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Abstract

Multimodal fusion is an effective approach to take advantage of cross-information among multiple 

imaging data to better understand brain diseases. However, most current fusion approaches are 

blind, without adopting any prior information. To date, there is increasing interest to uncover the 

neurocognitive mapping of specific behavioral measurement on enriched brain imaging data; 

hence, a supervised, goal-directed model that enables a priori information as a reference to guide 

multimodal data fusion is in need and a natural option. Here we proposed a fusion with reference 

model, called “multi-site canonical correlation analysis with reference plus joint independent 

component analysis” (MCCAR+jICA), which can precisely identify co-varying multimodal 

imaging patterns closely related to reference information, such as cognitive scores. In a 3-way 

fusion simulation, the proposed method was compared with its alternatives on estimation accuracy 

of both target component decomposition and modality linkage detection. MCCAR+jICA 
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outperforms others with higher precision. In human imaging data, working memory performance 

was utilized as a reference to investigate the covarying functional and structural brain patterns 

among 3 modalities and how they are impaired in schizophrenia. Two independent cohorts (294 

and 83 subjects respectively) were used. Interestingly, similar brain maps were identified between 

the two cohorts, with substantial overlap in the executive control networks in fMRI, salience 

network in sMRI, and major white matter tracts in dMRI. These regions have been linked with 

working memory deficits in schizophrenia in multiple reports, while MCCAR+jICA further 

verified them in a repeatable, joint manner, demonstrating the potential of such results to identify 

potential neuromarkers for mental disorders.

Index Terms

Multimodal Fusion with Reference; MCCAR; Supervised Learning; Schizophrenia; Working 
Memory; ICA; MCCB; CMINDS

I. Introduction

Noninvasive neuroimaging has provided remarkable new insights into human brain structure 

and function in both health and disease. There is increasing evidence that instead of using a 

single imaging modality to study its relationship with physiological or cognitive features, 

people are paying more attention to multimodal fusion, an approach that is able to capitalize 

on the strength of multiple imaging techniques, since it can uncover the hidden relationships 

that might be missed from separate unimodal imaging studies [1–4]. Compelling evidence 

has confirmed that neuropsychiatric disorders reflect fundamental differences in brain 

structure and function. By jointly analyzing rich types of data and taking advantage of the 

cross-information, multimodal fusion can help better reveal the potential functional-

structural covariations. For example, how brain structure shapes brain function, and to what 

degree brain function is related to the underlying brain anatomy [5]. Increasingly, studies are 

focusing on identifying the intrinsic functional or structural brain patterns that may 

ultimately drive a specific domain of human cognition or behavior, whereas most existing 

fusion models are purely data-driven. Hence in this work, we are motivated to develop a 

supervised multimodal fusion model that is able to discover the co-varying imaging features 

particularly related to a referred measurement more precisely and robustly.

Existing multivariate data-driven multimodal fusion methods have in most cases been based 

on blind source separation (BSS) techniques [6]. Specifically, multi-set canonical correlation 

analysis (CCA) and sparse CCA maximize the inter-modality covariance across multiple 

data sets, thus enable the identification of the co-varying multimodal components with 

similar individual variabilities, but their associated spatial maps may not be sufficiently 

unique [1]. Joint independent component analysis (ICA), and linked ICA perform well in 

spatial decomposition by maximizing the joint independence, but all modalities share a 

common profile. Combining the strengths of MCCA and jICA, Sui et al developed “MCCA

+jICA” [7, 8], a blind fusion algorithm, which successfully captures both multimodal 

interactions and spatial components at high accuracy to study brain diseases. Other data 

fusion approaches like independent vector analysis (IVA) generalizes ICA to multiple data 
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sets using the mutual information rate, achieving a similar performance to MCCA+jICA [9]. 

Similarly, Liu et al proposed parallel ICA [10] to specially deal with imaging genetic data, 

by maximizing both inter-modality correlation and the independence within each modality.

Although the above existing fusion methods can optimize joint source separation among 

multiple modalities in different aspects, investigators may also be interested in discovering 

multimodal associations with a specific reference varying across subjects, e.g., a cognitive 

score or a psychotic symptom. However, all above mentioned approaches are unsupervised, 

without inducing any prior reference [1, 5, 11–13]. Hence they may not be optimal when 

investigating the brain patterns related to a specific measure of interest. By contrast, a 

supervised learning model can be more goal-directed, since it takes advantage of the prior 

knowledge to guide the fusion analysis and is able to pinpoint a particular component of 

interest from a large complex dataset. One example is pICA-R [14] (parallel ICA with 

reference) which used candidate genes as spatial priori to improve investigation of the 

relationships between brain imaging and specific genetic attributes. While currently utilizing 

neuroimaging data to identify cognitive biomarkers has been a hot topic, mining multimodal 

co-alterations linking with a specific cognitive domain, e.g. working memory remains 

unexplored.

All above motivate us to improve the existing method and propose a supervised, fusion with 

reference model, i.e., “MCCAR+jICA” (multi-set CCA with reference + joint ICA). While 

keeping the original excellent performance on joint separation, the proposed method will 

further enable detection of the co-varying multimodal features that have significant 

correlations with the reference, which may not be achieved by blind N-way multimodal 

fusion approaches.

