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ARTICLE OPEN

Dynamic resource allocation drives growth under nitrogen
starvation in eukaryotes
Juan D. Tibocha-Bonilla1,2,3, Manish Kumar2, Anne Richelle2, Rubén D. Godoy-Silva3, Karsten Zengler2,4,5 and Cristal Zuñiga 2✉

Cells can sense changes in their extracellular environment and subsequently adapt their biomass composition. Nutrient abundance
defines the capability of the cell to produce biomass components. Under nutrient-limited conditions, resource allocation
dramatically shifts to carbon-rich molecules. Here, we used dynamic biomass composition data to predict changes in growth and
reaction flux distributions using the available genome-scale metabolic models of five eukaryotic organisms (three heterotrophs and
two phototrophs). We identified temporal profiles of metabolic fluxes that indicate long-term trends in pathway and organelle
function in response to nitrogen depletion. Surprisingly, our calculations of model sensitivity and biosynthetic cost showed that free
energy of biomass metabolites is the main driver of biosynthetic cost and not molecular weight, thus explaining the high costs of
arginine and histidine. We demonstrated how metabolic models can accurately predict the complexity of interwoven mechanisms
in response to stress over the course of growth.

npj Systems Biology and Applications            (2020) 6:14 ; https://doi.org/10.1038/s41540-020-0135-y

INTRODUCTION
Perturbations in environmental conditions require organisms to
withstand transient phases from nutrient abundance to nutrient
depletion. Adequate physical and metabolic responses enable
microorganisms to survive under these dynamic environments1.
As the three main requirements for growth, the principal drivers of
metabolic shifts are carbon, nitrogen, and energy sources. Several
studies have focused on identifying the response mechanism of
organisms to the depletion of each of the sources2. Metabolic
adaptation has been associated with changes in the production or
degradation rates of biomolecules. These profiles are observed in
various heterotrophic and photoautotrophic microorganisms,
increasing their resistance to stress conditions and nutrients
limitation1,3–12. Depletion of carbon and energy sources directly
reduce the synthesis of all biomass precursors since carbon is the
backbone of nucleic acids, proteins, lipids, and carbohydrates and
all anabolic pathways consume energy. On the other hand,
nitrogen depletion has been proven to selectively decrease the
synthesis of proteins and nucleic acids, triggering a metabolic
response that upregulates the synthesis of carbon-rich com-
pounds13. Previous studies on the metabolic response mechanism
to nitrogen depletion have identified key signal metabolites13 and
global biomass composition trends14,15. However, an in-depth
analysis at the genome scale has not yet been employed to
understand how metabolic pathway use changes to survive in
nutrient-deplete conditions.
M-model simulations allow to identify main metabolic reactions

driving growth phenotypes under diverse genetic and environ-
mental conditions15,16. Using a reduced number of known uptake
rates, or constraints17, M-model simulations predict growth and
flux distributions (phenotypes) under diverse genetic and
environmental conditions, identifying the main drivers of meta-
bolism14. In this approach, the formulation of the biomass
objective function (BOF) is highly important to obtain biologically

relevant flux distributions. Each biomass precursor in the BOF pulls
resources from the network depending on its stoichiometric
coefficient; ideally each coefficient is experimentally determined.
Considering this dependence, we devised a strategy to compute
dynamic flux distributions by using time-course biomass composi-
tion data, thus expanding the scope of M-models from a steady
state to several pseudo-steady states encompassing growth under
stress conditions and in time-dependent processes1.
We employed this dynamic simulation procedure to study the

metabolic effect of nitrogen depletion, a common and important
phenomenon in nature and various biotechnology processes15,18.
We used time-course composition data to define BOFs at six
timepoints of culture for five eukaryotic microorganisms (photo-
trophs Chlorella vulgaris and Phaeodactylum tricornutum and
heterotrophs Chinese Hamster Ovary cells, Saccharomyces cerevi-
siae, and Yarrowia lipolytica). High quality and validated M-models
exist for all five organisms3,19–22. Then, flux balance analysis (FBA)
using the COBRA Toolbox23 was employed to calculate flux
distributions at each timepoint and growth mode (heterotrophic
or photoautotrophic). We predicted variations in flux distributions
that reveal time-specific metabolic activities across compartments,
thus describing the metabolic response of different organisms to
nitrogen depletion. We further explain how flux distributions are
shaped by changes in the biomass composition by calculating the
component-specific impact on growth simulations, which is
referred to in this work as sensitivity. The sensitivity of a
component was calculated as the variation of growth rate due
to a change in its abundance in the biomass. Our results show that
sensitivity holds a tight relationship with the biosynthetic cost of
each component, which placed lipids of high molecular weight as
the most impactful on growth. However, we showed through a
deeper look into the biosynthetic cost of amino acids that
molecular weight does not entirely explain the cost of biomass
components, as was the case for arginine and histidine. Rather, we
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found that the underlying driver of cost is the free energy
contribution of the chemical groups contained in the biomass
components.

