        d d

:
u

t

DD
σεδ δ δ

δ δ δ

δ δ

Ω

Ω Γ Ω

Ω Γ

= − − Ω

− Ω+ ⋅ ⋅ Γ − Ω

+

+ ⋅ Ω+ ⋅ Γ

∫
∫ ∫ ∫
∫ ∫

u σ ε u M ε u ε M

ε λ λ ε

t

σ

λ σ σ σ

σ σ n λ

λ b λ

L

 (12) 

where 1 2( )[ ] T= +ε λ λ λ∇ ∇ . Consequently, we have 

 ˆ[ ]: : [ ] [ ] ,: :d dε εδ δ
Ω Ω

Ω = Ω∫ ∫ε u M ε u ε u M ε  (13a) 

 d ,[ d]: d
t

δ δ δ
Ω Ω Γ

Ω = ⋅ Ω+ ⋅ Γ∫ ∫ ∫λ λ λ tε σ b    (13b) 

 d: : [ ] : : ˆ( ) d .σ σδ δ
Ω Ω

− Ω = Ω∫ ∫Mσ σ σ σε λ M   (13c) 

Note that  on u= Γλ 0  has been introduced. In this study displacement u , the Lagrange 

multipliers λ  and stress σ  are approximated by 
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1

( ) ( ) ( ) ,
N

h
I I

I=
Ψ≈ =∑u x u x x d  (14a) 

 
1

( ) ( ) ( ) ,
N

h
I I

I =
Ψ≈ =∑λ x x x Λλ    (14b) 

 
1

( ) ( ) ( ) ,
m

h
α α

α
χ

=

≈ =∑σ x σ x x σ   (14c) 

where N  is the number of discretization nodes, m is the number of stress-strain evaluation 

points at αx , 1{ }NI I =d  are the nodal displacement vectors, 1{ }NI I =Λ  are the nodal Lagrange 

multiplier vectors, ( )αχ x  is an indicator function such that ( ) 1αχ =x  if α∈Ωx  and ( ) 0αχ =x  

if α∉Ωx , where αΩ  is the subdomain associated to the integration point αx . Here, we employ 

1{ }NI I=Ψ  the reproducing kernel (RK) shape functions [57,58] constructed using the cubic-B 

splines kernel function and linear basis functions. The introduction of RK approximation is 

summarized in Appendix B. Stress in (13c) is discretized by a collocation approach in (14c). 

Thus, the discrete form of Equation (13c) yields 

 
1 1 1

,ˆ
m N m

I
T T

I
IV V α

σ
α α α α α α α α

α α

σδ δ
= = =

⎛ ⎞
⎜ ⎟⎝ ⎠

− =∑ ∑ ∑ σM B Λ Mσ σ σ   (15) 

where ( )I Iα α=B B x  is the strain-displacement matrix (the smoothed strain-displacement matrix 

IαB%  is used in this study, refer to Appendix B.2), and ( )σ σ
α α=M M x . As a result, the matrix 

equations of (13) result in: 

 
1 1 1

ˆ , 1,..., ,
N m m

T T
I J J I

J
V V I Nα α

ε ε
α α α α α α

α α= = =

⎛ ⎞ = =⎜ ⎟⎝ ⎠
∑ ∑ ∑B M B d B M ε  (16a)  

 
1

, 1,..., ,
m

T
I IV I Nα α α

α=

= =∑ σB f    (16b) 

 
1

,  1,..., .ˆI

N

I
I

mα α α α
σ σ

α α
=

− = =∑M σB Λσ M    (16c) 

where 1{ }mVα α =  are the quadrature weights as defined in (7), and 1{ }NI I =f  are the nodal force 

vectors associated with the employed RK approximation of body force b  and surface traction t . 
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It can be seen that 1{ }NI I =d  are solved from (16a) directly, and 1{ }NI I =Λ  represent the displacement 

adjustment related to the difference between the computational stress and the given stress data 

1ˆ{ }mα α=σ , as shown in Equation (16c). Plugging (16c) into (16b) it yields 

 1

1 1 1
, 1,..., ,ˆ

N m m
T T
I J I I

J
JV V I Nα α α α α α

σ
α

α α

−

= = =

⎛ ⎞ = − =⎜ ⎟⎝ ⎠
∑ ∑ ∑ σB M B Λ f B  (17a) 

where 1{ }NI I =Λ  can be solved readily. Then, the computational stress 1{ }mα α=σ  are obtained by the 

following equation 

 1

1
,  1,..., .ˆ

N

I
I

I mσ
α α α α α−

=

= =∑σ σ +M B Λ    (17b) 

In summary, Equations (16a), (17a) and (17b) constitute the global step of the data-driven 

solver. In each global step, the displacement vector 1{ }NI I =d  is obtained from strain data 1ˆ{ }mα α =ε  

by complying with compatibility, while the displacement adjustment 1{ }NI I =Λ  is driven by the 

force residuals between the external force and the internal force computed by the experimental 

stress data 1ˆ{ }mα α=σ , as shown in (17a). 

In this study, we propose to use a stabilized conforming nodal integration (SCNI) [59] for 

the integration of the weak form (13) due to its nodal representation nature of both state and field 

variables at nodal points. The brief summary about SCNI can be found in Appendix B. In this 

approach, the continuum domain is partitioned by a Voronoi diagram (see Fig. 15), and both the 

state variables 1 1{( , )} {( ( ), ( ))}N N
α α α α α α= ==ε εσ xσx  and the nodal displacement vectors 

1 1{ } { ( )}N N
I I I I= ==u u x  are computed at the set of nodes located at 1{ }Nα α=x , i.e. m N= . This 

approach minimizes the number of integration points where the stress and strain experimental 

data are searched in the local step (5b), allowing an enhanced effectiveness in the learning solver. 

The introduction of a smooth reproducing kernel (RK) shape function in the displacement 

approximation in (14a), such as the employment of a cubic B-spline in the RK approximation in 

Equations (B.1) - (B.7) in Appendix B, yields a 1C  continuous strain-displacement matrix 

( )I αB x , and consequently a smooth tangent matrices in the displacement adjustment and stress 

update equations in (17a) and (17b), respectively. This smooth solution space of the physical 
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manifold is made consistent with the continuous and convex solution space of the regularized 

LCDD learning solver to be introduced in Section 3. 

 

2.3.2. Local step of data-driven solver 

In this approach, the experimental data )ˆ ˆ ˆ( ,=s ε σ  as used for the global step solution (see 

(10) or (13)) is searched by the local step in (5b) during each local-global iteration. Considering 

the functional H  as shown in (7), the local step of (5b) can be decomposed into m  local 

minimization problems: find the optimal local data )ˆ ˆ ˆ( ,α α α
∗ ∗ ∗=s ε σ , such that the distance to a 

given local state ( , )α α α= ε σs  is minimized, i.e. 

 2 2 2

ˆ ˆ
,ˆ (ˆ ˆarg ˆ( , ) ( , ) , )m iain nrgmd d d

α α
α

σ
α

ε
α α α α α

∈ ∈

∗ == +
s s

s s ε εs σ σ
E E

 (18) 

for 1,...,mα = .  

