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Abstract

Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the
microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of
inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR
relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach
with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond
range. We sample and cluster the free energy landscape using Markov State Models (MSM) with major and minor exchange
states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of
slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state
that consists primarily of holo-like conformations and is a ‘‘hub’’ visited by most pathways between macrostates. These
results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic
dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals
that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the
WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-
converting conformational states and is generally applicable.
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Introduction

Protein-protein interactions are often mediated by flexible

motifs or domains that make conformational transitions on slow

(ms{ms) time scales. Flexibility helps accommodate the versatile

binding properties of interaction domains [1]. Nuclear Magnetic

Resonance (NMR) relaxation experiments have emerged as a

premier tool for revealing the location and time scale of these

transitions [2,3]. More recently, Kay and co-workers [4] have

shown that for the case of transitions between two states, NMR

relaxation dispersion can provide structural models of the minor

populated state, which is not directly observable. Also, NMR

methods to detect correlated motion are increasing [5,6], yet

remain technically challenging.

The number of NMR observables will generally only be a subset

of the total degrees of freedom of the system. To maximize data

interpretation, it is reasonable to turn to molecular dynamics

simulations. Such simulations can retain all molecular degrees of

freedom, and offer conformational ensembles that may be

evaluated on the basis of their consistency with experiment.

Current NMR spin relaxation experiments can reveal microsec-

ond-millisecond conformational dynamics in proteins on a residue-

by-residue basis [7,8]. Here, we explore the potential for the

clustering of molecular dynamics simulations to capture such

motions.

Pioneering computational studies to identify the conformations

probed by NMR relaxation dispersion include work by Ernst et al.

[9] and Palmer et al. [10]. In the latter study, analyses of chemical

shift and structural databases with SHIFTX enabled modeling of a

minor state conformation. Correlated protein motions were

studied by comparing MD simulations with NMR relaxation

and further NMR spectroscopic motions [11]. Extensive Residual

Dipolar Couplings (RDC) measurements from multiple alignment

media can aid in calculating an ensemble of conformations

consistent with the experimental data that accounts for slow

motions over a broad timescale [12,13], and are quite comple-
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mentary to relaxation data. For instance, de Groot et al. were able

to identify all known conformations of ubiquitin from an RDC-

derived ensemble [13]. Related work by Markwick, McCammon,

Blackledge and collaborators, has correlated RDC to long

Accelerated Molecular Dynamics (AMD) simulations [14].

Since resolving millisecond dynamics through very long explicit-

solvent MD is not feasible at the present time, we instead use more

efficient ways of generating a kinetic model. Markov State Models

(MSM) are kinetic graph models with n nodes representing

metastable, or long lived states that partition configuration space,

and edges representing transition probabilities among states. MSM

directly incorporate heterogeneity of pathways in protein dynam-

ics, and allow ‘‘parallelization’’ of the kinetic estimation by

breaking the problem of estimating conformational transitions.

MSM can be built by simulating an ensemble of MD simulations

out of multiple metastable states. Recent work has shown

quantitatively the advantage of constructing equilibrium ensem-

bles by starting relatively short simulations from different starting

points in configuration space [15–17]. To be able to estimate

transition probabilities it is important that these simulations

preserve dynamical information, even though one can use Monte

Carlo schemes such as replica exchange (REMD) to identify some

initial, putative states from which to shoot MD simulations. An

attempt at creating a Markov model from REMD using the ansatz

that kinetic transitions are allowed (guessed) between states that

have sufficient structural similarity has been used to study protein

folding pathways [18].

Specifically, we construct a hierarchical representation of the

free energy landscape by clustering Markov State Models into

exchange states that correlate well with the NMR experiments.

The correlation between states from simulation and NMR

relaxation experiments is achieved through chemical shift

computations. These states form an ensemble of inter-converting

metastable macrostates and rapidly converting microstates.

Critically, since the simulations are unrestrained, they enable a

nearly unbiased identification of metastable states, their intercon-

versions, and their populations. Furthermore, the correlation with

NMR provides a novel way of determining important parameters

of the MSM, such as the number of macrostates needed.

We illustrate our approach on the conformational dynamics of

the Pin1-WW domain. WW domains are a family of modular

recognition domains that mediate protein-protein interactions in

cell signaling networks. These compact domains (38–40 residues)

contain two conserved tryptophans (W) spaced approximately 20

residues apart. They function as interaction domains of polypro-

line II helix motifs on the surfaces of other proteins [19]. WW

domains are recruited by numerous cell signaling proteins

implicated in cancer, Alzheimer’s disease, Huntington’s disease,

muscular dystrophy, and Liddle’s Syndrome hypertension [20].

Figure 1B shows the structure of the Pin1-WW domain. WW

domains share a common three-stranded b{sheet architecture;

yet, they display different binding preferences, which have been

attributed to the sequence variability of a flexible binding loop

between b{strands 1 and 2 (Loop 1, residues 11 to 16 according to

sequence numbering of PDB 1i6c). This has motivated numerous

studies of the Loop 1 to better understand its biophysical properties

[21]. Recently, Peng et al. investigated the backbone NH dynamics

of Pin1-WW, using a variety of 15N NMR spin relaxation

experiments [22]. The result was a residue-by-residue profile (33

NH bonds) of bond motion that highlighted Loop 1 residues as sites

undergoing significant microsecond-millisecond dynamics. Notably,
15N R1r dispersion experiments of Arg-12 in Loop 1 revealed

intrinsic conformational dynamics on millisecond time scale, which

decreased upon phosphopeptide ligand binding. Moreover, mutat-

ing Loop 1 simultaneously changed Pin1-WW binding affinity and

dynamics. This suggested that the Loop 1 sequence encodes

motions critical for complex formation.

In this work we consider 2 ensembles to map conformational

transitions: 55,490 short MD simulations started from configurations

obtained from a 554 ns long trajectory of apo Pin1-WW domain

(PDB 1i6c) in explicit solvent (‘‘Extended 1’’), and 250 longer MD

simulations (120ns in average) started from random configurations

out of the same original long simulation (‘‘Extended 2’’). From these

simulations we construct a Markov State Model (MSM) with 1,000

rapidly converting microstates and 40 metastable macrostates. We

further cluster the MSM macrostates to build major and minor

exchange states that correlate very well with NMR Rex values, which

measures the excess transverse relaxation arising from conforma-

tional exchange. Chemical shift calculations are used to compute

correlation to Rex. H-bond network information is used to guide the

clustering of macrostates into exchange states (see Methods).

