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Abstract of the Dissertation

Hierarchical and Semi-parametric Bayesian Models for
the Study of Longitudinal HIV Behavior and

Tuberculosis Incidence Data

by

Yuda Zhu
Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2012

Professor Robert E. Weiss, Chair

We propose and discuss two distinct and separate innovative Bayesian models. In the first

model, we propose a replacement for standard statistical methodologies for longitudinal sex-

ual behavior data. HIV intervention trials generally collect sexual behavior data repeatedly

over time and involve multiple outcomes including the number of partners which are nested

in subjects and the number of protected and unprotected sex acts with each partner which

are inherently nested within partners. The data is further complicated by characteristics of

both partners and acts. Partners can be HIV+ or HIV− while sex acts can be protected or

unprotected. Properly modeling these outcomes and distinguishing these characteristics is

critical. Here we use a multilevel multivariate Bayesian model for modeling sexual behavior

outcomes. The proposed model accounts for the full complexity of sexual behavior allowing

for simultaneous modeling of the number of partners and the number of sex acts with each

partner, differentiation of behavior by partner serostatus, accounting for study eligibility

criterions associated with the outcome of interest, and correlations between observations

with the same subject, observations with the same partner, and observations across time.

We further show that the proposed model can be used to quantify and draw inference on

seroadaptive behaviors. Seroadaptive behaviors describe behaviors that vary based on the

HIV status of partners with the goal of reducing the risk of transmission. The model is used

to analyze data from the Healthy Living Project.
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In the second half of this thesis, we explore a novel extension to the Dirichlet process

mixture (DPM) model to accommodate longitudinal data. Longitudinal data is characterized

by two features. First, the data are a function of time implying dependence between sampling

densities across time. Second, the same subjects are repeatedly measured over time. The

standard DPM model is a nonparametric Bayesian model that naturally clusters similar

observations together and assigns a single value to each cluster. It can be used to model an

unknown density but addresses neither of these two features in longitudinal data. A number

of current extensions of the DPM model can accommodate dependent distributions which

could be used to model the sampling distributions at each time point addressing the first

feature. However, assumptions in these extensions imply these models do not take advantage

of the second feature of longitudinal data where the same subjects are followed over time.

To account for both features, we propose the cluster memory Dirichlet process mixture

(cmDPM) model extending the DPM model to properly accommodate longitudinal data. In

the cmDPM model, subjects are modeled as a DPM model at baseline. Cluster assignments

at future time points depend on where the subject was previously clustered. Each subject

may retain their cluster from the previous time point with some nonzero probability. This

implies that at later times, subjects are no longer exchangeable and their observed values

depend on their previous clustering history. Clusters that are retained over time evolve

through a time dependent process. The cmDPM model extends the DPM to use both the

information of where the subject was previously clustered and the value assigned to that

cluster to model subject data at the current time point.
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CHAPTER 1

Introduction

1.1 Overview

In the behavioral and health sciences, there is often a need to model data with complex

structures and patterns. In this dissertation, we present two distinct Bayesian models that

address some of the specific problems faced when dealing with these kinds of data.

In Chapter 2, we examine data from the Healthy Living Project (HLP), an HIV behav-

ioral intervention study conducted at four separate sites between 2000 and 2004. Standard

statistical analysis for modeling sexual behavior and assessing HIV behavioral interventions

use univariate longitudinal outcomes. These models fail to fully account for the complexity

of sexual behavior data. We define a sexual behavior profile that is a multivariate multilevel

summary of a participant’s reported actions in the study. A hierarchical Bayesian longitudi-

nal model is then proposed and we demonstrate the benefits of using this model. We utilize

our proposed model to identify and quantify a specific form of risk management behavior

in the HLP study known as seroadaptation where study participants change their behavior

to reduce the risk of HIV transmission based on knowledge or perceived knowledge of their

partner’s HIV status.

In Chapter 3, we present the cluster memory Dirichlet process mixture (cmDPM) model,

a novel non-parametric Bayesian model for longitudinal data. The cmDPM model clusters

subjects at each time point based on both a Dirichlet process and where each subject was

previously clustered at the previous time point. Longitudinal data is characterized by the

same subjects observed repeatedly over time. My proposed model provides a flexible choice

between the extremes of treating each time point as an independent Dirichlet process mixture
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(DPM) model and treating the clustering structure at each time point as identical when

modeling longitudinal data. We apply the cmDPM model to annual tuberculosis incidence

rate data collected on 197 countries in the world from 1990-2010. Conclusions are drawn

on the change in the distribution of tuberculosis incidence rates in the last 2 decades and

individual predictions for 2011 are made.

