UC San Diego

UC San Diego Previously Published Works

Title

Nonparametric and Parametric Estimators of Prevalence From Group Testing Data With Aggregated Covariates

Permalink https://escholarship.org/uc/item/0xt099hx

Journal Journal of the American Statistical Association, 110(512)

ISSN 0162-1459

Authors Delaigle, Aurore Zhou, Wen-Xin

Publication Date 2015-10-02

DOI 10.1080/01621459.2015.1054491

Peer reviewed

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: http://www.tandfonline.com/loi/uasa20

Nonparametric and Parametric Estimators of Prevalence From Group Testing Data With Aggregated Covariates

Aurore Delaigle & Wen-Xin Zhou

To cite this article: Aurore Delaigle & Wen-Xin Zhou (2015) Nonparametric and Parametric Estimators of Prevalence From Group Testing Data With Aggregated Covariates, Journal of the American Statistical Association, 110:512, 1785-1796, DOI: <u>10.1080/01621459.2015.1054491</u>

To link to this article: http://dx.doi.org/10.1080/01621459.2015.1054491

View supplementary mate	erial 🖓 🔛	Accepted author version posted online: 09 Jul 2015. Published online: 15 Jan 2016.
Submit your article to this	s journal 🖸 🔛	Article views: 266
View related articles	CrossM	View Crossmark data 🗹
Citing articles: 1 View citir	ng articles 🖸	

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Nonparametric and Parametric Estimators of Prevalence From Group Testing Data With Aggregated Covariates

Aurore DELAIGLE and Wen-Xin ZHOU

Group testing is a technique employed in large screening studies involving infectious disease, where individuals in the study are grouped before being observed. Parametric and nonparametric estimators of conditional prevalence have been developed in the group testing literature, in the case where the binary variable indicating the disease status is available only for the group, but the explanatory variable is observed for each individual. However, for reasons such as the high cost of assays, the confidentiality of the patients, or the impossibility of measuring a concentration under a detection limit, the explanatory variable is observable only in an aggregated form and the existing techniques are no longer valid. We develop consistent parametric and nonparametric estimators of the conditional prevalence in this complex problem. We establish theoretical properties of our estimators and illustrate their practical performance on simulated and real data. We extend our techniques to the case where the group status is measured imperfectly, and to the setting where the covariate is aggregated and the individual status is available. Supplementary materials for this article are available online.

KEY WORDS: Averaged biomarker; Binary outcome; Group testing; Local polynomial; Nonparametric regression; Pooled data.

1. INTRODUCTION

In large screening studies related to rare infectious disease, individuals are often pooled before being tested for the disease. There, instead of observing the result Y = 0 or 1 of the test for each individual, we observe only the result Y^* of the test for groups of individuals. Originally, this group testing approach was introduced to gain time and money; see Dorfman (1943) for an example with U.S. soldiers tested for syphilis. Nowadays this group testing procedure is employed in much more diverse contexts, such as detection of pollution by a toxic substance, or the estimation of proportion of transgenic corn; see, for example, Montesinos-López et al. (2012, 2013).

In group testing problems, it is often of interest to estimate the probability of contamination given a covariate X, that is, p(x) = P(Y = 1 | X = x) (we use contamination as a generic term, which can represent contamination by a pollutant, the presence of a disease, evidence of genetic manipulation, etc.). Parametric methods of estimation and inference have been developed in the literature to estimate this conditional probability under various settings; see, for example, Vansteelandt, Goetghebeur, and Verstraeten (2000), Xie (2001), Bilder and Tebbs (2009), Chen, Tebbs, and Bilder (2009), and Huang and Tebbs (2009). For semiparametric and nonparametric methods, we refer to Delaigle and Meister (2011), Delaigle and Hall (2012), Li and Xie (2012), Wang, Zhou, and Kulasekera (2013), Wang et al. (2014), and Delaigle, Hall, and Wishart (2014). See also Chen and Swallow (1990), Farrington (1992), Hardwick, Page, and Stout (1998), Gastwirth and Johnson (1994), and Hung and

Swallow (2000) for related work on estimation and inference about prevalence.

The existing techniques for estimating p rely on the fact that X is available at an individual level, whereas in some cases it is only available in an aggregated form at the group level. Most often, continuous biomarkers are pooled because the cost of assays is too high to be able to take individual measurements; see, for example, Weinberg and Umbach (1999), Caudill (2010), and Zhang and Albert (2011), who discussed studies where X is the exposure to a toxic substance, and Faraggi, Reiser, and Schisterman (2003), Liu and Schisterman (2003), and Mitchell et al. (2014), who discussed pooling of biomarkers more generally. Grouping can also be applied for other reasons such as preserving confidentiality of participants in a study (Gastwirth and Hammick 1989), to sparingly use nonrenewable blood specimens (Weinberg and Umbach 1999), or because X represents the concentration of a substance whose individual value is below the detection limit, whereas the group concentration can be measured. For instance, such grouping was introduced by the National Centers for Disease Control and Prevention in the NHANES 2005-2006 study, to measure the concentration of organochlorine pesticides and metabolites. See also Caudill (2010) for other related examples. When X is pooled, existing methods cannot be pressed into service.

Our goal is to develop new methods (nonparametric and parametric) for estimating p from group testing data with aggregated covariates. Nonparametric estimation from aggregated data was considered by others before, but not in our context of group testing outcomes variables. Meister (2007) considered the problem of estimating the density of X from a sample of aggregated data. In Linton and Whang (2002), the goal was to estimate a regression curve E(Y|X), where X and Y are both continuous random variables, which can only be observed in the form of averages contaminated by additive noise (in our case Y is a binary variable observed in the form of a maximum Y^* within a group). In

Aurore Delaigle, School of Mathematics and Statistics, University of Melbourne, VIC, 3010, Australia, and Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers of Big Data, Big Models, New Insights, Parkville, VIC, 3010, Australia (E-mail: *A.Delaigle@ms.unimelb.edu.au*). Wen-Xin Zhou, School of Mathematics and Statistics, University of Melbourne, VIC, 3010, Australia, and Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544 (E-mail: *wenxinz@princeton.edu*). This research was supported by a grant and a fellowship from the Australian Research Council. The NHANES data are available from the NHANES website of the Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, MD: *http://wwwn.cdc.gov/nchs/nhanes/search/nhanes99_00.aspx*.

Zhang and Albert (2011), the focus was on estimating E(Y|X) parametrically when Y is binary and X is continuous and aggregated, but in their case the response Y was not grouped. Our problem, which combines aspects of group testing with aspects of aggregated data, is particularly difficult. A first nontrivial task is to express the function p in terms of quantities that can be estimated from our indirect data. A second challenge is to find a way to define a local polynomial estimator for this problem. In the standard setting, this estimator is defined through a leastsquare equation that cannot be computed when only grouped and aggregated data are available. We circumvent this difficulty through an ingenious use of Fourier transforms and the development of empirical estimators thereof.

In Section 2, we introduce our regression model. In Sections 3 and 4, we introduce our nonparametric and parametric estimators, respectively; their theoretical properties are presented in Section 5. In Section 6, we suggest a data-driven procedure for bandwidth selection and illustrate the numerical performance of our estimators on simulated and real data. In Section 7.1, we extend our results to the case where the group status is observed with errors, and in Section 7.2 we discuss the extension of our nonparametric estimators to the setting of Zhang and Albert (2011), where the individual *Y* data are available, and only the *X* observations are aggregated. Proofs of the theoretical results are provided in Section A and in a supplemental file.

2. MODEL, DATA, AND DISTRIBUTIONS

2.1 Model and Data

We are interested in estimating the regression curve p(x) = P(Y = 1 | X = x), where *Y* is a binary variable indicating the presence (Y = 1) or absence (Y = 0) of a contaminant or a disease, given that the covariate *X* takes the value *x*. The ideal, unobserved data consist of independent and identically distributed (iid) pairs (X_{ij}, Y_{ij}) , i = 1, ..., v, j = 1, ..., n. The index $_{ij}$ represents the *i*th individual from the *j*th group, and the group size $v \ge 2$. We let N = nv denote the total number of individuals, and let f_X denote the density of the X_{ij} 's.

In our group testing context, the (X_{ij}, Y_{ij}) 's are not available. Instead we observe $(S_1, Y_1^*), \ldots, (S_n, Y_n^*)$, where for $j = 1, \ldots, n, Y_j^* = \max_{i=1, \ldots, \nu} Y_{ij}$ denotes the result of the test carried out on the entire *j*th group, and $S_j = \sum_{i=1}^{\nu} X_{ij}$ is the aggregated value of *X* in the *j*th group.

Remark 1. In Section 7.2, we will show how to extend our ideas to the setting considered by Zhang and Albert (2011), where the X_{ij} 's are aggregated, but the Y_{ij} 's are not grouped, that is, where we observe (S_j, Y_{ij}) , for $i = 1, ..., \nu$ and j = 1, ..., n.

2.2 Conditional Distribution of the Data

We wish to construct parametric and nonparametric estimators of the curve p from the data $(S_1, Y_1^*), \ldots, (S_n, Y_n^*)$. The methodologies we shall suggest exploit the conditional distribution of $Y_i^*|S_j$. To derive this distribution, for all $x \in \mathbb{R}$ let

$$q(x) = 1 - p(x) = P(Y = 0|X = x)$$
 and $m(x) = q(x)f_X(x)$.
(2.1)

Recall that Y = 0 or 1 is a Bernoulli random variable, so that Y_i^* also follows a Bernoulli distribution. Now

$$P(Y_{j}^{*} = 0, S_{j} \leq x)$$

$$= \int_{-\infty}^{\infty} P\left(Y_{1j} = \dots = Y_{\nu j} = 0, \sum_{i=2}^{\nu} X_{ij} \leq x - x_{1} \middle| X_{1} = x_{1}\right)$$

$$f_{X}(x_{1}) dx_{1}$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} m\left(u - \sum_{k=1}^{\nu-1} x_{k}\right) \prod_{k=1}^{\nu-1} m(x_{k}) dx_{k} du$$

$$= \int_{-\infty}^{x} m^{*\nu}(u) du,$$

where we use $f^{*\nu} = f * \cdots * f$ to denote the ν -fold convolution of a function f. Letting $f_S = f_X^{*\nu}$ denote the density of the S_i 's, this implies that

$$P(Y_j^* = 0|S_j = x) = m^{*\nu}(x)/f_S(x)$$
(2.2)

and $P(Y_j^* = 1 | S_j = x) = 1 - f_S^{-1}(x)m^{*\nu}(x)$.

3. NONPARAMETRIC ESTIMATORS

3.1 Nadaraya–Watson-Type Estimator

We start by constructing a basic ratio-type estimator similar in spirit to the Nadaraya–Watson estimator employed in standard nonparametric regression problems. Specifically, following (2.1), we write $p(x) = 1 - f_X^{-1}(x)m(x)$ and assume that

$$m_0 = \int_{-\infty}^{\infty} \{1 - p(x)\} f_X(x) \, dx = \int_{-\infty}^{\infty} m(x) \, dx > 0. \quad (3.1)$$

For any function $f \in L_1(\mathbb{R})$, let $\phi_f(t) = \int_{-\infty}^{\infty} e^{itx} f(x) dx$ denote its Fourier transform, and for any random variable U, denote by $\phi_U(t) = E(e^{itU})$ its characteristic function. Throughout we assume that

$$\phi_X(t) \neq 0$$
 and $\phi_m(t) \neq 0$, for all $t \in \mathbb{R}$. (3.2)

We estimate f_X and *m* separately. For f_X , we can follow Meister's (2007) nonparametric approach, as follows. Recall that, by the Fourier inversion theorem, if $\phi_X \in L_1(\mathbb{R})$, then $f_X(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt$. Therefore, to construct an estimator of f_X it suffices to construct an estimator of ϕ_X . As in Meister (2007), using the aggregated data, first we estimate $\phi_S(t) = \{\phi_X(t)\}^{\nu}$ by

$$\hat{\phi}_{S}(t) := n^{-1} \sum_{j=1}^{n} e^{itS_{j}}.$$
(3.3)

Among the multiple complex-valued roots of the complexvalued function $\hat{\phi}_S$, to find the one which corresponds to a valid estimator of ϕ_X we use a slightly modified version of Meister's (2007) estimator; see Section C.1 for details. Then, as in Meister (2007), we estimate f_X by

$$\hat{f}_X(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{-itx} \phi_K(th) \hat{\phi}_X(t) dt, \qquad (3.4)$$

where ϕ_K denotes the Fourier transform of a symmetric kernel function *K*, and $h = h_n > 0$ is a bandwidth. As noted in the introduction, Linton and Whang (2002) considered a related problem of nonparametric curve estimation from aggregated data, which also involves estimating ϕ_X from averaged data.