On the other hand, in neuropsychological studies, evidence has been accumulated that many 

mental disorders including schizophrenia (SZ) are associated with significant impairment in 

cognitive functioning, in which working memory is one of the most severely affected 

cognitive domains [15]. While most existing studies on schizophrenic working memory 

deficits are based on unimodal analysis [16, 17], multi-modal fusion become a natural option 

to provide more clues by exploiting the relationship between the enriched imaging data and 

the cognitive ability across individuals. In this paper, based on the proposed model, we aim 

to adopt working memory performance as the reference to guide a 3-way function+diffusion

+structure MRI fusion, and ultimately identify the abnormal brain patterns correspond to the 

working memory impairment in schizophrenia. Two independent human data cohorts with 

147 HC/147SZ and 44HC/39SZ respectively were used. Results show similar brain co-

variations identified by MCCAR+jICA, with substantial overlap between the two cohorts for 

the executive control networks in fMRI, salience network in sMRI, and major white matter 

tracts in dMRI. These regions have previously been suggested to be associated with working 

memory deficits in multiple reports [18], but never in a multimodal analysis across multiple 

cohorts in the same study. To the best of our knowledge, this is the first attempt to estimate 

cognitive biomarkers by jointly mining three types of MRI data under the guidance of a 

particular cognitive domain score.
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The remaining of the paper is organized as follows: section II presents the algorithm 

development of MCCAR+jICA as well as the used data. Section III is the results of 

simulation. In section IV, the real human brain data application with working memory were 

detailed. Section V includes a discussion of the results and a conclusion.

II. Methods and Materials

The main idea of MCCAR+jICA is straightforward: while maintaining the performance of 

MCCA+jICA, we hope to optimize specific subject-level correlations with a reference. To 

do this, a prior reference such as a cognitive score is incorporated to guide joint source 

separation, as shown in Figure 1.

A. MCCAR

Assume that there are n multimodal datasets Xk, k = 1,2, …, n, each is a linear mixture of 

components Ck with a nonsingular mixing matrix Ak, k denotes modality.

(1)

where Xk is a subjects-by-voxels feature matrix, Ak is in dimension of subjects by number of 

components M. MCCA with reference (MCCAR) imposes an additional constraint upon the 

MCCA framework to maximize not only the covariations among mixing matrices of each 

modality, but also the top column-wise correlations between Ak and the reference signal, as 

shown in Figure 1(c) and equation (2).

(2)

where corr(Ak, Aj) is the column-wise correlations between Ak and Aj, k, j = {1,2,3 … n}, k 

≠ j.

The basic strategy of MCCAR is as follows: consider that there are N subjects, dimension 

reduction is first performed on Xk, thus the signal subspace given by Yk = XkEk are 

determined. MCCAR is thus performed on Yk, generating the canonical variants Ak by 

maximizing the sum of squared correlations (SSQCOR) among canonical variants (CVs) as 

well as the SSQCOR between each CVs and the reference signal. We can summarize the 

optimization procedure of MCCAR as below. Consider that the CVs Ak given by Ak = Ykwk 

were jointly decomposed into M components, then the canonical coefficient vectors wk are 

updated by two stages:

Stage 1:

(3)
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Stage 2: for i = 2: M

(4)

end

where  is the ith column of the w matrices,  is the 

correlation between the ith column of Ak and Aj,  is the correlation between the ith 

column of Ak and the reference signal, which has the same length of subject numbers. λ is 

the regularization parameter balancing the weight of two objective functions: 

and  and controls the convergence of the optimization. Stage 1 is solved by 

first calculating the partial derivative function of the SSQCOR cost with respect to each 

and equating it to zero to find the stationary point. Since the SSQCOR cost is a quadratic 

function of each , the partial derivative is a linear function of  and hence, the closed 

form solution can be derived. Stage 2 and higher stages are solved in a similar manner with 

the cost function replaced by a Lagrangian multiplier incorporating the orthogonality 

constraints on the canonical coefficient vectors.

In Figure 1, k ≠ j, k, j = 1,2,3, an example is when M = 5, as shown in Figure 1(b) and (c), 

based on the above optimization, we can obtain A1, A2, A3 simultaneously as shown in 

Figure 1(d), which satisfies:

(5)

k ≠ j, k, j ∈ {1,2,3}; i.e., the covariation of Ak will be a diagonal matrix. In addition, one or 

more joint components, here the 3rd joint component, will be the target component that has 

significant correlations with the reference.

B. MCCAR+jICA

Due to the potential marginally significant correlations between ROI and reference in each 

modality, applying correlation with reference within each dataset may introduce ambiguity 

in feature matching [19]. While MCCA focus only on maximizing inter-modality covariance 

as shown in Fig. 1(b); therefore, the proposed MCCAR solves two problems in one 

processing, resulting in unique and robust cross-modality correspondence as well as a CV 

that is highly correlated with reference in each modality. Although MCCAR can provide a 

useful decomposition in many cases, the associated maps Ck may still not be unique in some 
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cases. In order to keep the joint target component and maximize the spatial independence, 

we further apply jICA on the concatenated maps [C1, C2, …, Cn] to obtain the final 

independent components (ICs)Sk, as well as their corresponding mixing matrices Dk:

(6)

Combined with equation (1),

(7)

Therefore, compared to blind N-way decomposition, MCCAR+jICA ensures both spatial 

independence and better correspondence with the reference in the mixing profile. This 

means in human brain imaging applications, we could simultaneously explore interested 

multimodal covariation and associate it with specific clinical measures.