The cmDPM model is also a valuable tool in many other applications of longitudinal data.

One application is to address many potentially different and diverse groups of study subjects

in longitudinal studies. This is often the case in large HIV behavioral studies like the HLP

study that make use of multiple study sites. Participants recruited into these studies can

also be from rather diverse backgrounds with varying behavior profiles. In particular, the

HLP study recruited participants from four separate risk groups and four different races. In

these situations, it may not be sufficient to simply include covariates for these differences.

However, inclusion of each combination of location, risk group, and race at each time point

would involve 4 × 4 × 4 × 6 = 384 covariates and would be excessive. The question of

which combinations of participants behave similarly can be thought in statistical terms as

a clustering problem for longitudinal data. In Chapter 4, we discuss future work that is

required to enable this application of the model and additional future directions are also

presented.

In the remainder of this chapter, we give a non-technical description of the multivariate

multilevel longitudinal data we propose in Chapter 2 and the cmDPM model we present in

Chapter 3. The non-technical descriptions outline the models presented and the benefits of

using these models.

2



1.2 Non-technical description: A multilevel multivariate longitu-

dinal model for sexual behavior data from the Healthy Living

Project

Reduction in risky sexual behavior for HIV+ individuals can result from reducing the number

of HIV−/unknown serostatus partners and/or from reducing the number of unprotected

sex acts with each HIV−/unknown partner. Subjects can also reduce their risk by being

strategic in their behavioral choices. One example first studied in the population of men

who have sex with men (MSM) is seroadaptation. We find that single measures of risky

behavior fail to sufficiently describe the range and complexity of sexual behavior and instead

define a sexual behavior profile that includes the number of HIV+ partners, the number

of HIV−/unknown partners, the number of protected acts with each HIV+ partner, the

number of unprotected acts with each HIV+ partner, the number of protected acts with

each HIV−/unknown partner, and the number of unprotected acts with each HIV−/unknown

partner. We propose a multilevel multivariate model that provides a more complete picture

of sexual behavior and enables us to distinguish between reductions in numbers of partners

and reductions in numbers of unprotected sex acts. With a more detailed model for sexual

behavior than previous models, we can properly quantify behaviors that we previously were

unable to including several forms of seroadaptive behaviors.

The HLP data was acquired from interviews with study participants. Participants were

surveyed longitudinally at baseline and then once every five months in six equally spaced

interviews over 25 months. A number of measures of sexual behavior from the previous

three months were recorded including the serostatus of each partner and the total number

of protected and unprotected sex acts with up to the five most recent partners. In addition,

the number of protected and unprotected sex acts with each of the 5 most recent partners is

recorded individually. A detailed description of the data collected is provided in Section 2.2.

In our analysis, the unknown serostatus partners are grouped with the HIV− serostatus

partners and we abbreviate this HIV−/unknown serostatus group as HIV− for short. We

simultaneously model the number of HIV+ partners, HIV− partners, protected acts with
3



each HIV+ partner, unprotected acts with each HIV+ partner, protected acts with each

HIV− partner, and unprotected acts with each HIV− partner longitudinally across 6 discrete

time points. We refer to these six variables as the outcomes of the model.

Compared to the standard univariate longitudinal models used, use of our proposed model

gives the following four advantages:

• The number of total reported protected and unprotected acts across all partners is

broken down by the numbers per each individual partner. Modeling the number of

protected and unprotected acts with each partner uses the partner specific information

recorded for the five most recent partners and the total number of protected and unpro-

tected acts recorded over all partners. Having outcomes for each partner distinguishes

the scenario of a few acts with many partners from the scenario of many acts with a

single partner which can have implications when designing new interventions. Having

outcomes for each partner also allows us to easily incorporate covariates describing each

partner. For example, in our model we distinguish partners who are considered main

partners from those that are considered casual partners. We refer to this breakdown of

total protected and unprotected sex acts by partner as disaggregation on a per partner

basis.