RESULTS
Dynamic metabolism associated with nutrients depletion can be
simulated using metabolomics data
M-models compile metabolic knowledge in a mathematical
framework, enabling a mechanistic understanding of cell physiol-
ogy based on observations (constraints). We included time-course
metabolomics data in the M-models of the phototrophs C.
vulgaris, iCZ8433, and P. tricornutum, iLB102724, and the hetero-
trophic cell factories Chinese Hamster Ovary cell, iCHOv119, S.
cerevisiae, iMM90422, and Y. lipolytica, iYali420 (Fig. 1a). The general
properties of the M-models are shown in Table 1.
Experimental biomass composition measurements, determined

throughout the growth of all eukaryotic cells while facing nitrogen
starvation, were used to formulate dynamic biomass reactions for
all organisms. For C. vulgaris, data were collected under both
heterotrophy and photoautotrophy, and for P. tricornutum under
mixotrophy and photoautotrophy. All datasets were aligned in six
timepoints (Fig. 1b) representing as follows: (1–2) nitrogen-replete
stage, (3–4) transition stage, and (5–6) nitrogen-deplete stage (see
definition of timepoints in Methods). Furthermore, we show in
Supplementary Fig. 1 the outstanding difference of experimentally
determined BOFs with the composition predicted by the genome,
as previously suggested for bacteria25, which highlights the
improvement by integrating metabolomics data.
Regardless of evolutionary distance, the biomass composition

of all five eukaryotes showed a common response (Supplementary
Fig. 1) of increasing carbon- and energy-rich components, namely
acylglycerols (R2= 0.51, p= 1.1 × 10−6), phospholipids (R2= 0.58,
p= 7.6 × 10−8), and other lipids (R2= 0.84, p= 3.8 × 10−10), such
as pigments, sulfolipids, and glycolipids. We used experimental
measurements of components present in the BOF, predicting
dynamic variations in flux distributions as well as in total organelle
activity and metabolite exchange across compartments (cross-
talk). In Fig. 1c, a cluster analysis (see Methods) of predicted
reaction flux variations with subsystem classification is shown. We
found variations in fatty acid metabolism, amino acid metabolism,
and cytosol–mitochondria transport processes. In all cases, protein
synthesis decreased due to low nitrogen concentrations in the
culture medium, whereas carbohydrate and fatty acid metabo-
lisms were upregulated to store carbon, as previously reported for
eukaryotes1,15. This metabolic trade-off affects the middle growth
stage of all cells, but in CHO cells takes place at the early stage
(timepoints 1–2). Consequently, the nitrogen-depletion threshold
that triggers lipid synthesis appears to be much more sensitive for
this organism. CHO cells are not capable of synthesizing some
proteinogenic amino acids such as asparagine, arginine and
aspartate, among others. Hence, the depletion of carbon and
nitrogen is intertwined as a result of these amino acids being
provided in the medium. Our simulations of biomass yield show
that non-glucose carbon input can amount to 45% of the biomass
c-mol at the highest (first timepoint in Fig. 1b).
In microalgae, clusters were shown to predominantly contain

reactions of the same subsystem, with a clear segregation in C.
vulgaris for fatty acid metabolism and transport. In P. tricornutum,
transport clustered with reactions of other subsystems, whereas
fatty acid metabolism showed a separation similar to that in C.
vulgaris. This orchestration of lipid synthesis as a response to
nutrient starvation in microalgae has been widely reported15, and
is the reason they are a focus of industrial research for
biotechnological purposes. In CHO, S. cerevisiae and Y. lipolytica,
subsystems did not clearly explain the clustering of reactions.
Results show that fatty acid metabolism reactions were combined

with clusters of amino acid metabolism and membrane transport
(Fig. 1c). Opposite to the phototrophic organisms, S. cerevisiae and
Y. lipolytica showed two clearly distinct clusters, displaying a more
visible global trend of metabolic shift after nutrient depletion. This
suggests a highly intertwined variation across the metabolism for
the heterotrophs. In general, these three subsystems contained
the highest number of varying reactions.
Predicted flux distributions unravel changes in each organelle