 

2.3.3. Standard data-driven solver 

The procedures for solving the data-driven problem are summarized below. Given a set 

of local data solutions 1
( ){ˆ } em

mν
α α= ∈s E  (or ( )ˆ , 1,...,mν

α α =∈s E  for homogeneous material) of the 

v -th iteration, the following global step and local step are iterated until convergence:  

1) Global Step. Input: )
1

({ˆ }mν
α α =s  →  Output: )

1
({ }mν
α α =s  

1.1 Solve Equations (16a) for ( )
1{ }NI I

ν
=d  and (17a) for ( )

1{ }NI I
ν

=Λ . 

1.2 Update computational states for ( ) (( )
1

)
1{ }} ,{( )m mν

α α α
ν

α
ν

α== =s σε  via 

( ) ( )

1

N

I
I

Iα
ν

α
ν

=

=∑ε B d  and ( ) ( ) 1 ( )

1

ˆ
N

I I
I

σ ν
αα α

ν
α

ν −

=

= ∑σ B Λ+ Mσ  in (17b) 

2) Local Step. Input: )
1

({ }mν
α α =s →  Output: 1

1
( ){ˆ }mν
α α =

+s  

for 1,...,mα = , solve Equation (18) for ( 1)ˆ να
+s .  

 

Remark 2.2. It has been observed that distance minimizing data-driven (DMDD) computing 

solver [41] with distance measure in (7) - (9) is sensitive to data noise and outliers [42,54] 
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because the local minimization stage (18) only searches for the nearest data point from the given 

experimental data set regardless of any latent data structure. The data-driven solution could be 

strongly influenced by the outliers locating near to the physical manifold C but do not conform to 

the hidden material data pattern (or the latent statistical model) of E . Without the knowledge of 

the underlying data manifold, it requires a large amount of data to achieve sufficiently accurate 

predictions which is costly [20,31].  
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3. Local convexity-preserving data-driven approach 

In this section, we introduce the LCDD approach, which introduces the locally convex 

reconstruction technique inspired by manifold learning strategies [21,62,63]. Our aim in this 

work is to develop a computationally feasible data-driven predictive modeling framework to 

enhance accuracy and robustness against noise and outliers in the experimental data set by 

constructing the local manifold with the desired smoothness and convexity. 

For ease of exposition, we define a weighted vector norm “ || ||M⋅ ” based on (8) as follows  

 2 1 2 2|| || || || ,T
Mα α α αα α= ≡s s M s M s  (19) 

where 2[ ]T T T q
α α α= ∈σs ε  ° , ([ , )]diag σε

α α α=M M M , and 1 2
αM  can be determined by the singular 

value decomposition of  αM . For a given αs , the local step (18) is rewritten as 

 2

ˆ
ˆ ˆargmin || || ,M

α
α α α∈

∗ = −
s

s s s
E

 (20) 

for 1,...,mα = . 

 

3.1. Locally convex construction 

It has been shown [21,62,64–66] that naturally occurring data usually reside on a lower 

dimensional submanifold which is embedded in the high-dimensional ambient space, as shown 

in Fig. 2. In this study, inspired by locally linear embedding (LLE) approach [62], we assume 

there exists an underlying manifold of low dimensionality corresponding to the raw experimental 

data set, i.e. ˆ , 1,..{ ., }i i p== sE=  where p  is the number of data points, that is locally linear and 

smooth varying. Therefore, a data point ˆi ∈s E  can be linearly reconstructed from its neighbors 

in the data set, i.e.  

 
ˆ( )

ˆ ˆ ˆ ,
i

k

i i j
recon ij

j

w
∈

≈ = ∑
s

s s s
N

  (21) 

where ˆirecons  is the reconstruction of ˆis , ˆ( )ik sN  is the set of the k nearest neighbor (k-NN) data 

points to ˆis  in E=, and ijw  are the unknown coefficients. In LLE, the optimal reconstruction 

weights ijw
∗  can be obtained by solving the following problem: 
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2
, 1,...,

1 1,

1

ˆ ˆ{ } arg min || ||

subject to:  1,  1,...,

ˆ                  0  if  ( )

p p
i j

ij i j p ij
i j j i

p

ij
j

i
ij k

w w

w i p

w j

∗
=

= = ≠

=

= −

= =

= ∉

∑ ∑

∑

s s

sN

 (22) 

Note that 0ijw =  when i j= . The data reconstruction procedures in (21) and (22) provide the 

projection of ˆis , i.e. ˆirecons , onto the subspace spanned by 
ˆ( )

ˆ{ } i
k

j
j∈ s

s
N

with respect to the norm.  

 

Fig. 2. Schematic of a manifold embedded in the original space and the associated low-

dimensional embedding, where the training samples and the new sample are denoted by gray 

circles and red star, respectively. 

 

Different from the standard LLE, the search for solution data point in data-driven 

computing is constrained by the physical manifold associated with (1) and (2). But considering 

that the data-driven algorithm in (5) performs a fixed point iteration on the experimental data 

points that are closest to the physical manifold, the locally linear reconstruction remains suitable 

for this scenario. In this sense, it is similar to the out-of-sample extension problem [63,67,68] 

where it is desirable to add new projected data points (new samples) to a previously learnt low-



18 

 

dimensional embedding, as shown in Fig. 2. In addition, from physical perspective, the data-

driven solution constrained by the physics laws need to be close enough to the graph of the 

experimental data with underlying constitutive data structure. Thus, we need to prevent the 

reconstructed data point by (21) from projecting to a point that is far away from the underlying 

material data structure on the embedded subspace. To this end, we propose a local manifold 

learning algorithm to reconstruct the given local state on the locally convex manifold of the 

experimental data set.  

 Given a local state αs , the most representative k nearest neighbor (k-NN) points in E  

are first identified using the same metric induced by the given norm “ || ||M⋅ ”, and collected as 

( )ˆ{ }
k

i
i α∈ ⊂ss EN , in which the indices for the nearest neighbors of αs  are stored in a set ( )k αsN . 

Then we project the local state onto the convex hull of ( )ˆ{ }
k

i
i α∈ ss N  associated to αs , which is 

defined as: 

 ( )
( ) ( )

ˆ ˆ( ) Conv({ } ) 1,  and 0 , ( ) ,
k

k k

i i
i i i i k

i i
w w w i

α
α α

α α∈
∈ ∈

⎧ ⎫⎪ ⎪= = = ≥ ∀ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑ ∑s

s s
s s s sN

N N
E N  (23) 

or concisely denoted as αE . Accordingly, the optimal reconstruction coefficients are given by 

solving the following minimization problem: 

 

2

( )

( )

ˆarg min || ||

subject to:  1,

                     0,  ( ),
k

k

k

i
i M

i

i
i

i k

w

w

w i

α

α

α α

α

∗

∈ ∈

∈

= −

=

≥ ∀ ∈

∑

∑
w s

s

w s s

s

° N

N

N

 (24a) 

where k∈w °  denotes the vector consisting of the weights ( ){ }
ki iw

α∈ sN  corresponding to the k  

selected neighbor points, and α
∗w  with the subscript α  denotes the optimal weights 

corresponding to the given local state αs . The reconstruction ˆα
∗s  can be retrieved by using the 

linear combination of  ( )ˆ{ }
k

i
i α∈ ss N  with the computed weight vector α

∗w  as follows 

 
( )

ˆˆ ˆ ,
k

j
j

j
w

α

α α α
∗ ∗ ∗

∈
∑

s
s = s = S w

N

 (24b) 
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where 2ˆ q k
α

×∈S °  is the matrix composed of the k-NN data points ( )ˆ{ }
k

i
i α∈ ss N . This approach in 

(24) is called locally convex construction. Compared to the equation (22), the main differences in 

(24a) are: 1. a new data point αs  obtained from the physical solver, instead of other points in the 

experimental data set, is used for local construction; 2. a weighted vector norm “ || ||M⋅ ” 

representing energy is adopted for distance measure. 