C. Simulated Data

We next simulated multimodal MRI data to compare the proposed method with its 

alternatives for its capability to extract accurate spatial maps and correspondence between 

multiple modalities and with the reference. Eight brain networks were simulated using the 

simTB [20] for fMRI and sMRI. DMRI was generated using the Johns Hopkins University 

(JHU) white matter atlas in which we selected 8 typical fiber bundles, as shown in Figure 2 

(the red boxed source maps are designed to be correlated with reference). Loading matrices 

for each modality, A1, A2, A3 were constructed in size of 300×8, resulting in 300 samples 

with 21025, 40000 and 65536 voxels for fMRI, dMRI and sMRI feature matrices 

respectively by linear combination. Here, we used a real cognitive score of 300 subjects as a 

reference and carefully designed one component for each modality (in different order, 7th, 

4th, 1st for fMRI, sMRI and dMRI respectively) to be significantly correlated with the 

reference, as shown in Supplementary Table I. We then applied MCCAR+jICA to the 

simulated datasets and compared its performance with 4 alternative methods under 16 noise 

levels. The noise levels were simulated with peak signal-to-noise ratio (PSNR) ranges from 

1 dB to 34dB. Typical PSNR value for the acceptable image quality is about 30 dB; the 

lower the value, the more degraded the image [21].

D. Human Brain Data

In this study, we used two independent data cohorts. One is recruited from the Function 

Biomedical Informatics Research Network (FBIRN) phase III datasets including 147 SZs 

(39.5 ± 11.7) and 147 HCs (37.4 ± 11) that were matched for age, gender, handedness, and 

race distributions. Demographics of all subjects are shown in Supplementary Table II. All 

subjects were collected from seven FBIRN consortium sites (University of California Irvine, 

University of California Los Angeles, University of California San Francisco, Duke 

University, University of North Carolina, University of New Mexico, University of Iowa, 

and University of Minnesota). Each dataset including diagnosis, age at time of scan, gender, 
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illness duration, symptom scores, and current medications when available, were shared by 

each research group according to their site’s protocols. Inclusion criteria required all 

participants to be adults between the ages of 18 and 65 years. Diagnosis of schizophrenia 

was confirmed by trained raters using the Structured Clinical Interview for DSM-IV (SCID) 

[22]. All patients were on a stable dose of antipsychotic medication either typical, atypical, 

or a combination for at least 2 months. Current symptom severity was rated using the 

Positive and Negative Syndrome Scale (PANSS) [23]. All SZs were clinically stable at the 

time of scanning. In addition, HC participants were excluded for current or past psychiatric 

illness based on SCID assessment or for having a first-degree relative with a diagnosis of an 

Axis-I psychotic disorder. Written informed consent was obtained from all study participants 

under protocols approved by the Institutional Review Boards at each study site. 

Demographic information for subjects of each sites are provided in Supplementary Table III.

Another cohort consisting of 39 SZs (35.6±13.1) and 44 HCs (36.3±12.5) were collected 

from the University of New Mexico (UNM). Details of the demographic information, 

inclusion and exclusion criteria could be found in Supplementary Table IV.

1) Image Parameters and Preprocessing—The resting state fMRI data were collected 

on six 3T Siemens TIM Trio scanners and one 3T MR750 General Electric (GE) scanner. 

The imaging protocol for the resting state scans at all sites was a T2*-weighted AC-PC 

aligned echo planar imaging sequence (TR/TE 2 s/30 ms, flip angle 77 degrees, 32 slices 

collected sequentially from superior to inferior, 3.4 × 3.4 × 4 mm with 1 mm gap, 162 

frames, 5:38 min). For the resting scan, subjects were instructed to lie still with eyes closed.

DMRI were acquired on six 3T Siemens Tim Trio System and one 3T GE Discovery MR750 

scanner. All parameters for these two scanners were the same except for TE (Siemens 

84ms/GE 81.7ms). The rest of the parameters for both Siemens and GE were as follows: TR 

= 9000ms; acquisition matrix = 128 × 128; field of view (FOV) = 256×256 mm; slice 

thickness = 2 mm; number of slices = 72; slice gap=2 mm; voxel resolution 2×2×2 mm; flip 

angle = 90; number of diffusion gradient directions = 30, b = 800 seconds/mm2, and 5 

measurements with b = 0; number of excitations (NEX) =1. All images were registered to 

the first b = 0 image by FMRIB Linear Image Registration Tool (FLIRT: http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).