activity/load (see Methods for a detailed definition of organelle
load). We determined carbon (Fig. 1) and nitrogen (Supplementary
Fig. 4) loads over the course of growth of each model and growth
condition by calculating compartment-level carbon and nitrogen
transport rates. We identified a ubiquitous trend of mitochondrial
carbon and nitrogen load reduction, caused by the activity
reduction in reactions of energy (tricarboxylic acid cycle (TCA) and
oxidative pentose phosphate pathway (PPP)) and amino acid
metabolism (Fig. 2).
Moreover, a significant share of the global mitochondrial

activity variation was associated with change of the activity of
other organelles. The reduction of fast-growth-related fluxes
induced a decrease in metabolite transport rates among the
mitochondria, cytosol, and the chloroplast. This mitochondrial
communication with other organelles has previously been
reported to help regulate several energetic cellular functions26.
Moreover, we identified a common decrease after nitrogen
depletion in the transport of amino acids, as well as their
precursors, e.g., α-ketoglutarate (AKG). In the non-steady-state of
living cells, a lower transport rate of AKG would mean its
accumulation in the cytosol, which has been reported to be a
consequence of nitrogen depletion13. The direct link of AKG levels
to nitrogen availability rendered it one of the principal signal
metabolites of low nitrogen to carbon availability ratio2,13. Other
amino acid precursors whose transport rates were found to
decrease were succinate, fumarate, and O-acetyl carnitine
(phosphoketolase pathway in P. tricornutum), and
tetrahydrofolate (THF).
We predicted that in most cases the cytosol activities exhibited

a long-term (through the timespan of culture) decrease, and at the
same time amino acid biosynthetic reactions were downregulated
in all organisms (Fig. 2). Despite the stress-induced reduction of
energy and amino acid production, the microalgae exhibited a
long-term increase in cytosol and chloroplast activity. In P.
tricornutum and in C. vulgaris (during heterotrophic growth), the
cytosol and chloroplast carbon and nitrogen load increased. For C.
vulgaris, simulations show that the increase of cytosol and
chloroplast activity is mainly due to highly active symport of
asparagine and protons between these two compartments.
Protons are transported from the chloroplast to the cytosol,
where they are subsequently used for ATP regeneration in this
compartment, as well as in the mitochondria.
In P. tricornutum, activity increase represents the fraction of

upregulated reactions (Fig. 2) by photosynthetic pathways. As
shown by our simulations and in a previous report using
proteomics and expression data for P. tricornutum27,28, these
reactions correspond to carbon fixation (included in the group of
reactions labeled as photosynthesis in Fig. 2 and in Supplementary
File 1). Remmers et al.27 reported the upregulation of protein
abundance of a vast majority of carbon fixation enzymes, which
supports the increased flux in our calculations. Interestingly, other
regulatory changes in P. tricornutum highlighted by this proteo-
mics dataset could be predicted by our simulations. Around 21%
of carbohydrate metabolism and 20% of lipid metabolism proteins
were observed to be upregulated, in accordance with the
predicted increase in 37% and 29.9% reaction fluxes in these
subsystems (Supplementary File 2), respectively, and the con-
sequential long-term rise in the cytosol and chloroplast
carbon loads.
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Identifying biomass metabolites driving growth phenotypes
A sensitivity analysis was conducted to analyze the effect of
changes in stoichiometric coefficients of the BOF on predicted

growth rates of all organisms. This analysis was based on the
definition of sensitivity as the relationship among the change in a
controlled variable (BOF-metabolite i) and the change of a