Their approach is similar to the one discussed above, except that it implicitly assumes that ϕ_S is real, which, in general, is only satisfied when *X* is a symmetric random variable.

To estimate the function m, again by the Fourier inversion theorem, if $\phi_m \in L_1(\mathbb{R})$, then $m(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{-itx} \phi_m(t) dt$. Next, (2.2) implies that $m^{*\nu} \leq f_S$, and thus the Fourier transform of $m^{*\nu}$ exists. To estimate this Fourier transform, recall that basic properties of the Fourier transform imply $\phi_{m^{*\nu}}(t) =$ $\{\phi_m(t)\}^{\nu}$. For j = 1, ..., n, let $Z_j^* = 1 - Y_j^*$ so that $m^{*\nu}(x) =$ $f_S(x)P(Z_j^* = 1|S_j = x)$ in view of (2.2). Taking the Fourier transform of both sides of this equation, we deduce that

$$\phi_{m^{*\nu}}(t) = E\{P(Z_j^* = 1 | S_j)e^{itS_j}\} = E(Z_j^* e^{itS_j}).$$
(3.5)

Equation (3.5) suggests a natural estimator $\hat{\phi}_{m^{*\nu}}(t) := n^{-1} \sum_{j=1}^{n} Z_j^* e^{itS_j}$ of $\phi_{m^{*\nu}}(t)$, from which we deduce an estimator $\hat{\phi}_m$ of ϕ_m ; see Section C.1 for full details. We then estimate m(x) by

$$\hat{m}(x) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{-itx} \phi_K(th) \hat{\phi}_m(t) dt, \qquad (3.6)$$

and define our first nonparametric estimator of p(x) by

$$\hat{p}(x) = 1 - \hat{m}(x) / \hat{f}_X(x).$$
 (3.7)

3.2 Local Polynomial-Type Estimator

Next we construct a version of the more general and widely used local polynomial estimator, which can be computed from our data. In addition to estimating p, it can estimate derivatives $p^{(d)}, d \ge 1$. In the standard iid case, which corresponds to the case where we observe the data $(X_{ij}, Y_{ij}), i = 1, ..., v$ and j = 1, ..., n, the ℓ th-order local polynomial estimator of p is obtained as follows. First, approximate p in a neighborhood of x by an ℓ th-order polynomial, that is, $p(u) \approx \beta_0 + \beta_1(u - x) +$ $\cdots + \beta_\ell (u - x)^\ell$. Then, at each x, estimate the local coefficients $\beta_k = \beta_k(x)$ by $\hat{\beta}_k = \hat{\beta}_k(x)$ for $k = 0, ..., \ell$, obtained via minimizing the following weighted least-square sum with respect to the β_k 's:

$$\sum_{i,j} \left\{ Y_{ij} - \sum_{k=0}^{\ell} \beta_k (X_{ij} - x)^{\ell} \right\}^2 K_h(X_{ij} - x), \quad (3.8)$$

where $K_h(y) = h^{-1}K(y/h)$, K is a kernel function and $h = h_n > 0$ is a bandwidth. For $d \le \ell$, the ℓ th-order local polynomial estimator of $p^{(d)}(x)$ is defined by $\hat{p}^{(d)}(x) = d! \hat{\beta}_d(x)$, which can be written as $\hat{p}^{(d)}(x) = d! h^{-d} \mathbf{e}_d^T \mathbf{S}_N^{-1} \mathbf{T}_N$, where $\mathbf{e}_d = (0, \dots, 0, 1, 0, \dots, 0)^T$ with 1 at the (d + 1)th entry, $\mathbf{S}_N = (S_{N,k,k'})_{0\le k,k'\le \ell}$ and $\mathbf{T}_N = (T_{N,0}, \dots, T_{N,\ell})^T$, with $S_{N,k,k'}(x) = (Nh^{k+k'})^{-1} \sum_{j=1}^n \sum_{i=1}^\nu K_h(X_{ij} - x)(X_{ij} - x)^{k+k'}$ and $T_{N,k}(x) = (Nh^k)^{-1} \sum_{j=1}^n \sum_{i=1}^\nu Y_{ij} K_h(X_{ij} - x)(X_{ij} - x)^k$.

It does not seem possible to develop an analog of (3.8) here, since we observe neither the X_{ij} 's nor the Y_{ij} 's. Instead we could construct versions of $S_{N,k,k'}$ and $T_{N,k}$ that can be computed from our data and have the same asymptotic limit as $S_{N,k,k'}$ and $T_{N,k}$. In errors-in-variables problems that do not involve group testing data, faced with a similar problem, Delaigle, Fan, and Carroll (2009) constructed, in the Fourier domain, conditionally unbiased estimators of each $K_h(X_{ij} - x)(X_{ij} - x)^{k+k'}$. We cannot do this in our highly nonlinear context, but we too shall exploit Fourier properties.

Instead of directly estimating $p^{(d)}$, it is simpler to start with an estimator of $q^{(d)}$. Let $Z_{ij} = 1 - Y_{ij}$, let $U_{N,k}$ denote the version of $T_{N,k}$ with each Y_{ij} replaced by Z_{ij} , and let $\mathbf{U}_N = (U_{N,0}, \ldots, U_{N,\ell})^{\mathrm{T}}$. If the (X_{ij}, Z_{ij}) 's were observed, we could compute the standard local polynomial estimator of $q^{(d)}(x)$ defined by $\hat{q}^{(d)}(x) = d! h^{-d} \mathbf{e}_d^{\mathrm{T}} \mathbf{S}_N^{-1} \mathbf{U}_N$. We construct versions $\hat{S}_{N,k,k'}$ and $\hat{U}_{N,k}$ of $S_{N,k,k'}$ and $U_{N,k}$ that can be computed from our data, as follows. In Section C.2 we prove that

$$\phi_{S_{N,k,k'}}(t) = \mathbf{i}^{-k-k'} \hat{\phi}_{X,\text{emp}}(t) \phi_K^{(k+k')}(-ht), \ \phi_{U_{N,k}}(t)$$

= $\mathbf{i}^{-k} \hat{\phi}_{ZX,\text{emp}}(t) \phi_K^{(k)}(-ht),$ (3.9)

where $\hat{\phi}_{X,\text{emp}}(t) = N^{-1} \sum_{j=1}^{n} \sum_{i=1}^{\nu} e^{it X_{ij}}$ is an unbiased estimator of $\phi_X(t)$, and $\hat{\phi}_{ZX,\text{emp}}(t) = N^{-1} \sum_{j=1}^{n} \sum_{i=1}^{\nu} Z_{ij} e^{it X_{ij}}$ is an unbiased estimator of

$$\phi_{ZX}(t) = E(Z_{ij}e^{itX_{ij}}) = E\{q(X_{ij})e^{itX_{ij}}\} = \phi_{qf_X}(t) = \phi_m(t).$$

Of course we cannot compute $\hat{\phi}_{X,\text{emp}}$ and $\hat{\phi}_{ZX,\text{emp}}$, but instead we can use the estimators $\hat{\phi}_X$ and $\hat{\phi}_m$ that we constructed in Section 3.1. Using Fourier inversion, this motivates us to define $\hat{\mathbf{S}}_N = (\hat{S}_{N,k,k'})_{0 < k,k' < \ell}$ and $\hat{\mathbf{U}}_N = (\hat{U}_{N,0}, \dots, \hat{U}_{N,\ell})^T$, where

$$\hat{S}_{N,k,k'}(x) = (2\pi i^{k+k'})^{-1} \int e^{-itx} \hat{\phi}_X(t) \phi_K^{(k+k')}(-ht) dt,$$
$$\hat{U}_{N,k}(x) = (2\pi i^k)^{-1} \int e^{-itx} \hat{\phi}_m(t) \phi_K^{(k)}(-ht) dt.$$

Recalling that p = 1 - q, we define our local polynomial-type estimator of $p^{(d)}$ by

$$\hat{p}^{(d)} = I\{d = 0\} - \hat{q}^{(d)}, \text{ where} \hat{q}^{(d)} = d! h^{-d} \mathbf{e}_d^{\mathsf{T}} \hat{\mathbf{S}}_N^{-1} \hat{\mathbf{U}}_N.$$
(3.10)

When $\ell = 0$ and d = 0, this estimator reduces to the estimator derived in Section 3.1.

Remark 2. (Which order ℓ should we use in practice?) In standard nonparametric regression problems, the local linear estimator (local polynomial estimator with $\ell = 1$) is almost always preferred to the Nadaraya–Watson estimator (local polynomial estimator with $\ell = 0$). In our case too, we found that the local linear estimator gave better results, and this is the estimator we recommend using in practice.

4. PARAMETRIC ESTIMATOR OF P

As commonly assumed in the group testing literature, we sometimes have at our disposal a parametric model for *p*. There, *p* takes a parametric form p_{θ} , where $\theta \in \Theta$ is a *d*-dimensional parameter, and $\Theta \subseteq \mathbb{R}^d$ is a compact set. Let θ_0 denote the true value of θ . It follows from our calculations in Section 2.2 that the conditional likelihood of the $Y_i^* | S_i$'s is given by

$$L(Y_1^*, \ldots, Y_n^* | S_1, \ldots, S_n) = \prod_{j=1}^n f(Y_j^*, S_j | \boldsymbol{\theta}).$$

where, for y = 0 or 1, $f(y, s | \theta) = \{1 - m_{\theta}^{*v}(s)/f_{S}(s)\}^{y} \{m_{\theta}^{*v}(s)/f_{S}(s)\}^{1-y} = y\{1 - m_{\theta}^{*v}(s)/f_{S}(s)\} + (1-y)\{m_{\theta}^{*v}(s)/f_{S}(s)\},$ with $m_{\theta} = q_{\theta} f_{X} = (1-p_{\theta})f_{X}.$

Ideally we would estimate θ_0 by the vector $\hat{\theta}$ that maximizes the log-likelihood, or equivalently, that maximizes $\ell_n(\theta) := (2n)^{-1} \sum_{j=1}^n \ln \{ f(Y_j^*, S_j | \theta) f_S(S_j) \}$. However, in the most general case, no parametric model is available for f_X , so that f_X and f_S are unknown. Denote the standard kernel density estimator of $f_S(s)$ by $\hat{f}_S(s) = (nb)^{-1} \sum_{j=1}^n \tilde{K}\{(s - S_j)/b\}$, where \tilde{K} is a kernel function and $b = b_n > 0$ is a bandwidth, and let \hat{f}_X as defined at (3.4). The two equivalent forms of $f(y, s | \theta)$ suggest two ways of estimating θ_0 : estimate θ_0 by the vector $\tilde{\theta} \in \Theta$ that maximizes

$$\tilde{\ell}_{n}(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{j=1}^{n} \ln \left(\max \left[c_{0}, Y_{j}^{*} \hat{f}_{S}(S_{j}) + (1 - 2Y_{j}^{*}) \{ (q_{\boldsymbol{\theta}} \hat{f}_{X})^{*\nu}(S_{j}) \} \right] \right),$$
(4.1)

under the constraint that $0 \le \hat{p}_{\theta} \le 1$, and where $c_0 > 0$ is a small constant, or estimate θ_0 by $\hat{\theta} \in \Theta$ that maximizes

$$\hat{\ell}_n(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{j=1}^n \left[Y_j^* \ln\left\{ \hat{f}_S(S_j) - (q_{\boldsymbol{\theta}} \hat{f}_X)^{*\nu}(S_j) \right\} + (1 - Y_j^*) \ln\left\{ (q_{\boldsymbol{\theta}} \hat{f}_X)^{*\nu}(S_j) \right\} \right]$$
(4.2)

subject to

$$\hat{f}_{S}(S_{j}) - (q_{\theta} \hat{f}_{X})^{*\nu}(S_{j}) \ge c_{0}$$
 and $(q_{\theta} \hat{f}_{X})^{*\nu}(S_{j}) \ge c_{0}$
(4.3)

for all $1 \le j \le n$. The two approaches are essentially equivalent, and the theory established in Theorem 3 for $\hat{\theta}$ can be easily adapted to $\tilde{\theta}$. We refer to Section D.1 for details of implementation.