High-resolution structural brain scans were also acquired on six 3T Siemens Tim Trio 

System and one 3T GE Discovery MR750 scanner using standardized sequences. Siemens 

MP-RAGE scan parameters were: TR/TE/TI=2300/2.94/1100 ms, flip angle=9°, resolution 

=256×256×160. GE IR_SPGR scan parameters were: TR/TE/TI=5.95/1.99/45 ms, flip angle 

=12°, resolution =256×256×166. All scans covered the entire brain with FOV=220 mm2, 

voxel size= 0.86×0.86×1.2 mm3, sagittal scan plane, GRAPPA/ASSET acceleration 

factor=2, and NEX=1.

The fMRI data was preprocessed using the automated analysis pipeline[24], whose steps are 

conducted in SPM 5 (http://www.fil.ion.ucl.ac.uk/spm) as follows: Motion correction to the 

first image using INRIalign; slice timing corrected to the middle slice; and normalization to 

MNI space, including reslicing to 3 × 3 × 3 mm voxels. We further regressed out six motion 
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parameters, white matter, and cerebrospinal fluid in denoising. Data were then spatially 

smoothed with an 8 mm full width half max (FWHM) Gaussian filter. To calculate fractional 

amplitude of low frequency fluctuations (fALFF) [25], the sum of the amplitude values in 

the 0.01 to 0.08Hz low-frequency power range was divided by the sum of the amplitudes 

over the entire detectable power spectrum (range: 0–0.25Hz) [see more details in [26]].

DMRI data were preprocessed using the FMRIB Software Library (www.fmrib.ox.ac.uk/fsl) 

and consisted of the following steps: 1) quality check with any gradient directions with 

excessive motion or vibration artifacts identified and removed; 2) motion and eddy current 

correction; 3) correction of gradient directions for any image rotation done during the 

previous motion correction step; and 4) calculation of diffusion tensor and scalar measures 

such as fractional anisotropy (FA), which were then smoothed using 8 mm FWHM Gaussian 

filter.

Using the unified segmentation methods of SPM5, the sMRI was normalized to MNI space, 

resliced to 3 × 3 × 3 mm, and segmented into gray matter (GM), white matter, and cerebral 

spinal fluid (CSF). Then, the GM images were smoothed with a FWHM of 8 mm Gaussian 

filter. Subject outlier detection was further performed using a spatial Pearson correlation 

with the template image to ensure that all subjects were properly segmented [details can be 

found in [27, 28]].

2) Normalization and Site Effect Correction—After preprocessing, the three-

dimensional brain images of each subject were reshaped into a one-dimensional vector and 

stacked, forming a matrix (Nsubj×Nvoxel) for each of the three modalities. These three 

matrices were then normalized to have the same average sum of squares (computed across 

all subjects and all voxels for each modality) to ensure all modalities had the same ranges.

Multivariate analysis of covariance (MANCOVA) was performed on the normalized feature 

matrices. Gender, age and site were set as covariates, along with their interactions were all 

regressed out from fALFF, FA and GM matrices respectively, to minimize their potential 

impact on the imaging data, the resulting data were then ready for fusion analysis.

3) The Working Memory Scores—We use one cognitive domain measure, working 

memory (WM) score, as the reference for supervised multimodal MRI fusion. For fBIRN 

data, the WM score was measured by the Computerized Multiphasic Interactive Neuro-

cognitive System (CMINDS) [29]. As listed in Supplementary Table II, CMINDS involves 6 

domains, i.e., speed of processing, attention/vigilance, working memory, verbal learning, 

visual learning and reasoning/problem solving. For the validated data cohort from UNM, 

working memory score is measured by the MATRICS Consensus Cognitive Battery 

(MCCB) system, which is launched by the National Institute of Mental Health and contain 

one more domain, social cognition than CMINDS, see supplementary Table IV. Both 

cognitive measurement systems include computerized neuropsychological tasks that are 

structurally and functionally similar, and the neurocognitive domain z-scores were computed 

from these tests. As reported by [29], CMINDS is very similar to MATRICS on measuring 

cognitive deficits in schizophrenia.
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III. Results of Simulation

The proposed method MCCAR+jICA together with its 4 alternatives (MCCA1, MCCA2, 

MCCAR, MCCA+jICA) were tested on the carefully designed simulated data, in which 

MCCA1 denotes MCCA optimized by the maximum variance method, MAXVAR [30], 

MCCA2 represent MCCA optimized by the sum of squared correlations method, SSQCOR 

[31]. For each method, the decomposed components are paired with the true sources via 

cross-correlation automatically within each modality. We compared their fusion performance 

across multiple aspects.

