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ABSTRACT OF THE THESIS

Site Selection Methods and Applications

of the Epigenetic Pacemaker (EPM) Clock

by

Huiling Huang

Master of Science in Bioinformatics

University of California, Los Angeles, 2020

Professor Matteo Pellegrini, Chair

Various epigenetic clocks have been constructed using DNA methylation data, using regres-

sion models to estimate age from DNA methylation patterns. To overcome the constraints

imposed by these epigenetic clocks, the Epigenetic Pacemaker (EPM) clock is built to pre-

dict an individual’s epigenetic state in an unbiased non-linear manner. The EPM clock

models the initial methylation value and rate of change in methylation at each methylation

locus, enabling an intuitive interpretation of coefficients of selected sites. Since the EPM

model is computationally heavy, selecting informative loci in the preprocessing step is nec-

essary. We selected model sites using either a novel randomized ridge regression selection

method or the Pearson Correlation Coefficient (PCC) method. The PCC metric achieved

higher performance and was used as the site selection method when applying EPM clock to

a schizophrenia data set. In this data set, age acceleration predicted by EPM model was

positively correlated with schizophrenia status and sex as a male. By experimenting with

different EPM models, we conclude that a full model using all samples to build an EPM

model generates stable epigenetic state predictions. Building EPM model using more sites
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with higher PCC values correlated with phenotype traits is more informative.
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CHAPTER 1

Introduction

Epigenetics refers to various types of covalent modification to chromatin that affect gene

expression without modifying an individual’s DNA sequence. DNA methylation is a partic-

ular type of epigenetic control, where a cytosine in a CpG dinucleotides is methylated [1].

The status of the epigenome changes overtime responding to environmental factors [2] yet

maintaining a relatively stable representation of an individual’s current physiological condi-

tion. As a result, it is not surprising that many studies have shown that DNA methylation

changes as an organism ages. This gives rise to the notion of DNA methylation age, also

known as epigenetic age, which is predicted by DNA methylation data and is a biomarker of

aging. As a biomarker, epigenetic age may better predict health than chronological age does

[3]. Down syndrome, a disease that would raise the risks of many chronic diseases which

are typically associated with older age, exhibits accelerated epigenetic aging in blood and

brain tissue [4]. This molecular evidence suggests Down syndrome individuals’ functional

capability may decrease faster than average.

To calculate epigenetic age, various epigenetic clocks have been constructed. Inputting

DNA methylation data of an individual into an epigenetic clock generates the individual’s

predicted epigenetic age. Most epigenetic clocks use a penalized regression approach to select

CpG sites associated with chronological age and build a linear model to predict epigenetic

age. The model is a linear combination of the methylation values at selected CpG sites

and the weights corresponding to each site generated by regression. The Horvath epigenetic

clock, the first multi-tissue epigenetic age predictor, uses elastic net regression to build
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the model, yielding 353 CpG sites [1]. The Hannum epigenetic clock, another widely used

epigenetic clock, also applies elastic net regression to the methylation data, but combined

with bootstrap approaches, yielded only 71 CpG sites [5]. While these two clocks both predict

epigenetic ages, there are some limitations of the penalized regression approach, including

the biological interpretation of weights and sites selected, and the biological explanation of

why minimizing the objective function of the model would yield the epigenetic age.

As there are more and more epigenetic clocks built using machine learning algorithms

that generate predictions, what these epigenetic clocks teach us about the biology of aging

becomes a more vital question [6]. A recently constructed epigenetic clock called the epi-

genetic pacemaker (EPM) clock answers this biological question using a different approach

and addresses part of the limitations of the penalized regression model. EPM parametrizes

epigenetic state, initial methylation value at each CpG site, and the rates of change over

time at each CpG site [7], enabling a nonlinear prediction of epigenetic state. The rates of

change in EPM are comparable to the weights in the penalized regression model, and the

rates of change are biologically interpretable.

However, site selection appears to demand more attention when building an EPM clock.

The first problem of site selection is in the preprocessing step. Since EPM uses a conditional

expectation-maximization algorithm to fit the model [7], which is more computationally

heavy than regression models, site selection before fitting the EPM is necessary. The origi-

nal EPM retains the 1000 best CpG sites combining different selection methods, including

variance, covariance, and Pearson correlation [7]. We propose to consider penalized regres-

sion and retain more potential CpG sites. The second site selection problem is during the

fitting step. We found that after fitting an EPM model using cross-validation, many of the

rates of change returned by the EPM model equal to zero. Removing these zero-rate sites

might help improve the model.

After proper selection of sites, an EPM clock is built with DNA methylation values

of these selected CpG sites. Then the EPM model can be applied to real data sets and
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predict epigenetic state. To determine the practicality of the EPM model, how deviation of

individual epigenetic age from the general trend (age acceleration) correlates with individual

phenotype traits is studied. If an EPM model performs well, individuals with certain traits

will have higher age acceleration than others. For example, we would expect that patients

of certain diseases have higher age acceleration than controls. To research on how to build

a good EPM model, different model-fitting methods and various sets of selected sites were

experimented. To compare and evaluate different models, how well age acceleration predicted

by a model is explained by phenotype traits is quantified by different methods.
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CHAPTER 2

Methods

2.1 Data Acquisition

2.1.1 Data for Studying Site Selection Methods

14 Illumina 450k methylation data sets were collected from the Gene Expression Omnibus

(GEO) repository. Some of the data sets contain phenotype data of the individuals. All

methylation data were quantile normalized, and samples with excessive missing methylation

data or phenotype data were dropped. 1143 samples were retained for studying site selection

methods.

