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Nonparametric and Parametric Estimators of
Prevalence From Group Testing Data With Aggregated

Covariates
Aurore DELAIGLE and Wen-Xin ZHOU

Group testing is a technique employed in large screening studies involving infectious disease, where individuals in the study are grouped
before being observed. Parametric and nonparametric estimators of conditional prevalence have been developed in the group testing literature,
in the case where the binary variable indicating the disease status is available only for the group, but the explanatory variable is observed for
each individual. However, for reasons such as the high cost of assays, the confidentiality of the patients, or the impossibility of measuring
a concentration under a detection limit, the explanatory variable is observable only in an aggregated form and the existing techniques are
no longer valid. We develop consistent parametric and nonparametric estimators of the conditional prevalence in this complex problem.
We establish theoretical properties of our estimators and illustrate their practical performance on simulated and real data. We extend our
techniques to the case where the group status is measured imperfectly, and to the setting where the covariate is aggregated and the individual
status is available. Supplementary materials for this article are available online.

KEY WORDS: Averaged biomarker; Binary outcome; Group testing; Local polynomial; Nonparametric regression; Pooled data.

1. INTRODUCTION

In large screening studies related to rare infectious disease,
individuals are often pooled before being tested for the disease.
There, instead of observing the result Y = 0 or 1 of the test for
each individual, we observe only the result Y ∗ of the test for
groups of individuals. Originally, this group testing approach
was introduced to gain time and money; see Dorfman (1943)
for an example with U.S. soldiers tested for syphilis. Nowadays
this group testing procedure is employed in much more diverse
contexts, such as detection of pollution by a toxic substance, or
the estimation of proportion of transgenic corn; see, for example,
Montesinos-López et al. (2012, 2013).

In group testing problems, it is often of interest to estimate
the probability of contamination given a covariate X, that is,
p(x) = P (Y = 1|X = x) (we use contamination as a generic
term, which can represent contamination by a pollutant, the
presence of a disease, evidence of genetic manipulation, etc.).
Parametric methods of estimation and inference have been de-
veloped in the literature to estimate this conditional probability
under various settings; see, for example, Vansteelandt, Goet-
ghebeur, and Verstraeten (2000), Xie (2001), Bilder and Tebbs
(2009), Chen, Tebbs, and Bilder (2009), and Huang and Tebbs
(2009). For semiparametric and nonparametric methods, we re-
fer to Delaigle and Meister (2011), Delaigle and Hall (2012),
Li and Xie (2012), Wang, Zhou, and Kulasekera (2013), Wang
et al. (2014), and Delaigle, Hall, and Wishart (2014). See also
Chen and Swallow (1990), Farrington (1992), Hardwick, Page,
and Stout (1998), Gastwirth and Johnson (1994), and Hung and
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Swallow (2000) for related work on estimation and inference
about prevalence.

The existing techniques for estimating p rely on the fact that
X is available at an individual level, whereas in some cases
it is only available in an aggregated form at the group level.
Most often, continuous biomarkers are pooled because the cost
of assays is too high to be able to take individual measure-
ments; see, for example, Weinberg and Umbach (1999), Caudill
(2010), and Zhang and Albert (2011), who discussed studies
where X is the exposure to a toxic substance, and Faraggi,
Reiser, and Schisterman (2003), Liu and Schisterman (2003),
and Mitchell et al. (2014), who discussed pooling of biomarkers
more generally. Grouping can also be applied for other rea-
sons such as preserving confidentiality of participants in a study
(Gastwirth and Hammick 1989), to sparingly use nonrenewable
blood specimens (Weinberg and Umbach 1999), or because X
represents the concentration of a substance whose individual
value is below the detection limit, whereas the group concen-
tration can be measured. For instance, such grouping was intro-
duced by the National Centers for Disease Control and Preven-
tion in the NHANES 2005–2006 study, to measure the concen-
tration of organochlorine pesticides and metabolites. See also
Caudill (2010) for other related examples. When X is pooled,
existing methods cannot be pressed into service.

Our goal is to develop new methods (nonparametric and para-
metric) for estimating p from group testing data with aggregated
covariates. Nonparametric estimation from aggregated data was
considered by others before, but not in our context of group test-
ing outcomes variables. Meister (2007) considered the problem
of estimating the density of X from a sample of aggregated data.
In Linton and Whang (2002), the goal was to estimate a regres-
sion curve E(Y |X), where X and Y are both continuous random
variables, which can only be observed in the form of averages
contaminated by additive noise (in our case Y is a binary vari-
able observed in the form of a maximum Y ∗ within a group). In
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Zhang and Albert (2011), the focus was on estimating E(Y |X)
parametrically when Y is binary and X is continuous and ag-
gregated, but in their case the response Y was not grouped. Our
problem, which combines aspects of group testing with aspects
of aggregated data, is particularly difficult. A first nontrivial task
is to express the function p in terms of quantities that can be
estimated from our indirect data. A second challenge is to find
a way to define a local polynomial estimator for this problem.
In the standard setting, this estimator is defined through a least-
square equation that cannot be computed when only grouped
and aggregated data are available. We circumvent this difficulty
through an ingenious use of Fourier transforms and the devel-
opment of empirical estimators thereof.

In Section 2, we introduce our regression model. In Sections 3
and 4, we introduce our nonparametric and parametric estima-
tors, respectively; their theoretical properties are presented in
Section 5. In Section 6, we suggest a data-driven procedure for
bandwidth selection and illustrate the numerical performance
of our estimators on simulated and real data. In Section 7.1, we
extend our results to the case where the group status is observed
with errors, and in Section 7.2 we discuss the extension of our
nonparametric estimators to the setting of Zhang and Albert
(2011), where the individual Y data are available, and only the
X observations are aggregated. Proofs of the theoretical results
are provided in Section A and in a supplemental file.

2. MODEL, DATA, AND DISTRIBUTIONS

2.1 Model and Data

We are interested in estimating the regression curve p(x) =
P (Y = 1|X = x), where Y is a binary variable indicating the
presence (Y = 1) or absence (Y = 0) of a contaminant or a dis-
ease, given that the covariate X takes the value x. The ideal, un-
observed data consist of independent and identically distributed
(iid) pairs (Xij , Yij ), i = 1, . . . , ν, j = 1, . . . , n. The index ij

represents the ith individual from the jth group, and the group
size ν ≥ 2. We let N = nν denote the total number of individ-
uals, and let fX denote the density of the Xij ’s.

In our group testing context, the (Xij , Yij )’s are not avail-
able. Instead we observe (S1, Y

∗
1 ), . . . , (Sn, Y

∗
n ), where for

j = 1, . . . , n, Y ∗
j = maxi=1,...,ν Yij denotes the result of the test

carried out on the entire jth group, and Sj = ∑ν
i=1 Xij is the

aggregated value of X in the jth group.

Remark 1. In Section 7.2, we will show how to extend our
ideas to the setting considered by Zhang and Albert (2011),
where the Xij ’s are aggregated, but the Yij ’s are not grouped,
that is, where we observe (Sj , Yij ), for i = 1, . . . , ν and j =
1, . . . , n.

2.2 Conditional Distribution of the Data

We wish to construct parametric and nonparametric estima-
tors of the curve p from the data (S1, Y

∗
1 ), . . . , (Sn, Y

∗
n ). The

methodologies we shall suggest exploit the conditional distri-
bution of Y ∗

j |Sj . To derive this distribution, for all x ∈ R let

q(x) = 1 − p(x) = P (Y = 0|X = x) and m(x) = q(x)fX(x).
(2.1)

Recall that Y = 0 or 1 is a Bernoulli random variable, so that
Y ∗

j also follows a Bernoulli distribution. Now

P (Y ∗
j = 0, Sj ≤ x)

=
∫ ∞

−∞
P

(
Y1j = · · · = Yνj = 0 ,

ν∑
i=2

Xij ≤ x − x1

∣∣∣∣X1 = x1

)

fX(x1) dx1

=
∫ x

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
m

(
u −

ν−1∑
k=1

xk

)
ν−1∏
k=1

m(xk) dxk du

=
∫ x

−∞
m∗ν(u) du ,

where we use f ∗ν = f ∗ · · · ∗ f to denote the ν-fold convolu-
tion of a function f . Letting fS = f ∗ν

X denote the density of the
Sj ’s, this implies that

P (Y ∗
j = 0|Sj = x) = m∗ν(x)/fS(x) (2.2)

and P (Y ∗
j = 1|Sj = x) = 1 − f −1

S (x)m∗ν(x).