One important property is that whether the supervised method is able to detect the target 

component (significantly correlated with reference) accurately and with right 

correspondence across modalities. Figure 3(a) shows the ability for different fusion methods 

in getting priority-set reference signals as one joint component under one noise level (PSNR 

=7). It is clear that only supervised method MCCAR (blue) and MCCAR+jICA (magenta) 

could obtain multi-modal target components with right correspondence (same component 

order [1,1,1], all correlated with reference), i.e., the component linked with the reference in 

multiple modalities will come out as one joint component. While unsupervised algorithms 

may lose such correspondence info in noisy conditions, though the correlation value with 

reference could be captured. Figure 3(b) and (c) displays the boxplot of the estimation 

accuracy of the identified target component across 16 noise levels. The estimation accuracy 

used here is defined as the correlation between the true source(s)/mixing matrices and the 

estimated component(s)/mixing matrices. It is evident that MCCA+jICA (yellow) and 

MCCAR+jICA (magenta) exhibit outperform others on both source and mixing matrix for 3 

modalities. Figure 3(d) displays the estimation of inter-modality correlation (black is the true 

value) of the identified target component and Figure 3(e) shows the mean absolute error of 

the estimated multimodal correlation. It is also evident that the estimation accuracy of 

MCCAR+jICA is closest to the ground truth. More importantly, even compared with 3 

separate ICA in each modality, MCCAR+jICA also achieves the best modal-connection 

estimation with minimum absolute error, validating the advantages of the supervised, goal-

directed model on extracting the target component more precisely.

Besides the target component, for decomposition of other components, as shown in Figure 4, 

it is evident that MCCAR+jICA is quite robust to noise and its source separation 

performance is consistently the best in all noise conditions among 5 approaches, MCCA

+jICA is the second best in source and mixing matrix estimation. Moreover, the performance 

of MCCAR is not as good as MCCAR+jICA, since MCCAR+ jICA achieves more precise 

source estimation than MCCAR, which demonstrates the necessity of applying jICA. 

Finally, the accuracy for different component numbers to identify target components is 

shown in Figure 5. The higher values of the accuracy, the brighter color is in the squares in 

Figure 5. It is clear that when estimated component number is equal or higher than the true 

value (M ≥ 8), MCCAR+jICA achieved the highest or close to highest accuracy among 5 

methods in most cases.

Qi et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When determining the value of λ that balances the weight of  and 

 in (3)/(4), we performed 5-fold cross validation on 300 simulated data for 50 

times. 4/5 of the data was trained by MCCAR+jICA to be decomposed into Atrain and S, 

where S is further used in the left out 1/5 testing data to decompose it into Atest and S. Then 

we tested the correlation between the reference and the target component of Atest (with the 

same IC order of the target component derived from Atrain) for 5×50=250 times on each 

modality. As shown in Figure 6, the mean and standard derivation of correlations of all 

iterations for 3 modalities were calculated. When λ= 0.8, the mean correlation between 

estimated target IC and the reference reaches its maximum value, thus we set λ=0.8 in 

simulation under PSNR=7. For real human MRI data, we adopted the same strategy to 

determine the value of λ.

IV. Results of Human Brain Data

A. FBIRN Results

In human data application, we first applied the proposed method on FBIRN Phase III 

multimodal data consisting of 294 subjects (147 HC, 147 SZ), who were measured by 

CMINDS [29] with a working memory score. Three representative MRI features, i.e., 

fALFF from resting-state functional MRI, GM volume from sMRI, and FA from dMRI were 

extracted and combined by MCCAR+jICA, in which the working memory domain score 

was set as the reference. Similar cross-validation method (as shown in Figure 6) was used to 

determine λ in FBIRN data, and we finally set λ = 0.8. We aim to discover the joint ICs that 

are not only significantly correlated with CMINDS working memory scores, but also joint 

group-discriminative. Here the joint IC means components of the same index across 

modalities. 20 components were estimated for each feature according to an improved MDL 

criterion [9]. We then performed two-sample t-tests on mixing coefficients of each IC for 

each modality.

Among the 20 derived ICs, the 6th IC was found to be the component of interest. It is both 

correlated with working memory scores (r=0.296, 0.241, 0.301), and significantly group-

discriminating (p=7.4×10−6, 1.0×10−3, 7.0×10−9 FDR corrected) for fMRI, dMRI and sMRI, 

respectively. Figure 7 displayed the spatial maps (transformed into Z scores, visualized at |Z| 

>2) and showing HC>SZ for all modalities on the mean of loading parameters, as the 

boxplot shown in Figure 7 (b), so that the positive Z-values (red regions) indicate higher 

contribution in HC than SZ and the negative Z-values (blue regions) indicate higher 

contribution in SZ than HC. The identified regions in IC6 are summarized in Supplementary 

Table V for fALFF and GM components as well as FA (white matter tracts, from John 

Hopkins Atlas). Figure 7 (c) indicates the positive correlation between loadings of IC6 and 

the working memory scores in three modalities (HC: red dots, SZ: blue dots); the higher 

loadings correspond to better working memory performance. Additionally, the identified IC6 

is also anti-correlated with PANSS negative scores (r=−0.229, −0.276, −0.240) for fMRI, 

dMRI and sMRI, respectively. No significant correlation was found with PANSS positive 

scores.
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Regarding the identified brain regions, both fMRI_IC6 and sMRI_IC6 identified dorsolateral 

prefrontal cortex (DLPFC), where patients indicated higher fALFF values but lower GM 

volume. There are very consistent evidences that SZ have difficulty with processes attributed 

to the central executive component of working memory. Two meta-analyses on working 

memory related brain activation in schizophrenia provide consistent evidence for altered 

activity in DLPFC [15, 18, 32], indicating that the link between DLPFC dysfunction and 

disrupted working memory is a prominent feature of leading cognitive neuroscience models 

of schizophrenia. Several lines of evidence also suggest working memory and the DLPFC 

component in particular, as a critical domain of dysfunction in the pathophysiology of 

schizophrenia. In sMRI studies, the DLPFC is a key cortical region in which gray matter is 

reduced in volume in schizophrenia, changes that are correlated with negative symptom 

severity in patients. Overall, our results suggest that higher fALFF but lower GM volume in 