 Based on the idea of locally convex construction, the local step of data-driven computing 

in (20) is modified as: Given the data-set neighbors ( )ˆ{ }
k

i
i α∈ ⊂ss EN  for αs , solve ˆα

∗s  such that 

 2

ˆ
ˆ ˆargmin || || ,M

α α
α α α
∗

∈
= −

s
s s s

E
 (25) 

for 1,...,mα = . By comparing (20) and (25), we can observe that the space E  used in the 

standard data-driven scheme [41,54] is now replaced by the associated convex hull αE  that is 

locally reconstructed around the input αs  by learning techniques, allowing to capture the local 

material manifold. Consequently, the reconstruction data (i.e., the optimal local data) ˆα
∗s  is 

sought from the set αE  with convexity and smoothness. With the definition in (23), the solution 

of the minimization problem (25) is obtained by solving (24).  

Remark 3.1. Equation (24a) is a constrained regression or constrained least-squares 

problem under a invariance constraint and a non-negative constraint. The invariance constraint 

imposes the partition of unity on the weight array w , i.e. 1T =1 w , where [1,1,...,1] kT= ∈1 ° . It 

ensures the invariance of the reconstruction weights α
∗w  to rotations, rescaling, and translations 

of the same k-NN data points, and thus, the weights characterize geometric properties 

independent of a particular frame of reference [62,63]. It also guarantees the linear 

approximation property such that ˆα
∗s  is in the subspace ( )ˆspan({ } )

k

i
i N α∈ ss . When we further 

consider the non-negative constraint, the approximation ˆα
∗s  is restricted to the convex hull ( )αsE  

(see Fig. 3). The imposed convexity and locality yields enhanced robustness of linear regressions 

to outliers [63,69], and reduces numerical instability across different clusters of neighbor points 

during data-driven iterations. Moreover, it is well known that the non-negative constraint 

naturally imposes sparseness on the coefficient solution α
∗w . Lastly, by specifying the number of 
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k-NN points, it provides an opportunity to incorporate a priori knowledge about the experimental 

data structure and therefore, enhance the robustness of data learning [63]. 

(a) 

 

(b) 

 

Fig. 3. Sketch of the projection ˆα
∗s  (the blue square) on a convex hull αE  (the region is depicted 

by red dashed lines) of k-NN points (the solid circles in black) when a local state αs  (the red 

star) locates (a) inside and (b) outside αE . Neighbor points of 6k =  are used for demonstration.  

 

Essentially, the modified local step of data-driven problem in (25) can be interpreted as a 

process of seeking the data approximation based on the previously learnt low-dimensional 

manifold αE  associated with the given local state. From a geometrical point of view, it searches 

the projection (i.e. the optimal local material data ˆα α
∗ ∈s E ) in the associated convex set αE . If αs  

locates inside αE , the projection is represented by αs  itself (Fig. 3a). Otherwise, the local state is 

optimally projected on the convex hull αE  and the projection point is considered as the best 

representative on the constitutive manifold (Fig. 3b). 

 

3.2. Solving non-negative least squares 

In this section, a computationally feasible algorithm is developed to solve the local step 

minimization problem in (24a) by relating it to the non-negative least squares (NNLS) problem 

that has been well established. The NNLS problem is reviewed in Append A.  

However, to solve the minimization problem (24a) under the NNLS framework, see (A.1)

, the partition of unity constraint in (24a) needs to be properly handled. In this end, we propose to 

employ the quadratic penalty method [70] to penalize the residuals of the partition of unity 

constraint in the auxiliary objective, and the modified minimization problem becomes 
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2 2

 1,..., ,

ˆarg min || || ( 1) ,

subject to:  0,
k

T
M

i i kw

α α α ξ∗

∈
= − + −

≥ =
w

w s S w 1 w
°  (26) 

where 0ξ >  is a regularized coefficient to impose the associated constraint. 

Note that to conform with the Euclidean metric used in the standard NNLS solver (A.1), 

the local state αs  can be easily rescaled to 1 2
α α α=z M s  (similarly, 1 2 ˆˆ

α α α=Z M S ) by using the 

relation given in (19). As a result, the minimization problem (26) can be recast into a NNLS 

form as shown by augmenting the vector αs  and the matrix ˆαZ  with additional components as 

follows 

 
aug aug 2

0,  1,..., ,

ˆarg min || || ,

subject to:  
k

i i kw

α α α
∗

∈

≥

=

=

−
w

w z Z w
°  (27) 

where 

 (aug au) g2 1 2 1,  : .
ˆ

ˆ : q q
T

k αα
α α ξξ

+ × +
⎡ ⎤

= ⎢
⎡ ⎤

= ⎢ ⎥
⎢

⎥
⎥⎣ ⎦

∈ ∈
⎢ ⎥⎣ ⎦

zZ
Z z

1
° °   (28)  

To properly impose the penalty term, we set ˆ ˆtr( )T kα αξ ξ= Z Z , where ξ  is a large parameter 

(usually set as 4 610 10− ). With the weight solution α
∗w  solved by NNLS algorithm, the 

reconstruction ˆα
∗s  can be obtained via (24b). 

It is possible that constrained least squares in (27) could suffer from numerical instability 

due to rank deficiency when the number of neighbors is larger than the rank of the neighborhood, 

i.e. augˆrank( )k α> Z . As has been well studied in machine learning field [5], a further 

regularization can be introduced to the NNLS problem. In this study, a commonly used ridge 

regression [71], or called Tikhonov regularization, is applied to address the ill-posed issues, and 

the NNLS problem (27) is modified as  

 
aug aug 2 2ˆarg min || || ||

,.

|| ,

subject . to 0,  1, .: , 
k

iw i k

α α α µ∗

∈
−

≥

=

=

+
w

w Z w z w
°  (29) 

where the regularized coefficient is 
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 ˆ ˆtr( ) ,T kα αµ µ= Z Z   (30) 

Here µ  is a small constant (set as 410−  by default) such that the regularization has minor effect 

on the solution α
∗w  and the reconstruction ˆα

∗s . It is also shown that [5] this regularization 

imposes certain smoothness on the solution and guarantees a unique solution. 

Remark 3.2. As discussed in [63], the size range of k-NN points depends on various 

features of the data, such as the manifold geometry and the sampling density. In principle, k 

should be greater than the underlying manifold dimensionality of the material data set E  in order 

to explore the data structural and prevent overwhelming influence from outliers/noise. 