3. NONPARAMETRIC ESTIMATORS

3.1 Nadaraya–Watson-Type Estimator

We start by constructing a basic ratio-type estimator similar
in spirit to the Nadaraya–Watson estimator employed in stan-
dard nonparametric regression problems. Specifically, following
(2.1), we write p(x) = 1 − f −1

X (x)m(x) and assume that

m0 =
∫ ∞

−∞
{1 − p(x)}fX(x) dx =

∫ ∞

−∞
m(x) dx > 0. (3.1)

For any function f ∈ L1(R), let φf (t) = ∫∞
−∞ eitxf (x) dx de-

note its Fourier transform, and for any random variable U, de-
note by φU (t) = E(eitU ) its characteristic function. Throughout
we assume that

φX(t) �= 0 and φm(t) �= 0, for all t ∈ R. (3.2)

We estimate fX and m separately. For fX, we can follow
Meister’s (2007) nonparametric approach, as follows. Recall
that, by the Fourier inversion theorem, if φX ∈ L1(R), then
fX(x) = (2π )−1

∫∞
−∞ e−itx φX(t) dt . Therefore, to construct an

estimator of fX it suffices to construct an estimator of φX. As
in Meister (2007), using the aggregated data, first we estimate
φS(t) = {φX(t)}ν by

φ̂S(t) := n−1
n∑

j=1

eitSj . (3.3)

Among the multiple complex-valued roots of the complex-
valued function φ̂S , to find the one which corresponds to a valid
estimator of φX we use a slightly modified version of Meister’s
(2007) estimator; see Section C.1 for details. Then, as in Meister
(2007), we estimate fX by

f̂X(x) = (2π )−1
∫ ∞

−∞
e−itx φK (th)φ̂X(t) dt, (3.4)

where φK denotes the Fourier transform of a symmetric kernel
function K, and h = hn > 0 is a bandwidth. As noted in the
introduction, Linton and Whang (2002) considered a related
problem of nonparametric curve estimation from aggregated
data, which also involves estimating φX from averaged data.
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Their approach is similar to the one discussed above, except
that it implicitly assumes that φS is real, which, in general, is
only satisfied when X is a symmetric random variable.

To estimate the function m, again by the Fourier inversion the-
orem, if φm ∈ L1(R), then m(x) = (2π )−1

∫∞
−∞ e−itx φm(t) dt.

Next, (2.2) implies that m∗ν ≤ fS , and thus the Fourier trans-
form of m∗ν exists. To estimate this Fourier transform, recall
that basic properties of the Fourier transform imply φm∗ν (t) =
{φm(t)}ν . For j = 1, . . . , n, let Z∗

j = 1 − Y ∗
j so that m∗ν(x) =

fS(x)P (Z∗
j = 1|Sj = x) in view of (2.2). Taking the Fourier

transform of both sides of this equation, we deduce that

φm∗ν (t) = E{P (Z∗
j = 1|Sj )eitSj } = E(Z∗

j e
itSj ). (3.5)

Equation (3.5) suggests a natural estimator φ̂m∗ν (t) :=
n−1 ∑n

j=1 Z∗
j e

itSj of φm∗ν (t), from which we deduce an estima-

tor φ̂m of φm; see Section C.1 for full details. We then estimate
m(x) by

m̂(x) = (2π )−1
∫ ∞

−∞
e−itx φK (th)φ̂m(t) dt, (3.6)

and define our first nonparametric estimator of p(x) by

p̂(x) = 1 − m̂(x)/f̂X(x). (3.7)

3.2 Local Polynomial-Type Estimator

Next we construct a version of the more general and widely
used local polynomial estimator, which can be computed from
our data. In addition to estimating p, it can estimate deriva-
tives p(d), d ≥ 1. In the standard iid case, which corresponds to
the case where we observe the data (Xij , Yij ), i = 1, . . . , ν and
j = 1, . . . , n, the �th-order local polynomial estimator of p is
obtained as follows. First, approximate p in a neighborhood of
x by an �th-order polynomial, that is, p(u) ≈ β0 + β1(u − x) +
· · · + β�(u − x)�. Then, at each x, estimate the local coefficients
βk = βk(x) by β̂k = β̂k(x) for k = 0, . . . , �, obtained via mini-
mizing the following weighted least-square sum with respect to
the βk’s:

∑
i,j

{
Yij −

�∑
k=0

βk(Xij − x)�
}2

Kh(Xij − x), (3.8)

where Kh(y) = h−1K(y/h), K is a kernel function and
h = hn > 0 is a bandwidth. For d ≤ �, the �th-order local poly-
nomial estimator of p(d)(x) is defined by p̂ (d)(x) = d! β̂d (x),
which can be written as p̂ (d)(x) = d! h−d eT

d S−1
N TN , where

ed = (0, . . . , 0, 1, 0. . . . , 0)T with 1 at the (d + 1)th entry, SN =
(SN,k,k′)0≤k,k′≤� and TN = (TN,0, . . . , TN,�)T, with SN,k,k′ (x) =
(Nhk+k′

)−1 ∑n
j=1

∑ν
i=1 Kh(Xij − x) (Xij − x)k+k′

and
TN,k(x) = (Nhk)−1 ∑n

j=1

∑ν
i=1 Yij Kh(Xij − x) (Xij − x)k .

It does not seem possible to develop an analog of (3.8) here,
since we observe neither the Xij ’s nor the Yij ’s. Instead we could
construct versions of SN,k,k′ and TN,k that can be computed from
our data and have the same asymptotic limit as SN,k,k′ and TN,k .
In errors-in-variables problems that do not involve group testing
data, faced with a similar problem, Delaigle, Fan, and Carroll
(2009) constructed, in the Fourier domain, conditionally unbi-
ased estimators of each Kh(Xij − x) (Xij − x)k+k′

. We cannot

do this in our highly nonlinear context, but we too shall exploit
Fourier properties.

Instead of directly estimating p(d), it is simpler to start
with an estimator of q(d). Let Zij = 1 − Yij , let UN,k de-
note the version of TN,k with each Yij replaced by Zij , and
let UN = (UN,0, . . . , UN,�)T. If the (Xij , Zij )’s were observed,
we could compute the standard local polynomial estimator of
q(d)(x) defined by q̂ (d)(x) = d! h−d eT

d S−1
N UN . We construct

versions ŜN,k,k′ and ÛN,k of SN,k,k′ and UN,k that can be com-
puted from our data, as follows. In Section C.2 we prove that

φSN,k,k′ (t) = i−k−k′
φ̂X,emp(t)φ(k+k′)

K (−ht), φUN,k
(t)

= i−k φ̂ZX,emp(t)φ(k)
K (−ht), (3.9)

where φ̂X,emp(t) = N−1 ∑n
j=1

∑ν
i=1 eitXij is an unbiased esti-

mator of φX(t), and φ̂ZX,emp(t) = N−1 ∑n
j=1

∑ν
i=1 Zij eitXij

is an unbiased estimator of

φZX(t) = E(Zij e
itXij ) = E{q(Xij )eitXij } = φqfX

(t) = φm(t).

Of course we cannot compute φ̂X,emp and φ̂ZX,emp, but in-
stead we can use the estimators φ̂X and φ̂m that we constructed in
Section 3.1. Using Fourier inversion, this motivates us to define
ŜN = (ŜN,k,k′ )0≤k,k′≤� and ÛN = (ÛN,0, . . . , ÛN,�)T, where

ŜN,k,k′ (x) = (2π ik+k′
)−1

∫
e−itx φ̂X(t)φ(k+k′)

K (−ht) dt,

ÛN,k(x) = (2π ik)−1
∫

e−itx φ̂m(t)φ(k)
K (−ht) dt.

Recalling that p = 1 − q, we define our local polynomial-type
estimator of p(d) by

p̂ (d) = I {d = 0} − q̂ (d), where

q̂ (d) = d! h−d eT
d Ŝ−1

N ÛN . (3.10)

When � = 0 and d = 0, this estimator reduces to the estimator
derived in Section 3.1.

Remark 2. (Which order � should we use in practice?) In stan-
dard nonparametric regression problems, the local linear esti-
mator (local polynomial estimator with � = 1) is almost always
preferred to the Nadaraya–Watson estimator (local polynomial
estimator with � = 0). In our case too, we found that the local
linear estimator gave better results, and this is the estimator we
recommend using in practice.