• Modeling both the number of partners for a single subject and number of acts with each

of several partners nested within the same subject creates a multilevel dataset. This

separates variability attributed to different subjects, variability due to changes over

time within the same subject, and variability across different partners nested within

the same subject at the same time. Separating these sources of variation allows us to

model data where the subject is followed longitudinally through time, the partners are

followed longitudinally through time, or both. In modeling the HLP data, subjects

are followed over time but partners were not identified across visits and therefore are

assumed to be different at each interview. We use this distinction to justify creating a

time dependent process specifically for observations across time with the same subject

and a time independent process for nested partners within the same subject across

4



time.

• Joint analysis of sexual behaviors with HIV+ and HIV− partners in the model allows

us to compare sexual behaviors with partners of different serostatuses within the same

subject. We quantify differences in behavior with HIV+ and HIV− partners and use

these differences to provide evidence for seroadaptation within our study population.

Behaviors associated with seroadaptation are collectively called seroadaptive behaviors.

We define and draw inference on three specific seroadaptive behaviors observable in the

HLP data: (i) preferentially choosing fewer HIV− partners, (ii) decreased level of sexual

activity with HIV− partners, and (iii) increased use of condoms with HIV− partners.

• Using subjects’ complete sexual behavior profiles allows us to correctly incorporate

baseline eligibility criteria that were used to screen for a high risk population. In the

HLP study, participants were eligible only if they (i) reported at least one partner at

baseline and (ii) reported at least one unprotected sex act with an HIV− partner or

with an HIV+ partner that was not categorized as a main partner. Since these criteria

match with observed outcomes in our model, we can choose modeling distributions at

baseline that exclude events which would fail the eligibility criterion. Failure to do

this could falsely lead the model to infer the population is riskier than it actually is at

baseline.

A number of covariates are used in the proposed model to model our outcomes. We include

a different time effect at 5, 10, 15, 20, and 25 months and allow the intervention and control

groups to differ at all time points including baseline. We also include covariate effects for the

site location, risk group, race, and a number of other participant characteristics measured

at the baseline interview. Main partners were defined as a partner specific covariate for each

partner to distinguish them as more stable relationships and included to model the number

of protected and unprotected acts with each partner. Covariate effects were allowed to be

different across each outcome in the joint model with the exception of the main partner

covariate which was assumed the same among both HIV+ and HIV− partners. A list of all

variables other than time and intervention is found in Table 2.2 on page 37.
5



Latent effects are used to model differences among people. We make use of subject specific

latent effects and partner specific latent effects in the analysis of the HLP data. A subject

specific latent effect quantifies the idea that even subjects with the same covariates have

inherently different tendencies in their behavior. For example, between two subjects who

have the same covariates, one may have a tendency to consistently report greater numbers of

HIV− partners than the other. Similarly, a partner specific latent effect quantifies the idea

that participants have inherently different tendencies in behavior with different partners.

In our model, each outcome has a subject specific latent effect modeling that subject’s

inherent tendencies for that behavior. The number of protected and unprotected acts with

each partner also includes partner specific latent effects. Subject and partner specific latent

effects together help to explain additional variability in our observed data that our original

modeling distribution may not otherwise account for.

When jointly modeling multiple outcomes, each outcome can provide information on all

the other outcomes in the model. Outcomes related in this way are correlated. A model can

make use of this by explicitly specifying a correlation structure between the outcomes. Our

model consists of multiple outcomes observed over six discrete time points. In our model, I

specify three different correlation structures between the outcomes.

Outcomes reported by the same subject at a given interview are all correlated. This is

done by specifying a correlation structure between the subject specific latent effects for the

number of HIV+ partners, the number of HIV− partners, the number of protected acts with

an HIV+ partner, the number of unprotected acts with an HIV+ partner, the number of

protected acts with an HIV− partner, and the number of unprotected acts with an HIV−

partner. We collectively call these correlated subject specific latent effects a multivariate

subject specific latent effect. This implies a subject’s behavioral tendencies are all correlated.

For example, a subject who has a tendency to consistently report greater numbers of HIV+

partners may also consistently report greater numbers of HIV− partners.

The number of protected and unprotected acts with the same partner has a different

correlation structure than the number of protected and unprotected acts reported across

different partners by the same subject. This is done by specifying a correlation structure
6



between the partner specific latent effects for the number of protected and unprotected acts.

This implies that knowing the number of protected acts with a given partner should give

you additional information about the number of unprotected acts with that partner and

vice versa as compared to some other partner reported by the same subject. For example,

a subject who reports larger numbers of protected acts with each partner may report fewer

unprotected acts with each partner. If the same subject reports even larger numbers of

protected acts with one specific partner, it is likely that the number of unprotected acts with

that specific partner may be even lower.