Analysis of these MSM using network theory reveals the

presence of basins visited by most pathways among macrostates,

i.e., ‘‘kinetic hubs’’. The main kinetic hub consists primarily of

holo-like structures, close to the structure of Pin1-WW bound to

CDC25 (PDB 1i8g). This suggests the pre-existence of conforma-

tional equilibria in the intrinsic dynamics of the apo Pin1-WW,

which includes slow transitions between apo versus holo

conformations. There is no a priori reason why this should be

so: the slow motion could have been between 2 states that are not

competent to bind substrate. This lends further credence to the

idea that intrinsic, slow protein dynamics are often functionally

relevant [13,23]. While MSM have also been used for analysis of

folding pathways for Pin1-WW [17], to the best of our knowledge

they have not been used for the study of intrinsic, functional

dynamics of Pin1-WW.

Finally, we analyze simulation data using a thermodynamics-

based mutual information metric to find pairs of residues with

correlated conformations in the conformational ensemble. In a

conformational ensemble, it does not matter whether one residue

moves, then another, so we can use correlated conformations and

correlated motions interchangeably, as no time offsets are used. This

approach provides an analysis of correlated motions that is

Author Summary

Proteins in their native state can adopt a plethora of
shapes, or conformations; this conformational plasticity is
critical for regulation and function in many systems.
However, it has remained difficult to determine what
these different conformations look like at the atomic level.
We present a novel way to use Nuclear Magnetic Re-
sonance, Molecular Dynamics Simulations, and Markov
State Models to uncover a map of this plethora of
conformations that is consistent with the available data.
We applied this method to study the intrinsic dynamics
used in substrate binding by the WW domain of the Pin1
proline cis-trans isomerase and found that the NMR data
were best explained by two slowly-interconverting sets of
many metastable conformations rather than two distinct
macrostates. Substantial value is added to the NMR data
by our method since it provides a kinetic ‘‘map’’ of
conformational changes consistent with the observed
relaxation data. Such an approach, in combination with
information theory, helped us to identify specific confor-
mational changes that might couple substrate binding at
the Pin1 WW domain to the catalytic subunit.

Modeling Conformational Ensembles in Pin1-WW
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complementary to NMR Rex measurements. We find that Loop 1

residues form a cluster that is correlated with key residues that lie in

the catalytic domain interface. These correlations are mediated by

some residues in the b2{b3 loop (Loop 2), providing mechanistic

insight into how Loop 1 dynamics may affect function of Pin1.

Methods

Nuclear Magnetic Resonance
The motions of the backbone NH bonds of Pin1-WW at 278K

were previously characterized via Lipari-Szabo ‘‘model-free’’

analyses [24] of 15N relaxation parameters. NH bonds experienc-

ing slow ms{ms dynamics were those yielding significant Rex

values after the Lipari-Szabo analyses. Rex is the excess transverse

relaxation caused by modulation of the 15N chemical shift that

results from underlying ms{ms dynamics.

Arg-12, Ser-13, and Gly-15 gave large Rex with Arg-12 showing

the largest contribution (1:5s{1). These Rex values did not

represent the full extent of exchange-broadening, due to the

narrow inter-pulse delays in the R2 Carr-Purcell-Meiboom-Gill

(CPMG) experiments. Later, complementary R1r relaxation

dispersion measurements [3] on resonance with Arg-12, showed

that the Arg-12 Rex reflected a two-state dynamic process

involving major and minor states, with a minor state population

pminor~0:3+0:03, a net exchange rate constant kex~25+4s{1,

and a chemical shift difference of dminor~2:5+0:2ppm between

the two putative states [22].

An approximate expression relating Rex to chemical shift

difference and exchange rate constant for fast exchange and on

resonance with the major species is [3]:

Rex~a
pminor(1{pminor)d

2
minor

kex

, ð1Þ

where dminor is the chemical shift difference between the major

versus minor state, kex is the two-state rate constant, and a is a

fraction that accounts for the partial quenching of exchange

during the CPMG spin-lock. While the above Rex expression is

only approximate, it is sufficient to define the relative extent of

exchange along the protein sequence.

The experimental NMR data were well fit by established two-

state models [3,25] and the number of NMR observables did not

justify more complex models. Generally, based on relaxation data

alone, the inadequacy of two-state exchange scenarios can be

difficult to assess, unless the constituent exchange processes have

highly divergent time-scales. Since kex and a cannot currently be

obtained from the simulations, we only look for correlations of the

relative Wex of each residue with respect to the Wex for Arg-12. The

Wex estimator is computed as

Wex~pminor(1{pminor)d
2
minor: ð2Þ

We investigated different ways of clustering results from MD

simulations to obtain definitions of major and minor exchange

states such that

Correlation(Wex,i=Wex,12,Rex,i=Rex,12) ð3Þ

is maximized. The chemical shift difference dminor in Eq. (2) is

estimated as the difference of the chemical shift means for the

major and minor state. The chemical shift for each conformation

is estimated using SHIFTX [26], as described below.

Molecular Dynamics Simulation
Simulation of human Pin1 WW domain (PDB code : 1I6C) has

been carried out with the CHARMM 27 force field using NAMD

2.6 [27]. The peptide has a total of 39 residues. Since we are

Figure 1. Correlated motions couple the catalytic domain interface to the substrate-binding loop of Pin1’s WW domain. The WW
domain is shown in cartoon and sticks, the catalytic domain as a surface, and the substrate in spheres. The structure shown is from PDB entry 1F8A.
Only the WW domain was simulated; the catalytic domain is only shown for reference. (A) Hierarchical clustering of the mutual information between
residues’ torsions identifies several functionally important groups of residues. (B) Most residues in the red cluster lie in the catalytic domain interface
and are correlated with residues in magenta cluster, which includes a number of key substrate-binding residues. All residues exhibiting slow motions
in NMR experiments are in either the red or magenta clusters. (C) Mutual information between C{a atoms complements torsional analysis and
importantly captures correlated motions of secondary structure elements, highlighting correlated motions between the first b{strand (residues 7–9)
and Loop 1 (residues 10–16), between the first b{strand and the second b{strand (residues 17–21), and between the C-terminal part of Loop 2 and
the beginning of the third b{strand (residues 23–26) and the rest of the protein.
doi:10.1371/journal.pcbi.1001015.g001

Modeling Conformational Ensembles in Pin1-WW
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interested in long time scale dynamics of Loop 1 as well as on

being able to match the experimental setup, we removed 6

residues from the C-terminus (residues 34–39). The peptide is

solvated with TIP3P water. We added a layer of 7s water around

the protein. The solvated system has 4,958 atoms. The size of the

periodic box containing the system is 36.4s/40.1s/33.7s. The

system was minimized and equilibrated using NAMD 2.6. We

equilibrated the system using NPT ensemble until no significant

change in potential energy or RMSD was observed.