DLPFC relates to worse working memory in schizophrenia [33]. Commonly in fMRI_IC6 

and sMRI_IC6, SZ also showed lower values in thalamus, which is believed to be the 

mediator of attention under the notable contextual and leading influence of the neocortex 

[34]. Thalamus has dense reciprocal projections with cerebral neocortex and with limbic 

structures, and forms a key part of the pathway for transmission of sensory information to 

cortex [35]. The thalamus and the basal ganglia are key structures linked to the prefrontal 

cortex and are known to be involved in working memory [36] and it also participate in the 

thalamic–cortical–striatal circuitry subserving working memory [37]. An alternative account 

of the present findings, which emphasizes the fractional similarity network analysis results, 

posits the DLPFC/anterior cingulate cortex (ACC)/thalamus triad as a core deficit, with the 

dysfunction elsewhere in the network as a downstream functional consequence of working 

memory disturbance [15].

For fMRI only, patients indicated higher fALFF values in superior frontal gyrus, medial 

frontal gyrus, superior temporal gyrus (STG), and inferior parietal lobule. Both fronto-

temporal and front-parietal circuits’ abnormalities were observed in fALFF. Fronto-temporal 

dysconnectivity has been proposed as a mechanism leading to the psychotic symptoms, 

especially auditory hallucinations, in schizophrenia. Disrupted fronto-parietal circuit may 

account for the impaired executive function and cognitive control in schizophrenia, 

especially the working memory deficit [38].

For GM only, patients showed lower GM volume in ACC, insular, which consist of the 

salience network [39], as well as subcortical areas including caudate, amygdala, 

hippocampus. Insular is a cortical structure with extensive connections to many areas of the 

cortex and limbic system. It integrates external sensory input with the limbic system and is 

integral to the awareness of the body’s state (interoception) [40]. Recent studies report that 

the dorsal anterior insular and dACC, core regions of the salience network, play a critical 

role in mediating the interaction between emotion perception and executive control 

involving in emotional working memory processing [41]. Although the DLPFC lesion is 

reported consistently in patients with schizophrenia relative to healthy subjects, abnormal 

activation patterns are not restricted to this region. Two previous meta-analysis about 

working memory deficits in schizophrenia has pointed out that apart from DLPFC 

dysfunction, the ACC and bilateral insular (main parts of the salience network) also 

participate in working memory performance in SZ [18, 42]. We successfully replicated the 
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previous studies that a relatively greater degree of reduction in prefrontal and salience 

network in schizophrenia has been extracted.

For dMRI, the co-occurring FA values in superior longitudinal fasciculus (SLF), inferior 

longitudinal fasciculus (ILF), forceps minor (FMIN) and forceps major (FMAJ) were lower 

in SZ. The FMIN linking DLPFC region is traversed by tracts interconnecting the frontal 

lobe, providing evidence for disrupted anatomical connections in the fronto-limbic circuitry 

[43]. FA changes in the SLF, the major white matter connection between prefrontal and 

parietal cortices, relate to verbal working memory performance [17]. As reported, the 

integrity of this physiological connection predicted performance on a verbal working 

memory task, indicating that this structural change may have important functional 

implications. According to the macrocircuit theory, specific white matter tracts are disrupted 

either as a cause or a consequence of a disorder in the gray matter regions they connect. 

Consistent with previous reports, the current study also found moderate correlations between 

the severity of negative symptom and diffusion measurements of certain tracts, including 

FMAJ, FMIN, SLF, and ILF [43].

B. Independent Cohort Validation

Due to the interferential effects of varying measurement conditions and demographic 

distributions, few studies have been strictly validated for independent cohorts. Here we 

further tested the stability of our proposed method using another independent validation 

cohort, data from UNM, including 39 SZs and 44 HCs. No overlapped subjects between 

UMN and FBIRN. A similar working memory domain score from a cognition measurement 

system: MCCB, was used as reference. 24 components were estimated for each feature 

according to an improved MDL criterion [9]. Among the 24 derived ICs, IC1 was found to 

be both correlated with MCCB working memory scores (r=0.284, 0.3, 0.224) and 

significantly group-discriminating (p=4.0×10−4, 1.7×10−2, 4.8×10−2) for all 3 modalities, as 

displayed in Figure 8. The identified regions in IC1 are summarized in Supplementary Table 

VI for fALFF, FA, and GM, respectively.

Figure 9 indicates the comparison of working memory (WM) related components obtained 

from 2 independent cohorts. Note that the working memory performance was calculated 

from two systems, though they are not completely identical in WM tasks, we still obtained 

very similar brain patterns related to WM performance between two independent data sets. 

