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Abstract 

In training two networks on tasks that are different on the sur-
face, but similar, or even isomorphic, at a higher level of de-
scription, similarities between the network solutions are plau-
sible if not expected.  Such similarities tend to become evi-
dent when two networks with shared weights are trained on 
similar tasks.  After training, the shared weights were used as 
part of a third network that was trained on a third task similar 
to the first two.  This “head start” results in significantly 
shorter training times than a network that starts with random 
weights.  Shared hidden unit response profiles were analyzed 
across networks trained on structurally analogous tasks to re-
veal parallel, but nonidentical features. 

Background 
Experimental evidence for transfer was described early in 
the last century by Thorndike & Woodworth (1901), who 
proposed the identical elements theory of transfer. The the-
ory proposes that two different “mental functions” may 
share cognitive structures in their processing.   
 
Two events may seem similar or identical at an abstract 
level of description or representation, yet very different on 
the surface. Analogical reasoning depends upon feature ab-
straction at a level that is sufficient to subsume concrete 
features of multiple situations.  Using this higher-level rep-
resentation, a mapping can be established between features 
in the concrete instances (Gentner, 1983).  Such an analogi-
cal mapping is a mechanism, probably not unique, for trans-
fer of knowledge from one domain to another. 
 
To the extent that the structures underlying analogy can be 
represented as patterns, the connectionist framework is a 
natural approach (e.g., Holyoak & Thagard, 1988; Halford 
et al, 1993).  A distributed approach to structural mapping 
was put forward by Hummel & Holyoak (1994).  Several 
symbolic-connectionist models have addressed the process-
ing of structural mapping in the context of language proc-
essing (e.g., Mitchell, 1993). 
 
Some other connectionist models have addressed transfer 
phenomena without explicitly addressing analogy; that is, 
these models do not focus on the development of a struc-
tural mapping.  Pratt et al. (1991) demonstrated that using 
weights from a network trained on one task to initialize a 
network to be trained on a similar task could improve learn-
ing performance.  The Multi-task Learning (MTL) approach 
of Caruana (1997) demonstrated that a single network 

trained simultaneously on multiple tasks can learn faster and 
converge to a state of lower error than if it is trained on one 
of the tasks in isolation.  This reinforcement among the 
tasks depends on whether the individual tasks can benefit 
from common intermediate features. 

Identical Elements in a Network 
The central idea introduced in this paper is that a network 
can learn high-level features common to different tasks, and 
use them in learning a novel task, assuming it has similar 
high-level attributes.  This Identical Elements Neural Net-
work (IENN) approach uses simultaneous training of multi-
ple tasks, but differs from MTL in that the tasks do not 
share a common input.  In principle, the tasks can have in-
puts that have very different coding, dimensionality, etc.   
Some of the weights learned from simultaneous training are 
then used to initialize a network that is trained on a novel 
task.  These transferred weights remain fixed.   
 
The IENN approach requires more than one hidden layer.  
Only the weights between hidden layers are shared by mul-
tiple tasks, thus allowing different numbers of input and 
output units for the individual tasks.  This also enables a 
novel task to use the shared weights without interfering with 
performance on the original tasks.1   

Network Architecture and Training 
Feedforward networks were trained using backprop (cross-
entropy error).  The networks were strictly layered with two 
hidden layers.  Two inputs activated all units in the first 
hidden layer (H1), which subsequently activated all units in 
the second hidden layer (H2), which activated the sole out-
put unit.  Each hidden layer had 16 units.  Training was 
conducted in one of three modes: single network with ran-
dom initial weights, single network with prespecified 
weights between the two hidden layers, and two networks 
with yoked (shared) weights between the hidden layers. 

Mode 1: Single Network with random initial weights. 
This was the control condition for each study. Network 
weights and biases were initialized to random values, and 
trained to a time/error criterion.   

                                                           
1 An earlier version of this system appeared as a one page mem-
ber’s abstract at Cogsci ’96 (Munro, 1996).   
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Mode 2: Single Network with fixed H1-H2 weights.   
Here, weights between the two hidden layers and bias val-
ues of both hidden layers were initialized to values that were 
results of training on a different task.  These weights and 
biases were not modified during training.  Note that these 
weights were used to backpropagate errors to H1 for modifi-
cation of the input-H1 weights. 