After equilibration, we ran simulation in canonical ensemble

(NVT) for 554ns. We used a Langevin thermostat for temperature

control. A cutoff of 12s was used for calculating non-bonded

interactions. A C2 switching function for Lennard-Jones was

applied starting at 10s. Pairlist calculations were done at 14s

every 10 steps. We used SHAKE to constrain bonds in water

molecules as well as the bonds to hydrogen in the peptide. A time

step of Dt~2fs was used for updating the positions and velocities.

Bonded and short-range non-bonded interactions were calculated

once every 2fs. Long-range electrostatic interactions using particle

mesh Ewald (PME) were calculated once every 4fs, using an 1s

grid spacing. We ran the simulation at target temperature

T~278K to match the experimental setup. We used a coupling

constant of c~10ps{1 for heavy atoms. We recorded the system

coordinates every 20ps during the simulation.

From this trajectory, called T1, we obtained 27,745 frames.

Analysis of T1 indicated that more sampling was required for

proper identification of major and minor states of the system and

to correlate with NMR Rex (see below). One way to solve this

problem would be to run many microsecond trajectories with

same starting position but different initial velocities. However,

generating many microsecond trajectories requires a very long

time.

Extended 1. We used a different simulation protocol to

enhance sampling while exploiting parallelism. Let us assume that

ith frame from trajectory T1 is xi. Enhanced local sampling

around xi can be achieved by running m (mw1 is an integer and

finite) simulations Ti,k,k~1, . . . ,m starting from xi with different

initial velocities. We ran each of these simulations for 20ps. We

stored system positions at every 2ps. One advantage is that each

Ti,k is independent and can run concurrently with each other. We

collected 1,105,760 samples of the system, each 2 ps apart, that we

call Extended 1.

Extended 2. We performed local sampling with fewer but

longer trajectories. We picked a set of 125 conformations

randomly from the set of all 27,745 frames. We ran 2

trajectories with different initial velocities from each of these 125

frames. On average, we ran each of these trajectories for 120ns.

We stored the system positions once every 20ps. We collected

1,513,394 samples of the system, that we call Extended 2. Note that

the latter’s aggregate sampling is approximately 15 times the

length of Extended 1’s.

Chemical Shift Calculation
Chemical shift values for all the residues in the MD simulations

are needed for estimating Wex, and are calculated using SHIFTX

[26]. This software predicts chemical shifts from atomic coordinate

data using classical equations that take into account ring currents,

H-bonds and electric fields as well as hypersurfaces obtained from

databases of observed chemical shifts. SHIFTX receives as input

PDB coordinates or DCD trajectories and estimates the 15N
chemical shift of atoms in the side chains or backbone. We used

SHIFTX to get diamagnetic chemical shift values for each residue

of Pin1-WW domain for all frames from Extended 1 and Extended 2

simulation datasets.

Markov State Model Construction
We built Markov State Models (MSM) out of the simulation

data using the MSMBuilder package [28]. In this approach, one

needs a criterion for clustering into microstates. Based on the

evidence from NMR relaxation and structures of apo and holo

WW, we focused on Loop 1 conformations to define different

microstates. The rationale is that the b{sheets are relatively

rigid and do not greatly contribute to conformational plasticity

of intrinsic apo dynamics. We assume that Loop 1 conformations

within a 3s RMSD can interchange rapidly and thus are justified

to belong to the same microstate. The approximate k-centers

algorithm is used to create clusters of equal volume. In this work, it

was enough to use 1,000 microstates to obtain a spread of 3s on

average.

The microstates are then furthered clustered into kinetically

related states called macrostates. Using a transition probability

matrix between microstates, for varying time lags, an MSM is

constructed. The Perron Cluster Cluster Analysis (PCCA) uses the

eigenvalues and eigenvectors of the microstate Markov state

models to determine common kinetic features between microstates

and cluster them in related groups. Finally, simulated annealing is

used to maximize metastability and refine the macrostates

obtained by PCCA. Metastability is the probability of staying in

the same state after a lag time. We built MSM for varying

numbers of macrostates, from 2 up to 40. One novel feature of our

approach is that we used we used the correlation to Rex as

explained below to determine the number of macrostates needed.

We constructed an initial MSM using the undersampled dataset

Extended 1 and then we added the long trajectory data to this

MSM, as suggested in [28,29]. The MSM model was validated

using standard methodologies, primarily by searching for a

stationary distribution (Chapman-Kolgomorov test) and by

looking at intrinsic time scales, cf. [30]. Some of the implied time

scales for the MSM using 40 macrostates are shown on Figure S1.

They present a Markovian behavior within statistical error for the

slowest time scales. For the case of the WW transition matrix T,

the stationary distribution p (see Figure S2) contains two

macrostates of higher probability (numbers 9 and 38) than the

rest of the macrostates. One interesting observation is that one of

these attractor-like states (Macrostate 9) is an intermediate state, in

RMSD sense, with respect to holo and apo structures. The

transition matrix is given as supplementary Dataset S1 for the

Extended 1 dataset and as supplementary Dataset S2 for the Extended

2 dataset.

Note that the free energy basin of Pin1-WW, as that of most

proteins, is hierarchical, and thus there are many possible numbers

of states for an MSM that can be chosen. However, it is important

to note that only using 2 macrostates for the MSM gave a low

correlation to the NMR Rex, suggesting that using metastability

alone may not be optimal for correlation to experiments.

Conformational Exchange State Identification
We aim to identify major and minor exchange states from the

simulation that maximize Eq. (3), and hence provide a connection to

the NMR relaxation. We investigate three ways of identifying major

and minor states: (1) Use of hydrogen bonding information; (2)

clustering into 1,000 microstates and 2 macrostates of an MSM; (3)

A hybrid method that uses chemical shift and hydrogen bonding

information to accomplish further hierarchical clustering of the

MSM, with 1,000 microstates, 40 macrostates, and 2 exchange

states.