Outcomes reported by the same subject across different interviews are correlated. This

is done by specifying a correlation structure between the multivariate subject specific latent

effects at each interview that depends on the multivariate subject specific latent effects at

the previous interview. At each time point, the subject specific latent effects are specified to

be similar to the subject specific latent effects at the previous time point. Latent effects close

together in time are more correlated than those far apart in time. In this way, the subject

specific latent effects at followup interview 4 will be more correlated to those at followup 3

than those at followup 2. The process specified in our model with which these multivariate

subject specific latent effects change from one time point to the next is called a multivariate

autoregressive process. The process is defined to be stationary, implying that the amount of

variation in subject specific latent effects at each time point is specified in our model to be

the same.

Our model uses a longitudinal multilevel multivariate outcome that provides a more com-

plete picture of a subject’s sexual behavior. We highlight some of the important assumptions

underlying our model that should be kept in mind. The model makes the assumption that

given covariates and latent effects, outcomes are independent from each other and follow a

parametric Poisson distribution. Also, the model assumes subject and partner specific latent

effects take on a Gaussian distribution. It is possible that the variability between subjects

and partners may show more variability than accounted for with a Gaussian distribution

and a different distribution may be more appropriate. It is critical that observed data actu-

ally matches these assumptions if the model is intended for use in prediction. One way to
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check these assumptions is to make multiple predictions of the subjects in the study using

the parameters estimated from the model and compare the resulting predicted outcomes to

those observed in the data. This is shown for the HLP data in Figure 2.2 on page 28. When

interpreting the effects of covariates, we assume that interactions do not exist between our

modeled covariates. For example, we assume that the difference in effect between females

and MSMs does not differ whether they are in Milwaukee or Los Angeles. This assumption

is made due to the large number of potential combinations among covariates that would

otherwise occur. In the following section on the cmDPM model, we present a novel non-

parametric statistical method that could potentially be used if we do not wish to make this

assumption.

1.3 Non-technical description - The cluster memory Dirichlet pro-

cess mixture model

Nonparametric Bayesian methods are very flexible models that automatically adjust the

model size and complexity based on the data. Parametric methods rely on a specified

distribution to model our observed data. For instance, in the HLP data, we assume a

Poisson distribution adequately describes our outcomes. Nonparametric Bayesian methods

do not make this assumption and instead operate under the assumption that the density

describing our outcomes is unknown.

One way to model an unknown density is to model it as a combination of several known

densities. Observations drawn from this unknown density can be drawn from any one of

these several known densities. This is known as a mixture model and each known density

is one component of the mixture. The number of known densities used to describe the

unknown density is the number of mixtures. Observations modeled under the same mixture

of a mixture model are similar in value and considered clustered. When the number of

mixtures is not predetermined and can grow to be as large as the number of observations

being modeled, the model is known as an infinite mixture model.

The Dirichlet process mixture (DPM) model is a commonly used nonparametric Bayesian
8



method that models unknown densities as an infinite mixture model. In its simplest form, the

DPM is parameterized by a cluster label for each observation describing the cluster in which

that observation belongs and a cluster specific value for each cluster corresponding to the

mean value of the observations in that cluster. Since the DPM results in a natural clustering

structure of similar observations, it is often also be used in clustering applications. For

example, the DPM model could be applied in the HLP data to each subgroup combination

of race, site, and risk group. Subgroups that behaved similarly would naturally cluster

together.

We propose a novel nonparametric Bayesian method, the cmDPM model, that extends

the DPM model and is ideally suited for longitudinal data. In longitudinal data, subjects

are repeatedly observed over time and each subject produces multiple observations over this

given time frame. In the cmDPM model, the clustering of subjects can change from one

time point to another. However, individualized history of where a subject was previously

clustered plays a key role in determining the cluster that the subject belongs to at the current

time point. The model is specified so that each subject is more likely to stay in the cluster

they were labeled in at the previous time point. Dependence on previous cluster structure

describes the concept that subjects who behaved similarly at a previous time point should

be more likely to behave similarly at future time points as well. On the other hand, subjects

may reevaluate their cluster membership and leave the cluster to which they were previously

labeled at the new time point. How often subjects reevaluate their cluster membership over

time can vary from dataset to dataset and application to application. We describe this

characteristic in a dataset as cluster mobility.