a

c

b

Fig. 1 Prediction of metabolic trends using time-course metabolomics data of eukaryotic organisms. a Neighbor-joining tree based on
almost full-length RimM rRNA gene sequences, showing phylogenetic relationships between the phototrophs C. vulgaris, iCZ8433, and P.
tricornutum, iLB102724, and the heterotrophic cell factories Chinese Hamster Ovary cell, iCHOv119, S. cerevisiae, iMM90422, and Y. lipolytica,
iYali420. Timespans of culture for each organism are shown in the boxes for heterotrophy (HT), mixotrophy (MX), and photoautotrophy (PA).
b Available metabolomics data were retrieved and used to compute time- and condition-specific BOFs. Biomass components are abbreviated
as follows: amino acids (AA), carbohydrates (CB), nucleotides (Nuc), fatty acids (FA), phospholipids (PL), and other lipids (OL). c Cluster analysis
of reaction flux variations. Z-scores were computed from the change in flux of a reaction from one timepoint to the next, or in other words,
horizontally. On top of each clustergram we show time-course carbon load as a measurement of compartment activity, in order to correlate it
with reaction flux variations. To permit the comparison among all organisms, relative activity was calculated as the ratio of the activity at each
timepoint versus the initial activity (see activity in Methods). Compartment abbreviations are: cytosol (c), mitochondria (m), chloroplast (h),
extracellular environment (e), thylakoid lumen (u), endoplasmic reticulum (r), glyoxysome (x), lysosome (l), and nucleus (n). The pie chart in the
bottom right shows the classification in subsystems of all differentially active reactions across models.
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response variable. With growth rate as the response variable, the
sensitivity of metabolite i represents the variation of the predicted
growth rate caused by a change in the composition of i. The
sensitivity of a metabolite is not constant across metabolic
networks, as different biomass compositions affect the flux
distributions and responsiveness of the whole network. Therefore,
we performed a codependence analysis in which hundreds of
sensitivities were calculated for a single metabolite, so that the
mean of the distribution could be used as a representative value

of the sensitivity (see Methods for a complete definition of
sensitivity and codependence).
We calculated the biosynthetic cost for every metabolite in the

biomass reaction of the five models, as the amount of ATP
molecules needed to produce one molecule of each biomass
precursor. We then correlated the sensitivities with the calculated
costs, and we found a strong correlation between them for both
autotrophic (R2= 0.998, p= 8.4 × 10−15) and heterotrophic (R2=
0.75, p= 4.3 × 10−4) growth, meaning that regardless of growth

Table 1. Characteristics of included genome-scale metabolic models.

# Organism Model ID Mode a Genes Reactions Metabolomics dataset source Culture timespan of
dataset

1 Chlorella vulgaris iCZ8433 P 843 2294 Zuñiga et al.1 8 days

2 H Zuñiga et al.1 6.25 days

3 Phaeodactylum
tricornutum

iLB102721 P 1027 4456 Levitan et al.4, German-Báez et al.8, Parsons et al.9,
Siron et al.10, Yang et al.11, Willis et al.12

3 days

4 M

5 Yarrowia lipolytica iYali420 H 901 1985 Rakicka et al.7 8.3 days

6 Saccharomyces cerevisiae iMM90422 H 905 1577 Bu et al.6 20 h

7 CHO cell iCHOv119 H 1766 6663 Selvarasu et al.5 9.4 days

aGrowth condition (Mode) is abbreviated as follows: photoautotrophic (P), mixotrophic (M), and heterotrophic (H) growth conditions.

Fig. 2 Pathway activity variation of core metabolism in photoautotrophic (left) and heterotrophic (right) organisms after nitrogen
depletion. The solution space of the models was sampled according to a previously reported methodology53; employing functions available in The
COBRA Toolbox (see Methods). Significant upregulations or downregulations was assessed by performing a Student’s t test on the distributions of
each reaction at the initial and final time points. Included organisms are abbreviated as follows: Chlorella vulgaris (Cv), Phaeodactylum tricornutum (Pt),
Saccharomyces cerevisiae (Sc), Yarrowia lipolytica (Yl), and Chinese Hamster Ovary cells (CHO).
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condition and organism, sensitivity was driven by biosynthetic
cost (Fig. 3). Same results were obtained for NADH and NADPH
cost (see correlation coefficients in Supplementary File 3).
Modeling predictions suggest that molecular weight of the

biomass precursors is one of the major drivers of their biosynthetic
cost and growth (Fig. 3a, b), regardless of phylogeny and growth
mode. Even though a higher diversity of heterotrophic organisms
induced greater standard deviations of calculations, a remarkably
similar trend was exhibited with respect to organisms growing
photoautotrophically. Due to the high connectivity of amino acids
we analyzed their sensitivity in Fig. 3c, d. We found that the
correlation holds not only for the macroscopic trend (correlation
for all biomass components in Fig. 3a, b), but also for the
correlation among amino acid cost and sensitivity. Our results are
in sync with previous findings in which tryptophan the biggest
and most expensive amino acid29 exhibits the highest sensitivity,

opposite to the obtained for smaller molecules such as glycine,
serine, and aspartate.