Meanwhile, the resultant neighborhoods should be localized enough to ensure the validity of 

locally linear approximation. 

 

3.3. Local convexity-preserving data-driven solver 

A simple algorithm for the proposed LCDD solver is shown as follows: Given a 

convergence tolerance TOL and the material database E , then 

1. Initialize (0) (0) (0)ˆ ]ˆ ˆ[ ,  1,...,T TT mα α α α∗ ∗ ∗ == σs ε  randomly, and 0v = . 

2. While ( ) ( 1)

1,...,
ˆ ˆmax || ||v v

Mm
TOLα αα

∗ ∗ −

=
− >s s  

a. Solve equations (16), and output )
1

({ }mν
α α =s  

b. Construct k-NN neighborhood ( )( )k
ν
αsN  and ˆαS  for each local state ( )ν

αs . 

c. Solve NNLS (27) (or (29)) by Algorithm 1, and use α
∗w  to output ( 1)ˆ v

α
∗ +s  via (24b). 

d. Update: 1ν ν← +  

3. Solution is ( ) ( ) ( )[ [ ,  . ] 1,. .,]  T T T TT T mν ν ν
α α α α α α α←= ==s ε εσ s σ . 

It has been shown that the Lawson-Hanson method [72,73] (Algorithm 1 in Appendix A) 

used for solving NNLS converges in a finite number of iterations less than the size of the output 

coefficient vector, which is the size of k-NN in LCDD. In addition, considering the small size of 

the local matrix 2ˆ q k
α

×∈S ° , , min( , )k q N m= , where N  and m  are the numbers of 

discretization nodes and integration points, respectively, the additional computational cost in 
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solving the NNLS problem in (27) or (29) is negligible compared to solving the linear system (16

).   
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4. Numerical Examples: Truss Structures 

In this section, the accuracy, convergence and robustness properties of the proposed 

LCDD approach are examined. Synthetic data sets are employed to verify the performance of the 

proposed method. The standard DMDD approach without considering any local data structure is 

also provided for comparison. For simplicity, we consider homogeneous material in the 

following numerical examples in Section 4 and Section 5. That is, the same material database 

,ˆ ˆˆ{ ( ), 1,... },i ii i p= ==s σεE , where p  is the number of data points, is introduced for all material 

points. 

In this section, the material behavior of the α -th bar member is characterized by a simple 

uniaxial strain αε  and uniaxial stress ασ   relationship. As such, the local state vector is defined 

as 2[  ]Tα α ασε= ∈s ° , and the associated norm to measure the distances of local states is given 

as 

 
1/2

2 1 21 1|| ||
2 2M M Mα α ασε −⎛ ⎞= +⎜ ⎟⎝ ⎠

s , (31) 

where M  is a positive constant analogous to the Young’s modulus of the reference material. 

 In the following examples, k  is the number of the k-NN used in the local step of the 

LCDD solver and µ  is the regularization coefficient in (30) with a default value 410− . 

 

4.1. Example I: One-dimensional truss 

 

Fig. 4. One-bar truss structure with the cross-section area 2200 cmA = subjected to a uniaxial 

load 10 kNF = . 

This example examines data-driven computing in a single truss member ( 1m = ) when 

dealing with irregular material data that exhibits noise and outliers. A truss member with the 

cross-section area 2200 cmA =  is subjected to an axial load of 10 kNF =  as shown in Fig. 4.  
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4.1.1. Data set with random noise 

To examine the performance of LCDD when dealing with noisy material data, two 

material databases (denoted by the circle points) with different levels of Gaussian random noise 

(i.e. 0.05χ =  and 0.15χ =  in (32)) are considered, as shown in Fig. 5 and Fig. 6. The data sets 

are given by a set of noiseless strain and stress points, i.e. 1{ , }i pi
iσε = , superimposed with a 

Gaussian noise as follows: 

 max

maxˆ

ˆ (0, ),  1,...,

(0, ),  1,...,

i i

i i

i p
i pM

χ
σ σ
ε ε

χ
ε

ε
= + =

= + =

N
N

  (32) 

where the coefficient constant is 100 MPaM = , and χ  is the given random level. In (32), the 

noiseless strain data 1{ }i p
iε =  is generated by a uniform distribution within a given strain range 

max max[ , ]ε ε−  with max 0.01ε = , the noiseless stress data 1{ }i p
iσ =  is defined as i iMσ ε= , and the 

Gaussian noise max(0, )εχN  and max(0, )MεχN  of strain and stress represent the normal 

distribution with zero mean and standard deviations of maxχε  and maxMχ ε , respectively.  

The external force is incrementally loaded via 5 equal steps at the one-bar truss structure 

in Fig. 4, and thus 5 corresponding incremental data-driven solutions (depicted by the asterisk 

points) are shown in Fig. 5 and Fig. 6. The associated optimal local data to the minimization 

problem in (25), i.e. ˆ ]ˆˆ[  T
α α ασε∗ ∗ ∗=s , at these 5 loading steps are denoted by the triangle points. As 

shown in Fig. 5, both the data-driven solutions of DMDD and LCDD can finally converge to a 

state point at the physical (equilibrium) manifold of 0.5 Mpaσ =  and stay close to the given 

data set. Although the mild randomness is considered, DMDD yields a less desirable result 

compared to the result obtained by LCDD with the number of neighbor points 6k = . The data-

driven solution from LCDD converges at the intersection of the physical manifold and the 

conjectural material graph, which is an ideal solution as discussed in Section 2. Note that by 

using the proposed locally convex reconstruction (see (23) or (24)), the local solver in (25) 

allows to attain the optimal local data from the reconstructed local convex hull instead of a direct 

search in the raw experimental points. 
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When the given material database presents stronger randomness, as shown in Fig. 6, 

DMDD performs poorly as it prematurely converges to a suboptimal solution far outside the data 

set, and its incremental solutions attain some local minimum points (Fig. 6a), implying 

susceptibility to data noise. In contrast, LCDD yields more desirable results (see Fig. 6b), where 

the incremental data-driven solutions move consistently to the intersection of the equilibrium 

manifold and the underlying material submanifold. 

  

(a) (b) 

Fig. 5. Comparison of the (a) DMDD and (b) LCDD solvers for the one-bar truss structure using 

a material database with mild Gaussian random noise 0.05χ = . The database contains 100p =  

stress-strain data points. The number of neighbor points used in LCDD is 6k = . 
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(a) (b) 

Fig. 6. Comparison of the (a) DMDD and (b) LCDD solvers for the one-bar truss structure using 

a material database with strong Gaussian random noise 0.15χ = . The database contains 100p =  

stress-strain data points. The number of neighbor points used in LCDD is 6k = . 