2.1.2 Data for Applying EPM clock

From the Gene Expression Omnibus (GEO) repository, an Illumina 450k DNA methylation

data set for schizophrenia patients and controls (Series GSE84727) was used for studying

applications of the EPM clock. There are 847 whole blood-derived DNA samples, consisting

of 414 schizophrenia cases and 433 controls. Samples without available chronological age

were dropped. 665 samples were retained for further study, consisting of 260 schizophrenia

cases and 405 controls. There were more male cases (480 cases) than females cases (185

cases) among the retained individuals. The chronological age range of these 665 samples is

from 18.3 years old to 80.7 years old.
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2.2 Epigenetic Pacemaker (EPM) Model

2.2.1 Model Formulation

The EPM model is constructed by the adaption of the universal pacemaker of genome evo-

lution to the epigenetic setting [7]. It is the first epigenetic clock that parametrizes rates of

change in methylation at each site and relaxes the time-linear constraint.

Let m be the number of individuals, n be the number of methylation sites for each indi-

vidual. For each individual j, j = 1, 2, . . . , p, the methylation value at site i, i = 1, 2, . . . , q,

is denoted as mi,j. Each individual j has a corresponding state sj, which is the individual’s

epigenetic state. For each methylation site i, m0
i denotes the initial methylation value and ri

denote the rate of change in methylation. The EPM model states that mi,j = m0
i + risj[7],

where each site’s methylation value changes linearly at a constant rate as the epigenetic

state changes. The observed methylation value at site i for individual j is denoted as

m̂i,j = m0
i + risj + εi,j [7], where εi,j is a normally distributed error term. The EPM

model optimizes m0
i , ri, sj by minimizing sum of squared error term utilizing conditional

expectation maximization (CEM) algorithm. CEM iteratively fixes sj and optimize m0
i , ri,

then fixes the optimized m0
i , ri to optimize sj, until the improvement of the model is below

certain threshold. sj is initialized as the individual’s chronological age, then CEM starts

the iterations. When the iterations stop, sj are the predicted epigenetic states by the EPM

model.

2.2.2 Cross Validation

The model can either be fitted once using all the data points, or it can be fitted using

cross-validation.

When performing a cross-validated EPM model, for each site, we took the average of

m0
i , ri generated on training data across different folds. We used this set of initial methylation
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values and rates of change in methylation to optimize the epigenetic state as the prediction

generated by the cross-validated EPM model.

2.3 Site Selection Methods

2.3.1 Methylation Site Selection in Preprocessing Step

The computational cost of CEM algorithm goes up dramatically as the number of sites used

increases. Since CEM is computationally heavy, it is necessary to preprocess the 450,000 sites

in the methylation data to a smaller subset that are potentially significant when predicting

epigenetic age. When exploring site selection methods, 20 percent of the samples were used

for site selection, and the remaining 80 percent were used for fitting the EPM model and

getting epigenetic age predictions. Variance, covariance, and Pearson correlation are some

metrics to perform site selection [7].

Two site selection methods in the preprocessing step were performed and compared.

First, we used a novel approach, randomized ridge regression to select methylation sites

that are potentially significant. Iteratively, we randomly sample a subset of the data and

perform ridge regression on methylation data and chronological age. For each iteration of

ridge regression, we recorded the sites that have a weight above a certain threshold. After

some iterations, a number of sites had been recorded and some sites appeared multiple times.

Sites that appeared above a certain number of times were selected. The number of iterations,

threshold to record sites during each iteration, and the threshold of the count of sites after

all iterations are parameters that could be tuned to obtain the desired amount of selected

methylation sites. Second, the Pearson Correlation Coefficient (PCC) metric is used for site

selection in the preprocessing step. For all 450,000 sites in the data set, the PCC score is

calculated between the methylation value at each site for all individuals and all individual’s

chronological age for studying different site selection methods. Sites with highest PCC scores

are selected.
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2.3.2 Methylation Site Removal Method in Model Refitting Step

After selecting potential sites in the preprocessing step, we use these sites to fit the cross-

validated EPM model. The returned rates of change in methylation, ri, are examined, and

we found that some of the ri are close to zero. This means that the methylation value at

these sites does not change with the epigenetic state, and they are thus unable to capture

the features of the epigenetic state. We proposed to remove these sites that have rates of

change close to zero to enhance the simplicity of the model and examine whether removing

these sites would retain the captured signals, or even improve the performance of the model.

To remove the sites that have rates of change close to zero, we iteratively fit the cross-

validated EPM model until some stopping criteria. A fixed threshold is picked. We first fit

a cross-validated EPM model using the starting sites selected from the preprocessing step,

then we remove the sites that have rates of change under the threshold. Then we refit the

EPM model using the selected sites from the previous step until there are no sites that

have a rate of change under the threshold. The threshold is a hyperparameter, and different

thresholds are tested. Epigenetic states predicted by models with different thresholds are

evaluated. We pick the threshold that generates the model with the highest accuracy when

the sites removal step ends iterations.

Model accuracy is evaluated based on the coefficient of determination (R-squared) be-

tween predicted epigenetic state and the trendline of all predicted epigenetic states.

2.4 EPM Model Applications

To apply the EPM model to real data sets, there are different options in the model fitting

step. Besides, different sets of selected sites can be experimented to build the EPM model.
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2.4.1 Options in Model Fitting

1. Full Model

An EPM model can be fitted once using all samples, denoted as a Full Model. The

epigenetic state prediction is directly within the results of the fitted model. Every

sample has an epigenetic state prediction.

2. Cross-Validated Full Model (CV Full Model)

An EPM model can be fitted with cross-validation using all samples, denoted as Cross-

Validated Full Model. The epigenetic state prediction is directly within the results of

the fitted model. Every sample has an epigenetic state prediction.