Remark 3. The case where we have a parametric model for f_X , say f_{γ} with $\gamma \in \mathbb{R}^{d_2}$, is simpler. There, the corresponding parametric form of f_S is $f_{\gamma}^{*\nu}$. As long as γ is identifiable from the S_j 's, the latter can be used to estimate γ by a standard approach such as maximum likelihood. Let $f_{\hat{\gamma}}$ and $f_{\hat{\gamma}}^{*\nu}$ denote the corresponding estimators of f_X and f_S , respectively. To find the maximum likelihood estimator of θ , we proceed as in the case where f_X and f_S are estimated nonparametrically, except that we replace the nonparametric estimators of f_X and f_S by $f_{\hat{\gamma}}$ and $f_{\hat{\gamma}}^{*\nu}$.

5. THEORETICAL PROPERTIES

5.1 Smoothness Classes

Estimating the regression curve *p* from aggregated and group testing data is a difficult inverse problem connected to the socalled deconvolution problem studied in Fan (1991). In both cases, the covariates are indirectly observed. In our case, we can only observe $S_j = \sum_{i=1}^{v} X_{ij}$ whereas in the deconvolution case, we have access to data $W_{ij} = X_{ij} + U_{ij}$ observed with additive errors U_{ij} . The rates of convergence of nonparametric estimators in deconvolution problems are notoriously slow, and depend strongly on the rate of decay of the characteristic function ϕ_U of the U_{ij} 's. A usual distinction is made between cases where U is ordinary smooth or supersmooth. Similarly, the behavior of our estimator depends on the behavior of ϕ_X and ϕ_m and we make the same distinction between ordinary smooth and supersmooth classes. A random variable *X* (respectively, a function *m*) is ordinary smooth of order $\beta > 1$ (respectively, $\kappa > 1$) if there exists a constant $C_1 > 1$ (respectively, $C_2 > 1$) such that for every $t \in \mathbb{R}$,

$$C_1^{-1}(1+|t|)^{-\beta} \le |\phi_X(t)| \le C_1(1+|t|)^{-\beta}$$
(5.1)

(respectively,
$$C_2^{-1}(1+|t|)^{-\kappa} \le |\phi_m(t)| \le C_2(1+|t|)^{-\kappa}$$
).
(5.2)

A random variable *X* (respectively, a function *m*) is supersmooth of order $\rho > 0$ (respectively, $\rho > 0$) if there exist constants ρ_0 , $\gamma > 0$, and $C_3 > 1$ (respectively, ρ_0 , $\varsigma > 0$ and $C_4 > 1$) such that for every $t \in \mathbb{R}$,

$$C_{3}^{-1}(1+|t|)^{\rho_{0}}\exp(-|t|^{\rho}/\gamma) \leq |\phi_{X}(t)|$$

$$\leq C_{3}(1+|t|)^{\rho_{0}}\exp(-|t|^{\rho}/\gamma)$$
(5.3)

$$\left(\text{respectively, } C_4^{-1}(1+|t|)^{\varrho_0} \exp(-|t|^{\varrho}/\varsigma) \le |\phi_m(t)| \\ \le C_4(1+|t|)^{\varrho_0} \exp(-|t|^{\varrho}/\varsigma) \right).$$
(5.4)

5.2 Asymptotic Properties of the Nonparametric Estimator

In this section, we derive theoretical properties of our estimator \hat{p} defined in Section 3.1. The proofs are long and technical, and we defer most of them to a supplementary file. Similar results could be established for the estimator defined in Section 3.2, but require even longer and more technical arguments. Therefore, we leave them for future work. In Appendix B.1, we recall the basic notations \approx , \sim , \lor , and \land used below.

Various sorts of smoothness combinations of m and f_X are possible. Here, we consider the cases where f_X and m are both supersmooth or ordinary smooth. In the ordinary smooth case, we make the following regularity assumptions:

- (Co1) (5.1) and (5.2) hold, $\sup_{t \in \mathbb{R}} |\phi'_X(t) \cdot t^{\beta+1}| < \infty$ and $\sup_{t \in \mathbb{R}} |\phi'_m(t) \cdot t^{\kappa+1}| < \infty$.
- (Co2) *K* is symmetric with $\int K(x) dx = 1$, and for some $c_K < \infty$, $\phi_K(t) = 0$ for all $|t| > c_K$. Moreover, $\sup_{t \in \mathbb{R}} |\phi_K^{(\ell)}(t)| < \infty$ for $\ell = 0, 1$.

Condition (Co2) is fairly standard, especially in related deconvolution problems. It is satisfied by kernels traditionally employed there, such as the infinite-order sinc kernel *K* whose Fourier transform is defined by $\phi_K(t) = I_{[-1,1]}(t)$, and the second-order kernels *K* whose Fourier transform is given by $\phi_K(t) = (1 - t^2)^q \cdot I_{[-1,1]}(t)$ for some positive integer *q*. Recall that a second-order kernel is a kernel that satisfies $\mu_{K,0} = 1$, $\mu_{K,1} = 0$, and $0 < |\mu_{K,2}| < \infty$, where, for $\ell = 0, 1, \ldots$, we use the notation $\mu_{K,\ell} = \int_{-\infty}^{\infty} u^\ell K(u) du$.

The theorem below establishes asymptotic properties of our estimator \hat{p} in the ordinary smooth case; see Section A.1 for its proof. We use the following notation: for f a function or a

random variable and for h a bandwidth, let

$$B_{K,f}(x;h) = \frac{1}{2\pi} \int e^{-itx} \{\phi_K(th) - 1\} \phi_f(t) dt$$
$$V_{K,f}(h) = \frac{1}{2\pi} \int \frac{|\phi_K(t)|^2}{|\phi_f(t/h)|^{2(\nu-1)}} dt.$$

Theorem 1. Assume that $f_X(x) > 0$, that conditions (Co1) and (Co2) hold and that $h = h_n \to 0$ and $nh^{2\nu \max(\beta,\kappa)+1/2} \to \infty$ as $n \to \infty$. Then \hat{p} at (3.7) satisfies

$$\hat{p}(x) - p(x) = T_p(x) + o_P \left\{ n^{-1/2} h^{-(\nu-1)(\beta \lor \kappa) - 1/2} \right\}, \quad (5.5)$$

where $T_p(x)$ is a random variable such that

$$E\{T_p(x)\} = B_p(x), \text{ var}\{T_p(x)\} = V_p(x)$$

:= $V_{p,1}(x)\{1 + o(1)\} + V_{p,2}(x),$

with $B_p(x) = f_X^{-1}(x) \{ q(x) B_{K,X}(x;h) - B_{K,m}(x;h) \}$ and

$$V_{p,1}(x) = \{nh \,\nu^2 f_X^2(x)\}^{-1} \{m^{*\nu}(x)V_{K,m}(h) + q^2(x)f_X^{*\nu}(x)V_{K,X}(h)\},$$
(5.6)

$$V_{p,2}(x) = -\{nh \,\pi \,\nu^2 f_X^2(x)\}^{-1} q(x) m^{*\nu}(x) \int_{-\infty}^{\infty} \frac{|\phi_K(t)|^2}{\{\phi_X(t/h)\phi_m(-t/h)\}^{\nu-1}} \, dt.$$
(5.7)

In addition, if *p* and *f_X* are twice differentiable and their second derivatives are α -Hölder continuous for some $0 < \alpha \le 1$, and *K* is such that $\mu_{K,1} = 0$ and $\int |u|^{2+\alpha} |K(u)| du < \infty$, then $B_p(x) = \{\frac{1}{2}p''(x) + p'(x)f'_X(x)f^{-1}_X(x)\}\mu_{K,2}h^2 + o(h^2).$

Abusing terminology, we shall refer to B_p and V_p as the bias and variance of our estimator. Let \mathcal{I} be a bounded interval such that $\inf_{x \in \mathcal{I}} f_X(x) > 0$ and $\sup_{x \in \mathcal{I}} m(x) < \infty$, and with slight abuse of terminology, define the mean integrated squared error (MISE) of our estimator on \mathcal{I} by MISE = $\int_{\mathcal{I}} \{B_p^2(x) + V_p(x)\} dx$. We deduce from the theorem that MISE = $O(h^C) + O\{n^{-1}h^{-2(\kappa \lor \beta)(\nu-1)-1}\}$, where C = 4 if we use a second-order kernel, and $C = 2(\beta \land \kappa) - 1$ if we use an infinite-order kernel such as the sinc kernel or a kernel satisfying (F.1) in Section F. Taking a bandwidth of order $h \asymp n^{-1/\{2(\kappa \lor \beta)(\nu-1)+C+1\}}$, we get MISE = $O[n^{-C/\{2(\kappa \lor \beta)(\nu-1)+C+1\}}]$.

The next theorem describes asymptotic properties of \hat{p} in the supersmooth case. For brevity, here we assume that ρ and ϱ in (5.3) and (5.4) are both greater than or equal to 1. See Section F in the supplementary file, where we state and prove a version of the theorem (see Theorem F.1) without this restriction on ρ and ϱ . The proof of Theorem 2 is almost exactly identical to that of Theorem F.1.

Theorem 2. Assume that conditions (5.3), (5.4), and (Co2) hold, and that the bandwidth *h* satisfies $h = h_n = \max\{(d \gamma \log n)^{-1/\rho}, (d \varsigma \log n)^{-1/\rho}\}$ for some $0 < d < (2\nu)^{-1}$. Then

$$\hat{p}(x) - p(x) = Q_p(x) + O_P\{(\log n)^{c_2} n^{-c_1}\},$$
(5.8)

where $c_1 = \min\{2\tau^{\rho \lor \varrho} d, 1 - (2\nu - 1)d\}, Q_p(x)$ is a random variable satisfying $E\{Q_p(x)\} = f_X^{-1}(x)\{q(x)B_{K,X}(x;h) - B_{K,m}(x;h)\}$ and $\operatorname{var}\{Q_p(x)\} = O\{n^{-1+2(\nu-1)d} (\log n)^{c_2}\}$, for some constant $c_2 > 0$ that does not depend of n.

It can be deduced from the theorem that, with the bandwidth stated there, the MISE of our estimator is dominated by the bias contribution, and is of order $O(\max[\exp\{-\tau^{\varrho}(d\gamma \log n)^{\varrho/\rho}/\varsigma\}, \exp\{-\tau^{\varrho}(d\gamma \log n)^{\rho/\varrho}/\gamma\}])$. In Section F, we show (Theorem F.1) that an improved rate can be achieved by using two bandwidths. However, it is not clear how these could be chosen effectively in practice.