 

The comparison of the results in Fig. 5 and Fig. 6 suggests that LCDD is a robust scheme 

against large noise and local minimum wells, yielding similar pattern of convergence with 

material databases of different random levels, whereas the iterative solution path of DMDD is 

sensitive to the level and distribution of noise. It is also observed that the optimal data solutions 

)ˆ,ˆ( α αε σ∗ ∗  obtained from LCDD usually coincide with the data-driven solutions ( , )α αε σ  even 

though no experiment data in E  is exactly at those locations. This study indicates the advantage 

of LCDD in forming an implicit local material graph (via the convex hull) for searching the 

optimal data points. This unique feature allows LCDD to capture the local data structure, 

providing not only robustness against noise due to clustering analysis, but also the 

reproducibility to a locally linear manifold if the data is well sampled, which will be further 

discussed in the following examples. 

 

4.1.2. Data set with outliers 

The robustness of the proposed LCDD solver is further demonstrated by consider a 

dataset with outliers. Let a material data set represent an underlying linear graph, i.e. 
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ˆ ˆ( , ) 0ˆ ˆi i i iF Mσε σ ε= − =  with an outlier positioned near to the linear manifold, as shown in Fig. 

7. The data-driven solutions and the associated local projected data at each incremental step are 

plotted in Fig. 7. The results show that the DMDD solutions are misled by the presence of the 

outlier (Fig. 7a), whereas the LCDD solutions successfully converge to a reasonable location at 

the material manifold (Fig. 7b). In addition, to verify the effect of the locally convex 

construction parameters on the performance of the LCDD solver, two exemplary results using a 

different k-NN numbers ( 12k = ) and a different regularization coefficient ( 210µ −= ) are 

provided in Fig. 7c and Fig. 7d, respectively. As shown in Fig. 7c, while using more neighbor 

points in LCDD tends to increase the probability to involve the outlier for local manifold 

construction and causes the intermediate results during simulation more influenced by the outlier, 

it yields a final data-driven solution consistent to the one using 6k = . This robustness is 

achieved from the clustering analysis based on the reconstruction of multiple data points that 

prevents the dominance of outliers. The effect of the regularization coefficient µ  on LCDD is 

also studied, see Fig. 7d. It shows that with larger µ  the optimal local data solution sought from 

the associated convex hull favors the region with higher data density because the reconstructed 

weights of the outliers have been penalized (refer to (29)). In this study, 410µ −= is adopted as 

the default setting. There are other regularization methods and robust penalty functions that 

allow further suppressing the influence of noise or outliers, e.g. the Huber penalty function. The 

interested readers are encouraged to consult the reference [5]. 
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(a) DMDD (b) LCDD: 6k = , 410µ −=   

  

(c) LCDD: 12k = , 410µ −=  (d) LCDD: 6k = , 210µ −=  

Fig. 7. Comparison of the data-driven solvers, DMDD and LCDD, for the one-bar truss structure 

using a material database with an outlier. The database contains 100p =  stress-strain data points. 

Different numbers of neighbor points k  and regularization coefficient values µ  are used in 

LCDD. 

 

4.1.3. Data set characterizing a nonlinearly elastic material 

To reveal another pathology resulting from the discrete nature of data when using 

distance-minimizing approaches, consider a “nonlinear” database generated by a sigmoid 
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function, as shown in Fig. 8. In the phase space, the plot of data points transits from a nearly 

linear stage of slope with 100Mpai iσ ε =  to a plateau at 0.51 Mpaσ = , which can be viewed 

as approximating a uniaxial perfect plasticity behavior. 

Fig. 8a shows that although no noise is presented in this database, DMDD converges to a 

suboptimal solution before approaching the flat plateau, indicating the limitation of using 

discrete data space in the local solver (see (20)). This is because once the direction of data 

projection (linearly scaled with M  in this example) during data-driven iterations is nearly 

normal to the underlying material graph, the resulting displacement increment driven by the 

force residual (see (17a)) is too small to move the computational stresses and strains toward 

other data points in E  that are closer to the physical manifold. As a result, the data-driven 

scheme converges at an undesirable solution. This issue is attributed to the non-continuous 

nature of discrete data, resulting in the susceptibility of DMDD to the selection of measure 

coefficient M , the associated metric norm used to measure distance in the phase space, and the 

density and the underlying structure of data [54,60]. 

On the other hand, LCDD converges to a better solution (see Fig. 8b) at which the 

physical and material manifolds intersect. This is because when using the LCDD solver the 

inherited locally convex approximation represents a smooth constitutive (material) submanifold 

(i.e. the convex envelop) associated with the nonlinear material behavior. Since the locally 

convex reconstruction resembles the manifold learning technique introduced in [62] or local 

regression [74], LCDD is expected to reproduce a locally linear constitutive model 

corresponding to the sampled data points.  

It should be emphasized that this linear reproducibility is very attractive in dealing with 

higher-dimensional phase space when data is relatively scarce, e.g., the elasticity problems in 

Section 5. As the reconstruction of local convexity confines the solution space for searching 

optimum local data in a bounded smooth domain, the proposed LCDD approach also avoids the 

non-convergence issue during the data-driven iterations, which usually appears in the regression 

based data-driven methods [47,55]. 
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(a) (b) 

Fig. 8. Comparison of the (a) DMDD and (b) LCDD solvers for the one-bar truss structure using 

a sigmoid material database. The database contains 100p =  stress-strain data points. The 

number of neighbor points used in LCDD is 6k = . 

 

4.2. Example II: Truss system 

 

Fig. 9. A 15-bar truss structure with prescribed displacements and applied loads: 4 ma = , 

2 mh = , 0.01 mxu = , and 100 kNF = . 
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Fig. 10. Three noisy databases with different sizes, 2 3 410 ,10 ,10p = , where the random level of 

noise χ  corresponding to each database is inverse to the data size, defined as 12pχ −= . 

 

To examine the convergence behavior with respect to the material data set size, consider 

a 15-bar truss structure (i.e., 15m =  for the local state vectors 1{ }[  ] mT
α α α ασε ==s ) with unity 

cross-sectional area, as illustrated in Fig. 9. The solution obtained from different data-driven 

solvers are compared against the reference solution using the following normalized root-mean-

square (%RMS) state errors 
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ref 2
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m α α α

α
ε ε ε

ε =

⎛ ⎞= −⎜ ⎟⎝ ⎠
∑   (33a) 
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where 1{ }mlα α =  are the length of the bars, 1{( , )}mα α αε σ =  are the data-driven solutions for all bar 

members, ref ref
1{( , )}mα α αε σ =  are the strain and stress reference solutions corresponding synthetic 

material model, and ref ref
max max( , )ε σ  are the largest absolute values of strain and stress among all bar 

members. 

In this numerical study, we consider three material data sets (see Fig. 10) with different 

sizes (i.e. 2 3 410 ,10 ,10p = ), where the database with more data points is said to have higher 
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density or larger data size, for the data-driven simulations. These noisy data sets are 

superimposed with the strain and stress perturbations given by the random Gaussian noise 
12pχ −=  (refer to (32)). In this case, the underlying structure of the data set uniformly converge 

to a linear curve with a slope of 100 MPaM =  as the number of data points increases.  

The convergence results of different data-driven solvers (DMDD and LCDD) measured 

by the normalized RMS state errors in (33) are shown in Fig. 11 and Fig. 12. As suggested by 

the estimate given in [41,60], the data-driven solutions obtained by both methods converge 

towards the classical model-based solution with a rate close to 1 as the number of data points 

increases. However, a less satisfactory result is obtained by DMDD compared to LCDD. In Fig. 