3. Cross-Validated Model Using Train-Test Split (CV TT Model)

Samples can be divided into a training and a testing set. An EPM model can be fitted

with cross-validation on the training set, then the epigenetic state is predicted using

the fitted model on the testing set. Only samples in the training set have epigenetic

state prediction.

2.4.2 Options in Site Selection

After choosing a site selection method, the next step is to determine which set of sites should

be used in fitting the EPM model. Typically, sites correlated with age are used for further

fitting an EPM model, as described in Section 2.3 Site Selection Methods. However,

different sets of sites can also be experimented to fit the EPM model, not confined to sites

correlated with age.

Below are the proposed combinations of sites for the schizophrenia data set, considering

available phenotype data in the data set GSE84727.

1. Sites Correlated with Chronological Age
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M1.1 Full Model with Sites Correlated with Chronological Age

M1.2 Full Model with Sites Correlated with Chronological Age, Sex, and Disease

M1.3 Full Model with Sites Correlated with Chronological Age and Sex

M2.1 CV TT Model with Sites Correlated with Chronological Age

M2.2 CV TT Model with Sites Correlated with Chronological Age, Sex, and Disease

M2.3 CV TT Model with Sites Correlated with Chronological Age and Sex

Table 2.1: Proposed EPM Models

2. Sites Correlated with Chronological Age, Sex, and Disease

3. Sites Correlated with Chronological Age and Sex

In each combination, sites correlated with a specific phenotype are derived using the

site selection method. Then, the union of the sites correlated with all phenotypes in each

combination is used to fit an EPM model. Take combination 3. as an example, sites

correlated with age, and sites correlated with sex are found independently using the site

selection method. Then, the union of the sites correlated with age and sites correlated with

sex is used for further model fitting.

2.4.3 Proposed EPM Models

When experimenting with different model-fitting options, the CV Full Model yields almost

the same results as the Full Model for the schizophrenia data set GSE84727. As a result,

only the Full Model and the CV TT Model are considered when proposing EPM models.

Combining all the options in model fitting and options in site selection, six models were

proposed and labeled as the following.

Each proposed EPM model was applied to the schizophrenia data set GSE84727, yielding

different epigenetic state predictions. A conventional linear model using the same set of sites
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was also applied to the data set. The results from the EPM model and the linear model

were compared within the proposed models. The results from all the proposed EPM models

on the same data set were then evaluated and compared.

2.4.4 Evaluation of the EPM Models

To utilize EPM models for biological implications, we are interested in how individual epi-

genetic state prediction deviates from the trend of the overall population, and how such

deviation could be explained by different phenotype traits. The following 2 evaluation meth-

ods both aim for exploring the relationship between individual epigenetic state deviation

and phenotype traits.

2.4.4.1 Correlating Age Acceleration with Phenotype Traits

Age acceleration is defined as the difference between epigenetic state prediction and the

overall trend line of epigenetic state predictions. For this data set, a square root function of

epigenetic state predictions on chronological age is fitted on all samples. For each sample,

expected epigenetic state prediction can be calculated from the fitted square root function

using know chronological age. Age acceleration of this sample can then be obtained by

subtracting expected epigenetic state prediction from epigenetic state prediction.

Since the phenotype traits in the schizophrenia data set are binary (sex and disease

status), a Mann-Whitney U test was performed on age acceleration grouped by different

values of a specific phenotype trait. If the p-value of one such test is significant, one can

conclude that age acceleration captures the difference of the phenotype trait. The more

age acceleration can differentiate among categories of phenotype traits, the better the EPM

model is.
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2.4.4.2 Modeling Epigenetic State Prediction Using Chronological Age and

Phenotype Traits

Another way of studying how deviation of individual epigenetic state prediction from gen-

eral trend can be explained by phenotype variation is to model epigenetic state prediction

using chronological age and phenotype traits, in this data set, sex, and disease status. In-

tuitively, epigenetic state prediction is heavily correlated with chronological age. What we

are interested in is how the residuals after regressing out chronological age are explained by

phenotype traits.

To study the relationship of the residuals and phenotype traits, a generalized additive

model (GAM) is built for epigenetic state prediction on chronological age, sex, and disease

status. Since sex and disease status are binary variables, they were included in the model

as conventional linear covariates. The continuous variable, chronological age, was specified

with a smooth function, allowing non-linear relationship with epigenetic state prediction.

The significance of parametric coefficients could be observed by looking at the summary

table of the GAM model in R.
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CHAPTER 3

Results

3.1 Site Selection Methods

3.1.1 Comparing Site Selection Methods in Preprocessing Step

In the preprocessing step, either Randomized Ridge Regression or Pearson Correlation Co-

efficient (PCC) were applied to select sites. For each site selection method, a different

number of selected starting sites were tested to fit a cross-validated EPM model. Overall,

PCC achieved higher performance than Randomized Ridge Regression. Among starting sites

ranging from 450 to 1600, the EPM model using the PCC site selection method achieves

higher performance than the model fit by Randomized Ridge Regression. For the PCC

method, as the number of starting sites increases, the model performance first increases then

decreases. For the Randomized Ridge Regression method, the model performance increases

as the number of starting sites increases.

However, the R-squared, which is the metric for model accuracy, overall doesn’t vary much

with different methods and different starting sites. For the PCC method, the maximum R-

squared achieved is 0.868 with 450 starting sites, and the minimum R-squared achieved is

0.848 with 1565 starting sites. The difference between the minimum and maximum for PCC

is 0.02. For the Randomized Ridge Regression method, the maximum R-squared achieved

is 0.830 with 1565 starting sites, and the minimum R-squared achieved is 0.793 with 465

starting sites. The difference between the minimum and maximum for Randomized Ridge

Regression is 0.037. For all the built models, the difference between the minimum and
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Figure 3.1: Site Selection Methods in Preprocessing Step

maximum R-squared is 0.075.