4. PARAMETRIC ESTIMATOR OF P

As commonly assumed in the group testing literature, we
sometimes have at our disposal a parametric model for p. There,
p takes a parametric form pθ , where θ ∈ � is a d-dimensional
parameter, and � ⊆ Rd is a compact set. Let θ0 denote the true
value of θ . It follows from our calculations in Section 2.2 that
the conditional likelihood of the Y ∗

j |Sj ’s is given by

L(Y ∗
1 , . . . , Y ∗

n |S1, . . . , Sn) =
n∏

j=1

f (Y ∗
j , Sj | θ ),

where, for y = 0 or 1, f (y, s | θ) = {1 −
m∗ν

θ (s)/fS(s)}y{m∗ν
θ (s)/fS(s)}1−y = y{1 − m∗ν

θ (s)/fS(s)} +
(1 − y){m∗ν

θ (s)/fS(s)}, with mθ = qθ fX = (1 − pθ )fX.
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Ideally we would estimate θ0 by the vector θ̂ that maximizes
the log-likelihood, or equivalently, that maximizes �n(θ) :=
(2n)−1∑n

j=1 ln
{
f (Y ∗

j , Sj | θ ) fS(Sj )
}
. However, in the most

general case, no parametric model is available for fX, so that fX

and fS are unknown. Denote the standard kernel density esti-
mator of fS(s) by f̂S(s) = (nb)−1 ∑n

j=1 K̃{(s − Sj )/b}, where
K̃ is a kernel function and b = bn > 0 is a bandwidth, and let
f̂X as defined at (3.4). The two equivalent forms of f (y, s | θ )
suggest two ways of estimating θ0: estimate θ0 by the vector
θ̃ ∈ � that maximizes

�̃n(θ) = 1

2n

n∑
j=1

ln

(
max

[
c0, Y

∗
j f̂S(Sj )

+(1 − 2Y ∗
j )
{
(qθ f̂X)∗ν(Sj )

}])
, (4.1)

under the constraint that 0 ≤ p̂θ ≤ 1, and where c0 > 0 is a
small constant, or estimate θ0 by θ̂ ∈ � that maximizes

�̂n(θ) = 1

2n

n∑
j=1

[
Y ∗

j ln
{
f̂S(Sj ) − (qθ f̂X)∗ν(Sj )

}
+(1 − Y ∗

j ) ln
{
(qθ f̂X)∗ν(Sj )

}]
(4.2)

subject to

f̂S(Sj ) − (qθ f̂X)∗ν(Sj ) ≥ c0 and (qθ f̂X)∗ν(Sj ) ≥ c0

(4.3)
for all 1 ≤ j ≤ n. The two approaches are essentially equiva-
lent, and the theory established in Theorem 3 for θ̂ can be easily
adapted to θ̃ . We refer to Section D.1 for details of implemen-
tation.

Remark 3. The case where we have a parametric model for
fX, say fγ with γ ∈ Rd2 , is simpler. There, the corresponding
parametric form of fS is f ∗ν

γ . As long as γ is identifiable from
the Sj ’s, the latter can be used to estimate γ by a standard
approach such as maximum likelihood. Let fγ̂ and f ∗ν

γ̂ denote
the corresponding estimators of fX and fS , respectively. To find
the maximum likelihood estimator of θ , we proceed as in the
case where fX and fS are estimated nonparametrically, except
that we replace the nonparametric estimators of fX and fS by
fγ̂ and f ∗ν

γ̂ .

5. THEORETICAL PROPERTIES

5.1 Smoothness Classes

Estimating the regression curve p from aggregated and group
testing data is a difficult inverse problem connected to the so-
called deconvolution problem studied in Fan (1991). In both
cases, the covariates are indirectly observed. In our case, we can
only observe Sj = ∑ν

i=1 Xij whereas in the deconvolution case,
we have access to data Wij = Xij + Uij observed with additive
errors Uij . The rates of convergence of nonparametric estimators
in deconvolution problems are notoriously slow, and depend
strongly on the rate of decay of the characteristic function φU of
the Uij ’s. A usual distinction is made between cases where U is
ordinary smooth or supersmooth. Similarly, the behavior of our
estimator depends on the behavior of φX and φm and we make
the same distinction between ordinary smooth and supersmooth
classes.

A random variable X (respectively, a function m) is ordinary
smooth of order β > 1 (respectively, κ > 1) if there exists a
constant C1 > 1 (respectively, C2 > 1) such that for every t ∈
R,

C−1
1 (1 + |t |)−β ≤ |φX(t)| ≤ C1(1 + |t |)−β (5.1)

(
respectively, C−1

2 (1 + |t |)−κ ≤ |φm(t)| ≤ C2(1 + |t |)−κ
)
.

(5.2)

A random variable X (respectively, a function m) is su-
persmooth of order ρ > 0 (respectively, � > 0) if there exist
constants ρ0, γ > 0, and C3 > 1 (respectively, �0, ς > 0 and
C4 > 1) such that for every t ∈ R,

C−1
3 (1 + |t |)ρ0 exp(−|t |ρ/γ ) ≤ |φX(t)|

≤ C3(1 + |t |)ρ0 exp(−|t |ρ/γ ) (5.3)

(
respectively, C−1

4 (1 + |t |)�0 exp(−|t |�/ς ) ≤ |φm(t)|
≤ C4(1 + |t |)�0 exp(−|t |�/ς )

)
. (5.4)

5.2 Asymptotic Properties of the Nonparametric
Estimator

In this section, we derive theoretical properties of our estima-
tor p̂ defined in Section 3.1. The proofs are long and technical,
and we defer most of them to a supplementary file. Similar
results could be established for the estimator defined in Sec-
tion 3.2, but require even longer and more technical arguments.
Therefore, we leave them for future work. In Appendix B.1, we
recall the basic notations �, ∼, ∨, and ∧ used below.

Various sorts of smoothness combinations of m and fX are
possible. Here, we consider the cases where fX and m are both
supersmooth or ordinary smooth. In the ordinary smooth case,
we make the following regularity assumptions:

(Co1) (5.1) and (5.2) hold, supt∈R |φ′
X(t) · tβ+1| < ∞ and

supt∈R |φ′
m(t) · tκ+1| < ∞.

(Co2) K is symmetric with
∫

K(x) dx = 1, and for some cK <

∞, φK (t) = 0 for all |t | > cK . Moreover, supt∈R |φ(�)
K (t)| <

∞ for � = 0, 1.

Condition (Co2) is fairly standard, especially in related de-
convolution problems. It is satisfied by kernels traditionally em-
ployed there, such as the infinite-order sinc kernel K whose
Fourier transform is defined by φK (t) = I[−1,1](t), and the
second-order kernels K whose Fourier transform is given by
φK (t) = (1 − t2)q · I[−1,1](t) for some positive integer q. Recall
that a second-order kernel is a kernel that satisfies μK,0 = 1,
μK,1 = 0, and 0 < |μK,2| < ∞, where, for � = 0, 1, . . ., we
use the notation μK,� = ∫∞

−∞ u�K(u) du.
The theorem below establishes asymptotic properties of our

estimator p̂ in the ordinary smooth case; see Section A.1 for
its proof. We use the following notation: for f a function or a
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random variable and for h a bandwidth, let

BK,f (x; h) = 1

2π

∫
e−itx{φK (th) − 1}φf (t) dt ,

VK,f (h) = 1

2π

∫ |φK (t)|2
|φf (t/h)|2(ν−1)

dt.

Theorem 1. Assume that fX(x) > 0, that conditions (Co1)
and (Co2) hold and that h = hn → 0 and nh2ν max(β,κ)+1/2 → ∞
as n → ∞. Then p̂ at (3.7) satisfies

p̂(x) − p(x) = Tp(x) + oP

{
n−1/2h−(ν−1)(β∨κ)−1/2

}
, (5.5)

where Tp(x) is a random variable such that

E{Tp(x)} = Bp(x), var{Tp(x)} = Vp(x)

:= Vp,1(x){1 + o(1)} + Vp,2(x),

with Bp(x) = f −1
X (x)

{
q(x)BK,X(x; h) − BK,m(x; h)

}
and

Vp,1(x) = {nh ν2f 2
X(x)}−1

{
m∗ν(x)VK,m(h)

+q2(x)f ∗ν
X (x)VK,X(h)

}
, (5.6)

Vp,2(x) = −{nh πν2f 2
X(x)}−1q(x)m∗ν(x)

∫ ∞

−∞
|φK (t)|2

{φX(t/h)φm(−t/h)}ν−1
dt. (5.7)

In addition, if p and fX are twice differentiable and their sec-
ond derivatives are α-Hölder continuous for some 0 < α ≤ 1,
and K is such that μK,1 = 0 and

∫ |u|2+α|K(u)| du < ∞, then
Bp(x) = {

1
2p′′(x) + p′(x)f ′

X(x)f −1
X (x)

}
μK,2 h2 + o(h2).

Abusing terminology, we shall refer to Bp and Vp as the
bias and variance of our estimator. Let I be a bounded inter-
val such that infx∈I fX(x) > 0 and supx∈I m(x) < ∞, and with
slight abuse of terminology, define the mean integrated squared
error (MISE) of our estimator on I by MISE = ∫

I{B2
p(x) +

Vp(x)} dx. We deduce from the theorem that MISE = O(hC) +
O{n−1h−2(κ∨β)(ν−1)−1}, where C = 4 if we use a second-order
kernel, and C = 2(β ∧ κ) − 1 if we use an infinite-order kernel
such as the sinc kernel or a kernel satisfying (F.1) in Section F.
Taking a bandwidth of order h � n−1/{2(κ∨β)(ν−1)+C+1}, we get
MISE = O[n−C/{2(κ∨β)(ν−1)+C+1}].