Metabolite-specific energetics shape growth phenotypes
Amino acids with higher carbon and nitrogen bounds, such as
tryptophan and phenylalanine (nine carbons), can affect growth
roughly four to five times more than low molecular weight amino
acids such as glycine (two carbons), as shown in Fig. 3c, d. This
assumption has driven the hypothesis that sensitivity and
biosynthetic cost are correlated with molecular weight, as
previously reported30. However, our sensitivity results also
demonstrated that arginine and histidine (six carbons) are
competitive drivers of growth, comparable to the most expensive
amino acid tryptophan30, which has been identified as the most
expensive amino acid of bacterial metabolism31. In previous
reports, arginine and histidine exhibited unexceptional costs of

Fig. 3 Correlation of sensitivity with biosynthetic cost for heterotrophic or mixotrophic (HT and MX, a and b) and photoautotrophic (PA,
b and d) growth conditions. a, b Sensitivity values were grouped according to the classification of the biomass precursor, them being: amino
acids (AA), carbohydrates (CB), triacylglycerols (TAG), all cis-sulfoquinovosyl diacylglycerol (As), sulfoquinovosyl diacylglycerols (Sqdg),
monogalactosyl diacylglycerol (Mgdg), digalactosyl diacylglycerol (Dgdg), phosphatidylcoline (Pchol), phosphatidyl inositol (Pail), and
phosphatidyl ethanolamine (Pe). As done for Fig. 1, we calculate relative activity as the ratio of the activity at each timepoint versus the initial
activity to allow for comparisons across organisms (see activity in Methods). We identified the effect of molecular weight on sensitivity, as
smaller molecules such as amino acids and carbohydrates with molecular weights from 137 to 238 gmol−1 showed sensitivities at least 4
times lower than those of lipids, whose molecular weights range from 737 to 1080 gmol−1. c, d Amino acids are sorted from smallest to
biggest sensitivities. Included organisms are abbreviated as follows: Chlorella vulgaris (Cv), Phaeodactylum tricornutum (Pt), Saccharomyces
cerevisiae (Sc), Yarrowia lipolytica (Yl), and Chinese Hamster Ovary cells (CHO).
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merely 27 and 38% of the biosynthetic cost of tryptophan
(73–75.5 mole ATP/mole Trp)29,30,32,33, as opposed to our results of
more than 70%.
To gain insight into this finding, we evaluated the effect of

simultaneous variations in nitrogen content and molecular size on
biosynthetic cost. Supplementary Fig. 6 shows the interaction
among N/C ratio and cost. As expected, higher carbon content
induces higher biosynthetic cost than nitrogen for most com-
pounds; however, for arginine and histidine (the most nitrogen-
rich compounds), nitrogen content was the major driver of cost.
This exception to the rule led us to assess the underlying

phenomena using the standard Gibbs free energy of formation
(ΔG0

f ), which we found to be proportional to biosynthetic cost, as
shown in Fig. 4 for C. vulgaris (R2= 0.66, p= 1.35 × 10−5 in
autotrophy, and R2= 0.56, p= 1.48 × 10−4 in heterotrophy) and
Supplementary Fig. 7 for the other organisms. According to
Joback’s group contribution method for the estimation of ΔG0

f
34,

the amino groups contained in the chemical structures of histidine
and arginine lie among the most energetic: =NH, >NH (nonring),
>NH (ring), and -N= (ring). Since most amino acids contain low
free energy -NH2 groups, carbon groups tend to have a higher
contribution to ΔG0

f for all cases except histidine and arginine. In
fact, only the groups =C= and >N- (nonring) have a higher
contribution than =NH.

DISCUSSION
Environmental changes associated with nutrient limitation trigger
metabolic responses, which have allowed organisms to maintain
growth. We study how nitrogen starvation decreases the
productivity of essential nitrogen-rich compounds (namely amino
acids), causing cells to prioritize higher-energy nitrogen-free
biomolecule synthesis, such as those for lipids, carbohydrates,
and sterols. Here, we developed a metabolic modeling approach
that uses as dynamic constraints time-course metabolomics data
to study the effect of biomass composition on flux distributions of
five eukaryotic organisms. Simulations predicted the metabolic
response of each microorganism to dynamic constraints at
organelle and pathway levels. Our calculations showed that
nitrogen deprivation caused a major decrease in energy
metabolism and the synthesis of nitrogen-rich compounds, as
expected.