In Figure 1, each dot represents the R-squared between predicted epigenetic age and

trendline of all predicted epigenetic ages, labeled on the y-axis, of an EPM model fitted with

the number of starting sites labeled on the x-axis. For Randomized Ridge Regression method

(blue dots), number of starting sites are tested from 465 sites to 1565 sites. For PCC method

(orange dots), number of starting sites are tested from 300 to 1565 sites. Randomized Ridge

Regression method (blue line) reached a maximum r-squared of 0.830 with 1565 sites. PCC

method (orange line) reached a maximum r-squared of 0.868 with 450 sites.

3.1.2 Applying Site Removal Method in Model Refitting Step

After site selection in the preprocessing step, we applied a site removal method in the model

refitting step. We plotted the distribution of rates of change in the preprocessing step for

each preprocessing method. Applying PCC in the preprocessing step produces a bimodal

shape of rates of change with few rates around zero (Figure 2A), while Randomized Ridge

13



Figure 3.2: Distribution of Rates of Change when Selecting Sites
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Regression generates a normal distribution with many rates around zero (Figure 2C). We

applied the site removal method in the model refitting step to the best model for each

preprocessing method to observe whether site removal methods increase model accuracy.

For the PCC method with preprocessing, the 450-site EPM model has the highest R-

squared. After applying site removal on the 450-site PCC model, the shape of the distribution

of rates didn’t change and the model accuracy didn’t change either(Figure 2B). The site

removal method during the model fitting step is not necessary for PCC preprocessing.

For the Randomized Ridge Regression method preprocessing, the 1565-site EPM model

has the highest R-squared. The site removal method during the model fitting step efficiently

removes the sites with rates close to zero, from 1565 sites to 1056 sites. The distribution

of rates changed form a normal shape to a desired bimodal shape (Figure 2D). R-squared

increased but remained lower than the r-squared of the EPM model with sites preprocessed

using the PCC method.

3.1.3 Stability of EPM Model with Site Removal Method

The EPM model remains stable when applying the site removal method on Randomized

Ridge Regression preprocessed sites in the model refitting step. Predicted epigenetic states

of the EPM model with starting sites from the preprocessing step and predicted epigenetic

states after site removal method on these starting sites are closely correlated.

In Figure, predicted epigenetic ages of EPM model with 1565 starting sites preprocessed

by Randomized Ridge Regression and predicted epigenetic ages with 1056 sites after site

removal method are closely correlated.
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Figure 3.3: Stability of Predicted Epigenetic State between Iterations

3.2 Application of the EPM Model to Real Data Set

3.2.1 Experimenting Different EPM Models

Based on exploration in previous sections, the PCC method was used to select sites based

on PCC between methylation values and specific phenotype traits, where only sites with an

absolute value of PCC above a certain threshold were retained. The number of selected sites

and the threshold is defined by the user.

For each proposed EPM model, a corresponding linear model was also built to compare

with the EPM model. The conventional linear model uses the same selected sites as in the

proposed EPM model.

Two evaluation methods were used as proposed, correlating age acceleration with phe-

notype traits, and modeling chronological age with predicted epigenetic age and phenotype

traits using the GAM function. Detailed summary table and fitting curves of the GAM

functions generated by R are in the supplement figures section.
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Figure 3.4: Chronological age and predicted epigenetic state of A) M1.1: Full Model with

Sites Correlated with Chronological Age, and B) corresponding linear model

• M1.1: Full Model with Sites Correlated with Chronological Age

For a full model, methylation data of all 665 samples were included when selecting

sites. A PCC threshold of 0.58 was chosen to obtain 206 selected sites correlated

with chronological age. In 3.4, the corresponding linear model demonstrated a tighter

pattern around the predicted trend line of epigenetic state.

The overall residuals of the linear model was significantly smaller than the EPM model.

However, only the EPM model significantly separated phenotype traits with age ac-

celeration, while the linear model did not. 3.5a and 3.5c revealed how well EPM age

acceleration differentiated categories of disease status and sex respectively, with corre-

sponding p-value of 0.00003 and 0.02879. In general, samples with schizophrenia are

having higher EPM age acceleration, and males are having higher EPM age acceleration

than females.

The results were consistent with the GAM model built on chronological age with epi-

genetic state, sex, and disease status. In the GAM model using EPM epigenetic state
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(a) (b)

(c) (d)

Figure 3.5: Age acceleration and phenotype traits of M1.1: Full Model with Sites Correlated

with Chronological Age.
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Figure 3.6: Chronological age and predicted epigenetic state of A) M1.2: Full Model with

Sites Correlated with Chronological Age, Sex, and Disease, and B) corresponding linear

model

predictions, the parametric coefficients of chronological age, intercept, and disease

status were significant. The covariate sex was slightly significant. While in GAM

model using linear model epigenetic state predictions, only the parametric coefficients

of chronological age and intercept were significant. Both sex as a male and disease

status as positive are having positive effects on epigenetic state.

• M1.2: Full Model with Sites Correlated with Chronological Age, Sex, and

Disease

M1.2 was also a full model. More sites correlated with different phenotype traits were

included in the site selection process before building the EPM model, aiming to boost

performance. The 206 selected sites correlated with chronological age obtained in

M1.1 was the same across M1.1, M1.2, and M1.3. The same PCC threshold of 0.58

was chosen to obtain sites correlated with sex, and there were 90 sites selected. To

keep the same number of sites correlated with disease status and sites correlated with
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sex, a PCC threshold of 0.348 was chosen to obtain 91 sites correlated with disease

status. There were no overlapping sites, and a total number of 387 sites were used to

train the EPM model and the corresponding linear model. In 3.6, the corresponding

linear model demonstrated a much tighter pattern around the predicted trend line of

epigenetic state.