Figure 3.1 on page 43 shows visually some simulated datasets with various levels of cluster

mobility. Each dataset contains 75 subjects observed at 4 discrete time points. Observations

are simulated from a mixture model with three clusters and correspondingly defined cluster

specific values at each time point. Each observation is allowed to move between mixtures

over time. The top three plots show data where the cluster specific values are constant across

time for each cluster. Cluster mobility, the probability of reassessing cluster membership at

each time point, is 0.2 on the top left, 0.1 in the top middle, and 0.05 on the top right. The
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top right plot presents an example of a dataset where we can be fairly certain the cluster

structure will be maintained over time and subjects will continue to behave similarly to other

subjects in the cluster. The bottom three plots all have cluster mobility of 0.1 but show some

variation in cluster behavior that can be modeled using the cmDPM model. The bottom left

plot shows an example of data where cluster mobility is low but the cluster specific values

are decreasing over time. This could be an example of a treatment that was effective but

where subjects who initially were high continue to be higher than others. The bottom middle

plot shows an example of data where cluster mobility is low but where cluster specific values

switch between the top and bottom groups. The bottom right plot shows simulated data

where variation in the observations is increasing over time. However, cluster membership

would be accurately modeled from the earlier time points and maintained even when the

increase in variability in the data at time point 4 makes it difficult to determine which cluster

observations belong to.

The basic cmDPM model is parameterized by (i) cluster labels for each subject at each

time point, (ii) a cluster specific value assigned to each cluster with observations in it at

each time point, and (iii) an overall cluster stickiness parameter. A higher cluster stickiness

parameter implies subjects tend to stay in the same cluster they were assigned to at previous

time points and is indicative of a low cluster mobility dataset. On the other hand, a lower

cluster stickiness parameter implies subjects leave the clusters they were previously in more

frequently and is indicative of a high cluster mobility dataset.

Cluster assignment of subjects in the cmDPM model is based on a mix of both how close

the observed outcomes between the subjects are at the given time point and which cluster

these subjects were previously assigned at the previous time point. Higher values of the

overall cluster stickiness parameter places more weight on the previous cluster assignment.

Once clusters are assigned for each subject at each time point, cluster specific values are

given for each cluster based on the observed values assigned to that cluster. If a cluster is

maintained over time, we allow the values assigned to that cluster at each time point to be

related by a defined functional relationship. For example, we may constrain the values of

that cluster to be close to each other at neighboring time points.
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Potential applications for the cmDPM model are fairly broad. The cmDPM model can

be used for density estimations problems where we may be interested in dependent densities

across time from longitudinal data. We can also apply the cmDPM model to mean effects of

outcomes themselves as in the annual tuberculosis incidence rate dataset in Section 3.4. If

fixed covariates exist in the model, the cmDPM model can be used as a model for the subject

specific latent effects, relaxing the parametric assumption of the subject specific latent effects

in longitudinal data. Finally, the cmDPM model can be applied to address large groups of

interactions between categorical variables. For instance, we could apply the cmDPM model

to all combinations of race/site/risk group in the HLP data and combinations that behaved

closely would naturally cluster together.
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CHAPTER 2

The Health Living Project

2.1 Introduction

Behavioral interventions designed for people living with HIV represent a targeted method of

reducing the sexual transmission of HIV and can potentially play a critical role in controlling

the human immunodeficiency virus (HIV) epidemic (Aral & Eterman 2002). The Health

Living Project (HLP) (The Healthy Living Project Team 2007) is one behavioral intervention

program in recent years that targets this population.

A successful intervention works to reduce risky behaviors that can lead to future trans-

mission. This can come from reducing the number of partners who are HIV negative and/or

reducing the number of unprotected sex acts with each partner who is HIV negative. In

HLP and similar studies, measures of risky behavior are traditionally summarized into a

single outcome. These outcomes typically involve summing behaviors across partners, for

example the total number of unprotected sex acts with all partners who are either HIV

negative or of whom the HIV status is uncertain. These measures are aggregated outcomes.

While an aggregated outcome can be conveniently modeled using a univariate longitudinal

model, it fails to accurately describe the complexity of risky sexual behavior. We show that

reduction in risk can come from several different behavioral changes and argue that these

changes require different interventions. Seroadaptation is one specific strategy where the

subject uses knowledge or perceived knowledge of their potential partner’s HIV serostatus to

alter their behavior and limit their risk of transmission. The term HIV serostatus describes

an individual’s status of being positive or negative for the HIV antibody. We use the terms

HIV+ serostatus to describe an individual that is positive for the HIV antibody and HIV−
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serostatus for an individual who is negative for the HIV antibody. The behaviors associated

with enacting strategies for risk reduction based on HIV serostatus of potential partners are

called seroadaptive behaviors.