The mitochondria have been recognized as central hubs of
communication among compartments for metabolic and regula-
tion purposes26. It has been shown that the cross-talk of the
mitochondria with adjacent organelles holds a central role in the
signaling for the initiation and completion of apoptosis through
the production and transport of signal metabolites, causing an
increase of mitochondrial abundance for the synthesis of Bax/Bak
proteins35,36. However, this change in mitochondrial abundance
does not appear to have a basis in metabolic flux demands, since
we found that energy metabolism and amino acid precursor
synthesis in the mitochondria is expected to decrease in the late
stages of culture. Our results showed this reduction is partially due
to the high interconnection of the mitochondria through several
metabolic functions with the cytosol and the chloroplast (namely
the reduction in amino acid synthesis and energy metabolism),
that caused the decrease of cytosol and chloroplast activity to
affect the mitochondria.
The sensitivity analysis unraveled individual contributions of

each biomass precursor to growth of all studied organisms. We
determined the biosynthetic cost of all metabolites and showed
that the growth was the most sensitive to metabolites with higher
biosynthetic cost. Even though we showed that amino acids have
some of the lowest biosynthetic costs (Fig. 3), their molar
abundance is roughly ten times greater than lipids, resulting in
comparable costs of amino acids and lipids. In a deep examination
of the biosynthetic costs of amino acids, we found that in reality
free energy of compounds was the underlying driver, since our
calculations indicated histidine and arginine had higher biosyn-
thetic costs than previously reported29,30,32,33. Free energy and
molecular weight are not independent, as bigger molecules tend
to have higher free energies associated to a larger number of
bonds. Rather than discarding molecular weight as a contributor
of cost, our results shed light on free energy being the true driver.
The high free energies of arginine and histidine are reflected in

the complexity and energy requirement of their biosynthetic
pathways. Among the studied organisms, C. vulgaris, P. tricornu-
tum, Y. lipolytica, and S. cerevisiae are capable to produce arginine
and histidine. Intriguingly, differential compartmentalization of
arginine biosynthesis does not seem to affect its sensitivity and
cost across organisms. On the other hand, flux simulations showed
that pathways involved in histidine biosynthesis tend to remain
unchanged among phylogenetically distant organisms, in accor-
dance with previous reports37–39. Specifically, it is necessary to

Fig. 4 Unraveling interactions among high nitrogen content of histidine and arginine, free energy, and biosynthetic cost. Correlation of
calculated biosynthetic costs of amino acids for C. vulgaris under phototrophy and heterotrophy and their respective standard Gibbs free
energies of formation (ΔG0

f in kcal mole−1) retrieved from BioCyc54. High free energy groups are highlighted in red, low ones in blue, and their
contributions according to the Joback’s method34 are shown.
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generate precursors in other pathways, such as the PPP, TCA,
acetyl cycles, and nucleotide biosynthetic pathways. In all
organisms, arginine biosynthesis consumes ornithine and gluta-
mine, a main nitrogen carrier, which induces an additional cost for
the network, considering its high connectivity with the biosynth-
esis of other amino acids, pigments and nucleotides. Glutamine,
specifically, has been identified as one of the most important
contributors to carbon and nitrogen metabolism40, and a drastic
decrease (e.g., 35% decrease in yeast)6,7 in its abundance is a
common response under nitrogen starvation2,40,41. Moreover, the
consumption of ornithine fully activates the acetyl cycle, thus
adding nitrogen and energy costs by consuming glutamate
and ATPs.
For both amino acids, the high free energy of their nitrogen

groups translated into the activation of relatively complex
pathways, often meaning the consumption of highly connected
intermediates and precursors, such as main nitrogen carriers and
nucleotide precursors. Arginine requires the full activation of the
acetyl cycle, whereas histidine synthesis activates nucleotide
synthesis pathways to generate its side chain. In addition, main
carriers are principal reactants in the production of both amino
acids in all organisms, namely glutamate, glutamine, and
ammonium itself. The burden of synthesizing histidine through
these pathways is reflected in histidine having some of the lowest
abundances in the proteomes of the included organisms (mean
abundance= 2.38%, 1st–3rd quartile= 2.32–2.45%), as it has been
reported that cells (and even microbial communities) prefer
thermodynamic favorability over other efficiency criteria such as
cofactor use efficiency14,33. Interestingly, arginine and histidine
have been associated with metabolic exchange in syntrophic
microbial communities14,42. The predicted flux exchange may be
linked to their high free energy and nitrogen content.
With these results, we demonstrated how nitrogen deprivation