Although the overall pattern of trend lines of the EPM model and the corresponding

linear model in 3.6 were not so different from the ones in 3.4, the correlation between

either EPM age acceleration or linear model age acceleration and phenotype traits were

significantly lower, as shown in 3.7. None of the combinations between age acceleration

and phenotype trait had significant p-value, which means that M1.2 did not perform

well at all.

The results were relatively consistent with the GAM model built on chronological age

with epigenetic state, sex, and disease status. In the GAM model using linear pre-

dictions, only the parametric coefficients of chronological age and intercept were sig-

nificant. In the GAM model using EPM epigenetic state predictions, the parametric

coefficients of chronological age, sex, and intercept were significant. This was under-

standable since the p-value of the correlation between EPM epigenetic age acceleration

and sex is close to 0.05, almost significant.

Combining the p-value and the GAM model, we can conclude the correlation between

EPM epigenetic age acceleration and sex is significant.

• M1.3: Full Model with Sites Correlated with Chronological Age and Sex

M1.3 was also a full model. Since M1.2 did not perform as well as expected when

including more sites correlated with different phenotype traits in the site selection

process, we reduced the phenotype traits to only chronological age and sex. This was

because in general, sites correlated with sex have higher PCC with methylation value.

The 206 selected sites correlated with chronological age obtained in M1.1 was the same
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(a) (b)

(c) (d)

Figure 3.7: Age acceleration and phenotype traits of M1.2: Full Model with Sites Correlated

with Chronological Age, Sex, and Disease.
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Figure 3.8: Chronological age and predicted epigenetic state of A) M1.3: Full Model with

Sites Correlated with Chronological Age and Sex, and B) corresponding linear model

across M1.1, M1.2, and M1.3. The same PCC threshold of 0.58 was chosen to obtain

sites correlated with sex, and there were 90 sites selected. There were no overlapping

sites, and a total number of 296 sites were used to train the EPM model and the

corresponding linear model. In 3.8, the corresponding linear model demonstrated a

much tighter pattern around the predicted trend line of epigenetic state. The pattern

of 3.8 was more similar to the pattern of 3.6 than 3.4.

The overall residuals of the linear model was significantly smaller than the EPM model.

And in M1.3, not only the EPM model significantly separated phenotype traits with

age acceleration, but the linear model also separated disease status with age accelera-

tion. 3.9a and 3.9c revealed how well EPM age acceleration differentiates categories of

disease status and sex respectively, with corresponding p-value of 0.00144 and 0.02852.

3.9b revealed how well linear model age acceleration differentiated categories of disease

status, with a corresponding p-value of 0.04017. In general, samples with schizophre-

nia are having higher EPM age acceleration, and males are having higher EPM age
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(a) (b)

(c) (d)

Figure 3.9: Age acceleration and phenotype traits of M1.3: Full Model with Sites Correlated

with Chronological Age and Sex.
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Figure 3.10: Chronological age and predicted epigenetic state of A) M2.1: CV TT Model

with Sites Correlated with Chronological Age, and B) corresponding linear model

acceleration than females.

The results were consistent with the GAM model built on chronological age with epi-

genetic state, sex, and disease status. In the GAM model using EPM epigenetic state

predictions, the parametric coefficients of chronological age, intercept, and disease

status were significant. The covariate sex was slightly significant. While in GAM

model using linear model epigenetic state predictions, only the parametric coefficients

of chronological age and intercept were significant, and the parametric coefficient of

disease status was slightly significant. In the EPM GAM model, both sex as a male

and disease status as positive are having positive effects on epigenetic state. In the

GAM model using linear age acceleration prediction, disease status has a positive effect

on epigenetic state.

• M2.1: CV TT Model with Sites Correlated with Chronological Age

For a CV TT, only methylation data of the training set were included when selecting

sites and fitting the model. A training data set of 40% of all the samples were randomly
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selected with stratification in chronological age, yielding 266 training samples. The

remaining 399 samples were in the test set. A PCC threshold of 0.5936 was chosen

to obtain 206 selected sites correlated with chronological age, keeping the number of

sites selected the same as in the full model. In 3.10, the EPM model demonstrated a

tighter pattern around the predicted trend line of epigenetic state.

Different from the full model, the overall residuals of the EPM model were now smaller

than the linear model on the test data set. However, only disease was correlated with

age acceleration from the EPM model, and age acceleration from the linear model.

3.11a and 3.11b revealed how well EPM age acceleration and linear model age acceler-

ation differentiated categories of disease status respectively, with corresponding p-value

of 0.01233 and 0.01988. In general, samples with schizophrenia are having higher EPM

age acceleration.

The results were consistent with the GAM model built on chronological age with epige-

netic state, sex, and disease status. In the GAM model using EPM epigenetic state pre-

dictions, the parametric coefficients of chronological age, intercept, and disease status

were significant. While in GAM model using linear model epigenetic state predictions,

only the parametric coefficients of chronological age and intercept were significant. The

disease covariate was slightly significant. Disease status as positive has a positive effect

on epigenetic state.