11, where LCDD yields nearly 1 order of accuracy higher than DMDD. This is due to the locally 

convex reconstruction that recovers the locally linear manifold.  In LCDD, the inherent manifold 

learning ability contributes to the improved accuracy in addition to the enhancement of 

robustness against noisy data.  

 

Fig. 11. Truss structure case. The convergence plot of the normalized RMS errors, (%RMS)ε   and 

(%RMS)σ , against increasing the size of database. The DMDD and LCDD solvers are compared 

using the three noisy data sets with different sizes, 2 3 410 ,10 ,10p = . The number of neighbor 

points used in LCDD is 12k = . 
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(a) (b)	  

Fig. 12. Truss structure case. (a) The convergence plot of the normalized RMS strain error 

(%RMS)ε  and (b) the number of iterations for convergence against increasing the size of database. 

The DMDD and LCDD solvers are compared using the noisy data sets with three different sizes, 
2 3 410 ,10 ,10p = . Different number of neighbor points k  are used in LCDD. 

 

It is also observed that the performance of the proposed LCDD solver appears to be 

insensitive to the numbers of convex hull neighbors (from 6k =  to 18k = ) as demonstrated by 

its solution errors (Fig. 12a) and the number of iterations to attain convergence (Fig. 12b). 

Surprisingly, the results in Fig. 12b suggests that the LCDD solution converges faster as the data 

set size increases. This phenomenon is significantly distinct from other data-driven solvers, such 

as DMDD [41] and the max-ent data-driven solver [42], which require more iterations to achieve 

convergence when using larger data sets. We believe this is because the local manifold learning 

of LCDD better represents the underlying manifold. It is worth noting that when using 2k = , 

LCDD appears to lose accuracy and yields solutions approaching DMDD (shown in Fig. 12a), 

implying that LCDD would recover DMDD in the limit of using one neighbor.  

A close comparison between the data-driven solutions of DMDD and LCDD using the 

data set with 100 material points (see Fig. 10) is given in Fig. 13. The reference solution 

(denoted by the diamond points) is obtained by utilizing the synthetic linear model (i.e. Mσ ε=

). As can be seen from Fig. 13a, the variations of the noisy data set substantially influence the 
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DMDD performance such that several data-driven solutions (the asterisk points in a dashed box) 

converge poorly at some local minima that deviate from the linear graph, resulting in an overall 

unsatisfying performance of DMDD. In contrast, the LCDD solver overcomes such issues with 

noisy data as shown in Fig. 13b.  

(a) 

 

(b) 

 

Fig. 13. Comparison of the data-driven solutions of (a) DMDD and (b) LCDD for the truss 

structure using the noisy material data set of 100p =  stress-strain data points. The number of 

neighbor points used in LCDD is 12k = . 
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5. Numerical Examples: Elasticity 

In this section, we apply the proposed method to a two-dimensional elasticity problem. 

The accuracy and robustness of data-driven solvers are verified with high dimensionality of the 

associated phase space in the example problems.  

 

Fig. 14. A beam model subjected to a shear load: 48mL = , 12mH =  and 1000 NF = . 

 

 

 

(a) (b) 

Fig. 15. Schematics of (a) Voronoi diagram and (b) the discretization of the beam model. The 

RK nodes are also the integration points under the SCNI framework.  

 

A plane stress elastic beam subjected to a shear load as shown in Fig. 14 is to be 

modeled. The reproducing kernel particle method (RKPM) with a stabilized conforming nodal 

integration (SCNI) approach are used for discretization, as shown in Fig. 15. More details about 

RKPM and SCNI can be referred to Appendix B. Under this RKPM-SCNI framework, the 

volumes of the Voronoi cells ,  1,...,Nα αΩ = , are used as the weights Vα  in (16). 
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 The synthetic elastic material model is given by the classical elasticity law with Young’s 

modulus 30 MPaE =  and Poisson’s ratio 0.3v = . In this problem, the coefficient matrix used 

for norm (19) at each integration point is defined as 

 1
2

1 0
1 0 .

1
0 0 (1 ) 2

v
E v
v

v

ε σ
α α

−

⎡ ⎤
⎢ ⎥= = = ⎢ ⎥−
⎢ ⎥−⎣ ⎦

M M M   (34) 

To evaluate the performance of the data-driven solvers, the following normalized root-mean-

square (%RMS) state error is defined for high-dimensional state,  
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Where ref ref ref[ ]T T T
α α α= σs ε   denotes the nodal strain and stress reference solutions solved by using 

the synthetic material model, while [ ]T T T
α α α= ε  σs  denotes the solutions solved by data-driven 

solvers using a given material data set. 

 Following the procedures of data generation in (32), the noiseless stress-strain data points 

using synthetic elastic material model in (34) are first generated, where the strains xε , yε  and 

xyγ are defined within the range 4 4[ 5 10 ,5 10 ]− −− × × . The noisy data set is generated by 

superimposing the three components of noiseless strain and stress data, respectively, with the 

associated Gaussian noise term defined in (32), where ( )3
( )0.4 jplχ =  and ( )jl  is the maximum 

value associated to j -th component of the noiseless data. Four material data sets in various size 

(i.e., 3 3 3 310 ,20 ,40 ,80p = ) are considered for the beam model. 

The performance of the data-driven solvers using the noiseless data sets and the noisy 

data sets are given in Fig. 16 and Fig. 17, respectively. Consistent to the convergence estimate in 

[41], the DMDD solutions converge linearly to the reference solution against the cubic root of 

the number of data points, regardless of using noiseless or noisy databases. LCDD using 

noiseless data sets (Fig. 16a) generates data-driven solution with the error as small as the 
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convergence tolerance in the iterative data-driven computing (see Section 3.3). This implies that 

LCDD perfectly captures the underlying linear material graph even in such a high dimensional 

phase space. The convergence study with noisy data sets (Fig. 17a) shows that the LCDD 

solution using a sparse data set ( 310p = ) is able to achieve higher accuracy than the DMDD 

solution obtained using a very dense data set ( 380p = ), suggesting the superiority of LCDD over 

DMDD. Considering that it is difficult, in practice, to obtain a database with sufficiently dense 

data for high-dimensional spaces, the proposed LCDD approach is attractive. 

As the intrinsic dimensionality of the employed linear elastic database is 2d = , it is 

interesting to observe from Fig. 16a and Fig. 17a that the LCDD solutions obtained by using 

3k =  ( 2d k q< < , where 2q  is the dimension of the material dataset E ) present an 

intermediate solution between the DMDD solution (i.e. 1k = ) and the other LCDD solutions 

with using more neighbor points 2 6k q≥ = . The results indicate the importance of including 

enough neighbors in convex hull to fully preserve the manifold learning capacity in LCDD. In 

the case of noiseless data we observe that LCDD with 6k =  is sufficient as its results are almost 

identical to the case with 9k =  results(see Fig. 16).  