Mode 3: Two networks with shared weights. 
In this mode, two networks are trained on different tasks 
using the same values for the weights between the hidden 
units and the same bias values for units in both H1 and H2.   
The weight parameters for the two networks from the input 
to H1 are independent, as are the weight and bias parameters 
for the output units.  Patterns are not presented simultane-
ously to the two networks; i.e. the shared layer processes 
patterns from either task during a given training step, not 
from both simultaneously. 
 
For each experiment, a network was trained on a target task 
(T) in three conditions:  

 
Figure 1.  a: Control Condition (Mode 1).  b: Pretraining 
with a single task (Modes 1,2)  c: Pretraining with two tasks 
(Modes 3,2). 
 

Control Condition (CC):  Network weights and biases are 
randomly initialized (Mode 1), and trained on a task for 
comparison with the two experimental conditions below 
(Figure 1a).   
 
Experimental Condition I (EC I):  Pretraining with a single 
task.  A network is trained with random initial weights 
(Mode 1) on a preparatory task (P).  The H1 - H2 weights 
and biases are then used as initial parameters for a network 
trained on T in Mode 2 (Figure 1b). 
 
Experimental Condition II (EC II): Pretraining with two 
simultaneous tasks.  Two networks are trained with shared 
H1 - H2 weights and biases on two different tasks (Mode 3), 
which are then used to initialize a network to be trained on T 
in Mode 2 (Figure 1c). 
 

The Tasks 
 
The tasks were all classification of regions in a two dimen-
sional space.  The two inputs were x-y coordinate values in 
the unit square.  The output unit was trained using the cross-
entropy error function to classify a region; the target value 
was 1 for inputs inside the region and 0 for inputs outside.  
Based on the intuition that topological similarity is more 
abstract than geometrical similarity, the tasks were chosen 
to be topologically equivalent but geometrically different.  

Study 1.  Closed Regions. 
All tasks here were simple convex closed regions (Figure 2). 
 

Figure 2. 

Study 2.  Annular Regions. 
All tasks in this study were annular, having two similarly 
shaped regions, one completely inside the other.  The target 
region was defined as points between the two boundaries 
(Figure 3). 

Figure 3. 
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Results 
The test set for the tasks was the entire input space ([0,1]2) 
sampled with a resolution of 0.01. Errors were averaged 
over all 10000 points.  In order to analyze the details of 
network computation, response profiles were plotted for the 
output unit on each task as well as the units at both H1 and 
H2.  These correspond to receptive field plots from studies 
of neurons in visual cortex. 

Study 1.  Closed Regions. 
Error curves were generated for the duration of the simula-
tion.  Figure 4 shows error curves for Task T in the 3 condi-
tions: control (a), using H1 and H2 weights from a network 
trained on task P alone (b) and using H1 and H2 weights 
from shared training on Tasks P and Q together (c).  Note 
that all three curves converge to approximately the same 
low error value, but that transfer accelerates the error reduc-
tion. 
 

Figure 4.  Error curves for the closed region.  Each curve is 
an average over 5 trials. a. Task T alone (control)  b. Task T 
using weights transferred from Task P network (EC I).  c. 
Task T using weights transferred from Task P/Q network 
(EC II). 
 
Response profiles generated for the output unit at 10000 
iterations and 300000 iterations illustrate the correspon-
dence between average error and the shape of the boundary 
predicted by the network (Figure 5). 
 

      
Figure 5.  Output unit response profiles at 10000 iterations  
(left) and 300000 iterations (right). 

Response profiles of hidden units at both H1 and H2 were 
also examined.  Sample response profiles from networks 
trained on tasks P and Q with shared weights are shown in 
Figures 6 and 7.  Note that the left and middle profiles in the 
two figures are from the same H1 and H2 units in the shared 
weight matrix.  The response profiles are different because 
the input-H1 weights are trained independently.  But for 
both tasks, the boundary in the H1 profile approximately 
corresponds to a significant portion of the H2 boundary.  
Also, note that the shading is reversed; the 1 (white side) is 
opposite in the H1 and H2 profiles.  This reversal occurs for 
both figures since they share the same negative weight value 
between the hidden layers. 
 