Method 1. Hydrogen bond (H-bond) reorganization has been

proposed to affect protein slow dynamics, since correlated motions

can be propagated through H-bond networks. This has been

Modeling Conformational Ensembles in Pin1-WW
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supported by the identification of a correlated polar network

connecting ligand binding sites in interleukin-2 [31], and by

studies of interstrand H-bonds in protein G [5] and loop H-bonds

in a WW domain [22]. Based on this evidence, we hypothesize

that H-bonds that are present in the Loop 1 of Pin1-WW are

intrinsically related to the slow conformational exchange observed

in NMR relaxation experiments.

We use the definition in Eq. (2) in a state search algorithm that

aims to maximize the correlation between the calculated loop Wex

and the experimental Rex, according to Eq. (3). We define a

correlation function r(Rex,Wex) as the Pearson correlation

coefficient between vectors Rex and Wex where fRex,Wexg[Rn

with n as the number of residues in the WW domain Loop 1.

Furthermore, Ri
ex and Wi

ex for i[f1 . . . ng represent the Rex and

Wex parameters for each residue in the Loop 1 of the WW domain,

respectively. We can state our maximization problem as:

fA,Bg~ argmax
a,b

r(Rex,Wex(a,b)) ð4Þ

where fa,bg are the sets of trajectory frames with corresponding

H-bonds in both, the state with smaller population (minor) and the

one with the largest population (major), states that produce the

estimated Wi
ex for each residue i. Using the chemical shift

calculations and hydrogen bonds as described in the previous

section (see Table S2 for a list of H-bonds found for Pin1-WW

domain), Algorithm S1 is used to obtain the states that maximize

the correlation function r(Rex,Wex(a,b)).

The output of this method is a partition of 2 sets of

conformations (A and B) in the simulated trajectory for which

we are able to compute chemical shift values. These sets represent

an ensemble of domain coordinates giving rise to both the minor

and major species in the Wex calculation. In this context,

d2
minor~(CSmajor{CSminor)

2, where CSmajor and CSminor are the

mean chemical shift values for all the frames present in a and b. A

fair correlation can be obtained (See Results).

Method 2. The conformations identified using H-bond

information have no explicit relation to the free energy

landscape. Thus, it is natural to compare that clustering to using

macrostates coming from an MSM. We used MSMBuilder as

described above to create the MSM. Results below show that using

1,000 microstates lumped into 2 macrostates in the MSM gives a

poor correlation with the NMR Rex, suggesting that the two inter-

converting states inferred from the NMR experiments might

consist of multiple metastable conformers.

Method 3. There is evidence that the free energy landscapes of

proteins are hierarchical [29,32]. Thus, there may be several basins

even if the precision and sensitivity of the experimental data only

justifies using a 2-state kinetics model [33,34]. We attempt to bridge

the gap between potential multi-state kinetics from simulation to 2-

state kinetics from experiment. First, we produce an MSM with

more than 2 macrostates, and cluster these macrostates into 2

clusters attempting to maximize Eq. (3). Algorithm S2 describes this

procedure. To reduce the search space for the combinations of

macrostates that form the minor and major states, Algorithm S2

assumes that the minor state will contain only combinations of

macrostates that have at least one of the relevant H-bonds identified

by Algorithm S1. We choose a number of macrostates for the MSM

whose clustering into 2 exchange states gives a sufficiently high

correlation according to Eq. (3).

Betweenness Centrality Analysis of MSM
We constructed a coarser representation of the kinetics in the

network using applied graph theory. Betweenness centrality (BC)

measures the presence of a node or an edge in the shortest paths

between pairs of nodes of a weighted graph [35]. It is defined as:

BC(n)~
X

v[V,v=a,v=b

sa,b(n)

sa,b
, ð5Þ

where sa,b denotes the number of shortest paths of the weighted

graph between nodes a[V and b[V and sa,b(n) denotes the

number of shortest paths where node n can be found. Following a

similar criterion we can compute the betweenness centrality

measure for all the edges in a network.

To convert the MSM to a weighted graph amenable to

computing shortest paths, we transform Ti,j , the transition

probability among MSM states i and j, to a ‘‘free energy,’’ or

{ln Ti,j . For a fixed length path between 2 macrostates, the

minimum free energy path will minimize the sum of its edges. This

assumes that the residency time in each metastable state is

comparable, which is one of the goals of the MSM building

procedure, although in practice one could also include residency

times in estimating shortest paths. Thus, the problem of finding the

minimum free energy or most probable paths is reduced to that of

computing shortest paths. We computed BC for all the edges in

the MSM and reconstructed a dynamic ‘‘backbone’’ network of

the most relevant pathways by greedily adding the edges with

highest betweenness. These edges are visited by the largest number

of distinct highly-probable trajectories among pairs of macrostates.

The algorithm stopped once a connected network with all 40

macrostate nodes is produced.

Recent work [17] has applied Transition Path Theory (TPT)

[36] for the computation of the folding flux, defined as the net flux

of folding trajectories leaving the unfolded and entering the folded

set, and also allows identification of pathways that are most

kinetically relevant. This is an alternative method to our

betweenness centrality analysis to identify a dynamic ‘‘backbone’’

network.

Correlated Motions
To identify correlated motions beyond those that were studied

by NMR relaxation, we use the ‘‘MutInf’’ method [31] to quantify

correlations between residues’ conformations from equilibrium

simulations. Briefly, this method calculates the mutual information

between pairs of residues using backbone and side chain torsions

and applies statistical corrections and tests of significance for the

mutual information values. It then clusters the matrix of mutual

information between residues to identify groups of residues

showing similar patterns of correlations. We followed the same

protocol as the previously published method [31], with modifica-

tions described in the Text S1. Most notably, we filtered out

snapshots in which the WW domain’s heavy atoms were within 5s

of those a periodic image. This was needed because our simulation

box was rather small.

Results

Exchange State Identification
Hydrogen bonding rearrangements are important

descriptors of slow conformational change. We use

Methods 1–3 below to identify inter-converting ensembles of

structures that can provide a model of conformational dynamics

consistent with the NMR exchange data. Method 1 identified

major and minor exchange states with high correlation for

the whole domain (protein): rprotein~0:903 with a p-value

pprotein~5:86e{17 and rloop~0:888 with a p-value of

Modeling Conformational Ensembles in Pin1-WW
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ploop~0:018 (See Figure S3 for individual residue estimation). The

positive correlation suggests that H-bonds are distinguishing

descriptors of the conformational states. Algorithm S1 identified

unique H-bonds present within the minor conformational state

(Table S3), thereby pointing to H-bond reorganization as key

processes comprising the slow WW domain dynamics.