shapes the metabolic phenotype in organisms, as well as the
underlying phenomena driving these variations. This field has
been studied extensively in the past from both experimentation
and modeling standpoint15; however, the determination of the
impact of nitrogen stress at the biochemical reaction-scale had
not been addressed. The lack of attention to this phenomenon is
mainly caused by the difficulty of quantitative determination.
Experimentally, the quantification of intracellular metabolic
changes and transport levels is done through microscopy-based
methods that have limited quantitative capacity and speed43, thus
precluding them from analyzing reactome-wide variations. From a
modeling perspective, accounting for intracellular transport is still
a major challenge, as gene–protein-reaction association data is
frequently missing for transporters1, thus relegating the addition
of transport reactions to gap-filling methods. This issue is only
amplified in eukaryotes, where even more information is missing
for transporters in organelle membranes. Among other modeling
limitations, it is worthy to note that our calculations could be used
to reverse-engineer the time-course phenotype adjustment, but
could not account for other known responses to nutrient
starvation previously identified for phototrophs such as the
depletion of pool-like nitrogen reserves1 and the breakdown of
nitrogen-containing molecules through autophagy44 and chloro-
sis45,46. In the case of CHO cells, modeling approaches are not able
to account for the increase in mitochondrial number35,47, as well
as lipid composition variations in close proximity to cellular
death48.
Here, we showed how condition and time-course composition

data can be employed to understand the metabolic processes that
an organism undergoes in stress conditions. We analyzed the
interplay of metabolites in these processes and identified key
drivers in these responses. However, with increased development
of novel strategies to obtain more refined omics data, the
approach shown in this study can be greatly complemented and
can be used to elucidate further time-course pathway coupling

and variations that were not captured in the present study due to
the aforementioned modeling and data limitations.

METHODS
All simulations were carried out within the MATLAB 2016b (MathWorks
Inc.) environment and using the COBRA Toolbox v3.049. FBA was used for
flux distribution calculations, and GUROBI 7.5.2 was employed as a solver
for the linear optimization problems. Metabolic network visualization was
performed using Escher50.

Genome-scale metabolic models
In order to ensure phylogenetic diversity, we included five genome-scale
metabolic models under different growth modes: heterotrophy, mixotro-
phy and/or photoautotrophy, yielding seven organism- and condition-
specific simulations. Information regarding genome-scale metabolic model
characteristics and growth modes are presented in Table 1. All but one
constraint was altered in the models for the analyses in this work: nitrogen
exchange. Since we intended to elucidate the change of predicted
metabolic requirements without constraint-induced bias, nitrogen
exchange bounds were left open. Metabolic models were shared following
the standard protocols for computational analysis51.

Formulation of time-course BOFs
Biomass composition data was retrieved for C. vulgaris1, P. tricornutum4,8–12,
Chinese Hamster Ovary cells5, S. cerevisiae6, and Y. lipolytica7 (Table 1). In all
cases, data was taken before and after nutrient depletion. The timepoints
are in hypothetical time units relative to the total duration of culture of
each organism, since their phylogenetic diversity render their culture
timespan of different scales. The whole culture from nutrient repletion to
depletion was divided in 6 stages so that all stages of culture relevant to
nutrient depletion were captured: nutrient-replete (1–2), nutrient-deplete
(5–6), and a transition stage (3–4). The timespan of culture for each
organism is shown in Table 1. At each timepoint, the stoichiometric
coefficients of all biomass precursors were calculated from the composi-
tion data. In brief, the composition data that was reported in either mass or
molar fraction in the datasets was converted into mmol gDW−1 h−1, as
described in standard protocols of metabolic model reconstruction25,52

Each model’s production capacity of all measured biomass precursors was
first tested, since the metabolites that were measured might not coincide
with those initially considered in the network reconstruction. The BOF was
constructed including each biomass component one by one, while
maintaining the already set values for the catabolic ATP requirement. All
metabolites which caused the solution to be infeasible were ignored and
the stoichiometric coefficients were then renormalized to add up to 1 g of
dry weight (BOFs are provided in Supplementary File 4). In brief, excluded
metabolites were carbohydrates which the models of P. tricornutum and
the yeasts were not able to synthesize, namely D-xylose, D-fucose,
mannose, and L-arabinose. Since we wanted to capture the specific effect
of the BOF on flux simulations through time, we made sure that the
nitrogen was not the limiting factor, so that the shown variations were not
due to the mere activation of a constraint. A full summary of the used
constraints is provided in Supplementary File 5. Each BOF was used to
solve the LP optimization problem at the respective timepoint, employing
the loop-less solution method of the function optimizeCbModel available
in the COBRA Toolbox. A summary of the constrains is available in
Supplementary File 5. The time-course flux distributions that were
calculated were used to analyze pathway flux trends and compartment
activity variations.