• M2.2: CV TT Model with Sites Correlated with Chronological Age, Sex,

and Disease

M2.2 was also a CV TT model. The 206 selected sites correlated with chronological

age obtained in M2.1 was the same across M2.1, M2.2, and M2.3. A PCC threshold

of 0.565 was chosen to obtain 90 sites correlated with sex. To keep the same number

of sites correlated with disease status and sites correlated with sex, a PCC threshold

of 0.3975 was chosen to obtain 91 sites correlated with disease status. There were no
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(a) (b)

(c) (d)

Figure 3.11: Age acceleration and phenotype traits of M2.1: CV TT Model with Sites

Correlated with Chronological Age.
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Figure 3.12: Chronological age and predicted epigenetic state of A) M2.2: CV TT Model

with Sites Correlated with Chronological Age, Sex, and Disease, and B) corresponding linear

model

overlapping sites, and a total number of 387 sites were used to train the EPM model

and the corresponding linear model. In 3.12, the EPM model demonstrated a tighter

pattern around the predicted trend line of epigenetic state.

Although the overall pattern of trend lines of the EPM model and the corresponding

linear model in 3.12 were not so different from the ones in 3.10, the correlation between

either EPM age acceleration or linear model age acceleration and phenotype traits were

lower, as shown in 3.13. Only the EPM age acceleration and sex combination obtained

a significant p-value. However, females are having higher age acceleration than males

in this CV TT model, which was not consistent with previous findings.

The results were relatively consistent with the GAM model built on chronological

age with epigenetic state, sex, and disease status. In both the GAM model using

EPM epigenetic state predictions and the GAM model using linear predictions, only

the parametric coefficients of chronological age and intercept were significant. GAM
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(a) (b)

(c) (d)

Figure 3.13: Age acceleration and phenotype traits of M2.2: CV TT Model with Sites

Correlated with Chronological Age, Sex, and Disease.
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Figure 3.14: Chronological age and predicted epigenetic state of A) M2.3: CV TT Full

Model with Sites Correlated with Chronological Age and Sex, and B) corresponding linear

model

models suggested that sex and disease status were not sufficient to explain the residuals

after chronological age was regressed out from epigenetic state prediction. There was

an inconsistency between the direction of sex covariate, as it was positive as a male

in the GAM model, while when directly correlating EPM age acceleration with sex,

females are having higher age acceleration than male in general.

• M2.3: CV TT Model with Sites Correlated with Chronological Age and

Sex

Similarly, since M2.2 did not perform as well as expected when including more sites

correlated with different phenotype traits in the site selection process, we reduced the

phenotype traits to only chronological age and sex. This was because in general, sites

correlated with sex have higher PCC with methylation value than sites correlated with

disease status. The 206 selected sites correlated with chronological age obtained in

M2.1 was the same across M2.1, M2.2, and M2.3. A PCC threshold of 0.565 was
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chosen to obtain 90 sites correlated with sex. There were no overlapping sites, and a

total number of 296 sites were used to train the EPM model and the corresponding

linear model. In 3.14, the EPM model demonstrated a much tighter pattern around

the predicted trend line of epigenetic state. The linear model pattern in 3.14 was much

sparser than the pattern of 3.10 and 3.12.

The overall residuals of the EPM model was significantly smaller than the conventional

linear model. Only the EPM model significantly separated phenotype traits with age

acceleration, while the linear model did not. 3.15a and 3.15c revealed how well EPM

age acceleration differentiated categories of disease status and sex respectively, with

corresponding p-value of 0.01887 and 0.01965. In general, samples with schizophrenia

are having higher EPM age acceleration. However, in this training-testing split, females

are having higher EPM age acceleration than males.

In terms of significance and directions, the results were consistent with the GAM

model built on chronological age with epigenetic state, sex, and disease status. In

the GAM model using EPM epigenetic state predictions, the parametric coefficients of

chronological age, intercept, sex, and disease status were significant. While in GAM

model using linear model epigenetic state predictions, only the parametric coefficients

of chronological age and intercept were significant. The direction of sex as a male was

negative with age acceleration in the EPM GAM model, which was not consistent with

previous findings in the full model. This might attribute to the random sub-setting of

the training and testing data set, and inadequate unbalanced sample numbers of male

and female.
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(a) (b)

(c) (d)

Figure 3.15: Age acceleration and phenotype traits of M2.3: CV TT Model with Sites

Correlated with Chronological Age and Sex.
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EPM AA vs. Disease LM AA vs. Disease EPM AA vs. Sex LM AA vs. Sex

M1.1 0.00003 0.22508 0.02879 0.02879

M1.2 0.44154 0.2297 0.05862 0.45579

M1.3 0.00144 0.04017 0.02852 0.45079

M2.1 0.01233 0.01988 0.35981 0.41368

M2.2 0.29893 0.42049 0.01623 0.49205

M2.3 0.01887 0.07815 0.01965 0.47153

Table 3.1: Significance Levels of Correlation between Various Model Predictions and Phe-

notype Traits

3.2.2 EPM models Can Capture the Relationship between Age Acceleration

and Phenotype Traits

By examining the results from the previous section, we conclude that EPM models can

differentiate individuals by specific phenotype traits using age acceleration prediction, when

the EPM models are built appropriately with informative sites.

A further comparison of the EPM and linear model (LM) was carried out to show that

the EPM model is capturing real biological differences than LM, which is only minimizing

residuals statistically. Table 3.1 summarizes the p-values of correlating age acceleration (AA)

from EPM and LM with phenotype traits, across all proposed models ranging from M1.1 to

M2.3. In the table, significant p-values were bold. The p-value of 0.05862 was bold because

we consider this term as significant combining evaluation results by both methods. By

observing the EPM AA (Column 1 and Column 3) and the LM AA (Column 2 and Column

4), we can conclude that EPM models capture more biological information than conventional

linear models trained with the same set of selected sites. Among different proposed models,

there were many instances where EPM AA differentiated categories of phenotype traits while

LM did not (M1.1 disease trait, M1.1 sex trait, M1.2 sex trait, M1.3 sex trait, M2.2 sex trait,
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M2.3 disease trait, M2.3 sex trait). If LM can significantly differentiate a specific trait, the

EPM is always also being able to do so (M1.3 disease trait and M2.1 disease trait).