Simulation data is best explained by a multiple state

network model. Since the experimental NMR data were fit to

two-state models, we used Method 2 to construct an MSM with

two macrostates. The macrostates were derived by lumping 1000

microstates. These two macrostates gave low correlation:

rloop~0:442 with a p-value of ploop~0:379 and rprotein~0:351
with a p-value of pprotein~0:045 (Eq. (3)). Figure S4 compares this

two-state MSM Rex against experimental data. Thus, a two-

macrostate model does not capture the full conformational

plasticity of Pin1-WW.

We tested Method 3 using the same 1000 microstates, but

lumping into different numbers of macrostates. The number of

macrostates that produced statistically significant results is 40

(Figures 2 and S6). Using these 40 macrostates, with an average of

37,834 conformations per macrostate, we created two exchange

states. To reduce the search space needed to cluster the macrostates,

the presence of H-bonds is employed by Algorithm S2 (Table S3).

Macrostates with conformations containing these H-bonds were

preferentially assigned to the same exchange state. This results in a

minor exchange state, consisting of 2 macrostates (28 unique

microstates), and a major exchange state, consisting of the

remaining 38 macrostates (972 unique microstates) of the MSM.

Figure 3 shows the residue-specific correlation using Method 3.

The correlation for the loop is rloop~0:993 with a p-value of

ploop~5:83e{5, and correlation for the whole protein is

rprotein~0:965 with a p-value of pprotein~9:61e{20. The states

obtained have populations of 1,345,881 (89%) and 167,513 (11%)

for the major and minor states, respectively. These populations are

not too far from the experimental values of 0.7 and 0:3+0:03.

The discrepancy may be an indicator that the model estimation

could benefit from longer timescale sampling: it is possible that the

right major and minor states have been discovered, yet the minor

state has not been sufficiently visited since the experimental

timescales are longer than our simulation timescales.

We could attempt to search for the exchange states out of more

macrostates in order to try to obtain better statistical agreement.

However, the combinatorial complexity of the correlation

maximization algorithm is the main limitation. For 40 macrostates

the algorithm takes several hours while expanding the set to 60

macrostates would require months of computation. This expo-

nential increase in complexity can be seen in Figure S7 where

complexity relative to maximizing correlation for 40 macrostates is

depicted. Besides, we considered that the statistical significance we

achieved with 40 macrostates, with p values around 1e-20, would

be only marginally improved.

These results suggest that the hierarchical structural ensembles

with inter-converting macrostates and rapidly converting microstates

can explain the exchange data. Furthermore, these results stress the

distinction between ‘‘states’’ versus ‘‘structures’’. ‘‘Structures’’ are

neighborhoods around local free energy minima (metastable or

stable) in conformational space, while ‘‘states’’ are subsets of

Figure 2. Correlation obtained by producing exchange states
out of clustering different numbers of macrostates for the
1,000 microstate MSM. This plot reflects the dependence on the
number of macrostates in our MSM model to achieve a maximum
correlation (y-axis) and more statistically significant p-values. A MSM
with 40 macrostates achieved the best partition that correlated
significantly with experiment.
doi:10.1371/journal.pcbi.1001015.g002

Figure 3. Correlation of Rex,i=Rex,12 to Wex,i=Wex,12 for a Markov State Model of apo Pin1-WW dynamics. For the two data sets of different
lengths, Extended 1 (1 ms) and Extended 2 (30 ms), a statistically significant correlation was achieved for 40 macrostates. Bootstrapping was used to
compute statistical error for the estimated Wex,i , the error bars are smaller than symbol size.
doi:10.1371/journal.pcbi.1001015.g003

Modeling Conformational Ensembles in Pin1-WW

PLoS Computational Biology | www.ploscompbiol.org 6 December 2010 | Volume 6 | Issue 12 | e1001015



conformational space that may include one or more such minima,

but share a common chemical feature (e.g. chemical shifts or

hydrogen bond patterns). Importantly, the minor state is composed of

Macrostates 16 and 26; though their Loop 1 conformations are

different, they both share a high degree of internal hydrogen bonding

(Figure 4). Here, the major and minor exchange states each consist of

multiple macrostates. Since the macrostates represent slowly-

interconverting neighborhoods of conformers, it is very useful to

use a single representative structure for each macrostate.

MSM Network Analysis
Since the MSM produced is too fine-grained for human

interpretation, we used the betweenness centrality analysis (see

Methods) to produce a dynamic ‘‘backbone’’ network (most relevant

pathways) for apo dynamics of Pin1-WW domain (see Figure 5). To

compare with the experimental WW domain structures we

computed the RMSD of each of the 40 representative macrostates

with respect to apo Pin1-WW (PDB 1i6c) and holo Pin1-WW (PDB

1i8g). The structures were aligned with respect to the b{sheets and

then the Loop 1 RMSD was calculated.

‘‘Invisible state’’ is a kinetic hub. Figure 5 uses a metric

that ranges between 21 and 1 to color code the macrostates (the

network ‘‘nodes’’), where 21 and blue indicates a very apo-like

structure and 1 and red a very holo-like structure (see Text S1 for

metric definition and Table S1 for RMSD input values). Structural

intermediate nodes are purple. Three key nodes emerged: (i)

Macrostate 9, with a representative structure that is structurally an

intermediate between holo and apo, is the most populated

macrostate (32.7%); (ii) Macrostate 38, which is apo-like and the

second most populated macrostate (20.1%); and Macrostate 16,

which is holo-like, and though only moderately populated (6.6%), is

the ‘‘kinetic hub’’, i.e. the most central node in terms of betweenness

of this kinetic network. This means that transition pathways from any

macrostate to another will visit Macrostate 16 with highest

probability. Macrostates 9 and 38 are also two attractors in the

stationary distribution of both the long and the undersampled MSM

transition matrix (see Text S1). Video S1 and Figure S5 show

representative structures and populations for each macrostate. Key

backbone and sidechain dihedral values of the most representative

structures for each macrostate are found in Text S1. We also

generated a dynamic ‘‘backbone’’ network using the undersampled

‘‘Ensemble 1’’. Figure 6 shows this spanning tree containing 40

macrostates where node sizes are proportional to the state

populations and the width of links are proportional to the

betweenness centrality measure. Critically, the roles of Macrostates

16, 9, and 38 are maintained in MSM coming from different

ensembles, providing further evidence of the robustness of our results.