The next theorem describes asymptotic properties of p̂ in the
supersmooth case. For brevity, here we assume that ρ and � in
(5.3) and (5.4) are both greater than or equal to 1. See Section F
in the supplementary file, where we state and prove a version of
the theorem (see Theorem F.1) without this restriction on ρ and
�. The proof of Theorem 2 is almost exactly identical to that of
Theorem F.1.

Theorem 2. Assume that conditions (5.3), (5.4), and
(Co2) hold, and that the bandwidth h satisfies h = hn =
max{(d γ log n)−1/ρ, (d ς log n)−1/�} for some 0 < d < (2ν)−1.
Then

p̂(x) − p(x) = Qp(x) + OP

{
(log n)c2 n−c1

}
, (5.8)

where c1 = min{2τρ∨� d, 1 − (2ν − 1)d}, Qp(x) is a random
variable satisfying E{Qp(x)} = f −1

X (x)
{
q(x)BK,X(x; h) −

BK,m(x; h)
}

and var{Qp(x)} = O
{
n−1+2(ν−1)d (log n)c2

}
, for

some constant c2 > 0 that does not depend of n.

It can be deduced from the theorem that, with the
bandwidth stated there, the MISE of our estimator
is dominated by the bias contribution, and is of order
O(max[exp{−τ�(d γ log n)�/ρ/ς}, exp{−τρ(d γ log n)ρ/�/γ }]).
In Section F, we show (Theorem F.1) that an improved rate can
be achieved by using two bandwidths. However, it is not clear
how these could be chosen effectively in practice.

Remark 4. (Asymptotic normality of p̂). In Section E.4, un-
der appropriate conditions, we prove that in the ordinary smooth
case, we have

{Vp(x)}−1/2{p̂(x) − p(x) − Bp(x)} D−→ N (0, 1) as n → ∞ ,

(5.9)
where Bp(x) and Vp(x) are as in Theorem 1. A similar result
can be established in the supersmooth case, using arguments
and technical conditions that are similar in spirit to those used
by Fan (1991) and Delaigle, Fan, and Carroll (2009).

5.3 Asymptotic Properties of the Parametric Estimator

To establish asymptotic properties of the estimator θ̂ defined
in Section 4, let p0(x) = P (Y = 1|X = x ; θ0), m0 = q0fX =
(1 − p0)fX, and for all s ∈ R and θ ∈ �, let

�(s, θ ) = 1 − 2Y ∗

Y ∗ fS(s) + (1 − 2Y ∗)m∗ν
θ (s)

{m′
θ ∗ m

∗(ν−1)
θ }(s),

(5.10)
where m′

θ = ∇θ mθ , with ∇θ the gradient. Put Q0(θ) =
E{ln f (Y ∗, S | θ )}. The next theorem summarizes the asymp-
totic properties of θ̂ . See Section A.2 for a proof.

Theorem 3. Assume that conditions (P1)–(P5) in Appendix
B.2 hold, that θ0 uniquely maximizes Q0(θ) subject to θ ∈ �,
and that θ0 is an interior point of �. Then, as long as the constant

c0 in (4.3) is small enough,
√

n(θ̂ − θ0)
D−→ N

(
0, �−1

0

)
, where

�0 = E{�(S, θ0)�(S, θ0)T}.

6. NUMERICAL PROPERTIES

6.1 Bandwidth Selection for the Nonparametric
Estimator

Choosing a good data-driven bandwidth in our context is
particularly difficult. In standard regression problems, the most
popular technique is arguably the plug-in approach, where the
bandwidth is chosen by minimizing an estimator of

∫ b

a
(B2 +

V )fX, with B and V denoting the dominating parts of the “bias”
and “variance” of the regression estimator, and [a, b] typically
denoting quantiles of fX. In our case, the “bias” and “variance”
of our estimators take complex forms involving unknown quan-
tities that are difficult to estimate in practice, and thus computing
a plug-in bandwidth seems too challenging to be practical. A
practical bandwidth that is often easier to compute is the cross-
validation bandwidth. However, to compute this bandwidth we
need to calculate the regression estimator at the Xij ’s, which is
not feasible in our case since we observe only indirect data. With
this in mind, our goal is not to construct a consistent estimator
of the optimal bandwidth, but rather to suggest a bandwidth
that can be expected to give reasonable practical results, as we
explain next. Here, we provide the details for the local linear
estimator, which this is the estimator we recommend using in
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practice, but the same ideas can be used for the local polynomial
estimator of another order.

Let p̂ denote our local linear estimator of p computed from
the grouped data (Sj , Z

∗
j ), j = 1, . . . , n. We wish to construct

an approximation to the bandwidth h0 that minimizes the dis-
tance D = ∫ b

a
(p̂ − p)2fX, where a and b denote the 0.05 and

0.95 quantiles of the distribution of X. As argued above, esti-
mating D directly would be too challenging. Instead, we com-
pute another bandwidth h1, which is appropriate for estimating
p∗(s) = E(Z∗

j |Sj = s) by the standard local linear estimator
computed from the data (Sj , Z

∗
j ), j = 1, . . . , n. Of course, h1

is not necessarily a good approximation of h0. However, if we
could construct a reasonable approximation ĉ of c = h0/h1,
then we could approximate h0 by ĥ0 = ĉ h1.

We propose to approximate c by ĉ = h∗
0/h∗

1, where h∗
0 is

a version of h0 constructed from artificial data (X̃ij , Ỹij ),
i = 1, . . . , ν, j = 1, . . . , n, generated under a parametric model
for fX and p, and where h∗

1 is a version of h1 constructed from
data (S̃j , Ỹ

∗
j ), j = 1, . . . , n obtained by randomly pooling the

(X̃ij , Ỹij )’s in groups of size ν, in the same way as the original
data were pooled. Of course, this parametric model is usually
wrong as in principle we do not know the correct parametric
model (otherwise we would not estimate p nonparametrically).
In particular, as for the SIMEX types of bandwidths suggested
by Delaigle and Meister (2007) and Delaigle and Hall (2008),
ĉ is not usually a consistent estimator of c. However, and para-
phrasing Delaigle and Hall (2008), since the (S̃j , Ỹ

∗
j )’s measure

the (Sj , Y
∗
j )’s in the same way as the (X̃ij , Ỹij )’s measure the

(Xij , Yij )’s, we can expect that the relationship between h0 and
h1 is well approximated by that between h∗

0 and h∗
1.

To implement these ideas in practice, we proceed as follows:

1. Compute h1, the standard plug-in bandwidth for the stan-
dard local linear estimator of p∗(s) = E(Z∗

j |Sj = s), com-
puted using the data (Sj , Z

∗
j ), j = 1, . . . , n.

2. Let μ̂X = μ̂S/ν and σ̂X = σ̂S/
√

ν, where μ̂S and σ̂S

denote the empirical mean and standard deviation of
the Sj ’s, and let p̃0 denote a quadratic spline estima-
tor of p computed with K = 2 knots located at the
quantiles (k + 1)/(K + 2), k = 1, 2, of f̃X, where f̃X

is the density of N (μ̂X, σ̂ 2
X). For i = 1, . . . , ν, j =

1, . . . , n, generate (X̃ij , Ỹij ) by taking X̃ij ∼ N (μ̂X, σ̂ 2
X)

and Ỹij |X̃ij ∼Bernoulli{p̃0(X̃ij )}.
3. For j = 1, . . . , n, let Ỹ ∗

j = maxi=1,...,ν Ỹij ,
S̃j = ∑ν

i=1 X̃ij , and put Z̃∗
j = 1 − Ỹ ∗

j .

4. Let h∗
0 denote the bandwidth that minimizes

∫ b

a
(p̂0 −

p̃0)2f̃X, where p̂0 denotes the version of p̂ computed from
the data (S̃j , Z̃

∗
j ), j = 1, . . . , n, and where a and b are the

0.05 and 0.95 quantiles of the N (μ̂X, σ̂ 2
X) distribution,

respectively.
5. Let h∗

1 denote the standard plug-in bandwidth for the stan-
dard local linear estimator of p̃∗(s) = E(Z̃∗

j |S̃j = s), com-
puted using the data (S̃j , Z̃

∗
j ), j = 1, . . . , n.

6. Let ĉ = h∗
0/h∗

1 and take ĥ0 = ĉ h1.