Remark 4. (Asymptotic normality of \hat{p}). In Section E.4, under appropriate conditions, we prove that in the ordinary smooth case, we have

$$\{V_p(x)\}^{-1/2}\{\hat{p}(x) - p(x) - B_p(x)\} \xrightarrow{D} N(0, 1) \text{ as } n \to \infty,$$
(5.9)

where $B_p(x)$ and $V_p(x)$ are as in Theorem 1. A similar result can be established in the supersmooth case, using arguments and technical conditions that are similar in spirit to those used by Fan (1991) and Delaigle, Fan, and Carroll (2009).

5.3 Asymptotic Properties of the Parametric Estimator

To establish asymptotic properties of the estimator $\hat{\theta}$ defined in Section 4, let $p_0(x) = P(Y = 1 | X = x; \theta_0), m_0 = q_0 f_X = (1 - p_0) f_X$, and for all $s \in \mathbb{R}$ and $\theta \in \Theta$, let

$$\Lambda(s,\theta) = \frac{1 - 2Y^*}{Y^* f_S(s) + (1 - 2Y^*)m_{\theta}^{*\nu}(s)} \{m_{\theta}' * m_{\theta}^{*(\nu-1)}\}(s),$$
(5.10)

where $m'_{\theta} = \nabla_{\theta} m_{\theta}$, with ∇_{θ} the gradient. Put $Q_0(\theta) = E\{\ln f(Y^*, S | \theta)\}$. The next theorem summarizes the asymptotic properties of $\hat{\theta}$. See Section A.2 for a proof.

Theorem 3. Assume that conditions (P1)–(P5) in Appendix B.2 hold, that θ_0 uniquely maximizes $Q_0(\theta)$ subject to $\theta \in \Theta$, and that θ_0 is an interior point of Θ . Then, as long as the constant c_0 in (4.3) is small enough, $\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{D} N(0, \Sigma_0^{-1})$, where $\Sigma_0 = E\{\Lambda(S, \theta_0)\Lambda(S, \theta_0)^T\}.$

6. NUMERICAL PROPERTIES

6.1 Bandwidth Selection for the Nonparametric Estimator

Choosing a good data-driven bandwidth in our context is particularly difficult. In standard regression problems, the most popular technique is arguably the plug-in approach, where the bandwidth is chosen by minimizing an estimator of $\int_a^b (B^2 +$ $V(f_X)$, with B and V denoting the dominating parts of the "bias" and "variance" of the regression estimator, and [a, b] typically denoting quantiles of f_X . In our case, the "bias" and "variance" of our estimators take complex forms involving unknown quantities that are difficult to estimate in practice, and thus computing a plug-in bandwidth seems too challenging to be practical. A practical bandwidth that is often easier to compute is the crossvalidation bandwidth. However, to compute this bandwidth we need to calculate the regression estimator at the X_{ii} 's, which is not feasible in our case since we observe only indirect data. With this in mind, our goal is not to construct a consistent estimator of the optimal bandwidth, but rather to suggest a bandwidth that can be expected to give reasonable practical results, as we explain next. Here, we provide the details for the local linear estimator, which this is the estimator we recommend using in

practice, but the same ideas can be used for the local polynomial estimator of another order.

Let \hat{p} denote our local linear estimator of p computed from the grouped data (S_j, Z_j^*) , j = 1, ..., n. We wish to construct an approximation to the bandwidth h_0 that minimizes the distance $D = \int_a^b (\hat{p} - p)^2 f_X$, where a and b denote the 0.05 and 0.95 quantiles of the distribution of X. As argued above, estimating D directly would be too challenging. Instead, we compute another bandwidth h_1 , which is appropriate for estimating $p^*(s) = E(Z_j^*|S_j = s)$ by the standard local linear estimator computed from the data (S_j, Z_j^*) , j = 1, ..., n. Of course, h_1 is not necessarily a good approximation of h_0 . However, if we could construct a reasonable approximation \hat{c} of $c = h_0/h_1$, then we could approximate h_0 by $\hat{h}_0 = \hat{c} h_1$.

We propose to approximate c by $\hat{c} = h_0^*/h_1^*$, where h_0^* is a version of h_0 constructed from artificial data $(\tilde{X}_{ij}, \tilde{Y}_{ij})$, $i = 1, \ldots, \nu, j = 1, \ldots, n$, generated under a parametric model for f_X and p, and where h_1^* is a version of h_1 constructed from data $(\tilde{S}_j, \tilde{Y}_j^*), j = 1, ..., n$ obtained by randomly pooling the $(\tilde{X}_{ii}, \tilde{Y}_{ii})$'s in groups of size ν , in the same way as the original data were pooled. Of course, this parametric model is usually wrong as in principle we do not know the correct parametric model (otherwise we would not estimate *p* nonparametrically). In particular, as for the SIMEX types of bandwidths suggested by Delaigle and Meister (2007) and Delaigle and Hall (2008), \hat{c} is not usually a consistent estimator of c. However, and paraphrasing Delaigle and Hall (2008), since the $(\tilde{S}_i, \tilde{Y}_i^*)$'s measure the (S_i, Y_i^*) 's in the same way as the $(\tilde{X}_{ij}, \tilde{Y}_{ij})$'s measure the (X_{ii}, Y_{ii}) 's, we can expect that the relationship between h_0 and h_1 is well approximated by that between h_0^* and h_1^* .

To implement these ideas in practice, we proceed as follows:

- 1. Compute h_1 , the standard plug-in bandwidth for the standard local linear estimator of $p^*(s) = E(Z_j^*|S_j = s)$, computed using the data (S_j, Z_j^*) , j = 1, ..., n.
- 2. Let $\hat{\mu}_X = \hat{\mu}_S / \nu$ and $\hat{\sigma}_X = \hat{\sigma}_S / \sqrt{\nu}$, where $\hat{\mu}_S$ and $\hat{\sigma}_S$ denote the empirical mean and standard deviation of the S_j 's, and let \tilde{p}_0 denote a quadratic spline estimator of p computed with K = 2 knots located at the quantiles (k+1)/(K+2), k = 1, 2, of \tilde{f}_X , where \tilde{f}_X is the density of $N(\hat{\mu}_X, \hat{\sigma}_X^2)$. For $i = 1, \ldots, \nu$, $j = 1, \ldots, n$, generate $(\tilde{X}_{ij}, \tilde{Y}_{ij})$ by taking $\tilde{X}_{ij} \sim N(\hat{\mu}_X, \hat{\sigma}_X^2)$ and $\tilde{Y}_{ij} | \tilde{X}_{ij} \sim \text{Bernoulli} \{ \tilde{p}_0(\tilde{X}_{ij}) \}$.
- 3. For j = 1, ..., n, let $\tilde{Y}_{j}^{*} = \max_{i=1,...,\nu} \tilde{Y}_{ij}$, $\tilde{S}_{j} = \sum_{i=1}^{\nu} \tilde{X}_{ij}$, and put $\tilde{Z}_{j}^{*} = 1 - \tilde{Y}_{j}^{*}$.
- 4. Let h_0^* denote the bandwidth that minimizes $\int_a^b (\hat{p}_0 \tilde{p}_0)^2 \tilde{f}_X$, where \hat{p}_0 denotes the version of \hat{p} computed from the data $(\tilde{S}_j, \tilde{Z}_j^*), j = 1, ..., n$, and where *a* and *b* are the 0.05 and 0.95 quantiles of the $N(\hat{\mu}_X, \hat{\sigma}_X^2)$ distribution, respectively.
- 5. Let h_1^* denote the standard plug-in bandwidth for the standard local linear estimator of $\tilde{p}^*(s) = E(\tilde{Z}_j^*|\tilde{S}_j = s)$, computed using the data $(\tilde{S}_j, \tilde{Z}_j^*)$, j = 1, ..., n.
- 6. Let $\hat{c} = h_0^* / h_1^*$ and take $\hat{h}_0 = \hat{c} h_1$.

As for the SIMEX bandwidth of Delaigle and Hall (2008), to avoid too strong a dependence of h_0^* and h_1^* on the sample $(\tilde{X}_{ij}, \tilde{Y}_{ij})$, we generate B = 500 such samples, thereby

obtaining *B* pairs of bandwidths $(h_{1,b}^*, h_{2,b}^*)$, for b = 1, ..., B, and we compute h_1^* and h_2^* by taking $h_1^* = B^{-1} \sum_{b=1}^{B} h_{1,b}^*$ and $h_0^* = B^{-1} \sum_{b=1}^{B} h_{0,b}^*$. We conclude this section by a few remarks regarding implementation. First, our choice of locating the knots at quantiles (k + 1)/(K + 2) is borrowed from Ruppert, Wand, and Carroll (2003), page 126. Second, to implement Step 4, we do a grid search on the interval $[h_1^*/\sqrt{v}, 3h_1^*]$. Third, when fitting the quadratic spline in Step 2, we used the method of Section 4 with f_X estimated nonparametrically.

6.2 Simulations

We illustrate the performance of our parametric and nonparametric estimators of *p* via the following simulated examples:

- (i) $p(x) = e^{-5+1.4x}/(1+e^{-5+1.4x})$ and $X \sim N(2, 9/16)$. (ii) $p(x) = 0.5 e^{-6+2.5x}/(1+e^{-6+2.5x})$ and $X \sim N(2, 9/16)$.
- (ii) $p(x) = 0.5 e^{-6+2.5x} / (1 + e^{-6+2.5x})$ and $X \sim N(2, 9/16)$.
- (iii) $p(x) = \min\{1, \max(0, 0.03 0.05 x + 0.04 x^2)\}, X = 4 Z/4, \text{ and } Z \sim \chi^2(8).$
- (iv) $p(x) = 0.25\{m_1(x)\}^{0.25} \cdot 1\{x \le 3\} + m_2(x) \cdot 1\{x > 3\},$ where $m_1(x) = 0.2 \phi_{2.5,0.4}(x) + \phi_{3,0.225}(x) + \phi_{3.5,0.375}(x) + \phi_{4,0.5}(x),$ with $\phi_{\mu,\sigma}$ the density of an $N(\mu, \sigma^2), m_2(x) = (x - 3)^2/2 + 0.3115,$ and $X \sim f_X = 0.35 \phi_{1.5,0.45/\sqrt{2}} + 0.65 \phi_{1.75,1/\sqrt{2}}.$

We applied the parametric estimator of Section 4 and the local linear estimator (local polynomial estimator from Section 3.2 with $\ell = 1$) to data simulated from the above four models, where we grouped the data in groups of size $\nu = 4$ and $\nu = 8$, for *N* ranging from 2000 to 10,000. As suggested by a referee, in the parametric case we used parametric models p_{θ} and f_{γ} for both *p* and f_X , where $\theta = (\theta_1, \ldots, \theta_d)^T \in \mathbb{R}^d$ and $\gamma = (\gamma_1, \ldots, \gamma_{d_2})^T \in \mathbb{R}^{d_2}$, for some $d, d_2 \ge 1$, and where we fitted γ by maximum likelihood (see Remark 3).

For the local linear estimator, we chose the bandwidth as in Section 6.1, and used a kernel often employed in the deconvolution literature, defined by $\phi_K(t) = (1 - t^2)^3 \cdot I_{[-1,1]}(t)$. To illustrate the usefulness of a nonparametric estimator, we considered correctly and incorrectly specified parametric models for p and f_X . In case (i) we used the correct model $p_{\theta}(x) = e^{\theta_1 + \theta_2 x} / (1 + e^{\theta_1 + \theta_2 x})$ and $f_{\gamma} = \phi_{\gamma_1, \gamma_2}$. In case (ii) we used either the correct model $p_{\theta}(x) = \theta_3 e^{\theta_1 + \theta_2 x} / (1 + e^{\theta_1 + \theta_2 x})$ and $f_{\gamma} = \phi_{\gamma_1,\gamma_2}$ (case (ii.a)) or the model from (i), whose p_{θ} is thus incorrect (case (ii.b)). In case (iii), we used the correct model $p_{\theta}(x) = \min\{1, \max(0, \theta_1 + \theta_2 x + \theta_3 x^2)\}$, and for f_{ν} we either used the correct parametric model (case (iii.a)) for which $X = \gamma_1 + \gamma_2 \chi^2(\gamma_3)$, or an incorrect parametric model (case (iii.b)), where we assumed that X had a Laplace(γ_1) distribution. In case (iv), we used the models from case (i) for p and f_X . Since p is a probability curve, in each case we truncated all estimators to the range [0, 1].