 

(a) 

 

(b) 

Fig. 16. Shear beam model with noiseless data sets. (a) The convergence plot of the normalized 

RMS state error (%RMS)ω  and (b) the number of iterations for convergence against increasing the 

size of database. The DMDD and LCDD solvers are compared using the noiseless data sets with 
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four different sizes, 3 3 3 310 ,20 ,40 ,80p = . Different numbers of neighbor points k  are used in 

LCDD. 

 

The associated number of convergence steps for the data-driven solvers are also 

presented in Fig. 16b and Fig. 17b. In contrast to the DMDD solver where the number of 

iterations increases with using a larger database, there is no evident increase for the LCDD solver. 

Moreover, the comparison of Fig. 16b and Fig. 17b shows that LCDD does not require more 

iterations between the local and global steps to converge when dealing with the noisy database 

rather than the noiseless database. It suggests that the convergence of LCDD is not sensitive to 

the size of database as well as the data sampling quality. 

 

(a) 

 

(b) 

Fig. 17. Shear beam model with noisy data sets. (a) The convergence plot of the normalized 

RMS state error (%RMS)ω  and (b) the number of iterations for convergence against increasing the 

size of database. The DMDD and LCDD solvers are compared using the noisy data sets with 

four different sizes, 3 3 3 310 ,20 ,40 ,80p = . Different numbers of neighbor points k  are used in 

LCDD. 

  

The beam deformations simulated by the data-driven solvers are also compared in Fig. 18 

and Fig. 19. It is observed that DMDD performs poorly (Fig. 18a and Fig. 19a) due to the 

susceptibility to noisy data and local minimum issues that are more pronounced in elasticity 
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problems with a high-dimensional phase space. On the other hand, LCDD exactly reproduces the 

reference solutions when using noiseless database (Fig. 18b), and results in marginal deviations 

from the reference when using the noisy database (Fig. 19b). Moreover, Fig. 20 shows the stress 

solutions, xxσ  and xyσ , obtained by LCDD compared to the constitutive model-based reference 

solutions. It shows that LCDD can yield accurate stress solutions across the problem domain 

with using a noisy database. This demonstrates that the LCDD approach remains robust with 

noisy data in solving elasticity problems. 

 

(a) 

 

(b) 

Fig. 18. Comparison of the data-driven displacement solutions for the shear beam model by 

using (a) DMDD with a noiseless data set of 380p =  stress-strain data points and (b) LCDD with 

a noiseless data set of 310p =  stress-strain data points. The number of neighbor points used in 

LCDD is 6k = . 
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(a) 

 
(b) 

Fig. 19. Comparison of the data-driven displacement solutions for the shear beam model by 

using (a) DMDD with a noisy data set of 380p =  stress-strain data points and (b) LCDD with a 

noisy data set of 310p =  stress-strain data points. The number of neighbor points used in LCDD 

is 6k =  
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Fig. 20. Comparison of the stress solutions, xxσ  and xyσ , of the reference constitutive model-

based computing (upper) and the proposed LCDD computing (bottom) for the shear beam model. 

A noisy data set of 310p =  stress-strain data points and 6k =  neighbor points are used in 

LCDD. 
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6. Discussion & Conclusion 

We have formulated a local convexity data-driven (LCDD) solver as a new data-driven 

computing paradigm integrated with manifold learning techniques that generalizes the distance-

minimizing data-driven (DMDD) computing [41] with enhanced accuracy and robustness of 

data-driven computing against noise/outliers. The proposed method adaptively selects k nearest 

neighbor (k-NN) material data points for physical local states to be updated and searches for 

optimal data solutions from a bounded solution space defined by the convex hull of the selected 

k-NN points. This local data searching procedure has been formulated under a non-negative least 

squares (NNLS) solver and can be solved efficiently. By means of the clustering analysis based 

on k-NN and preserving the convexity of the constructed local material manifold, LCDD yields 

enhanced robustness and convergence stability. 

From the pure data-driven approach point of view (refer to [54]), LCDD is inspired by 

measuring the distance to a local convex set E  , instead of from a single discrete data, aiming to 

enhance the robustness against noise and prevent undesirable local minima. LCDD can be 

reduced to the standard DMDD approach when using only one neighbor data point, i.e. 1k = . 

Thus, LCDD retains the simplicity and is computationally efficiency compared to other 

robustness enhanced data-driven methods with introducing statistics information [42,54]. From 

the fitted data-driven (or linearization) approach point of view, on the other hand, LCDD relies 

on the approximation of locally linear material graph by the manifold learning methodologies 

[21,63] to capture the global structure via local data information. However, the proposed LCDD 

scheme distinguishes itself from the other manifold learning based data-driven approaches [47, 

55] with the following two aspects: first, the iteration process of LCDD does not need to 

explicitly construct constitutive manifold and use tangent information; second, LCDD introduces 

the convexity condition on the reconstructed material graph, thus avoiding convergence issues 

that occur when using standard regression approaches. In addition, we believe preserving 

convexity is also of physical importance. For example, it is expected to better preserve the 

positivity of strain energy via LCDD rather than other manifold learning techniques because the 

proposed approach learns the underlying constitutive manifold based on a convex combination of 

a cluster of neighboring data points, although a rigorous analysis of this question is beyond the 

scope of this paper.  
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It has also been shown that the embedded NNLS solver seeks the projection point of a 

given computational state onto a nearby material graph implicitly constructed based on the k-NN 

points, which ensures local linear reproducibility in the approximation. Hence, in addition to the 

improved robustness and accuracy in dealing with noisy database, LCDD exactly represent the 

underlying linear stress-strain relationship. In the proposed global-local data-driven algorithm, 

smooth solution spaces are employed for the global physical solution and the local project on the 

convex set. This is achieved by introducing a RK shape functions in the approximation of the 

global physics laws and the regularized LCDD learning solver in the optimal data set search. 

With the SCNI domain integration employed in the global Galerkin equations, it significantly 

reduces the needed stress-strain data search in the local LCDD learning solver, leading to an 

effective data-driven computing. The proposed LCDD dada-driven method has been applied to 

truss problems with linear and nonlinear stress-strain relationship, and continuum elasticity 

problems and demonstrated its effectiveness in robustness, convergence, accuracy in high-

dimensional phase spaces. 

This paper is intended to introduce manifold learning techniques, or dimensionality 

reduction [21], to data-driven computing. Our numerical studies show that it is effective in 

applying manifold learning for problems with high-dimensional data, because in high-

dimensional spaces the data can be extremely sparse and the acquisition of sufficient data is not 

practical. This demands effective dimensionality reduction to identify and extract the essential 

information from the database, and elasticity example in Section 5 demonstrates the suitability of 

LCDD with inherent manifold learning for such problems.  

Although manifold learning has been shown to enhance the convergence performance 

during data-driven iteration, the computational cost of each local step remains linearly scaled 

with the size of material database. Thus, when the datasets become large with high-dimensional 

information, such as time-dependent states [43], inelastic quantities [35,50,51,82], and so on, 

more advanced machine learning models for manifold learning like autoencoder can be 

employed. This is the direction of our further research. 
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Appendix A. Non-negative least squares solver 

Let us recall a standard non-negative least squares (NNLS) problem: given a matrix 
n p×∈A °  (usually >p n ) and a observed vector n∈z ° , find a nonnegative vector p

+
∗ ∈y °  to 

minimize the following function, 

 
arg min || ||,

subj ,.ect to  : 0, 1, , . .

p

iy i p

∗

∈

≥ =

= −
x

y Ay z
°  (A.1) 

where || ||⋅  stands for the standard Euclidean norm. 