As for the SIMEX bandwidth of Delaigle and Hall (2008),
to avoid too strong a dependence of h∗

0 and h∗
1 on the sam-

ple (X̃ij , Ỹij ), we generate B = 500 such samples, thereby

obtaining B pairs of bandwidths (h∗
1,b, h

∗
2,b), for b = 1, . . . , B,

and we compute h∗
1 and h∗

2 by taking h∗
1 = B−1 ∑B

b=1 h∗
1,b and

h∗
0 = B−1∑B

b=1 h∗
0,b. We conclude this section by a few remarks

regarding implementation. First, our choice of locating the knots
at quantiles (k + 1)/(K + 2) is borrowed from Ruppert, Wand,
and Carroll (2003), page 126. Second, to implement Step 4,
we do a grid search on the interval [h∗

1/
√

ν, 3h∗
1]. Third, when

fitting the quadratic spline in Step 2, we used the method of
Section 4 with fX estimated nonparametrically.

6.2 Simulations

We illustrate the performance of our parametric and nonpara-
metric estimators of p via the following simulated examples:

(i) p(x) = e−5+1.4 x/(1 + e−5+1.4 x) and X ∼ N (2, 9/16).
(ii) p(x) = 0.5 e−6+2.5 x/(1 + e−6+2.5 x) and X ∼

N (2, 9/16).
(iii) p(x) = min{1, max(0, 0.03 − 0.05 x + 0.04 x2)}, X =

4 − Z/4, and Z ∼ χ2(8).
(iv) p(x) = 0.25{m1(x)}0.25 · 1{x ≤ 3} + m2(x) · 1{x > 3},

where m1(x) = 0.2 φ2.5,0.4(x) + φ3,0.225(x) +
φ3.5,0.375(x) + φ4,0.5(x), with φμ,σ the density of
an N (μ, σ 2), m2(x) = (x − 3)2/2 + 0.3115, and
X ∼ fX = 0.35 φ1.5,0.45/

√
2 + 0.65 φ1.75,1/

√
2.

We applied the parametric estimator of Section 4 and the
local linear estimator (local polynomial estimator from Sec-
tion 3.2 with � = 1) to data simulated from the above four
models, where we grouped the data in groups of size ν = 4
and ν = 8, for N ranging from 2000 to 10,000. As sug-
gested by a referee, in the parametric case we used para-
metric models pθ and fγ for both p and fX, where θ =
(θ1, . . . , θd )T ∈ Rd and γ = (γ1, . . . , γd2 )T ∈ Rd2 , for some
d, d2 ≥ 1, and where we fitted γ by maximum likelihood
(see Remark 3).

For the local linear estimator, we chose the bandwidth as
in Section 6.1, and used a kernel often employed in the de-
convolution literature, defined by φK (t) = (1 − t2)3 · I[−1,1](t).
To illustrate the usefulness of a nonparametric estimator, we
considered correctly and incorrectly specified parametric mod-
els for p and fX. In case (i) we used the correct model
pθ (x) = eθ1+θ2x/(1 + eθ1+θ2x) and fγ = φγ1,γ2 . In case (ii) we
used either the correct model pθ (x) = θ3 eθ1+θ2x/(1 + eθ1+θ2x)
and fγ = φγ1,γ2 (case (ii.a)) or the model from (i), whose pθ

is thus incorrect (case (ii.b)). In case (iii), we used the correct
model pθ (x) = min{1, max(0, θ1 + θ2 x + θ3 x2)}, and for fγ

we either used the correct parametric model (case (iii.a)) for
which X = γ1 + γ2 χ2(γ3), or an incorrect parametric model
(case (iii.b)), where we assumed that X had a Laplace(γ1) distri-
bution. In case (iv), we used the models from case (i) for p and
fX. Since p is a probability curve, in each case we truncated all
estimators to the range [0, 1].

We know from Delaigle and Meister (2011) that grouping
the Yij ’s does not affect the convergence rates of nonparametric
estimators, and in our context of grouped Yij ’s and aggregated
Xij ’s, it is the aggregation of the Xij ’s that causes the dete-
rioration of convergence rates of nonparametric estimators. To
illustrate this in practice, in each case we also computed the local
linear estimator of Delaigle and Meister (2011) (denoted below
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Table 1. Simulation results for models (i) to (iv). The numbers show 103× Median integrated squared error (interquartile range) calculated
from 1000 simulated samples, using our parametric (P) or our nonparametric (NP) estimators computed from the (Sj , Z

∗
j )’s, Delaigle and

Meister’s (2011) estimator (DM) computed from the (Xij , Z
∗
j )’s or the standard local linear estimator (LL) computed from the (Xij , Yij )’s

ν = 4 ν = 8

Model N P NP DM LL P NP DM LL

(i) 2 · 103 1.00[2.09] 4.39[2.85] 2.58[3.00] 0.81[0.95] 2.57[6.18] 5.18[4.51] 5.58[7.30] 0.81[0.95]
5 · 103 0.39[0.86] 3.90[2.09] 1.23[1.17] 0.38[0.43] 1.12[2.53] 4.55[2.85] 2.43[2.87] 0.38[0.43]

104 0.22[0.49] 3.87[1.79] 0.67[0.59] 0.22[0.24] 0.51[1.37] 4.57[2.14] 1.44[1.55] 0.22[0.24]
(ii.a) 2 · 103 4.34[4.29] 3.15[3.35] 3.20[3.84] 1.01[1.16] 6.95[9.77] 3.96[5.68] 7.64[10.7] 1.01[1.16]

5 · 103 2.84[3.21] 2.54[2.11] 1.45[1.61] 0.46[0.47] 4.63[5.10] 3.65[3.87] 3.33[4.20] 0.46[0.47]
104 1.93[2.70] 2.32[1.61] 0.82[0.78] 0.25[0.27] 3.85[3.34] 3.33[2.92] 1.94[2.15] 0.25[0.27]

(ii.b) 2 · 103 4.46[3.20] 3.15[3.35] 3.20[3.84] 1.01[1.16] 7.06[9.22] 3.96[5.68] 7.64[10.7] 1.01[1.16]
5 · 103 3.77[1.55] 2.54[2.11] 1.45[1.61] 0.46[0.47] 4.90[4.18] 3.65[3.87] 3.33[4.20] 0.46[0.47]

104 3.58[1.07] 2.32[1.61] 0.82[0.78] 0.25[0.27] 3.98[2.18] 3.33[2.92] 1.94[2.15] 0.25[0.27]
(iii.a) 2 · 103 1.97[3.88] 4.71[4.10] 1.93[2.24] 0.57[0.63] 7.43[15.7] 6.10[6.30] 3.99[4.93] 0.57[0.63]

5 · 103 0.64[1.27] 3.87[3.09] 0.83[0.85] 0.24[0.28] 3.01[5.74] 5.77[4.34] 1.85[2.07] 0.24[0.28]
104 0.31[0.62] 3.05[2.52] 0.52[0.47] 0.14[0.14] 1.49[3.11] 5.52[3.33] 1.03[1.13] 0.14[0.14]

(iii.b) 2 · 103 4.57[3.85] 4.71[4.10] 1.93[2.24] 0.57[0.63] 7.73[7.67] 6.10[6.30] 3.99[4.93] 0.57[0.63]
5 · 103 3.95[2.00] 3.87[3.09] 0.83[0.85] 0.24[0.28] 5.90[4.28] 5.77[4.34] 1.85[2.07] 0.24[0.28]

104 3.90[1.66] 3.05[2.52] 0.52[0.47] 0.14[0.14] 5.15[2.88] 5.52[3.33] 1.03[1.13] 0.14[0.14]
(iv) 2 · 103 5.75[13.0] 4.65[5.88] 4.80[7.38] 2.88[4.73] 9.96[27.0] 5.93[8.39] 7.95[12.9] 2.88[4.73]

5 · 103 4.11[7.25] 3.91[4.75] 2.28[3.49] 1.48[2.16] 5.65[12.3] 5.13[5.85] 3.72[5.58] 1.48[2.16]
104 4.23[5.75] 3.44[3.59] 1.25[1.69] 0.83[1.14] 5.20[9.80] 5.00[4.03] 2.11[3.03] 0.83[1.14]

by DM) using the grouped but nonaggregated data (Xij , Z
∗
j ),

and Delaigle and Meister’s (2011) plug-in bandwidth. We also
computed the standard local linear estimator (denoted below
by LL) using the ideal individual data (Xij , Yij ) and a standard
plug-in bandwidth.

We simulated 1000 samples from each model, for each ν and
each N. We present a summary of the results in Table 1. For each
case shown in the table and each estimator pest of p, we provide
the median and the interquartile range of the 1000 values of
the integrated squared error ISE = ∫ 3.5

0.5 (pest − p)2. Overall the
results reflect our theoretical properties: as ν decreases or N in-
creases, the results improve, the correctly specified parametric
estimator often works better than the nonparametric estimator,
but the latter usually works better than the parametric estima-
tor with an incorrectly specified pθ or fγ , such as in cases
(ii.b), (iii.b), and (iv). Comparing our new local linear estima-
tor with the LL and DM estimators, we can see that in most
cases, as expected by the theory, grouping the data has less im-
pact than aggregating the data. In particular, as N increases,
the DM estimator, which is computed from the (Xij , Z

∗
j )’s,

improves faster than the new estimator, which is computed from
the (Sj , Z

∗
j )’s.