An Ensemble of MD Trajectories and Markov State
Models Enable Exploration of Long Timescales

Implicit in the results showing agreement between the Rex

computational estimator and the experimental NMR data is that we

have sampled enough conformational space. One approach to

studying kinetic events in long timescales is to generate one or few

very long trajectories. This approach is not feasible for millisecond

simulations, unless tremendous investments on software and

hardware are made. Serial simulations of this sort ‘‘waste’’ a lot of

time waiting for rare events. Often the cause is the presence of

metastability, or long-lived states. An alternative, statistical or

ensemble approach is to generate an ensemble of events in parallel.

This has been exploited for modeling two-state protein folding in

methods such as transition path sampling and in Folding@Home.

These methods are generally applicable only to two-state systems

and require simulations of an unknown minimum length. Markov

State Models (MSM) allow multiple states and efficient model of any

system exhibiting metastability. Sampling initiated from several

metastable states allows breaking up the problem of constructing the

network of interconverting states. Figure 4 in [37] quantitatively

illustrates the advantage of using many shorter simulations rather

than few longer simulations. Often, functionally important states are

also kinetically important. This has recently been found in protein

folding simulations, where the native state is a ‘‘kinetic hub’’ [38].

This is also the case in our present study, where the putative

‘‘invisible state’’ is a kinetic hub. An implication of the presence of

kinetic hubs in the underlying kinetic network is that one requires

shorter simulations to be able to map the MSM.

Our protocol to build a kinetic model benefits from these insights: it

shoots simulations out of multiple metastable states to parallelize the

model construction, and uses many shorter simulations rather than

fewer longer simulations. A second source of efficiency, seen as the

ability to interpret events happening at time scales longer than the total

amount of sampling, comes from the MSM itself. Once an MSM has

been validated, it provides a model that allows extrapolation to time

scales longer than those used to construct it. The explanation is that

once Markovian behavior has been reached, the kinetics have a

simpler form than the original molecular dynamics simulation.

To show that our approach enables extrapolation to longer

timescales, we compared the MSM state populations from 2

simulation subsets of different length. A well known measure to

compare two probability mass functions is the Kullback-Leibler

divergence or relative entropy [39] which is defined as:

KL(P,Q)~
X

i

P(i) log
P(i)

Q(i)
ð6Þ

Although not symmetric, this quantity measures the extra

information needed to represent (or encode) one distribution by

Figure 4. Superposition of representative structures for the
two macrostates (16 and 26) belonging to the Minor State. Two
different conformations of Loop 1 show a high degree of internal hydrogen
bonds. The WW domain is shown in cartoon representation, with side chains in
Loop 1 shown as sticks, and hydrogen bonds within Loop 1 are shown in
dashes. Macrostate 16 is colored wheat and Macrostate 26 is colored light blue.
doi:10.1371/journal.pcbi.1001015.g004
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using samples from the second distribution. A value of zero is

representative of identical distributions and distinct distributions

will always have increasing positive values. We used this metric to

compare the population distributions of MSM’s for both Extended 1

and Extended 2 datasets. We also compared values of these

populations against a noise set of randomly distributed populations

(Gaussian). The results are shown in Table 1. We observe values

that are much closer to zero when comparing the probability mass

functions of Extended 1 and Extended 2 than when comparing either

to the noise mass function. This provides support of the robustness

of the initial Extended 1 dataset and the results derived from these

data.

Representative Structures from MSM Macrostates Have
Similar NOE Violations to Full MD Ensemble

As an independent validation of the MSM model, we compared

the population-weighted ‘‘ensemble’’ of MSM macrostates to

NOE distance restraints for PDB 1i6c (Biological Magnetic

Resonance Data Bank [40] ID 4882, see Text S1 for more

details). This MSM ‘‘ensemble’’ is reasonably consistent with NOE

restraints for PDB 1i6c for residues 1–29, with less than 3% of

violations over 2s (Table 2). These NOE violations are typical of

studies where molecular dynamics simulations are compared to

NOE distance restraints [41]. As these distributions of NOE

violations are typical of molecular dynamics simulations started

from NMR structures [41–43], these results in combination with

the agreement with the relaxation data suggest that the MSM

ensemble of 40 macrostates serves as a reasonable proxy for the

full ensemble. Thus, we can reasonably approximate our full

ensemble with the far more human-accessible and interpretable set

of 40 representative macrostate structures (see Video S1).

Correlated Motions
Correlated protein motions are of great interest as a possible

mechanism for intra-protein communication [44,45]. Here, the

NMR studies examined the ms{ms motions of backbone NHs of

Figure 5. Betweenness centrality based kinetic network for the simulation ensemble Extended 2. In this kinetic network nodes represent
macrostates, edge widths are proportional to their betweenness measure BC. If an edge is thicker then it means that this edge belongs to several
shortest paths among pairs of macrostates. Node size depends on the macrostate population. A node colored blue is closer, in RMSD terms, to the
Apo Pin1-WW conformation and a red node is closer to the Holo Pin-WW structure. Figure created using Cytoscape [52].
doi:10.1371/journal.pcbi.1001015.g005

Modeling Conformational Ensembles in Pin1-WW

PLoS Computational Biology | www.ploscompbiol.org 8 December 2010 | Volume 6 | Issue 12 | e1001015



Loop 1. The NH motions are only a subset of the Loop 1 degrees

of freedom. Thus, while the NMR data may reflect correlated

motion, it may not supply enough information for their

characterization. Computational approaches can bridge these

information gaps. Accordingly, we investigated the possibility

of correlated motions between the Loop 1 residues and other

residues that would be invisible to the NMR experiments focused

on ms{ms motions. We used a previously reported mutual

information method, ‘‘MutInf’’, to look for statistically significant

correlated torsional motions in an unbiased way, independently of

the MSM analysis. This entailed generating a conformational

ensemble of the apo Pin1-WW domain via molecular dynamics

simulations, and then identifying pairs of residues showing

statistically significant correlated motions (see Methods and Text

S1). Critically, this approach: (i) makes no quasi-harmonic

assumptions about motions relative to an ‘‘average’’ structure;

(ii) filters out insignificant correlations; (iii) and quantifies

correlated motions in thermodynamic units. Additionally, we

applied our approach to calculate the mutual information between

Pin1-WW domain’s C{a Cartesian coordinates.
Substrate binding in Pin1 WW results in information

relay from Loop 1 to the catalytic site of Pin1 via domain

interface residues in Loop 2. To identify groups of residues

Figure 6. Betweeness centrality based backbone network for the simulation ensemble Extended 1. Macrostate 16 remains as the kinetic
hub and states 38 and 9 are also conserved as the states with larger populations. Edge weights are proportional to betweenness centrality and node size is
proportional to population. A node colored blue is closer, in RMSD terms, to the Apo Pin1-WW conformation and a red node is closer to the Holo Pin-WW structure.
doi:10.1371/journal.pcbi.1001015.g006

Table 1. Kullback-Leibler divergence between macrostates
populations for the Extended 1 and Extended 2 simulation
ensembles.