We know from Delaigle and Meister (2011) that grouping the Y_{ij} 's does not affect the convergence rates of nonparametric estimators, and in our context of grouped Y_{ij} 's and aggregated X_{ij} 's, it is the aggregation of the X_{ij} 's that causes the deterioration of convergence rates of nonparametric estimators. To illustrate this in practice, in each case we also computed the local linear estimator of Delaigle and Meister (2011) (denoted below

Table 1. Simulation results for models (i) to (iv). The numbers show $10^3 \times$ Median integrated squared error (interquartile range) calculated from 1000 simulated samples, using our parametric (P) or our nonparametric (NP) estimators computed from the (S_j, Z_j^*) 's, Delaigle and Meister's (2011) estimator (DM) computed from the (X_{ij}, Z_j^*) 's or the standard local linear estimator (LL) computed from the (X_{ij}, Y_{ij}) 's

			v =	= 4			ν =	= 8	
Model	Ν	Р	NP	DM	LL	Р	NP	DM	LL
(i)	$2 \cdot 10^3$	1.00[2.09]	4.39[2.85]	2.58[3.00]	0.81[0.95]	2.57[6.18]	5.18[4.51]	5.58[7.30]	0.81[0.95]
	$5\cdot 10^3$	0.39[0.86]	3.90[2.09]	1.23[1.17]	0.38[0.43]	1.12[2.53]	4.55[2.85]	2.43[2.87]	0.38[0.43]
	10^{4}	0.22[0.49]	3.87[1.79]	0.67[0.59]	0.22[0.24]	0.51[1.37]	4.57[2.14]	1.44[1.55]	0.22[0.24]
(ii.a)	$2 \cdot 10^3$	4.34[4.29]	3.15[3.35]	3.20[3.84]	1.01[1.16]	6.95[9.77]	3.96[5.68]	7.64[10.7]	1.01[1.16]
	$5 \cdot 10^3$	2.84[3.21]	2.54[2.11]	1.45[1.61]	0.46[0.47]	4.63[5.10]	3.65[3.87]	3.33[4.20]	0.46[0.47]
	10^{4}	1.93[2.70]	2.32[1.61]	0.82[0.78]	0.25[0.27]	3.85[3.34]	3.33[2.92]	1.94[2.15]	0.25[0.27]
(ii.b)	$2 \cdot 10^{3}$	4.46[3.20]	3.15[3.35]	3.20[3.84]	1.01[1.16]	7.06[9.22]	3.96[5.68]	7.64[10.7]	1.01[1.16]
	$5 \cdot 10^{3}$	3.77[1.55]	2.54[2.11]	1.45[1.61]	0.46[0.47]	4.90[4.18]	3.65[3.87]	3.33[4.20]	0.46[0.47]
	10^{4}	3.58[1.07]	2.32[1.61]	0.82[0.78]	0.25[0.27]	3.98[2.18]	3.33[2.92]	1.94[2.15]	0.25[0.27]
(iii.a)	$2 \cdot 10^3$	1.97[3.88]	4.71[4.10]	1.93[2.24]	0.57[0.63]	7.43[15.7]	6.10[6.30]	3.99[4.93]	0.57[0.63]
	$5 \cdot 10^3$	0.64[1.27]	3.87[3.09]	0.83[0.85]	0.24[0.28]	3.01[5.74]	5.77[4.34]	1.85[2.07]	0.24[0.28]
	10^{4}	0.31[0.62]	3.05[2.52]	0.52[0.47]	0.14[0.14]	1.49[3.11]	5.52[3.33]	1.03[1.13]	0.14[0.14]
(iii.b)	$2 \cdot 10^3$	4.57[3.85]	4.71[4.10]	1.93[2.24]	0.57[0.63]	7.73[7.67]	6.10[6.30]	3.99[4.93]	0.57[0.63]
	$5 \cdot 10^3$	3.95[2.00]	3.87[3.09]	0.83[0.85]	0.24[0.28]	5.90[4.28]	5.77[4.34]	1.85[2.07]	0.24[0.28]
	10^{4}	3.90[1.66]	3.05[2.52]	0.52[0.47]	0.14[0.14]	5.15[2.88]	5.52[3.33]	1.03[1.13]	0.14[0.14]
(iv)	$2 \cdot 10^{3}$	5.75[13.0]	4.65[5.88]	4.80[7.38]	2.88[4.73]	9.96[27.0]	5.93[8.39]	7.95[12.9]	2.88[4.73]
	$5 \cdot 10^{3}$	4.11[7.25]	3.91[4.75]	2.28[3.49]	1.48[2.16]	5.65[12.3]	5.13[5.85]	3.72[5.58]	1.48[2.16]
	10^{4}	4.23[5.75]	3.44[3.59]	1.25[1.69]	0.83[1.14]	5.20[9.80]	5.00[4.03]	2.11[3.03]	0.83[1.14]

by DM) using the grouped but nonaggregated data (X_{ij}, Z_j^*) , and Delaigle and Meister's (2011) plug-in bandwidth. We also computed the standard local linear estimator (denoted below by LL) using the ideal individual data (X_{ij}, Y_{ij}) and a standard plug-in bandwidth.

We simulated 1000 samples from each model, for each v and each N. We present a summary of the results in Table 1. For each case shown in the table and each estimator p^{est} of p, we provide the median and the interquartile range of the 1000 values of the integrated squared error ISE $= \int_{0.5}^{3.5} (p^{\text{est}} - p)^2$. Overall the results reflect our theoretical properties: as v decreases or N increases, the results improve, the correctly specified parametric estimator often works better than the nonparametric estimator, but the latter usually works better than the parametric estimator with an incorrectly specified p_{θ} or f_{γ} , such as in cases (ii.b), (iii.b), and (iv). Comparing our new local linear estimator with the LL and DM estimators, we can see that in most cases, as expected by the theory, grouping the data has less impact than aggregating the data. In particular, as N increases, the DM estimator, which is computed from the (X_{ij}, Z_i^*) 's, improves faster than the new estimator, which is computed from the (S_j, Z_j^*) 's.

The results are illustrated in Figures 1 to 3, as well as in Figure 5 in Section 7.1. In each graph, for a given estimator we show three estimated curves computed from the three samples that gave the first, second, and third quartiles of the 1000 ISEs. Figure 1 shows these curves in case (i) for the parametric estimator, when v = 8 and N = 2000 to 10,000; it illustrates the good properties of our parametric estimator. In Figure 2, we depict the estimated curves for our (misspecified) parametric estimator and our nonparametric estimator computed from the data (S_i, Z_i^*) , in case (iv). To illustrate the negative impact that aggregating the X_{ij} 's has on estimators, we also show the curves for the DM estimator, computed from the nonaggregated (X_{ij}, Z_i^*) 's. Next, we illustrate the impact of fitting a wrong parametric model. In Figure 3, we compare our parametric estimator for cases (ii.a) and (ii.b) with our nonparametric estimator. In this example, the true curve is a logistic curve divided by two, and takes values between 0 and 0.5, whereas the incorrect parametric model uses a logistic curve that takes values between 0 and 1. As a result,

Figure 1. Parametric estimator of *p* for three samples coming from model (i) with v = 8 and N = 2000 (left), N = 5000 (middle) and N = 10,000 (right), and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs. The continuous line depicts the true *p*.

Figure 2. Parametric (left) and nonparametric (middle) estimator of *p* based on the (S_j, Z_j^*) 's, and Delaigle and Meister's (2011) estimator of *p* based on the (X_{ij}, Z_j^*) 's (right) for three samples coming from model (iv) with N = 5000 and $\nu = 4$, and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs. The continuous line depicts the true *p*.

the incorrectly specified parametric estimator has difficulties to recover the right-most part of the curve, but is not too bad elsewhere.

6.3 Illustration With Real Data

To illustrate the performance of our estimators on real data, we applied them to data from the National Health and Nutrition Examination Surveys (NHANES), collected between 1999 and 2000. These data are nongrouped, which is convenient to illustrate the effect that grouping has on estimators. We note that our analysis of these data is purely illustrative, and as others before, we ignore issues such as sampling weights. In this example, we take Y to be the indicator of the presence of hepatitis B core antibody in the patient's serum or plasma, and X to be the logarithm of the level of gamma glutamyl transaminase (GGT), a biomarker for liver disease (elevated levels of GGT are typical for patients with hepatitis).

Before grouping the data, we computed the standard local linear estimator of p with a standard plug-in bandwidth. We denote this estimator by \hat{p}_0 . Then we randomly grouped the data in groups of sizes v = 4 and v = 8. We repeated this 200 times, creating in this way 200 grouped samples of (S_j, Y_j^*) 's of each size v. We applied to those data our local linear estimator from Section 3.2 and our parametric estimator from Section 4. For the parametric model for p, we used a logistic curve as in example (i) in Section 6.2, and for f_X we considered two models: $X \sim \gamma_1 + \gamma_2 \chi^2(\gamma_3)$ and $X \sim N(\gamma_1, \gamma_2)$. We estimated all parameters as in Section 6.2.

As in Section 6.2, for each v, we computed 200 values of the integrated squared error, which, for each estimator p^{est} ,

we define here as ISE = $\int_{a}^{b} (p^{\text{est}} - \hat{p}_0)^2$, where *a* and *b* are the empirical 0.025 and 0.975 quantiles of *X*, respectively. In Figure 4, we show, for v = 4 and v = 8, the curve \hat{p}_0 together with the parametric estimator for $X \sim \gamma_1 + \gamma_2 \chi^2(\gamma_3)$ and for $X \sim N(\gamma_1, \gamma_2)$ and the nonparametric estimator, corresponding in each case to the median ISE value. Of course here we do not know the true curve *p*, but we can see that, given the difficulty of estimating curves from grouped and aggregated data, the estimated curves are relatively close to the nonparametric estimator \hat{p}_0 computed from the nongrouped data, indicating that in this example our estimators worked reasonably well. While the logistic model is a reasonable approximation in this case, the local linear estimator has a smaller median ISE than the two versions of the parametric estimator.

7. EXTENSIONS

7.1 Imperfect Tests

In real applications, the group status Y_j^* can be observed imperfectly. For example, this is often the case if Y_j^* is obtained through a blood test. Two types of errors may arise: a negative group is declared positive, and a positive group is declared negative. In this case, the procedures developed in the previous sections are not consistent and need to be modified to take the errors into account. If we let \tilde{Y}_j^* denote the observed status of the *j*th group, then the accuracy of the test is measured by the specificity Sp and the sensitivity Se, which are defined by Sp = $P(\tilde{Y}_j^* = 0|Y_j^* = 0)$, Se = $P(\tilde{Y}_j^* = 1|Y_j^* = 1)$. As often in the literature (see, e.g., Vansteelandt, Goetghebeur, and Verstraeten 2000), we assume that the observed status \tilde{Y}_j^* depends only on

Figure 3. Correctly (left) and incorrectly (middle) specified parametric estimator, and nonparametric estimator of p (right) based on the (S_j, Z_j^*) 's, for three samples coming from model (ii) with N = 2000 and $\nu = 4$, and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs. The continuous line depicts the true p.