      
Figure 6.  Response profiles from a network trained on the 
square task (P).  Left: an H1 unit.  Middle: an H2 unit.  
Right: the output unit.   
 

    
Figure 7. Response profiles from a network trained on the 
triangle task (Q).  Left: an H1 unit.  Middle: an H2 unit.  
Right: the output unit.  The H1 unit and H2 unit are in the 
same position as those in Figure 6 with respect to the shared 
weights. 
 

Study 2.  Annular Regions. 
The three error traces in Figure 8 correspond to those in 
Figure 4.  Note that these traces to not seem to converge to a 
common value.  In the control condition the curve seems to 
keep decreasing (a), while the curves for the experimental 
conditions appear to converge to distinct values. 
 
Response profiles of the output unit for tasks P, Q, and T 
show a progression in task complexity during the course for 
learning that resembles that seen as one progresses through 
layers of the network (Figure 9).  The shapes of the response 
profiles in the early/intermediate stages (left column) do not 
all show the same degree of complexity.  The square annu-
lus seems to be at a more advanced stage than the triangle 
and the circle.  Of course, this can be attributed to the dif-
ferences in the tasks, but the differences are also due to the 
random weight initialization. 
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Figure 8.  Error curves for the annulus.  Each curve is an 
average over 5 trials. a. Task T alone (control)  b. Task T 
using weights transferred from Task P network (EC I).  c. 
Task T using weights transferred from Task P/Q network 
(EC II). 
 
 

    
 

     
 

     
 
Figure 9.  Intermediate response profiles for the three annu-
lar patterns (left) and final response profiles (right).  The 
sharp curves indicate the boundaries used to generate the 
training data.   

Discussion 
The weights in feed-forward networks can encode task in-
formation that can be utilized by related tasks.  The results 
demonstrate that weights shared between networks trained 
on similar tasks encode the common aspects of the tasks. 
Thus, the shared weights come to encode the common ab-
stract features when simultaneously trained on task pairs 
that are similar at a high level of description and dissimilar 
on the surface. 

Examination of the response profiles from certain units in 
both hidden layers shows a progression in complexity simi-
lar to the receptive fields of simple and complex cells in 
visual cortex, first described by Hubel & Wiesel (1962). 
Units in the H1 layer can only form linear boundaries.  
Complexity at the output layer is determined by the task and 
constrained by the network structure.  Examination of H2 
response profiles seems to indicate that they compute func-
tions of complexity that is intermediate between H1 and H2.  

Unlike observations in visual cortex, however, the response 
properties here are task dependent, since the input-hidden 
weights are independently trained for the different tasks.  
Response profiles from a given H2 unit can be composed 
from H1 response profiles for a given task  (as in Figures 6 
and 7).  Since the same H1 - H2 weights and biases are used 
to compute a different task, the response profile for the same 
H2 unit should be composed from the same H1 units, even 
though the response profiles are very different. 

The error traces from Study 2 (Figure 4) for the three ex-
perimental conditions shows that transfer from a single task 
speeds learning, but that the control condition eventually 
catches up.  Transfer from a set of weights that were shared 
by tasks learning two tasks that were not identical but had 
features in common with each other as well as the target 
task, clearly increased learning speed even more.  This sup-
ports our hypothesis that shared weights between networks 
trained on multiple tasks tend to encode features shared by 
the tasks.   Thus, this may be a mechanism for abstraction of 
high level features and transfer to other tasks.  

The error traces for Study 2 (Figure 8) also show a progres-
sive speedup from the control condition to the single task 
pretraining to the double task pretraining.  However, there 
are also some important differences.   Rather than converg-
ing to the same error, these curves converge to different 
values.  This difference is explained by the increase in com-
plexity relative to Study 1.  When all network parameters 
are adjustable, the network can find a state of minimum 
error.  However for this more complex task, the adjustable 
parameters are not sufficient to reduce the error as much as 
in the control case.  So while pretraining with a single task 
(Figure 8, trace b) gives faster learning, the final state has a 
higher average error.  With a larger number of hidden units, 
the system would be expected to reach an error state as low 
as the control condition.  Presumably for that system, there 
would exist another task of even higher complexity that 
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would “break” the system for fixed weights between the two 
hidden layers. 