A variety of methods have been applied to tackle the NNLS problem since 1980s. Those 

algorithms in general can be roughly categorized into active-set methods and iterative 

approaches [75]. Lawson and Hanson [56] seems to propose the first standard algorithm to solve 

NNLS problem (A.1). Their method is essentially an active set method [76], which is based on 

the observation that only a small subset of the non-negative constraints are usually active at the 

solution. It shows in [56] that the iteration in the active set method converges and terminates 

without any cutoff in iterations. The standard algorithm for active-set method is reviewed in 

Algorithm 1.  
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Algorithm 1 Non-negative least squares solver: ( , ),NNLS TOL∗ ←y A z  

Input: n p×∈A ° ,  n∈z ° , TOL 
Output: ∗ = 0y f  such that 2argmin || ||∗ = −y Ay z  
Initialization: ←∅Z , {1,2, , }p← KY , y = 0 , ←r z  

WHILE || || || || TOL>r z  and ≠∅Y , DO 

( )T← −A z Ayq , 
1,...,

arg max( )ii p
j q

=
=  

Include the index j  in Z  and remove it from Y  
1( )T T−← zs A A AZ Z Z Z , ←s 0Y , where | |n×∈A ° Z

Z  

WHILE min 0
i∈

≤sZZ
, DO  

min ( )i i ii
y y sα

∈
− −=

Z
 

( )α← + −y y s y  
Update Y  with zero value indices of y  and Z  with the positive indices of y  

1( )T T−← zs A A AZ Z Z Z , ←s 0Y  

←y s = s sUZ Y  

← −r z Ay  

Return ∗ ←y y  
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Appendix B. Meshfree approximation 

In the section we review the reproducing kernel paritile method (RKPM) [57,58] and the 

stabilized conforming nodal integration (SCNI) approach [59] that are used for solving the weak 

form in (13). 

 

B.1. Reproducing kernel approximation 

The reproducing kernel (RK) shape functions 1{ }NI I=Ψ  used for approximating 

displacement and Lagrange multipliers in (14) are expressed as 

 ( ) ( ; ) ( )I I a ICΨ = − Φ −x x x x x x   (B.1) 

The kernel function aΦ  defines a local support for the shape functions by a support size “a ” as 

well as the smoothness of the approximation. A widely used kernel function is the cubic-B 

splines that provides 2C  continuity, expressed as 

 

2 3

2 3

2 3 4 4              for 0 z<1 2
( ) ( ) 4 3 4 4 4 3   for1 2 z<1

0                                   for 1
a I a

z z
zz z z

z

⎧ − + ≤
⎪

Φ − =Φ = − + ≤⎨
⎪ ≥

−

⎩

x x   (B.2) 

where || ||Iz a= −x x . The term ( ; )IC −x x x  is a correction function constructed using a set of 

basis functions, 

 1 1 2 2 3 3
0

( ; ) ( ) ( ) ( ) ( ) ( ) ( )
n

i j k T
I I I I ijk I

i j k
C x x x x x x b

+ + =

− = − − − = −∑x x x x H x x b x   (B.3) 

in which ( )I−H x x  is a vector consisting of all the monomial basis functions upto n-th order, 

and b  is an unknown parameter vector determined by enforcing the n-th order reproducing 

conditions as follows, 

 1 2 3 1 2 3
1

( ) ,  | | 0,1,...,
N

i j k i j k
I I I I

I
x x x x x x i j k n

=

Ψ = + + =∑ x   (B.4) 

Introducing Eqs. (B.1) and (B.3) into (B.4), the coefficient vector can be obtained by 

 1( ) ( ) ( )−= 0b x M x H   (B.5) 

where the moment matrix is 
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1

( ) ( ) ( ) ( )
N

T
I I a I

I=
= − − Φ −∑M x H x x H x x x x   (B.6) 

Finially, the RK shape functions is expressed as, 

 1( ) ( ) ( ) ( ) ( )T
I I a I

−Ψ = − Φ −0x H M x H x x x x   (B.7) 

 It should be noted that the above RK shape functions do not possess the Kronecker delta 

property. Thus, certain techniques are needed to impose kinematically admissible approximation 

on the essential boundary, such as Lagrange multipliers method [77], Nitsche’s method [78,79], 

boudary singular kernel method [80], and transformation methods [58,80]. More discussions on 

the mathematical properties of the reproducing kernel approaximation can be found in the review 

paper [81].  

 

B.2. Nodal integration scheme 

The SCNI approach is employed for the domain integration of the weak form (13) to 

achieve computational efficiency and accuracy when using meshfree shape functions with nodal 

integration quadrature schemes.  

The key idea behind SCNI is to satisfy the linear patch test (thus, ensure the linear 

consistency) by leveraging a condition, i.e. the divergence constraint on the test function space 

and numerical integration [59], expressed as: 

 
^ ^

d d ,I IΩ ∂Ω
Ψ Ψ∇ Ω = Γ∫ ∫ n   (B.8) 

where ‘ ^ ’ over the integral symbol denotes numerical integration. In SCNI, an effective way to 

achieve Eq. (B.8) is based on nodal integration with gradients smoothed over conforming 

representative nodal domains, as shown in Fig. 21, converted to boundary integration using the 

divergence theorem 

 ,d d1 1( )
L L

L
L L

I I IV VΩ ∂Ω
Ψ Ψ Ψ∇ ∇ Ω= = Γ∫ ∫ nx%   (B.9) 

where  
L

LV d
Ω

= Ω∫  is the volume of a conforming smoothing domain associated to the node Lx , 

and ∇% denotes the smoothed gradient operator. In this method, smoothed gradients are employed 

for both test and trial functions, as the approximation in (B.9) enjoys first order completeness 
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and leads to a quadratic rate of convergence for solving linear solid problems by meshfree 

Galerkin methods. As shown in Fig. 21, the continuum domain Ω  is partitioned into N  

conforming cells by Voronoi diagram, and both the nodal displacement vectors and the state 

variables (e.g., stress, strain) are defined at the set of nodes at 1{ }NL L=x . 

 Therefore, if we consider two-dimensional elasticity problem under the SCNI framework, 

the smoothed strain-displacement matrix ( )I LB x%  used in (16) is expressed as: 

  
1

2

2 1

( ) 0

( ) 0 ( ) ,

( ) ( )

I L

I L I L

I L I L

b

b

b b

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
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  (B.10) 

 .1( ) ( d) ( )
L

IIi L i
L

b n
V ∂Ω

Ψ= Γ∫x x x%   (B.11) 

Since the employment of the smoothed gradient operator in (B.9) and (B.11) satisfies the 

divergence constraint regardless of the numerical boundary integration, a two trapezoidal rule for 

each segment of L∂Ω  is used in this study. 

 
Fig. 21. Illustration of Voronoi diagram for SCNI. 
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