The results are illustrated in Figures 1 to 3, as well as in
Figure 5 in Section 7.1. In each graph, for a given estimator we
show three estimated curves computed from the three samples
that gave the first, second, and third quartiles of the 1000 ISEs.
Figure 1 shows these curves in case (i) for the parametric estima-
tor, when ν = 8 and N = 2000 to 10,000; it illustrates the good
properties of our parametric estimator. In Figure 2, we depict the
estimated curves for our (misspecified) parametric estimator and
our nonparametric estimator computed from the data (Sj , Z

∗
j ),

in case (iv). To illustrate the negative impact that aggregating
the Xij ’s has on estimators, we also show the curves for the DM
estimator, computed from the nonaggregated (Xij , Z

∗
j )’s. Next,

we illustrate the impact of fitting a wrong parametric model. In
Figure 3, we compare our parametric estimator for cases (ii.a)
and (ii.b) with our nonparametric estimator. In this example, the
true curve is a logistic curve divided by two, and takes values
between 0 and 0.5, whereas the incorrect parametric model uses
a logistic curve that takes values between 0 and 1. As a result,

Figure 1. Parametric estimator of p for three samples coming from model (i) with ν = 8 and N = 2000 (left), N = 5000 (middle) and
N = 10,000 (right), and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs. The continuous line depicts the true p.
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Figure 2. Parametric (left) and nonparametric (middle) estimator of p based on the (Sj , Z
∗
j )’s, and Delaigle and Meister’s (2011) estimator of

p based on the (Xij , Z
∗
j )’s (right) for three samples coming from model (iv) with N = 5000 and ν = 4, and corresponding to the 1st, 2nd, and

3rd quartiles of the ISEs. The continuous line depicts the true p.

the incorrectly specified parametric estimator has difficulties
to recover the right-most part of the curve, but is not too bad
elsewhere.

6.3 Illustration With Real Data

To illustrate the performance of our estimators on real data,
we applied them to data from the National Health and Nutrition
Examination Surveys (NHANES), collected between 1999 and
2000. These data are nongrouped, which is convenient to illus-
trate the effect that grouping has on estimators. We note that our
analysis of these data is purely illustrative, and as others before,
we ignore issues such as sampling weights. In this example, we
take Y to be the indicator of the presence of hepatitis B core
antibody in the patient’s serum or plasma, and X to be the log-
arithm of the level of gamma glutamyl transaminase (GGT), a
biomarker for liver disease (elevated levels of GGT are typical
for patients with hepatitis).

Before grouping the data, we computed the standard local
linear estimator of p with a standard plug-in bandwidth. We
denote this estimator by p̂0. Then we randomly grouped the data
in groups of sizes ν = 4 and ν = 8. We repeated this 200 times,
creating in this way 200 grouped samples of (Sj , Y

∗
j )’s of each

size ν. We applied to those data our local linear estimator from
Section 3.2 and our parametric estimator from Section 4. For the
parametric model for p, we used a logistic curve as in example
(i) in Section 6.2, and for fX we considered two models: X ∼
γ1 + γ2 χ2(γ3) and X ∼ N (γ1, γ2). We estimated all parameters
as in Section 6.2.

As in Section 6.2, for each ν, we computed 200 values of
the integrated squared error, which, for each estimator pest,

we define here as ISE = ∫ b

a
(pest − p̂0)2, where a and b are

the empirical 0.025 and 0.975 quantiles of X, respectively. In
Figure 4, we show, for ν = 4 and ν = 8, the curve p̂0 together
with the parametric estimator for X ∼ γ1 + γ2 χ2(γ3) and for
X ∼ N (γ1, γ2) and the nonparametric estimator, corresponding
in each case to the median ISE value. Of course here we do not
know the true curve p, but we can see that, given the difficulty of
estimating curves from grouped and aggregated data, the esti-
mated curves are relatively close to the nonparametric estimator
p̂0 computed from the nongrouped data, indicating that in this
example our estimators worked reasonably well. While the lo-
gistic model is a reasonable approximation in this case, the local
linear estimator has a smaller median ISE than the two versions
of the parametric estimator.

7. EXTENSIONS

7.1 Imperfect Tests

In real applications, the group status Y ∗
j can be observed

imperfectly. For example, this is often the case if Y ∗
j is obtained

through a blood test. Two types of errors may arise: a negative
group is declared positive, and a positive group is declared
negative. In this case, the procedures developed in the previous
sections are not consistent and need to be modified to take the
errors into account. If we let Ỹ ∗

j denote the observed status of
the jth group, then the accuracy of the test is measured by the
specificity Sp and the sensitivity Se, which are defined by Sp =
P (Ỹ ∗

j = 0|Y ∗
j = 0), Se = P (Ỹ ∗

j = 1|Y ∗
j = 1). As often in the

literature (see, e.g., Vansteelandt, Goetghebeur, and Verstraeten
2000), we assume that the observed status Ỹ ∗

j depends only on

Figure 3. Correctly (left) and incorrectly (middle) specified parametric estimator, and nonparametric estimator of p (right) based on the
(Sj , Z

∗
j )’s, for three samples coming from model (ii) with N = 2000 and ν = 4, and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs.

The continuous line depicts the true p.
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Figure 4. Nonparametric (NP) estimator of p and parametric estimator of p assuming that X ∼ N (γ1, γ2) (P norm) or X ∼ γ1 + γ2 χ 2(γ3) (P
chi2), in the NHANES examples when ν = 4 (left) or ν = 8 (right). The thick line depicts the estimator p̂0 computed from the nongrouped data.

the true status Y ∗
j , and depends neither on the group size nor on

X.
It follows from our calculations in Section 3.2 that, to con-

struct a local polynomial estimator of p, we need consistent
estimators of φX and φm. Since the S∗

j ’s are not affected by the

imperfectly observed Y ∗
j ’s, we can define φ̂X as in Section 3.1.

To define a consistent estimator of φm, let Z̃∗
j = 1 − Ỹ ∗

j and
m̃(x) = P (Ỹ = 0|X = x)fX(x). It can be proved (see Appendix
C.3) that

φm̃∗ν (t) :=
∫ ∞

−∞
eitx P (Z̃∗

j = 1|Sj = x)fS(x) dx

= (Se + Sp − 1)φm∗ν (t) + (1 − Se)φS(t). (7.1)

We can estimate φm̃∗ν (t) consistently by φ̂m̃∗ν (t) =
n−1 ∑n

j=1 Z̃∗
j exp(itSj ). Taking φ̂S as in (3.3), we deduce

that φm∗ν (t) can be estimated consistently by

φ̂corr
m∗ν (t) = (Se + Sp − 1)−1φ̂m̃∗ν (t)

−(1 − Se)(Se + Sp − 1)−1φ̂S(t).

Proceeding as in Section 3.1, we deduce from there a consistent
estimator φ̂corr

m of φm.
Using calculations similar to those leading to (3.10), we can

define a local polynomial estimator of p, by

p̂ corr = 1 − q̂ corr with q̂ corr = eT
1 Ŝ−1

N Ûcorr
N , (7.2)

where ŜN as in Section 3.2 and Ûcorr
N = (Û corr

N,0 , . . . , Û corr
N,� )T, with

Û corr
N,k (x) = (2π ik)−1

∫
e−itx φ̂corr

m (t)φ(k)
K (−ht) dt.

In the parametric case, we show in Appendix C.3 that the
conditional likelihood of the {Ỹ ∗

j |Sj }’s is given by

n∏
j=1

{
(Se + Sp − 1)

m∗ν
θ (Sj )

fS(Sj )
+ (1 − Se)

}1−Ỹ ∗
j

{
(1 − Sp − Se)

m∗ν
θ (Sj )

fS(Sj )
+ Se

}Ỹ ∗
j

. (7.3)

Therefore, in that case, we can consistently estimate θ by θ̂
corr

,
obtained by maximizing (7.3).

To illustrate the finite sample performance of these estima-
tors, we applied them to 1000 samples of sizes N = 2000, 5000,

and 10,000 generated from models (i), (ii.a), and (iii.a) from
Section 6.2. We created pools of size ν = 4, and introduced

errors in the Y ∗
j ’s as above, in such a way that Se = 0.996 and

Sp = 0.923, as in Xie (2001). We compared four estimators:
the corrected local linear estimator (p̂ corr in (7.2) with � = 1),
the corrected parametric estimator mθ̂

corr , the uncorrected lo-
cal linear estimator, that is, p̂ in (3.10) with � = 1, but with the
Y ∗

j ’s replaced by their imperfect version Ỹ ∗
j , and the uncorrected

parametric estimator mθ̂ , computed as in Section 4, but with the
Y ∗

j ’s replaced by the Ỹ ∗
j ’s. As in Section 6.2, we measured the

performance of each estimator through the ISE. The results, pre-
sented in Table 2 show that the ISE of the corrected estimators is
smaller than that of the uncorrected estimators. Unsurprisingly,
the results improve as sample size increases and the paramet-
ric estimator, which is computed under the correct parametric
model in all three cases, often outperforms the nonparametric
one. See also Figure 5, where, in case (iii.a), we show estimated
curves obtained using the uncorrected nonparametric estima-
tor, the corrected nonparametric estimator, and the corrected
parametric estimator.