3.2.3 A Full EPM Model Generates More Stable Epigenetic State Predictions

A set of full EPM models (M1.1, M1.2, M1.3) and a set of CV Train-Test Split models (M2.1,

M2.2, M2.3) were compared. In terms of significance when differentiating phenotype traits

by age acceleration, there was no big discrepancy among the two sets of models. However,

in terms of consistency and stability, the full EPM model performed better than the CV TT

model. The direction of how disease status is affecting age acceleration was consistent in all

models. However, the direction of sex was not. In the full models, all models using different

evaluation methods gave the same conclusion that males are generally having higher age

acceleration than females, which is consistent with Horvath’s findings on age acceleration of

brain tissues using Horvath epigenetic clock [8]. In CV TT models, M2.2 and M2.3 revealed

significance with sex and age acceleration. Both cases are suggesting females are having

higher age acceleration in ?? and 3.15c. Although M2.1 did not show significance between

sex and age acceleration, 3.11c and 3.11d revealed that males are having a slightly higher

age accelerations in the box-plot. The results from the CV TT models were not consistent.

As a result, a full EPM model is preferred when exploring the relationship between age

acceleration and phenotype traits as it is more stable than a CV TT model.

3.2.4 Building EPM Model Using More Sites with Higher PCC Values Corre-

lated with Phenotype Traits Is More Informative

Different sets of selected sites were experimented. M1.1 and M2.1 only utilized sites cor-

related with chronological age and yielded stable output when differentiating schizophrenia

patients and controls. As M1.2 and M2.2 utilized more sites, including sites correlated with

age, sex, and disease, the performance of the model decreased rather than increased. This
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might be attributed to the fact that the new sites included in M1.2 and M2.2 were not all

informative, increasing noise in the models. While the added sites correlated with sex have

as high PCC (around 0.6) as sites correlated with age, the added sites correlated with dis-

ease status only had a threshold of 0.3. As a result, these sites with low PCC values were

removed in further trials. M1.3 and M2.3 were built using only sites correlated with age

and sex, which all have relatively high PCC values, and they performed significantly better

than M1.2 and M2.2. As a result, we conclude that building an EPM model using sites

with higher PCC values correlated with phenotype traits can achieve higher performance in

capturing biological information.

In terms of the number of sites used, we further compared models with sites correlated

with age, and models with sites correlated with both age and sex. For EPM full models,

both M1.1 and M1.3 can capture the relationship between age acceleration and sex, disease.

For CV TT EPM models, M2.3 was significant in terms of the relationship between age

acceleration and sex, disease, while M2.1 was only significant in terms of disease. As a

result, models with sites correlated with both age and sex were more informative when

looking at both full models and CV TT models. This suggested that building models with

more sites with high PCC values might help boost model performance.
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CHAPTER 4

Discussion

Site selection methods are necessary when fitting an Epigenetic Pacemaker (EPM) clock

as the Conditional Expectation Maximization algorithm used is computationally intensive.

In the preprocessing step, Pearson Correlation Coefficient (PCC) method exhibits higher

performance than the Randomized Ridge Regression method when fitting the EPM model

once for different numbers of selected starting sites. In the model refitting step, site removal

method by threshold could improve the performance of sites selected by Randomized Ridge

Regression, but it is still no better than sites selected by PCC. The site removal method

is unnecessary for sites selected by PCC. Overall, selecting sites by the PCC method in

the preprocessing step and fitting an EPM model with those sites is the best site selection

method for the EPM clock in this study.

The Randomized Ridge Regression method for site selection in the preprocessing step was

expected to be faster than the PCC method. However, it showed that there is no significant

difference between the runtime of the Randomized Ridge Regression method and the PCC

method. Moreover, the PCC method generated the optimal EPM model with 450 starting

sites, which is about one-third of the starting sites (1565 sites) needed for the Randomized

Ridge Regression method to generate its optimal EPM model. This shows that PCC method

not only achieved a higher model performance, but also developed an EPM model with less

complexity.

As a result, PCC site selection method was further used when applying the EPM model

to real data sets. By experimenting with different proposed EPM models with options in
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building model and site selection, we conclude that EPM models can differentiate individuals

by specific phenotype traits using age acceleration prediction when built appropriately with

informative sites. How to choose informative sites is always of great importance to building a

good EPM model, as the predictions strongly rely on the input methylation values of specific

sets. By trying different sets of selected sites and comparing the models by two different

evaluation methods, we can conclude that sites with higher PCC values are informative sites.

In this case, a threshold of 0.58 is a feasible cutoff. Also, when the number of sites used is

still at the scale of hundreds, we speculate that the more the sites with high PCC values are

used, the better the EPM model will perform.

Intuitively, using a full model will perform better than a CV TT model, because there

are more samples included when fitting the model. Since the EPM model optimized the

residuals of the methylation values on each site, the predicted epigenetic state will not be

over-fitted on chronological ages. Furthermore, as it was found that the predictions from a

full EPM model and CV full EPM model yielded similar results (the coefficients of trend

line function only differed by 0.01), it is reasonable to conclude that over-fitting is a trivial

problem for the EMP model. Also, the goal is to find whether there are correlations between

epigenetic age acceleration and phenotype traits, and the results are more meaningful for

exploratory purposes than predictive purposes. As a result, it is sufficient to conclude that

using a full EPM model is the best choice in this case.