Figure 4. Nonparametric (NP) estimator of p and parametric estimator of p assuming that $X \sim N(\gamma_1, \gamma_2)$ (P norm) or $X \sim \gamma_1 + \gamma_2 \chi^2(\gamma_3)$ (P chi2), in the NHANES examples when $\nu = 4$ (left) or $\nu = 8$ (right). The thick line depicts the estimator \hat{p}_0 computed from the nongrouped data.

the true status Y_j^* , and depends neither on the group size nor on *X*.

It follows from our calculations in Section 3.2 that, to construct a local polynomial estimator of p, we need consistent estimators of ϕ_X and ϕ_m . Since the S_j^* 's are not affected by the imperfectly observed Y_j^* 's, we can define $\hat{\phi}_X$ as in Section 3.1. To define a consistent estimator of ϕ_m , let $\tilde{Z}_j^* = 1 - \tilde{Y}_j^*$ and $\tilde{m}(x) = P(\tilde{Y} = 0 | X = x) f_X(x)$. It can be proved (see Appendix C.3) that

$$\phi_{\tilde{m}^{*\nu}}(t) := \int_{-\infty}^{\infty} e^{itx} P(\tilde{Z}_{j}^{*} = 1 | S_{j} = x) f_{S}(x) dx$$

= (Se + Sp - 1) $\phi_{m^{*\nu}}(t) + (1 - Se)\phi_{S}(t)$. (7.1)

We can estimate $\phi_{\tilde{m}^{*\nu}}(t)$ consistently by $\hat{\phi}_{\tilde{m}^{*\nu}}(t) = n^{-1} \sum_{j=1}^{n} \tilde{Z}_{j}^{*} \exp(itS_{j})$. Taking $\hat{\phi}_{S}$ as in (3.3), we deduce that $\phi_{m^{*\nu}}(t)$ can be estimated consistently by

$$\hat{\phi}_{m^{*\nu}}^{\text{corr}}(t) = (\text{Se} + \text{Sp} - 1)^{-1} \hat{\phi}_{\tilde{m}^{*\nu}}(t) -(1 - \text{Se})(\text{Se} + \text{Sp} - 1)^{-1} \hat{\phi}_{S}(t).$$

Proceeding as in Section 3.1, we deduce from there a consistent estimator $\hat{\phi}_m^{\text{corr}}$ of ϕ_m .

Using calculations similar to those leading to (3.10), we can define a local polynomial estimator of p, by

$$\hat{p}^{\text{corr}} = 1 - \hat{q}^{\text{corr}} \text{ with } \hat{q}^{\text{corr}} = \mathbf{e}_{1}^{\mathrm{T}} \hat{\mathbf{S}}_{N}^{-1} \hat{\mathbf{U}}_{N}^{\text{corr}},$$
 (7.2)

where $\hat{\mathbf{S}}_N$ as in Section 3.2 and $\hat{\mathbf{U}}_N^{\text{corr}} = (\hat{U}_{N,0}^{\text{corr}}, \dots, \hat{U}_{N,\ell}^{\text{corr}})^{\text{T}}$, with

$$\hat{U}_{N,k}^{\text{corr}}(x) = (2\pi i^k)^{-1} \int e^{-itx} \hat{\phi}_m^{\text{corr}}(t) \phi_K^{(k)}(-ht) dt.$$

In the parametric case, we show in Appendix C.3 that the conditional likelihood of the $\{\tilde{Y}_i^*|S_j\}$'s is given by

$$\prod_{j=1}^{n} \left\{ (\text{Se} + \text{Sp} - 1) \frac{m_{\theta}^{*\nu}(S_j)}{f_S(S_j)} + (1 - \text{Se}) \right\}^{1 - \tilde{Y}_j^*} \\ \left\{ (1 - \text{Sp} - \text{Se}) \frac{m_{\theta}^{*\nu}(S_j)}{f_S(S_j)} + \text{Se} \right\}^{\tilde{Y}_j^*}.$$
(7.3)

Therefore, in that case, we can consistently estimate θ by $\hat{\theta}^{corr}$, obtained by maximizing (7.3).

To illustrate the finite sample performance of these estimators, we applied them to 1000 samples of sizes N = 2000, 5000, and 10,000 generated from models (i), (ii.a), and (iii.a) from Section 6.2. We created pools of size $\nu = 4$, and introduced errors in the Y_i^* 's as above, in such a way that Se = 0.996 and Sp = 0.923, as in Xie (2001). We compared four estimators: the corrected local linear estimator ($\hat{p}^{\text{ corr}}$ in (7.2) with $\ell = 1$), the corrected parametric estimator $m_{\hat{\theta}^{\text{corr}}}$, the uncorrected local linear estimator, that is, \hat{p} in (3.10) with $\ell = 1$, but with the Y_i^* 's replaced by their imperfect version \tilde{Y}_i^* , and the uncorrected parametric estimator $m_{\hat{\theta}}$, computed as in Section 4, but with the Y_i^* 's replaced by the \tilde{Y}_i^* 's. As in Section 6.2, we measured the performance of each estimator through the ISE. The results, presented in Table 2 show that the ISE of the corrected estimators is smaller than that of the uncorrected estimators. Unsurprisingly, the results improve as sample size increases and the parametric estimator, which is computed under the correct parametric model in all three cases, often outperforms the nonparametric one. See also Figure 5, where, in case (iii.a), we show estimated curves obtained using the uncorrected nonparametric estimator, the corrected nonparametric estimator, and the corrected parametric estimator.

7.2 Nonparametric Estimator When the Individual Y_{ij}'s are Observed

There are many applications where the individual binary Y_{ij} 's are observed, and only the X_{ij} 's are aggregated. There, we observe data (S_j, Y_{ij}) , for $i = 1, ..., \nu$ and j = 1, ..., n. This

Table 2. Simulation results for models (i), (ii.a), and (iii.a) in the case of imperfectly observed Y_j^* 's. The numbers show $10^3 \times$ Median integrated squared error (interquartile range) calculated from 1000 simulated samples, using the corrected parametric (CP), uncorrected parametric (UCP), corrected nonparametric (CNP), or uncorrected nonparametric (UCNP) estimators computed from grouped and aggregated data

Model	Ν	СР	UCP	CNP	UCNP
(i)	$2\cdot 10^3$	1.21[2.66]	1.86[2.60]	4.57[2.97]	5.55[2.53]
	$5\cdot 10^3$	0.50[1.03]	1.23[1.19]	4.00[1.99]	4.94[1.68]
	10^{4}	0.26[0.56]	0.94[0.66]	3.95[1.64]	4.76[1.40]
(ii.a)	$2 \cdot 10^3$	4.55[4.63]	5.01[5.16]	3.23[3.69]	4.42[3.69]
	$5\cdot 10^3$	3.06[2.94]	3.35[3.67]	2.60[2.28]	3.74[2.17]
	10^{4}	2.03[2.71]	1.96[2.51]	2.33[1.65]	3.39[1.42]
(iii.a)	$2 \cdot 10^3$	2.56[4.69]	3.02[4.65]	4.47[4.29]	6.94[4.69]
	$5\cdot 10^3$	0.82[1.70]	1.72[1.73]	3.43[3.04]	5.71[3.29]
	10^{4}	0.41[0.78]	1.27[0.96]	2.94[2.33]	5.32[2.47]

Figure 5. Estimators computed from imperfectly observed data. Uncorrected nonparametric estimator (left), corrected nonparametric estimator (middle), and corrected correctly specified parametric estimator (right) of *p* for three samples coming from model (iii.a) with N = 10,000 and v = 4, and corresponding to the 1st, 2nd, and 3rd quartiles of the ISEs. The continuous line depicts the true *p*.

problem was studied in the parametric context by Zhang and Albert (2011), who also discussed interesting epidemiological applications. We can exploit our ideas to derive a nonparametric estimator in this case too, as follows.

Using calculations similar to those in Section 2.2, it can be proved that

$$P(Y_{ij} = 1, S_j \le x) = \int_{-\infty}^{\infty} P\{S_j^{(i)} \le x - u\} p(u) f_X(u) du,$$

where $S_j^{(i)} = S_j - X_{ij}$. This implies that $f_S(x)P(Y_{ij} = 1|S_j = x) = (pf_X) * f_X^{*(\nu-1)}(x)$. Taking the Fourier transform on both sides of this equation we deduce that

$$\phi_{SY}(t) \equiv \int e^{itx} f_S(x) P(Y_{ij} = 1 | S_j = x) \, dx = \phi_{pf_X}(t) \, \phi_X^{\nu-1}(t) \, .$$

Now, calculations similar to those from Section 3.1 lead to $\phi_{SY}(t) = E(e^{itS_j}Y_{ij})$, which can be estimated by $\hat{\phi}_{SY}(t) = N^{-1}\sum_{i,j} e^{itS_j}Y_{ij}$. Moreover, we can estimate $\phi_X^{\nu-1}$ by $(\hat{\phi}_X)^{\nu-1}$, with $\hat{\phi}_X$ as in Section 3.1. From there, we can estimate $(pf_X)(x)$ by

$$\widehat{(pf_X)}(x) = (2\pi)^{-1} \int e^{-itx} \hat{\phi}_{SY}(t) \hat{\phi}_X^{1-\nu}(t) \phi_K(ht) \cdot 1\{|\hat{\phi}_X(t)| > t_n\} dt .$$

Finally, we can estimate p(x) by $\hat{p}(x) = (pf_X)(x)/\hat{f}_X(x)$.

Theoretical properties of this estimator can be derived along the lines of the theory from Section 5.2. As already noted in Section 6.2, aggregating the X_{ij} 's has much more impact on nonparametric estimators than grouping the Y_{ij} 's does (recall from Delaigle and Meister 2011, that pooling the Y_{ij} 's does not impact the convergence rates of nonparametric estimators). It is therefore unsurprising that the estimator derived in the previous paragraph has rates similar to those in Section 5.2.

A.1. APPENDIX: PROOF OF THEOREMS 1 AND 3

A.1.1 Proof of Theorem 1

To prove Theorem 1, we first need to investigate the asymptotic properties of the density estimator $\hat{f}_X(x)$ at (3.4). This is done in Proposition A.1 below. Although the proof of Theorem 1 relies on notations and arguments used in the proof of Proposition A.1, the latter proof is quite technical and is relegated to Section E.1 of the supplemental file. The proof of Theorem 1 refers to equations defined

in Section E.1, which can be recognized through their numbering (E.2), (E.1), etc.

Proposition A.1. Assume that conditions (5.1) and (Co2) hold, that $h \to 0$ as $n \to \infty$ and that for some $\delta > 0$, $nh^{2\nu\beta+\delta} \to \infty$ as $n \to \infty$. Then $\hat{f}_X(x) - f_X(x) = T_X(x) + o_P \{n^{-1/2}h^{-(\nu-1)\beta-1/2}\}$, where $T_X(x)$ is a random variable such that $E\{T_X(x)\} = B_X(x)$ and $\operatorname{var}\{T_X(x)\} = V_X(x)\{1 + o(1)\}$, with $B_X(x) = B_{K,X}(x;h)$ and

$$V_X(x) = (\nu^2 nh)^{-1} f_X^{*\nu}(x) V_{K,X}(h).$$
(A.1)

In addition, if f_X is twice differentiable with an α -Hölder continuous second derivative for some $0 < \alpha \le 1$, and *K* is such that $\mu_{K,1} = 0$ and $\int |u|^{2+\alpha} |K(u)| du < \infty$, then $B_X(x) = \frac{1}{2} f_X''(x) \mu_{K,2} h^2 + o(h^2)$.