Hierarchical clustering of pathway flux variation trends
For each timepoint t, the absolute difference between the reaction fluxes
at t and at t0 was calculated. The variations were normalized by calculating
Z-scores, which were then processed by the function clustergram, available
in Matlab. The distance metric to compute pairwise dissimilarities was
Euclidean, and the average linkage was chosen.

Sensitivity analysis
The sensitivity analysis consisted in the study of how model predictions
varied with the composition of each biomass component. The sensitivity of
a biomass component was defined as the rate of change of predicted
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growth rate with a variation of its stoichiometric coefficient. When
calculating the sensitivity of metabolite i, the composition of all other
components in the BOF was randomly varied within their observed range.
A total of 100 different hypothetical BOFs were generated for each
individual calculation so that the final sensitivity of metabolite i was the
average of all possible sensitivities within limits that are experimentally
possible. For each BOF, the mass fraction of metabolite i was varied from
the minimum to the maximum observed in the dataset and growth rates
were predicted. Finally, the sensitivity Si of metabolite i was estimated
through linear regression as the slope of growth rate as a function of the
stoichiometric coefficient pi (Eq. (1)). The intercept I was not included in the
analysis.

μ ¼ ∂μ

∂pi
pi þ I ¼ Sipi þ I: (1)

Model simulations showed that the value of Si depended on the
abundance of other biomass precursors (across all generated BOFs). We
calculated the range of variation of Si as a measurement of the
codependence Di (Eq. (2)).

Di ¼ Si;max � Si;min: (2)

Sensitivity and codependence were correlated with both connectivity
and biosynthetic cost. Connectivity was calculated as the number of
reactions in which the biomass component appeared with a nonzero
stoichiometric coefficient.

Calculation of biosynthetic cost
For any metabolite i, its biosynthetic cost was defined as the amount of
ATP moles necessary to produce one mole of i. The algorithm to calculate
this parameter was taken from Du et al.33. The growth rate was first
predicted using the existing model. Then, flux through the biomass
reaction was set to 95% the predicted value, and the objective function
was set to an ATP hydrolysis reaction. A demand reaction was added for
each biomass component and a minimal flux of 0.0001 was set for it. The
relative decrease in the ADP flux through this reaction after forcing the
production of this minimal flux was set as the biosynthetic cost of the
metabolite, in units of (mmol ATP) (mmol metabolite)−1. The mathematical
definition of biosynthetic cost (A) for a metabolite i is shown in Eq. (3).

Ai ¼ ∂rATP
∂ri

: (3)

Calculation of compartment activity
Compartment activity was assessed with compartment-specific element
(e.g., C, N, O, and P) loads, being carbon and nitrogen loads referred to as
activity. Since FBA is a pseudo steady-state method, accumulation as a
measurement of load could not be determined. Since all elemental mass
that enters a compartment is secreted from it, we estimated carbon and
nitrogen loads by the flux of these elements being transported into each
compartment by all transport reactions (R). Element loads were defined as
the molar flux of the element flowing into a certain compartment at a
given time, as shown in Eqs. (4) and (5) for the load of element e in
compartment c. This allowed the returned magnitudes to be comparable
with each other, and unbiased by reaction stoichiometry.

lei;c ¼
XR

r¼1

vr � γi;r � Ne
i ; (4)

Lec ¼
XM

i¼1

lei;c; (5)

where lei;c is the amount of element e carried by metabolite i into
compartment c. vr, γi;r, and Ne

i are the flux of reaction r, the stoichiometric
coefficient of i in it, and the number of e atoms in i's molecular structure,
respectively. Only positive γi;r were included, since the mass balance is
bound to close because of the assumption of pseudo-steady state. Finally,
Lec is the load of e in c.

Determination of upregulation and downregulation of reactions
To assess significant upregulation and downregulation of reactions, we
sampled the solution space for each model and timepoint. Sampling was
carried out using the gpSampler function of the COBRA Toolbox23 in close

proximity to the optimal solution space by constraining the LP problem to
a minimum of 90% the optimal solution53, with a sample size of 5000
points for each timepoint. Reactions were considered to be upregulation or
downregulated if the paired one-tailed (right and left respectively)
Student’s t test rejected the null hypothesis with a p value lower than a
significance level of 0.05, with reaction flux distributions at the initial and
final time points as inputs.

DATA AVAILABILITY
All relevant data is contained in this document and the supplementary files. MATLAB
scripts and functions are available in the sensitivityAnalysis repository at https://
github.com/jdtibochab/sensitivityAnalysis.
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