Our model has the ability to quantify seroadaptive behavior and therefore provides a crit-

ical contribution towards understanding risky sexual behavior. When measuring the effects

of behavioral interventions, changes may occur through seroadaptive behaviors and/or as a

change in frequency. An HIV+ participant who changes from (5 HIV+, 5 HIV−) partners in

a given unit of time to (8 HIV+, 2 HIV−) partners changes their behavior through seroad-

aptation. If that same participant instead changes from (5 HIV+, 5 HIV−) partners to (2

HIV+, 2 HIV−) partners, then the reduction in frequency is the source of risk reduction.

Seroadaptation and changes in frequency are not mutually exclusive. The participant that

changes from (5 HIV+, 5 HIV−) partners to (3 HIV+, 1 HIV−) partners decreases their

risk from both seroadaptation and reduction in frequency. It is important that these two

forms of risk reductions are distinguished from one another because seroadaptive behavior

is contingent on accurate knowledge of partner serostatus but frequency changes are not.

Seroadaptive behavior is not a guaranteed preventative strategy (Pinkerton 2008; Wilson

et al. 2010; Butler & Smith 2007) and risks of infection with multiple strains of the virus

exist (Poudel et al. 2007). However, seroadaptive behavior has been shown to be an effec-

tive form of risk reduction (Cassels et al. 2009; Jin et al. 2009; Golden et al. 2008). The

study of seroadaptive behavior has been isolated almost exclusively in men who have sex

with men (Parsons et al. 2005; Cox et al. 2004; Snowden et al. 2009 2011). The HLP data

presents an opportunity to examine seroadaptive behavior in a variety of other risk groups.

Understanding the role of seroadaptive behavior is important in other prevention studies as

well. Reniers & Helleringer (2011) argue that the importance of HIV testing and counseling

can not be accurately measured without accounting for seroadaptive behavior. A similar

observation has been made for condom effectiveness studies (Warner et al. 2004).

In this chapter, we propose to jointly analyze the number of HIV+ partners, the number

of HIV−/unknown serostatus partners, and the numbers of protected and unprotected acts

with each partner. The number of partners of each serostatus are observed once at each time
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point and the number of protected and unprotected acts with each partner form a bivariate

outcome that is nested within both subject and time. We refer to treating the number of

partners and behavior with each partner as a separate observation as disaggregation on a per

partner basis and propose a Bayesian model for multivariate multilevel longitudinal count

data for analysis of this type of outcome. While our methods are motivated by the HLP

data, many other similar sexual behavior intervention studies involving people living with

HIV have comparable data structures suitable for future analysis including Living in the

Face of Trauma (LIFT) (Sikkema et al. 2007), Positive Choice: Interactive Video Doctor

(Gilbert et al. 2008), and Healthy Relationships (Kalichman et al. 2001). In comparison

with univariate models of longitudinal aggregated outcomes, our model offers the following

advantages:

• Disaggregation of sex acts on a per partner basis allows us to model the full multivariate

hierarchical nested structure of the data. This allows us to identify differences in

behavior that previous analyses could not.

• Using a multivariate multilevel longitudinal model correctly models distinct levels of

heterogeneity that were previously lumped into a single source of variation. Behav-

ior variability exists both across different subjects as well as across partners within

subjects. Previous analyses failed to account for variation across partners.

• Identification of seroadaptation in our population is critical to estimating the effects

of behavioral interventions and can be determined directly from our model.

• Baseline eligibility criterions are correctly incorporated into the model.

We expand on each of these in turn.

Disaggregation on a per partner basis results in a separate bivariate outcome of the

number of protected and unprotected sex acts for each partner. Modeling these outcomes

separately differentiates a scenario of many partners with a few unprotected sex acts each

from a scenario with a single partner and many unprotected acts. These different scenarios

provide information for a more targeted counseling intervention focusing on reducing the
14



number of casual relationships with HIV− partners, increasing the use of protection, or

both. In addition, these scenarios provide important information in deciding appropriate

policy for prevention. The effectiveness of programs like PreExposure Prophylaxis (PrEP)

(Grant et al. 2010) where HIV− people take antiretroviral medication daily to lower their

chances of becoming infected may be viable and reasonable for the partners of our study

population if only a few HIV− partners that engage in many unprotected acts with the

subject were involved.