Proof of Theorem 1. Throughout, we let const. denote a generic finite positive constant and without loss of generality, we take $c_K = 1$ in condition (Co2). Recalling the notation in (3.4) and (3.6), we write

$$\delta_X(t) = \hat{\phi}_X(t) - \phi_X(t), \ \ \delta_m(t) = \hat{\phi}_m(t) - \phi_m(t).$$
 (A.2)

Moreover, define $\mathcal{B}_n = \{t \in \mathbb{R} : |t| \le 1/h\}$ and

$$\mathcal{E}_{1n} = \left\{ t \in \mathbb{R} : |\Delta_1(t)| \le |\phi_S(t)|/2 \right\} \text{ with}$$

$$\Delta_1(t) = \hat{\phi}_S(t) - \phi_S(t), \qquad (A.3)$$

$$\mathcal{E}_{2n} = \left\{ u \in \mathbb{R} : |\Delta_2(u)| \le |\phi_{m^{*\nu}}(u)|/2 \right\} \text{ with}$$

$$\Delta_2(t) = \hat{\phi}_{m^{*\nu}}(t) - \phi_{m^{*\nu}}(t). \qquad (A.4)$$

By condition (Co1), we have $\inf_{t \in \mathcal{B}_n} \min\{|\phi_X(t)|^\nu, |\phi_m(t)|^\nu\} \ge c h^{(\beta \lor \kappa)\nu} \ge 2/n$, for some constant c > 0 and all sufficiently large *n*. Recall that $\hat{p}(x) = 1 - \hat{q}(x)$ with $\hat{q}(x) = \hat{m}(x)/\hat{f}_X(x)$, and write

$$\hat{q}(x) - q(x) = \hat{f}_X^{-1}(x)\{\hat{m}(x) - q(x)\hat{f}_X(x)\} = Q_1(x) + Q_2(x),$$
(A.5)

where $Q_1(x) = f_X^{-1}(x)\{\hat{m}(x) - q(x)\hat{f}_X(x)\}$ and $Q_2(x) = \{\hat{m}(x) - q(x)\hat{f}_X(x)\}\{\hat{f}_X^{-1}(x) - f_X^{-1}(x)\}$. In what follows, we study $Q_1(x)$ and $Q_2(x)$ separately.

For the numerator of $Q_1(x)$ (see Equations (3.4) and (3.6)), taking $\ell = 2$ in (E.5) with X replaced by m we have, for $t \in \mathcal{E}_{2n} \cap \mathcal{B}_n$, $\hat{\phi}_m(t) = \phi_m(t) + \chi_{m,1}(t) + \chi_{m,2}(t) - \chi_{m,3}(t) + \chi_{m,4}(t) + O\{\chi_{m,5}(t)\}$, where $\chi_{m,1}(t) = v^{-1}\{\phi_m(t)\}^{1-\nu}\Delta_2(t)$, $\chi_{m,2}(t) = (2v^2)^{-1}(1-\nu)\{\phi_m(t)\}^{1-2\nu}\Delta_2^2(t)$, $\chi_{m,3}(t) = \{\chi_{m,1}(t) + \chi_{m,2}(t)\}I_{\mathcal{E}_{2n}^c}(t)$, $\chi_{m,4}(t) = \delta_m(t)I_{\mathcal{E}_{2n}^c}(t)$ and $\chi_{m,5}(t) = |\phi_m(t)|^{1-3\nu}|\Delta_2(t)|^3$. Similarly, following the proof that leads to (E.20), it can be shown that

$$\begin{split} \hat{m}(x) &- (2\pi)^{-1} \int e^{-itx} \phi_K(th) \phi_m(t) \, dt \\ &= (2\pi)^{-1} \int e^{-itx} \phi_K(th) \{\chi_{m,1}(t) + \chi_{m,2}(t)\} \, dt + O_P \\ &\{ n^{-3/2} h^{-(3\nu-1)\kappa-1} \}, \\ \hat{f}_X(x) &- (2\pi)^{-1} \int e^{-itx} \phi_K(th) \phi_X(t) \, dt \\ &= (2\pi)^{-1} \int e^{-itx} \phi_K(th) \chi_0(t) \, dt \\ &+ O_P \{ n^{-1} h^{-(2\nu-1)\beta-1/2} \} + O_P \{ n^{-3/2} h^{-(3\nu-1)\beta-1} \}, \end{split}$$

where $\chi_0(t) = \nu^{-1} \{ \phi_X(t) \}^{1-\nu} \Delta_1(t)$.

By Plancherel's isometry, we deduce from the above calculations that

$$f_X(x)Q_1(x) = -f_X(x)B_p(x) + (2\pi)^{-1} \int e^{-itx} \phi_K(th) \left\{ \chi_{m,1}(t) - q(x) \chi_0(t) \right\} dt + (2\pi)^{-1} \int e^{-itx} \phi_K(th) \chi_{m,2}(t) dt + O_P \left\{ n^{-1}h^{-(2\nu-1)\beta-1/2} + n^{-3/2}h^{-(3\nu-1)(\beta\vee\kappa)-1} \right\},$$

where $B_p(x)$ is defined given in the statement of Theorem 1. In the above expression, using the argument leading to (E.11) we get $\int e^{-itx} \phi_K(th) \chi_{m,2}(t) dt = O_P \{n^{-1}h^{-(2\nu-1)\kappa-1/2}\}$. Moreover, put

$$Q_{1,1}(x) = \{2\pi f_X(x)\}^{-1} \int e^{-itx} \phi_K(th) \{\chi_{m,1}(t) - q(x) \chi_0(t)\} dt.$$
(A.

As long as $f_X(x)$ is bounded away from zero and $nh^{2\nu(\beta\vee\kappa)+1/2} \to \infty$, we have

$$Q_1(x) = -B_p(x) + Q_{1,1}(x) + O_P \left\{ n^{-1/2} h^{-(\nu-1)(\beta \lor \kappa) - 1/2} \right\}.$$
 (A.7)

Next, note that $EQ_{1,1}(x) = 0$ for $Q_{1,1}(x)$ as in (A.6). Then we derive the asymptotic expression of the variance of $Q_{1,1}(x)$ using an argument similar to that used to deal with $R_1(x)$ in (E.6). First, rewrite it as $\{nf_X(x)\}^{-1}\sum_j (\xi_{nj} - E\xi_{nj})$, where

$$\xi_{nj} = Z_j^* K_{m,h}(x - S_j) - q(x) K_{X,h}(x - S_j)$$
(A.8)

with $K_{X,h}(y) = h^{-1}K_X(y/h)$ and $K_{m,h}(y) = h^{-1}K_m(y/h)$ for K_X as in (E.7) and

$$K_m(y) = (2\pi\nu)^{-1} \int e^{-ity} \phi_K(t) \{\phi_m(t/h)\}^{1-\nu} dt.$$
 (A.9)

Then, Lemma E.4 in Section E establishes the asymptotic expression of the variance of ξ_{nj} , such that, $\operatorname{var}(n^{-1}\sum_{j}\xi_{nj}) = f_X^2(x)[V_{p,1}(x)\{1 + o(1)\} + V_{p,2}(x)]$ for $V_{p,1}(x)$ and $V_{p,2}(x)$ as in (5.6) and (5.7), respectively. This, together with (A.7), gives us

$$Q_1(x) = -T_p(x) + o_P \left\{ n^{-1/2} h^{-(\nu-1)(\beta \vee \kappa) - 1/2} \right\},$$
 (A.10)

where $T_p(x)$ is given in the statement of Theorem 1.

Finally, we address the order of $Q_2(x) = \{\hat{m}(x) - q(x)\hat{f}_X(x)\}\{\hat{f}_X^{-1}(x) - f_X^{-1}(x)\}$. By conditions (Co1) and (Co2), and if $nh^{(2\nu-1)\beta+1/2} \to \infty$ as $n \to \infty$, Proposition A.1 with $\delta = \frac{1}{2}$ yields that $\hat{f}_X^{-1}(x) - f_X^{-1}(x) = o_P(1)$. Further, it follows from the definition of Q_1 and the fact $f_X(x) > 0$ that $\hat{m}(x) - q(x)\hat{f}_X(x) = O_P(Q_1)$. Together with (A.5) and (A.10), this proves (5.5) and thus completes the proof of the theorem.

A.1.2 Proof of Theorem 3

For brevity, we prove the result only for $\nu = 2$ and dimension d = 2, but our arguments can be directly extended to deal with $\nu > 2$

and d > 2. Let $q'_{\theta} = \nabla_{\theta} q_{\theta}$, so that $\nabla_{\theta}(q_{\theta} f_{X})^{*2} = 2m'_{\theta} * m_{\theta}$, and let $\ell_{0}(\theta) = \frac{1}{2} E[Y^{*} \ln\{f_{S}(S) - m^{*2}_{\theta}(S)\} + (1 - Y^{*}) \ln m^{*2}_{\theta}(S)]$. Under our conditions, θ_{0} uniquely maximizes $\ell_{0}(\theta)$ subject to $\theta \in \Theta$. Finally recall the definition of $\hat{\ell}_{n}$ at (4.2).

Step 1: Consistency. Using an argument similar to that used in the proofs of Propositions A.1 and F.1, it can be proved that, under condition (5.1), $E \| \hat{f}_X - f_X \|_2^2 \le \text{const.} \{ n^{-1/2} h^{-1} + n^{-1} h^{-2\beta-1} + h^{2\beta-1} \}$, and under condition (5.3) with $h = (d \gamma \log n)^{-1/\rho}$ for some $0 < \delta \le \frac{1}{4}$, $E \| \hat{f}_X - f_X \|_2^2 \le \text{const.} (\log n)^{\text{const.}} n^{-2\delta}$. Consequently, for *h* as in (P5), we have $\| \hat{f}_X - f_X \|_2 = o_P(1)$.

Moreover, note that $(q_{\theta} \hat{f}_X)^{*2}(s) = \int q_{\theta}(x) \hat{f}_X(x) q_{\theta}(s-x) \hat{f}_X(s-x) dx$. Using Hölder's inequality, we get, for any $s \in \mathbb{R}$ and $\theta \in \Theta$,

$$\begin{aligned} \left| (q_{\theta} \hat{f}_{X})^{*2}(s) - (q_{\theta} f_{X})^{*2}(s) \right| &= \left| \{ q_{\theta} (\hat{f}_{X} - f_{X}) \}^{*2}(s) \right. \\ &+ 2\{ q_{\theta} (\hat{f}_{X} - f_{X}) \} * (q_{\theta} f_{X})(s) \right| \\ &\leq \operatorname{const.} \left(\| \hat{f}_{X} - f_{X} \|_{2} \cdot \| f_{X} \|_{2} \\ &+ \| \hat{f}_{X} - f_{X} \|_{2}^{2} \right), \end{aligned}$$

where in the last step we used the fact that $q_{\theta} \leq 1$. Therefore,

$$(q_{\theta} f_X)^{*2}(s) = (q_{\theta} f_X)^{*2}(s) + o_P(1)$$
(A.11)

holds uniformly in $s \in \mathbb{R}$ and $\theta \in \Theta$.

For the kernel estimator \hat{f}_s , it is well-known that $\|\hat{f}_s - f_s\|_{\infty} = \sup_{s \in \mathbb{R}} |\hat{f}_s(s) - f_s(s)| = o_P(1)$, under conditions (P2), (P4), and (P5) (see, e.g., Parzen 1962). This together with (A.11) implies that, uniformly for $1 \le j \le n$ and $\boldsymbol{\theta} \in \Theta$, $\hat{f}_s(S_j) = f_s(S_j) + o_P(1)$ and $(q_{\boldsymbol{\theta}} \hat{f}_x)^{*2}(S_j) = (q_{\boldsymbol{\theta}} f_x)^{*2}(S_j) + o_P(1)$. Subsequently, by the law of large numbers and the compactness of Θ , $\hat{\ell}_n(\boldsymbol{\theta}) = (2n)^{-1} \sum_{j=1}^n [Y_j^* \ln \{f_s(S_j) - m_{\boldsymbol{\theta}}^{*2}(S_j)\} + (1 - Y_j^*) \ln m_{\boldsymbol{\theta}}^{*2}(S_j)] + o_P(1) = \ell_0(\boldsymbol{\theta}) + o_P(1)$ holds uniformly in $\boldsymbol{\theta} \in \Theta$.