7.2 Nonparametric Estimator When the Individual Yij ’s
are Observed

There are many applications where the individual binary Yij ’s
are observed, and only the Xij ’s are aggregated. There, we ob-
serve data (Sj , Yij ), for i = 1, . . . , ν and j = 1, . . . , n. This

Table 2. Simulation results for models (i), (ii.a), and (iii.a) in the
case of imperfectly observed Y ∗

j ’s. The numbers show 103× Median
integrated squared error (interquartile range) calculated from 1000

simulated samples, using the corrected parametric (CP), uncorrected
parametric (UCP), corrected nonparametric (CNP), or uncorrected

nonparametric (UCNP) estimators computed from grouped and
aggregated data

Model N CP UCP CNP UCNP

(i) 2 · 103 1.21[2.66] 1.86[2.60] 4.57[2.97] 5.55[2.53]
5 · 103 0.50[1.03] 1.23[1.19] 4.00[1.99] 4.94[1.68]

104 0.26[0.56] 0.94[0.66] 3.95[1.64] 4.76[1.40]
(ii.a) 2 · 103 4.55[4.63] 5.01[5.16] 3.23[3.69] 4.42[3.69]

5 · 103 3.06[2.94] 3.35[3.67] 2.60[2.28] 3.74[2.17]
104 2.03[2.71] 1.96[2.51] 2.33[1.65] 3.39[1.42]

(iii.a) 2 · 103 2.56[4.69] 3.02[4.65] 4.47[4.29] 6.94[4.69]
5 · 103 0.82[1.70] 1.72[1.73] 3.43[3.04] 5.71[3.29]

104 0.41[0.78] 1.27[0.96] 2.94[2.33] 5.32[2.47]
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Figure 5. Estimators computed from imperfectly observed data. Uncorrected nonparametric estimator (left), corrected nonparametric estimator
(middle), and corrected correctly specified parametric estimator (right) of p for three samples coming from model (iii.a) with N = 10,000 and
ν = 4, and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs. The continuous line depicts the true p.

problem was studied in the parametric context by Zhang and
Albert (2011), who also discussed interesting epidemiological
applications. We can exploit our ideas to derive a nonparametric
estimator in this case too, as follows.

Using calculations similar to those in Section 2.2, it can be
proved that

P (Yij = 1, Sj ≤ x) = ∫∞
−∞ P {S(i)

j ≤ x − u}p(u)fX(u) du ,

where S
(i)
j = Sj − Xij . This implies that fS(x)P (Yij = 1|Sj =

x) = (pfX) ∗ f
∗(ν−1)
X (x) . Taking the Fourier transform on both

sides of this equation we deduce that

φSY (t) ≡
∫

eitxfS(x)P (Yij = 1|Sj = x) dx = φpfX
(t) φν−1

X (t) .

Now, calculations similar to those from Section 3.1 lead to
φSY (t) = E(eitSj Yij ), which can be estimated by φ̂SY (t) =
N−1∑

i,j eitSj Yij . Moreover, we can estimate φν−1
X by (φ̂X)ν−1,

with φ̂X as in Section 3.1. From there, we can estimate (pfX)(x)
by

̂(pfX)(x) = (2π )−1
∫

e−itx φ̂SY (t)φ̂1−ν
X (t) φK (ht) ·

1{|φ̂X(t)| > tn} dt .

Finally, we can estimate p(x) by p̂(x) = ̂(pfX)(x)/f̂X(x) .

Theoretical properties of this estimator can be derived along
the lines of the theory from Section 5.2. As already noted in
Section 6.2, aggregating the Xij ’s has much more impact on
nonparametric estimators than grouping the Yij ’s does (recall
from Delaigle and Meister 2011, that pooling the Yij ’s does not
impact the convergence rates of nonparametric estimators). It is
therefore unsurprising that the estimator derived in the previous
paragraph has rates similar to those in Section 5.2.

A.1. APPENDIX: PROOF OF THEOREMS 1 AND 3

A.1.1 Proof of Theorem 1

To prove Theorem 1, we first need to investigate the asymptotic
properties of the density estimator f̂X(x) at (3.4). This is done in
Proposition A.1 below. Although the proof of Theorem 1 relies on
notations and arguments used in the proof of Proposition A.1, the
latter proof is quite technical and is relegated to Section E.1 of the
supplemental file. The proof of Theorem 1 refers to equations defined

in Section E.1, which can be recognized through their numbering (E.2),
(E.1), etc.

Proposition A.1. Assume that conditions (5.1) and (Co2) hold, that
h → 0 as n → ∞ and that for some δ > 0, nh2νβ+δ → ∞ as n → ∞.
Then f̂X(x) − fX(x) = TX(x) + oP

{
n−1/2h−(ν−1)β−1/2

}
, where TX(x)

is a random variable such that E{TX(x)} = BX(x) and var{TX(x)} =
VX(x){1 + o(1)}, with BX(x) = BK,X(x; h) and

VX(x) = (ν2 nh)−1 f ∗ν
X (x)VK,X(h). (A.1)

In addition, if fX is twice differentiable with an α-Hölder continuous
second derivative for some 0 < α ≤ 1, and K is such that μK,1 = 0 and∫ |u|2+α|K(u)| du < ∞, then BX(x) = 1

2 f ′′
X(x)μK,2 h2 + o(h2).

Proof of Theorem 1. Throughout, we let const. denote a generic
finite positive constant and without loss of generality, we take cK = 1
in condition (Co2). Recalling the notation in (3.4) and (3.6), we write

δX(t) = φ̂X(t) − φX(t), δm(t) = φ̂m(t) − φm(t). (A.2)

Moreover, define Bn = {t ∈ R : |t | ≤ 1/h} and

E1n = {
t ∈ R : |�1(t)| ≤ |φS(t)|/2

}
with

�1(t) = φ̂S(t) − φS(t), (A.3)

E2n = {
u ∈ R : |�2(u)| ≤ |φm∗ν (u)|/2

}
with

�2(t) = φ̂m∗ν (t) − φm∗ν (t). (A.4)

By condition (Co1), we have inft∈Bn
min{|φX(t)|ν, |φm(t)|ν} ≥

c h(β∨κ)ν ≥ 2/n, for some constant c > 0 and all sufficiently large n.
Recall that p̂(x) = 1 − q̂(x) with q̂(x) = m̂(x)/f̂X(x), and write

q̂(x) − q(x) = f̂ −1
X (x){m̂(x) − q(x)f̂X(x)}

= Q1(x) + Q2(x), (A.5)

where Q1(x) = f −1
X (x){m̂(x) − q(x)f̂X(x)} and Q2(x) = {m̂(x) −

q(x)f̂X(x)}{f̂ −1
X (x) − f −1

X (x)
}
. In what follows, we study Q1(x) and

Q2(x) separately.
For the numerator of Q1(x) (see Equations (3.4) and

(3.6)), taking � = 2 in (E.5) with X replaced by m we
have, for t ∈ E2n ∩ Bn, φ̂m(t) = φm(t) + χm,1(t) + χm,2(t) − χm,3(t) +
χm,4(t) + O{χm,5(t)}, where χm,1(t) = ν−1{φm(t)}1−ν�2(t), χm,2(t) =
(2ν2)−1(1 − ν){φm(t)}1−2ν�2

2(t), χm,3(t) = {χm,1(t) + χm,2(t)}IEc
2n

(t),
χm,4(t) = δm(t)IEc

2n
(t) and χm,5(t) = |φm(t)|1−3ν |�2(t)|3.
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Similarly, following the proof that leads to (E.20), it can be shown
that

m̂(x) − (2π )−1

∫
e−itxφK (th)φm(t) dt

= (2π )−1

∫
e−itxφK (th){χm,1(t) + χm,2(t)} dt + OP{

n−3/2h−(3ν−1)κ−1
}
,

f̂X(x) − (2π )−1

∫
e−itxφK (th)φX(t) dt

= (2π )−1

∫
e−itxφK (th)χ0(t) dt

+OP

{
n−1h−(2ν−1)β−1/2

}+ OP

{
n−3/2h−(3ν−1)β−1

}
,

where χ0(t) = ν−1{φX(t)}1−ν�1(t).
By Plancherel’s isometry, we deduce from the above calculations

that

fX(x)Q1(x) = −fX(x)Bp(x) + (2π )−1

∫
e−itx φK (th){

χm,1(t) − q(x) χ0(t)
}
dt

+(2π )−1

∫
e−itx φK (th)χm,2(t) dt + OP{

n−1h−(2ν−1)β−1/2 + n−3/2h−(3ν−1)(β∨κ)−1
}
,

where Bp(x) is defined given in the statement of Theorem 1. In
the above expression, using the argument leading to (E.11) we get∫

e−itx φK (th)χm,2(t) dt = OP {n−1h−(2ν−1)κ−1/2}. Moreover, put

Q1,1(x) = {2πfX(x)}−1

∫
e−itx φK (th)

{
χm,1(t) − q(x) χ0(t)

}
dt.