Particularly, sMRI and DTI get the highest overlapped brain regions for both FBIRN and 

UNM. For sMRI, decreased GM values in salience network (including dorsal ACC and 

insular) and executive control network (including DLPFC and STG), and subcortical areas 

(including caudate, putamen, thalamus) were detected for both cohorts. For DTI, the major 

tract including the SLF, inferior fronto-occipital fasciculus [44], ILF, FMAJ [45] and FMIN, 

ATR, which are summarized by a recent meta-analysis [46], were almost the same for both 

cohorts. While for fMRI, the prefrontal areas and posterior DMN are the most consistent 

brain areas for both FBIRN and UNM. Previous studies showed that the DMN was generally 

divided into two subsystems: anterior part and posterior part (pDMN). The former is mostly 

related to self-referential mental thought and the latter engages in episodic memory retrieval 

[47]. In our results, we recognized pDMN (including posterior cingulate cortex (PCC), 
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superior frontal gyrus, middle frontal gyrus, posterior inferior parietal lobule and middle 

temporal gyrus [48]) in fMRI, which showed higher fALFF values in SZ. Previous task-

related neuroimaging studies have indicated that the PCC increases activation in successful 

retrieval of episodic memory [49]. Overall, all the above mentioned brain networks (the 

salience network, pDMN, executive control network and prefrontal areas) were replicated in 

another independent cohort.

Furthermore, to verify the effectiveness of the identified regions, we also searched the meta-

analysis results from Neurosynth (http://neurosynth.org/) using working memory as search 

terms. According to the inference map we obtained, the bilateral anterior insular, middle 

frontal and inferior frontal areas are the brain regions most associated with working memory 

performance, while we successfully extract then in two sites on both GM and fALFF. Note 

in Neurosynth, if a study used working memory as the searched keywords, we obtained 

statistical inference maps displaying z-scores according to the probability of a region’s being 

activated. In other words, these maps displayed the brain regions that were consistently 

activated in studies that are loaded highly on a specific term. These maps were threshold at a 

false discovery rate (FDR) of 0.01. We also noticed that the subcortical regions in fMRI are 

different between two sites, this may be due to the discrepancy of the working memory tasks 

included in two cognitive measurement systems.

In sum, we successfully replicated the modality-covarying network particularly related to 

WM deficits in schizophrenia. The highly consistent functional-anatomical-structural co-

alterations between two sites verified the effectiveness of the proposed fusion with reference 

model. More importantly, the identified executive control network, salience network, and the 

posterior default mode network have previously been suggested to be associated with WM 

deficits in multiple reports [16, 18, 42, 50] but never in a multimodal analysis across 

multiple cohorts in the same study, which suggests a great potential for the use of the 

proposed method.

V. Discussion and Conclusion

In this study, we proposed a novel supervised fusion with reference model, MCCAR+jICA, 

which is able to extract interested components associated with a specific prior reference, 

e.g., cognitive scores. Compared to the blind (unsupervised) fusion approaches, e.g. MCCA, 

jICA, etc. as summarized in Sui [5, 11, 12], the proposed model is more goal-directed by 

taking advantage of a priori to guide the fusion, which is also shown to be more stable in 

various noise levels and even when the estimation of component number is not accurate.

In simulation, we compared MCCAR+jICA with its alternatives on the performance of 

getting right target joint components. Results indicate that MCCAR+jICA is able to extract 

the particular component of interest with improved accuracy on both mixing coefficients and 

source maps. Moreover, source separation performance of all other components is also kept 

as the higher level. In the real-world fusion application, we combined data from brain 

function, white matter tracts and gray matter volume from schizophrenia and healthy 

controls. A joint component was identified that are not only correlated with working 

memory domain scores from CMINDS, but also show significant group differences between 
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schizophrenia and controls. Specifically, we successfully extracted robust modality-common 

covarying networks including the executive control network and prefrontal areas (both 

detected in fALFF and GM), and the modality-specific networks including pDMN (only 

detected in fALFF) and the salience network (only detected in GM). Most importantly, the 

identified working memory related, brain functional and structural networks can be 

replicated in another independent cohort and both were impaired in SZ. This means for brain 

imaging applications, we can simultaneously explore multimodal inter-subject covariation 

linked with a specific clinical measure.

In addition to working memory dysfunction, other cognitive domains could also be studied 

using our method, e.g. composite cognitive scores, one of the most widely reported cognitive 

deficit in schizophrenia [51, 52], which would appear in our another work. Furthermore, 

MCCAR+jICA can be applied straightforwardly to study other brain diseases (such as 

psychotic major depression disorder (MDD), or non-psychotic bipolar disorder (BP)). In 

addition, the choice of cognitive measure is flexible. Other references that could be used 

include symptom severity scores, age, or behavioral measures. Finally, apart from the above 

mentioned cognitive measures, genetic data could also be used as reference, e.g. a 

microRNA, to explore brain structure and function associated with genetic variants, 

presenting a new direction of future fusion work on mental disorders [14].