The multilevel multivariate outcome separately models subject level and partner level

variation. Typical analyses in the field that analyze total protected acts in an aggregated

fashion ignores this differentiation. Using multilevel outcomes facilitates proper modeling of

the longitudinal process. Modeling separate sources of variation correctly also provides some

estimation benefits since all observed information is used. Subjects in the HLP study are

followed over time but unfortunately partners are not identified and are not traceable. This

is reflected in our model through a time dependent process on subject specific latent effects

leaving partner level variation independent of time. A simulation illustrating the benefits of

modeling different sources of variation is given in Appendix A.1.

Our model enables us to quantify seroadaptive behavior. For the HLP data, we draw infer-

ence on 3 specific seroadaptive behaviors. Subjects can selectively choose (i) their partners,

preferring HIV+ partners over HIV−/unknown serostatus partners, (ii) to have fewer sex

acts with their HIV−/unknown serostatus partners compared to their HIV+ partners, and

(iii) to use condoms a larger percentage of the time with partners who are HIV−/unknown.

Case (i) is behavior associated with partner selection while cases (ii) and (iii) describe sexual

behavior during a relationship once it is formed. When seroadaptation is examined with an

HIV− population, these seroadaptive behaviors still exist but in reverse form. The level of

seroadaptation can change over time, differ between treatment and control groups, and differ

across risk group, race, or by location.

Many studies, including HIV prevention studies, use eligibility criteria to initially screen

for a high risk population. This recruitment method implies that some combination of ob-

servations that can occur at followup visits can not occur at baseline. For example, if only
15



participants who reported unprotected sex with an HIV− partner were recruited into the

trial, we could have no zeros at baseline for this measure and a simple Poisson model would

be inappropriate. If unaccounted for, the entire study population will appear more risky at

baseline due to regression to the mean when no changes have actually occurred. The mul-

tivariate disaggregated data structure is necessary to model the complex eligibility criteria

used in these trials. In our proposed model, we build this recruitment eligibility criterion

directly into our conditional baseline distributions to remove bias due to the recruitment of

a high risk population and to more accurately reflect the range of possible observations at

baseline.

Previous multivariate count models (Chib & Winkelmann 2001) and (Tunaru 2002) model

data without the multilevel structure using a single set of latent effects to model correlation

between observations. A number of approaches extend modeling to multivariate multilevel

data including Dunson (2000), Goldstein (2010), Rabe-Hesketh et al. (2005), and Browne

& Draper (2006). Goldstein et al. (2009) specifically addresses multilevel models where

data is observed on more than 1 level. This was later extended to model count data in

Goldstein & Kounali (2009) by formulating a latent normal model where an extra step is

inserted to sample an underlying latent normal variable from the count data. However,

this method makes the fixed effect coefficients harder to interpret. None of these models

examine the longitudinal component simultaneously with multilevel multivariate data. A

common way to incorporate longitudinal dependence is through the inclusion of additive

random effects that are correlated over time in the predictor. Alternatively, multivariate

smoothing techniques such as Gaussian Markov random fields (Rue & Held 2005; Fahrmeir

& Lang 2001) or dynamic Bayesian linear models (West et al. 1985; West & Harrison 1997)

can be used.

The model we propose is for multilevel multivariate count data with observations on

multiple levels and is followed through time. The introduction of a second level of latent

effects properly accounts for heterogeneity across partners. Correlation across time is mod-

eled through a generalized autoregressive process which can be applied to each level of latent

effects as needed. In our model, subjects are followed through time while partners are not
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so the process is applied only to the subject specific latent effects.

The remainder of the chapter is organized as follows. Section 2.2 provides a detailed

description of the HLP data and outlines the multilevel structure. Terminology specific to

HIV and sexual behavior is defined. Section 2.3 describes our model, specifies the prior

structure, and outlines the algorithm for posterior computation. In Section 2.4, we outline

how to draw inference on seroadaptive behavior with our model and define some specific

terminology for the task. Section 2.5 presents the results of applying the presented model

to the HLP dataset. Findings on seroadaptive behavior are explored in detail. Finally, we

conclude with a discussion in Section 2.6.