However, the usage of GAM function on a small number of samples in the evaluation pro-

cess still requires further study. It was noticed that in EPM model of M2.2, the distribution

was clear that females are having higher age acceleration than males, as shown in ??. In the

GAM function, it was shown that sex as a male is having a positive effect, contradicting the

distribution in the boxplot. This inconsistency might be due to the imbalanced samples of

female and male in the test data set, and the sample size in the test data set might be too

small.

Future directions include obtaining methylation data with more continuous phenotype
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data, such as BMI, etc, then there will be more traits that we can correlate age acceleration

with. Also, modeling chronological as a function of predicted epigenetic state and other

phenotype traits would be more accurate. We may also test the generalization ability of the

EPM clock, applying an EPM clock built on one data set to another data set. We can also

compare the EPM clock with other built epigenetic clocks in terms of the ability to separate

patients and controls.
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CHAPTER 5

Supplement Figures

5.1 Summary Tables of GAM Evaluation Method

5.2 Fitting Curves of GAM Evaluation Method
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(a) EPM prediction (b) LM prediction

Figure 5.1: GAM Summary Table of M1.1: Full Model with Sites Correlated with Chrono-

logical Age

(a) EPM prediction (b) LM prediction

Figure 5.2: GAM Summary Table of M1.2: Full Model with Sites Correlated with Chrono-

logical Age, Sex, and Disease
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(a) EPM prediction (b) LM prediction

Figure 5.3: GAM Summary Table of M1.3: Full Model with Sites Correlated with Chrono-

logical Age and Sex

(a) EPM prediction (b) LM prediction

Figure 5.4: GAM Summary Table of M2.1: CV TT Model with Sites Correlated with

Chronological Age
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(a) EPM prediction (b) LM prediction

Figure 5.5: GAM Summary Table of M2.2: CV TT Model with Sites Correlated with

Chronological Age, Sex, and Disease

(a) EPM prediction (b) LM prediction

Figure 5.6: GAM Summary Table of M2.3: CV TT Model with Sites Correlated with

Chronological Age and Sex
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(a) EPM prediction (b) LM prediction

Figure 5.7: GAM Fitting Curve of M1.1: Full Model with Sites Correlated with Chrono-

logical Age

(a) EPM prediction (b) LM prediction

Figure 5.8: GAM Fitting Curve of M1.2: Full Model with Sites Correlated with Chrono-

logical Age, Sex, and Disease
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(a) EPM prediction (b) LM prediction

Figure 5.9: GAM Fitting Curve of M1.3: Full Model with Sites Correlated with Chrono-

logical Age and Sex

(a) EPM prediction (b) LM prediction

Figure 5.10: GAM Fitting Curve of M2.1: CV TT Model with Sites Correlated with

Chronological Age
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(a) EPM prediction (b) LM prediction

Figure 5.11: GAM Fitting Curve of M2.2: CV TT Model with Sites Correlated with

Chronological Age, Sex, and Disease

(a) EPM prediction (b) LM prediction

Figure 5.12: GAM Fitting Curve of M2.3: CV TT Model with Sites Correlated with

Chronological Age and Sex

44



REFERENCES

[1] Steve Horvath. DNA methylation age of human tissues and cell types. Genome Biology,
14(10):3156, December 2013.

[2] Assaf Zemach, Ivy E. McDaniel, Pedro Silva, and Daniel Zilberman. Genome-wide evo-
lutionary analysis of eukaryotic dna methylation. Science, 328(5980):916–919, 2010.

[3] George T. Baker and Richard L. Sprott. Biomarkers of aging. Experimental Gerontology,
23(4):223 – 239, 1988.

[4] Steve Horvath, Paolo Garagnani, Maria Giulia Bacalini, Chiara Pirazzini, Stefano Salvi-
oli, Davide Gentilini, Anna Maria Di Blasio, Cristina Giuliani, Spencer Tung, Harry V.
Vinters, and Claudio Franceschi. Accelerated epigenetic aging in down syndrome. Aging
Cell, 14(3):491–495, 2015.

[5] Gregory Hannum, Justin Guinney, Ling Zhao, Li Zhang, Guy Hughes, SriniVas Sadda,
Brandy Klotzle, Marina Bibikova, Jian-Bing Fan, Yuan Gao, Rob Deconde, Menzies
Chen, Indika Rajapakse, Stephen Friend, Trey Ideker, and Kang Zhang. Genome-wide
Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell,
49(2):359–367, January 2013.

[6] Steve Horvath and Kenneth Raj. DNA methylation-based biomarkers and the epigenetic
clock theory of ageing. Nature Reviews Genetics, 19(6):371–384, June 2018.

[7] Sagi Snir, Colin Farrell, and Matteo Pellegrini. Human epigenetic ageing is logarithmic
with time across the entire lifespan. Epigenetics, 14(9):912–926, 2019. PMID: 31138013.

[8] Steve Horvath, Michael Gurven, Morgan E Levine, Benjamin C Trumble, Hillard Kaplan,
Hooman Allayee, Beate R Ritz, Brian Chen, Ake T Lu, Tammy M Rickabaugh, Beth D
Jamieson, Dianjianyi Sun, Shengxu Li, Wei Chen, Lluis Quintana-Murci, Maud Fagny,
Michael S Kobor, Philip S Tsao, Alexander P Reiner, Kerstin L Edlefsen, Devin Absher,
and Themistocles L Assimes. An epigenetic clock analysis of race/ethnicity, sex, and
coronary heart disease. Genome biology, 17(1):171–171, August 2016.

45