A possible limitation of this work is that MCCAR+jICA operates on extracted features, 

rather than the original imaging data, (e.g. using fALFF instead of 4DfMRI data). Although 

some of the temporal information is lost using this method, a “feature” tends to be more 

tractable than working with the large-dimensional original data [53] and provides a simpler 

space in which to link the data [54]. While in future work, we can include temporal features, 

like dynamic states, or functional network connectivity matrices [55] as fusion input for 

fMRI, to capture both temporal and spatial co-alterations. Furthermore, most participants 

were receiving antipsychotic and/or mood stabilizing medication at the time of scanning 

(medication information can be found in Supplementary Table VII), which may result in 

potential structural and functional brain alterations [56].

In summary, this study proposed a novel supervised fusion model MCCAR+jICA, and 

provided proof-of-concept of its application in brain imaging data. To our knowledge, this is 

the first attempt to use cognitive score as a reference to guide multimodal imaging data 

fusion for seeking potential multimodal neuromarkers of working memory deficits in 

schizophrenia. Based on the proposed model, we not only identified co-varying brain 

regions that were suggested linked with core schizophrenic deficits of working memory in 

multiple reports, but also verified the results in a repeatable manner in an independent 

cohort, promising a widely use of the proposed method in detection of potential biomarkers 

for mental disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flowchart of the supervised 3-way data fusion strategy of MCCAR+jICA. As an example, 

the feature matrix of each modality is decomposed as 5 independent components (ICs), 

M=5. (a) Data preprocessing and stacked to 2D matrix for each modality. (b) represents 

multi-site canonical correlation analysis with reference (MCCAR) and its objective function. 

(c) illustration of MCCAR when M=5 and the 3rd component is linked with reference, 

resulting in 3 canonical variants Ak, whose pair-wise covariation of is a diagonal matrix as 

shown in (d). (e) indicate the joint independent component analysis (jICA).
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Fig. 2. 
The simulated 8 source maps for 3 modalities. The red boxed source maps are those 

designed to be correlated with the reference. Note that these component order are different 

between modalities, a strength of the supervised fusion model is able to extract them 

together as a joint component.
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Fig. 3. 
Comparison of 5 approaches in a simulated 3-way data fusion, including MCCA1 (red), 

MCCA2 (green), MCCAR (blue), MCCA+jICA (yellow), and MCCAR+jICA (magenta). 

(a) Only two supervised method MCCAR and MCCAR+jICA are able to extract multi-

modal target components with right correspondence as a joint component (same IC order). 

(b) and (c) show that MCCAR+jICA outperform others on estimation accuracy of both 

source and mixing profile of target ICs. (d) and (e) validate that MCCAR+jICA achieves 

best estimation of inter-modality correlation with minimum absolute error.
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Fig. 4. 
The comparison of estimation accuracy of all the components under 16 level noises. 

MCCA1 (red), MCCA2 (green), MCCAR (blue), MCCA+jICA (yellow), and MCCAR

+jICA (magenta). The latter two methods combining ICA and CCA achieved best or 

equivalent best performance for the whole decomposition.
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Fig. 5. 
Performance comparison when using different number of component M for decomposition. 

True source number =8, here M varies from 6 to 12. The color of squares represent the 

correlation between the estimated target IC and the ground truth on either source maps (top) 

or mixing coefficients (bottom) for different methods. The brighter square color, the higher 

estimation accuracy. Modality 1, 2, 3 denotes fMRI, dMRI and sMRI respectively. MCCAR

+jICA achieves best estimation when M>= true source number.
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Fig. 6. 
Correlation of the identified components and reference signal across multiple cross-

validations under PSNR=7. When λ is 0.8, the mean correlation between estimated target IC 

and the ground truth of all modalities and tests reaches its maximum value. The black line, 

yellow patch and blue line represent mean, standard error of the mean (SEM) and the 

standard deviation (SD) of correlations between target IC and reference.
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Fig. 7. 
Joint components that are significantly correlated with working memory domain score of 

CMINDS and also indicate significant group differences in all modalities. (a) The spatial 

maps visualized at |Z|>2; the positive Z-values (red regions) means HC>SZ and the negative 

Z-values (blue regions) means HC<SZ. (b) Correlations between loadings of component and 

the CMINDS working memory scores (HC: red dots, SZ: blue dots); the higher loadings 

correspond to better working memory performance. (c) Boxplot of the loading parameters 

for each component, with the p values of two sample t-test between HC and SZ. In (c), the 

black line, gray patch and yellow patch represent mean, SD and SEM of the group loadings.
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Fig. 8. 
Joint components that are significantly correlated with CMINDS working memory scores 

and group-discriminating in all modalities. (a) The spatial maps visualized at |Z|>2. (b) 

Correlations between loadings of component and the CMINDS working memory scores 

(HC: red dots, SZ: blue dots). (c) Boxplot of the loading parameters for each component, 

with the p values of two sample t-test between HC and SZ. In (c), the black line, gray patch 

and yellow patch represent mean, SD and SEM of mixing coefficient for each group 

respectively.
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Fig. 9. 
Independent cohort validation of the identified joint target component. The working memory 

domain scores measured by CMINDS and MCCB systems were used as references for 

MCCAR+jICA for FBIRN and UNM data respectively. The spatial maps were visualized at |

Z|>2; the positive Z-values (red regions) means HC>SZ and the negative Z-values (blue 

regions) means HC<SZ.
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