(A.6)
As long as fX(x) is bounded away from zero and nh2ν(β∨κ)+1/2 → ∞,
we have

Q1(x) = −Bp(x) + Q1,1(x) + OP

{
n−1/2h−(ν−1)(β∨κ)−1/2

}
. (A.7)

Next, note that EQ1,1(x) = 0 for Q1,1(x) as in (A.6). Then we derive
the asymptotic expression of the variance of Q1,1(x) using an argument
similar to that used to deal with R1(x) in (E.6). First, rewrite it as
{nfX(x)}−1

∑
j (ξnj − Eξnj ), where

ξnj = Z∗
j Km,h(x − Sj ) − q(x)KX,h(x − Sj ) (A.8)

with KX,h(y) = h−1KX(y/h) and Km,h(y) = h−1Km(y/h) for KX as
in (E.7) and

Km(y) = (2πν)−1

∫
e−ity φK (t){φm(t/h)}1−ν dt. (A.9)

Then, Lemma E.4 in Section E establishes the asymptotic expression
of the variance of ξnj , such that, var

(
n−1

∑
j ξnj

) = f 2
X(x)

[
Vp,1(x){1 +

o(1)} + Vp,2(x)
]

for Vp,1(x) and Vp,2(x) as in (5.6) and (5.7), respec-
tively. This, together with (A.7), gives us

Q1(x) = −Tp(x) + oP

{
n−1/2h−(ν−1)(β∨κ)−1/2

}
, (A.10)

where Tp(x) is given in the statement of Theorem 1.
Finally, we address the order of Q2(x) = {m̂(x) −

q(x)f̂X(x)}{f̂ −1
X (x) − f −1

X (x)}. By conditions (Co1) and (Co2),
and if nh(2ν−1)β+1/2 → ∞ as n → ∞, Proposition A.1 with δ = 1

2

yields that f̂ −1
X (x) − f −1

X (x) = oP (1). Further, it follows from the defi-
nition of Q1 and the fact fX(x) > 0 that m̂(x) − q(x)f̂X(x) = OP (Q1).
Together with (A.5) and (A.10), this proves (5.5) and thus completes
the proof of the theorem. �
A.1.2 Proof of Theorem 3

For brevity, we prove the result only for ν = 2 and dimension d =
2, but our arguments can be directly extended to deal with ν > 2

and d > 2. Let q ′
θ = ∇θ qθ , so that ∇θ (qθfX)∗2 = 2 m′

θ ∗ mθ , and let
�0(θ ) = 1

2 E[Y ∗ ln{fS(S) − m∗2
θ (S)} + (1 − Y ∗) ln m∗2

θ (S)]. Under our
conditions, θ0 uniquely maximizes �0(θ) subject to θ ∈ �. Finally
recall the definition of �̂n at (4.2).

Step 1: Consistency. Using an argument similar to that used in the
proofs of Propositions A.1 and F.1, it can be proved that, under con-
dition (5.1), E‖f̂X − fX‖2

2 ≤ const.
{
n−1/2h−1 + n−1h−2β−1 + h2β−1

}
,

and under condition (5.3) with h = (d γ log n)−1/ρ for some 0 < δ ≤ 1
4 ,

E‖f̂X − fX‖2
2 ≤ const. (log n)const.n−2δ. Consequently, for h as in (P5),

we have ‖f̂X − fX‖2 = oP (1).
Moreover, note that (qθ f̂X)∗2(s) = ∫

qθ (x)f̂X(x)qθ (s − x)f̂X(s −
x) dx. Using Hölder’s inequality, we get, for any s ∈ R and θ ∈ �,∣∣(qθ f̂X)∗2(s) − (qθfX)∗2(s)

∣∣ = ∣∣{qθ (f̂X − fX)}∗2(s)

+2{qθ (f̂X − fX)} ∗ (qθfX)(s)
∣∣

≤ const.
(‖f̂X − fX‖2 · ‖fX‖2

+‖f̂X − fX‖2
2

)
,

where in the last step we used the fact that qθ ≤ 1. Therefore,

(qθ f̂X)∗2(s) = (qθfX)∗2(s) + oP (1) (A.11)

holds uniformly in s ∈ R and θ ∈ �.
For the kernel estimator f̂S , it is well-known that ‖f̂S −

fS‖∞ = sups∈R |f̂S(s) − fS(s)| = oP (1), under conditions (P2), (P4),
and (P5) (see, e.g., Parzen 1962). This together with (A.11)
implies that, uniformly for 1 ≤ j ≤ n and θ ∈ �, f̂S(Sj ) =
fS(Sj ) + oP (1) and (qθ f̂X)∗2(Sj ) = (qθfX)∗2(Sj ) + oP (1). Subse-
quently, by the law of large numbers and the compact-
ness of �, �̂n(θ) = (2n)−1

∑n

j=1

[
Y ∗

j ln
{
fS(Sj ) − m∗2

θ (Sj )
}+ (1 −

Y ∗
j ) ln m∗2

θ (Sj )
]+ oP (1) = �0(θ) + oP (1) holds uniformly in θ ∈ �.

On the other hand, by condition (P2), the constraints in (4.3) are
satisfied with probability tending to one, as long as the constant c0

is chosen small enough, say c0 < min{c1, c1(c−1
2 − 1)} for c1 and c2

as in (P2). Therefore, supθ∈� |�̂n(θ ) − �0(θ )| P−→ 0, and applying the
fundamental consistency result for extremum estimators (e.g., Theorem

2.1 in Newey and McFadden 1994), we obtain θ̂
P−→ θ0.

Step 2: Asymptotic normality. To establish the asymptotic normality
for θ̂ , we proceed by verifying the assumptions of Theorem 3.1 of
Newey and McFadden (1994).

Put Ĉn = {
θ ∈ � : θ satisfies (4.3)

} ⊆ �. Recall that supθ∈� ‖m̂θ −
mθ‖∞ = oP (1) and ‖f̂S − fS‖∞ = oP (1), where m̂θ = qθ f̂X . Together
with condition (P2), this implies that there exists a neighborhood N ⊂
� of θ 0 such that P (N ⊂ Ĉn ) → 1 and P (θ̂ ∈ N ) → 1 provided c0 <

c1 min(1, c−1
2 − 1).

By condition (P1), �̂n(θ ) is twice differentiable. Using the same
argument as the one that leads to (A.11), it can be proved that

∇θ �̂n(θ ) = 1

n

n∑
j=1

(1 − 2Y ∗
j ){(q ′

θ f̂X) ∗ (qθ f̂X)}(Sj )

Y ∗
j f̂S(Sj ) + (1 − 2Y ∗

j )(qθ f̂X)∗2(Sj )

= 1

n

n∑
j=1

�(Sj , θ ) + oP (1)

and ∇2
θ �̂n(θ) = n−1

∑n

j=1 G(Sj , θ ) + oP (1) = H(θ ) + oP (1) hold uni-
formly in θ ∈ �, where �(·, θ ) is given in (5.10), G(s, θ ) ={∇θ �(s, θ )

}T
, H(θ ) = E{G(S, θ )} and ∇2

θ (f ) denotes the Hessian of
f . Note that E{�(S, θ0)} = 0, so that, by the central limit theorem,√

n ∇θ �̂n(θ0)
D−→ N

(
0, �0

)
, where �0 = E{�(S, θ0)�(S, θ0)T}.

Finally, under conditions (P1) and (P2), for the above neighborhood
N of θ 0, E supθ∈N ‖∇θ �(S, θ )‖ < ∞, with ‖ · ‖ the Euclidean norm.
By Lemma 3.6 of Newey and McFadden (1994), we have �0 = H0 =
H(θ 0). The proof follows by Theorem 3.1 of Newey and McFadden
(1994), using the fact that H−1

0 �0H0 = �−1
0 . �
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Supplemental materials are submitted together with this manuscript
and are intended to be for online publication only. Some technical
notations and conditions can be found in Section B of the file. Details
of the methodology are gathered in Section C. Long and technical
arguments used to prove Theorem 1 can be found in Section D, and the
proof of a more complex version of Theorem 2 is given in Section E.
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