Kullback-Leibler Divergence Value

KL(Ext1,Ext2) 0.02

KL(Ext2,Ext1) 0.02

KL(Ext1,noise) 0.60

KL(noise,Ext1) 0.82

KL(Ext2,noise) 0.64

KL(noise,Ext2) 0.97

doi:10.1371/journal.pcbi.1001015.t001

Table 2. NOE violations for MSM Ensemble.

Range No. of violations Percent

No violations 300 79.16

0vviolv~1s 51 14.01

1vviolv~2s 18 4.75

2vviolv~3s 7 1.85

violw3s 3 0.79

doi:10.1371/journal.pcbi.1001015.t002
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showing similar magnitudes of correlation with other residues, we

hierarchically clustered our matrix of mutual information between

residues’ torsions (see Methods and Text S1). The cluster with the

strongest correlated motions (shown in red in Figure 1B) consists

chiefly of Loop 2 residues. In full-length Pin1, these residues lie at

the interface between the WW domain and its flexibly tethered

isomerase domain [46]. Figure 1A further shows substantial

correlation between residues in this red cluster, a blue cluster

containing four residues within the substrate-binding Loop 1, a

yellow cluster consisting of mostly hydrophobic core residues

proximal to Loop 2, and a fourth magenta cluster containing

mostly residues within Loop 1 (Figure 7). Notably, the magenta

cluster contains many basic residues that form salt bridges with the

phosphorylated substrate in a holo structure. Thus, substrate

binding would not only perturb motions of substrate binding Loop

1, but also those of the WW-catalytic domain interface Loop 2.

Focusing on the two tryptophans [47], we see that Trp29’s

statistically significant coupling with Trp6 does not appear to be

mediated by any particular proximal shared residue (i.e. not

through Gln28); rather, these two functional residues are coupled

indirectly through the intervening Loop 1 (red cluster). This is

most clearly seen by comparing the representative structures of

macrostates 21 and 22 (Video S1). Combining these results with

previous NMR studies suggests that Loop 1 can relay information

about substrate binding to the catalytic site via the domain

interface residues in Loop 2. We also analyzed the mutual

information between C{a Cartesian coordinates after removing

rotational/translational motions, and found the C-terminal part of

Loop 2 highly correlated to the rest of the protein (Figure 1C).

This Cartesian analysis complements the torsion-space analysis in

Figure 1A, and is similar to previous studies [11,48]. NMR studies

implicated methyl-bearing residues in Loop 2 (Ile-23 and Thr-24

in the red cluster) in a dynamic network of residues that show

perturbed dynamics upon substrate binding [49].

Other NMR studies showed coupled rotational tumbling of the

two Pin1 domains in the presence but not the absence of substrate

peptides of particular sequences [50]. Recently, peptides with two

Pin1 binding sites separated by rigid linkers were used to ask

whether Pin1 displays cooperative binding [51]. These studies

found that while binding at one site facilitated binding at the other

through bivalency, no significant cooperativity was observed.

However, these studies did not rule out a role for substrate binding

to the WW domain in substrate turnover at the active site. As

correlated motions are necessary but not sufficient for allosteric

crosstalk between distant sites, the functional role of this dynamic

network that connects Pin1’s active site to its WW-domain’s

substrate-binding site remains unclear and merits further study.

Discussion

We constructed a Markov State Model (MSM) to investigate the

conformational exchange dynamics detected by NMR relaxation

experiments. The MSM was built from an equilibrium ensemble

created from multiple simulations starting from different points of

Figure 7. Superposition of representative structures for all 40 macrostates shows diverse conformations of Loop 1. The WW domain
is shown in cartoon representation, with side chains in Loop 1 shown as sticks. Residues are colored in the same fashion as in Figure 1, i.e. according
to cluster membership in the MutInf analysis.
doi:10.1371/journal.pcbi.1001015.g007
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configuration space. By clustering multiple (here, 40) macrostates

from a MSM into 2 exchange states, we obtained very good

correlation with NMR Rex conformational exchange broadening,

and reasonable agreement with NOE distance restraints.

Interestingly, the 2 macrostate MSM correlated poorly with the

apparently 2-state kinetics measured by NMR. However, the

hierarchical MSM (2 exchange states with 40 macrostates)

correlated very well with experimental data. Thus, it is natural

to hypothesize that the free energy basin of apo Pin1-WW domain

is hierarchical, with several inter-converting metastable states that

give rise to an apparent 2-state exchange kinetics. Such a

hypothesis was enabled by the use of unrestrained simulations

clustered with guidance from the NMR data. The most likely

cause for masking of more subtle multi-state intrinsic kinetics is the

limited number of observables within the Pin1-WW NMR

relaxation studies. Ideally, additional relaxation studies at different

static field strengths, temperatures, ligand concentrations, or

relaxation on other nuclei might reveal the inadequacy of the

two-state fits. But acquiring this wealth of data can be prohibitive

for biomolecules of limited concentration or stability. And even if

all such spectra were acquired, detecting greater than two

exchange state can be difficult if the exchange rate constants are

of similar magnitude. These considerations underscore the need

for complementary computational approaches, such as proposed

here.

It is possible that the main metastable states have been identified

by our methodology and yet equilibrium has not been reached.