Pretraining on simultaneous tasks (EC II) shows even faster 
learning than does pretraining on a single task (Figure 8, 
traces b and c).  It also gives a lower error in the final state, 
however not as low as the control condition.  This can be 
explained as follows.  As in EC I, the information in the 
pretrained weights is initially beneficial, but eventually they 
limit learning since they are not modifiable.  The better as-
ymptotic performance of EC II is consistent with the notion 
that the shared weights encode more abstract features that 
are more relevant to the target task. 

Of course, one should tread very lightly when making infer-
ences about neural function based on a connectionist model.  
With this caveat in mind, let us consider what insights can 
be extracted from IENN with respect to how the brain im-
plements analogical reasoning.  Examination of the simula-
tions suggests that an individual neuron may play a role in 
different computations, and that its response properties may 
change drastically from one computation to another.  How-
ever, if the computations have similarities at some level of 
description, they can take advantage of the same neural cir-
cuits.   

Furthermore, we make the following conjecture.  If two 
neural circuits are learning different tasks, overlapping 
components of those circuits will tend to encode common 
features of the tasks.   

This idea does not explain how one of the input streams to 
the shared weights and synapses does not generate a re-
sponse in the wrong output stream.  For example if this 
model is taken literally, an input to the channel trained on 
Task T could elicit a response from the output units trained 
on Task Q.  On the one hand, this can probably be handled 
by a mechanism (neural, of course) for maintaining the con-
text of the input.  Perhaps some direct connections from the 
input to the output would be sufficient.  On the other hand, 
some crossover is potentially a very powerful mechanism 
for establishing corresponding elements of analogical struc-
tures.  Ideally, there is some crossover that will enable rea-
soning about one situation to inform reasoning about an-
other situation, but the crossover is controlled somehow so 
that context is preserved. 

A very similar network architecture was constructed by Di-
enes et al. (1999) using a modification of Elman’s (1990) 
simple recurrent network, or SRN.  Here, an SRN with two 
hidden layers was trained to learn an artificial grammar (as 
in Cleeremans et al., 1989).  This research demonstrated the 
usefulness of weights from a previous task.  In their experi-
ments, the two tasks were structurally itentical.  They dem-
onstrate an increase in performance by the second network 
over the first.  Interestingly, comparison of the modifiable 
layers from the two networks shows correlated but non-
identical weight matrices.  

Conclusions 
Consider the following framework for neural implementa-
tion of analogical reasoning: 

• Different tasks are learned in cortical circuits or path-
ways that may partially overlap.  Some of the neurons 
in overlapping circuits come to compute features that 
support both tasks (high-level abstraction of concepts). 

• These same features may have general utility as compu-
tational elements in a larger class of tasks (transfer to 
novel tasks). 

• Thus, the influences that determine a neuron’s compu-
tational properties can be described as not only “bot-
tom-up” and “top-down”, but also “cross-task”. 

Like the MTL work of Caruana (1997), the IENN model 
demonstrates that units serving multiple tasks can develop 
response properties that serve both tasks from simultaneous 
top-down influences.  In the brain, it is expected that the 
overwhelming majority of units (if not all) are involved in 
multiple tasks. 

The ability to recognize and apply high-level analogical 
correspondences across situations seems much more highly 
developed in humans than in other species.  If the IENN 
account is a model of the neurobiological underpinnings of 
analogical reasoning, then we should look to the prefrontal 
cortex as a candidate brain structure, as others have sug-
gested (e.g. Damasio, 1989).  

The IENN approach bears extension in several directions.    
Anticipated work includes working with transfer in simple 
recurrent networks (Elman, 1990), models of transfer in 
motor learning and spatial cognition, and implementation in 
a more biologically realistic system.  We intend to go well 
beyond the work of Dienes and Altman (1999), exploring 
the interaction of tasks that are structurally similar but non-
identical. 
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