On the other hand, by condition (P2), the constraints in (4.3) are satisfied with probability tending to one, as long as the constant c_0 is chosen small enough, say $c_0 < \min\{c_1, c_1(c_2^{-1} - 1)\}$ for c_1 and c_2 as in (P2). Therefore, $\sup_{\theta \in \Theta} |\hat{\ell}_n(\theta) - \ell_0(\theta)| \xrightarrow{P} 0$, and applying the fundamental consistency result for extremum estimators (e.g., Theorem 2.1 in Newey and McFadden 1994), we obtain $\hat{\theta} \xrightarrow{P} \theta_0$.

Step 2: Asymptotic normality. To establish the asymptotic normality for $\hat{\theta}$, we proceed by verifying the assumptions of Theorem 3.1 of Newey and McFadden (1994).

Put $\hat{\mathcal{C}}_n = \{ \boldsymbol{\theta} \in \Theta : \boldsymbol{\theta} \text{ satisfies } (4.3) \} \subseteq \Theta$. Recall that $\sup_{\boldsymbol{\theta} \in \Theta} \| \hat{m}_{\boldsymbol{\theta}} - m_{\boldsymbol{\theta}} \|_{\infty} = o_P(1) \text{ and } \| \hat{f}_S - f_S \|_{\infty} = o_P(1), \text{ where } \hat{m}_{\boldsymbol{\theta}} = q_{\boldsymbol{\theta}} \hat{f}_X.$ Together with condition (P2), this implies that there exists a neighborhood $\mathcal{N} \subset \Theta$ of $\boldsymbol{\theta}_0$ such that $P(\mathcal{N} \subset \hat{\mathcal{C}}_n) \to 1$ and $P(\hat{\boldsymbol{\theta}} \in \mathcal{N}) \to 1$ provided $c_0 < c_1 \min(1, c_2^{-1} - 1).$

By condition (P1), $\hat{\ell}_n(\theta)$ is twice differentiable. Using the same argument as the one that leads to (A.11), it can be proved that

$$\nabla_{\theta} \hat{\ell}_n(\theta) = \frac{1}{n} \sum_{j=1}^n \frac{(1 - 2Y_j^*)\{(q'_{\theta} \hat{f}_X) * (q_{\theta} \hat{f}_X)\}(S_j)}{Y_j^* \hat{f}_S(S_j) + (1 - 2Y_j^*)(q_{\theta} \hat{f}_X)^{*2}(S_j)}$$
$$= \frac{1}{n} \sum_{j=1}^n \Lambda(S_j, \theta) + o_P(1)$$

and $\nabla_{\theta}^{2} \hat{\ell}_{n}(\theta) = n^{-1} \sum_{j=1}^{n} \mathbf{G}(S_{j}, \theta) + o_{P}(1) = \mathbf{H}(\theta) + o_{P}(1)$ hold uniformly in $\theta \in \Theta$, where $\Lambda(\cdot, \theta)$ is given in (5.10), $\mathbf{G}(s, \theta) = \{\nabla_{\theta} \Lambda(s, \theta)\}^{\mathrm{T}}$, $\mathbf{H}(\theta) = E\{\mathbf{G}(S, \theta)\}$ and $\nabla_{\theta}^{2}(f)$ denotes the Hessian of f. Note that $E\{\Lambda(S, \theta_{0})\} = 0$, so that, by the central limit theorem, $\sqrt{n} \nabla_{\theta} \hat{\ell}_{n}(\theta_{0}) \xrightarrow{D} N(0, \Sigma_{0})$, where $\Sigma_{0} = E\{\Lambda(S, \theta_{0})\Lambda(S, \theta_{0})^{\mathrm{T}}\}$.

Finally, under conditions (P1) and (P2), for the above neighborhood \mathcal{N} of $\boldsymbol{\theta}_0$, $E \sup_{\boldsymbol{\theta} \in \mathcal{N}} \| \nabla_{\boldsymbol{\theta}} \Lambda(S, \boldsymbol{\theta}) \| < \infty$, with $\| \cdot \|$ the Euclidean norm. By Lemma 3.6 of Newey and McFadden (1994), we have $\Sigma_0 = \mathbf{H}_0 = \mathbf{H}(\boldsymbol{\theta}_0)$. The proof follows by Theorem 3.1 of Newey and McFadden (1994), using the fact that $\mathbf{H}_0^{-1} \Sigma_0 \mathbf{H}_0 = \Sigma_0^{-1}$.

SUPPLEMENTAL MATERIALS

Supplemental materials are submitted together with this manuscript and are intended to be for online publication only. Some technical notations and conditions can be found in Section B of the file. Details of the methodology are gathered in Section C. Long and technical arguments used to prove Theorem 1 can be found in Section D, and the proof of a more complex version of Theorem 2 is given in Section E.

[Received June 2014. Revised March 2015.]

REFERENCES

- Bilder, C. R., and Tebbs, J. M. (2009), "Bias, Efficiency, and Agreement for Group-Testing Regression Models," *Journal of Statistical Computation and Simulation*, 79, 67–80. [1785]
- Caudill, S. P. (2010), "Characterizing Populations of Individuals Using Pooled Samples," *Journal of Exposure Science and Environmental Epidemiology*, 20, 29–37. [1785]
- Chen, C. L., and Swallow, W. H. (1990), "Using Group Testing to Estimate a Proportion, and to Test the Binomial Model," *Biometrics*, 46, 1035–1046. [1785]
- Chen, P., Tebbs, J. M., and Bilder, C. R. (2009), "Group Testing Regression Models With Fixed and Random Effects," *Biometrics*, 65, 1270–1278. [1785]
- Delaigle, A., Fan, J., and Carroll, R. J. (2009), "A Design-Adaptive Local Polynomial Estimator for the Errors-in-Variables Problem," *Journal of American Statistical Association*, 104, 348–359. [1787,1789]
- Delaigle, A., and Hall, P. (2008), "Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems," *Journal of American Statistical Association*, 103, 280–287. [1790]
 - (2012), "Nonparametric Regression With Homogeneous Group Testing Data," *The Annals of Statistics*, 40, 131–158. [1785]
- Delaigle, A., Hall, P., and Wishart, J. (2014), "New Approaches to Non- and Semi-Parametric Regression for Univariate and Multivariate Group Testing Data," *Biometrika*, 101, 567–585. [1785]
- Delaigle, A., and Meister, A. (2007), "Nonparametric Regression Estimation in the Heteroscedastic Errors-in-Variables Problem," *Journal of American Statistical Association*, 102, 1416–1426. [1790]
- (2011), "Nonparametric Regression Analysis for Group Testing Data," *Journal of American Statistical Association*, 106, 640–650. [1785,1791,1792,1794]
- Dorfman, R. (1943), "The Detection of Defective Members of Large Populations," *The Annals of Mathematical Statistics*, 14, 436–440. [1785]
- Fan, J. (1991), "Asymptotic Normality for Deconvolution Kernel Density Estimators," Sankhyā Series A, 53, 97–110. [1788,1789]
- Faraggi, D., Reiser, B., and Schisterman, E. F. (2003), "ROC Curve Analysis for Biomarkers Based on Pooled Assessments," *Statistics in Medicine*, 22, 2515–2527. [1785]
- Farrington, C. (1992), "Estimating Prevalence by Group Testing Using Generalized Linear Models," *Statistics in Medicine*, 11, 1591–1597. [1785]
- Gastwirth, J. L., and Hammick, P. A. (1989), "Estimation of Prevalence of a Rare Disease, Preserving the Anonymity of the Subjects by Group Testing: Application to Estimating the Prevalence of AIDS Antibodies in Blood Donors," *Journal of Statistical Planning and Interface*, 22, 15–27. [1785]

- Gastwirth, J. L., and Johnson, W. O. (1994), "Screening With Cost-Effective Quality Control: Potential Applications to HIV and Drug Testing," *Journal* of American Statistical Association, 89, 972–981. [1785]
- Hardwick, J., Page, C., and Stout, Q. (1998), "Sequentially Deciding Between Two Experiments for Estimating a Common Success Probability," *Journal* of American Statistical Association, 93, 1502–1511. [1785]
- Huang, X., and Tebbs, J. M. (2009), "On Latent-Variable Model Misspecification in Structural Measurement Error Models for Binary Response," *Biometrics*, 65, 710–718. [1785]
- Hung, M. C., and Swallow, W. H. (2000), "Use of Binomial Group Testing in Tests of Hypotheses for Classification or Quantitative Covariables," *Biometrics*, 56, 204–212. [1785]
- Li, M., and Xie, M. (2012), "Nonparametric and Semiparametric Regression Analysis of Group Testing Samples," *International Journal of Statistics in Medicine Research*, 1, 60–72. [1785]
- Linton, O., and Whang, Y. L. (2002), "Nonparametric Estimation With Aggregated Data," *Economic Theory*, 18, 420–468. [1785,1786]
- Liu, A., and Schisterman, E. F. (2003), "Comparison of Diagnostic Accuracy of Biomarkers With Pooled Assessments," *Biometrical Journal*, 45, 631–644. [1785]
- Meister, A. (2007), "Optimal Convergence Rates for Density Estimation From Grouped Data," *Statistics & Probability Letters*, 77, 1091–1097. [1785,1786]
- Mitchell, E. M., Lyles, R. H., Manatunga, A. K., Danaher, M., Perkins, N. J., and Schisterman, E. F. (2014), "Regression for Skewed Biomarker Outcomes Subject to Pooling," *Biometrics*, 70, 202–211. [1785]
- Montesinos-López, O. A., Montesinos-López, A., Crossa, J., and Eskridge, K. (2012), "Sample Size Under Inverse Negative Binomial Group Testing for Accuracy in Parameter Estimation," *PloS ONE*, 7, e32250. [1785]
- (2013), "Sample Size for Detecting Transgenic Plants Using Inverse Binomial Group Testing With Dilution Effect," *Seed Science Research*, 23, 279–288. [1785]
- Newey, W. K., and McFadden, D. (1994), "Large Sample Estimation and Hypothesis Testing," in *Handbook of Econometrics* (Vol. 5), eds. D. McFadden and R. Engler, Amsterdam, The Netherlands: Elsevier, pp. 2111–2245. [1795]
- Parzen, E. (1962), "On Estimation of a Probability Density Function and Mode," *The Annals of Mathematical Statistics*, 33, 1065–1076. [1795]
- Ruppert, D., Wand, M. P., and Carroll, R. J. (2003), Semiparametric Regression, Cambridge, UK: Cambridge University Press. [1790]
- Vansteelandt, S., Goetghebeur, E., and Verstraeten, T. (2000), "Regression Models for Disease Prevalence With Diagnostic Tests on Pools of Serum Samples," *Biometrics*, 56, 1126–1133. [1785,1792]
- Wang, D., McMahan, C. S., Gallagher, C. M., and Kulasekera, K. B. (2014), "Semiparametric Group Testing Regression Models," *Biometrika*, 101, 587–598. [1785]
- Wang, D., Zhou, H., and Kulasekera, K. B. (2013), "A Semi-Local Likelihood Regression Estimator of the Proportion Based on Group Testing Data," *Journal of Nonparametric Statistics*, 25, 209–221. [1785]
- Weinberg, C. R., and Umbach, D. M. (1999), "Using Pooled Exposure Assessment to Improve Efficiency in Case-Control Studies," *Biometrics*, 55, 718–726. [1785]
- Xie, M. (2001), "Regression Analysis of Group Testing Samples," Statistics in Medicine, 20, 1957–1969. [1785,1793]
- Zhang, Z., and Albert, P. S. (2011), "Binary Regression Analysis With Pooled Exposure Measurements: A Regression Calibration Approach," *Biometrics*, 67, 636–645. [1785,1786,1794]