This could explain the difference in populations of the major and

minor states measured experimentally and computationally. In

other words, the simulation has discovered the minor state but has

not been able to visit it as often as the experiment due to the long

timescales. It is even possible that simulation has not really

discovered the invisible state measured by NMR. However, the

results presented here suggest a more complex kinetic picture,

where the 2 state kinetics of NMR really consists of a hierarchy of

different states. Possible improvements to the methodology,

besides using other NMR data when available, include even

longer simulations, as well as the use of estimated kinetic rates to

improve the estimator for the Rex. The use of adaptive sampling to

construct the MSM could also improve the estimation of the

transition probabilities and hence the accuracy of the kinetic

agreement.

Our study focused on a two-state clustering to best correlate

with the two-state analysis used in the NMR dynamics study. Of

course, the potential of this computation approach is to attack

other situations where a two-state model is a priori suspect. If the

computational analysis implies that more than two states are at

play, this can suggest additional NMR experiments that might

better expose the more complicated kinetic landscape.

Analysis of the betweenness centrality of the MSM transition

matrix revealed the existence of a state that is visited by most

conformational transitions between metastable states. It is

fascinating that this ‘‘kinetic hub’’ (Macrostate 16) is observed in

backbone networks of both the undersampled MSM (transition

matrix in Dataset S1) and the MSM with the complete data added

to the model (transition matrix in Dataset S2). This provides

evidence of the relevance of macrostate 16. Structural analysis of

the macrostates indicate that there are apo-like states, intermedi-

ate-states, and holo-like states. This suggests that the intrinsic

dynamics of apo Pin1-WW reflect a pre-existing conformational

equilibrium among different functional states. Our novel inter-

pretation of NMR relaxation data using molecular dynamics

simulations and Markov State Model clustering affords an

accessible model of slower Pin1 WW dynamics that is consistent

with available NMR data, and intermediate between a two-

conformation model and a more detailed ‘‘ensemble’’ of the 1000

microstates or all of the simulation snapshots. Notably, the model

goes beyond a simple list of representative structures to provide a

network (graph) model.

To study correlated motions beyond those examined in the

MSMs or even detectable by current NMR techniques, we looked

globally at correlated motions using a mutual information

approach. We find that Loop 1 motions are correlated with

motions involving a cluster of WW residues that predominantly lie

at the interface with the catalytic domain of Pin1. These correlated

motions connect Loop 1 with a previously-identified dynamic

network coupling Pin1’s WW domain and catalytic site.

A chief motivation for collecting more dynamic NMR data is to

disclose networks of inter-converting conformations relevant for

function. But such disclosure requires the appropriate computa-

tional tools. Our approach addresses this need. Moreover, it sets

the stage for a more detailed understanding of other dynamic

NMR parameters beyond the isotropic chemical shift, such as the

residual dipolar couplings (RDCs) and residual chemical shift

anisotropies (RCSAs) [4].

Our work represents a step towards building mechanistic

models of intrinsic conformational dynamics by combining NMR

relaxation experiments characterizing slow dynamics and Markov

State Models, while simultaneously identifying correlated motions

not currently observable by NMR.
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Algorithm S1 (H-bond based) Exchange State Identification

Algorithm.

Found at: doi:10.1371/journal.pcbi.1001015.s001 (0.07 MB PDF)

Algorithm S2 (Hybrid H-bond and MSM based) Exchange

State Identification Algorithm.

Found at: doi:10.1371/journal.pcbi.1001015.s002 (0.12 MB PDF)

Dataset S1 The MSM transition matrix for the Extended 1

dataset.

Found at: doi:10.1371/journal.pcbi.1001015.s003 (0.05 MB XLS)

Dataset S2 The MSM transition matrix for the Extended 2

dataset.

Found at: doi:10.1371/journal.pcbi.1001015.s004 (0.06 MB XLS)

Figure S1 Implied time scales for the MSM macrostates. The

figure shows the slowest time scale (top envelope) and the fourth

slowest time scale (bottom envelope). Bootstrapping was used to

compute error bars: the initial trajectory was split into 10 different

pieces to allow random re-sampling with replacement.

Found at: doi:10.1371/journal.pcbi.1001015.s005 (0.25 MB EPS)

Figure S2 Stationary distribution p of the transition probability

matrix T.

Found at: doi:10.1371/journal.pcbi.1001015.s006 (0.57 MB EPS)

Figure S3 Rex estimation for WW residues using the H-bond

based Method 1 versus experimental Rex/Rex(12).

Found at: doi:10.1371/journal.pcbi.1001015.s007 (0.02 MB EPS)

Figure S4 Rex estimation for WW residues for a 2 state Markov

State Model versus experimental Rex/Rex(12) and the 40 state

MSM using Extended 2 data set.

Found at: doi:10.1371/journal.pcbi.1001015.s008 (0.02 MB EPS)

Figure S5 Representative structures from 40 macrostates, with

the side chain of Arg-12 shown. The state population is indicated

along with the macrostate index. These structures were selected

using the microstate within each macrostate with the densest
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population, i.e. the most probable microstate. Macrostate 16,

found to be a kinetic hub is shown in orange.

Found at: doi:10.1371/journal.pcbi.1001015.s009 (0.38 MB EPS)

Figure S6 Correlation of Rex estimation for different number of

macrostates and using different simulation datasets.

Found at: doi:10.1371/journal.pcbi.1001015.s010 (0.01 MB EPS)

Figure S7 Complexity of the correlation maximization algo-

rithm for different number of MSM macrostates relative to the

complexity of maximizing correlation for 40 macrostates.

Found at: doi:10.1371/journal.pcbi.1001015.s011 (0.24 MB EPS)

Table S1 Loop and whole protein RMSD values of represen-

tative macrostate structures with respect to APO and HOLO

experimental structures.

Found at: doi:10.1371/journal.pcbi.1001015.s012 (0.03 MB PDF)

Table S2 Hydrogen bonds present in the minor state, according

to Exchange State Identification Method 1. Atom names

according to CHARMM 27 force field.

Found at: doi:10.1371/journal.pcbi.1001015.s013 (0.04 MB PDF)

Table S3 Dihedral values for Arg-12, Ser-13, and Gly-15 of

representative structures for each macrostate of the MSM.

Found at: doi:10.1371/journal.pcbi.1001015.s014 (0.03 MB PDF)

Text S1 Additional details for methods and results sections as

well extra figures and tables.

Found at: doi:10.1371/journal.pcbi.1001015.s015 (0.15 MB PDF)

Video S1 This movie depicts the 3-D structures of each of the

representative conformations of the Markov State Model of Pin1

WW domain.

Found at: doi:10.1371/journal.pcbi.1001015.s016 (3.75 MB

MOV)
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