2.2 Data Description

The Healthy Living Project is a multisite 2-group randomized controlled comprehensive

behavioral intervention trial aimed at reducing risky sexual behavior among people living

with HIV. After randomization, 469 eligible individuals were assigned to the control group

and 467 were assigned to the behavioral intervention treatment group. HLP participants

were surveyed longitudinally every 5 months in six equally spaced interviews over 25 months

and a graphical representation of the collected data is shown in Figure 2.1. Participant

demographic information was collected at baseline and a summary can be found in Appendix

A.2. Subjects were categorized into 4 risk groups by transmission risk as intravenous drug

users (IDU) and, provided they were not IDU, then by sexual orientation as men who have sex

with men (MSM), heterosexual males (HTM), or females (FEM). The study was conducted

in Los Angeles, Milwaukee, New York, and San Francisco. Other demographic information

that was stored include education status, race, gender, and age.

At each interview including the baseline interview, outcomes pertaining to risky sexual

behavior in the previous 3 months were recorded. This included the total number of partners,

the serostatus of each partner, and the total number of protected and unprotected sex acts

across all partners. Specific partner information on the number of protected and unprotected

sex acts with up to the 5 most recent partners is also recorded. In the HLP study, a partner

17



Subject

FI-5FI-4FI-3FI-2FI-1Baseline

2,1

39

edcba

HIV+

HIV−/unknown
Partner
Protected act
Unprotected act

FI Followup interview

. . .

n = 936

1

Figure 2.1: Graphical representation of longitudinally collected sexual behavior data in the
HLP study.

was defined as someone with whom the participant had oral, vaginal, or anal sex. Sex acts

in our analysis exclude oral sex and are defined as vaginal or anal intercourse only, due to

the negligible transmission risk of HIV associated with oral sex leaving observations of 0 sex

acts with a partner possible. The serostatus of each partner is categorized as HIV+, HIV−,

or unknown. As usual in this field, we treat unknown serostatus partners as HIV− and for

the remainder of the chapter, use of the description HIV− refers jointly to the HIV− and

unknown serostatus population.

Recruitment was designed to screen for a high risk population. Study participants were

only enrolled if they reported at least one unprotected sex act with an HIV− partner or

with at least 1 HIV+ partner who was not categorized as their primary partner at the

baseline interview. Zero truncated joint distributions are used for the appropriate outcomes

at baseline to reflect this enrollment criterion.

The number of HIV+ partners, HIV− partners, and total protected and unprotected

acts across all partners are subject level observations recorded longitudinally over time.

Disaggregating the number of total protected and unprotected sex acts by partner gives the

number of protected and unprotected sex acts with each specific partner which are bivariate

partner level observations nested within subject and time. In the cases when a subject
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reported more than 5 partners at an interview, the number of protected and unprotected sex

acts with each of these additional partners are treated as random variables with a constrained

sum to reflect the uncertainty in the data. After imputation of these outcomes, there was

a total of 22,269 partner level bivariate observations spread over 4,695 separate interviews.

Subject and partner level observations are jointly modeled as Poisson counts with mean

parameters driven by participant and partner level covariates and random effects.

2.3 Model

2.3.1 Likelihood Specification

Let observations for subject i = 1, . . . , n occur at measurement times tij where j = 1, . . . , Ji
and Ji varies by subject. At time tij, let Vij denote the total number of partners associated

with subject i in the previous 3 months, and let Wijk = (Pijk, Uijk)T denote the bivariate

outcome composed of the number of protected sex acts Pijk and unprotected sex acts Uijk
nested in subject i and time tij with partner k = 1, . . . , Vij.

To model separate behavioral changes among HIV+ and HIV− partners, we introduce an

HIV serostatus indicator Zijk denoting the serostatus of partner k at time tij where Zijk = 1

indicates HIV+ and Zijk = 0 indicates HIV−/unknown status. Letting V +
ij be the number of

HIV+ partners and V −ij be the number of HIV− partners at time tij, then

Vij = V +
ij + V −ij (2.1)

V +
ij =

Vij∑
k=1

Zijk. (2.2)

The complete outcome vector, Yij, for subject i at time tij is then modeled with a multi-

variate nested count model where

Yij = (V +
ij , V

−
ij ,WT

ij1,WT
ij2, . . . ,WT

ijVij
)T (2.3)

has length 2Vij + 2 that will vary across subjects and times. Outcomes are correlated both
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between different outcomes and across time. We first present the cross sectional model and

correlations between outcomes in Yij. Correlations across time are then introduced through

a multivariate stationary process.

We model each component of Yij as Poisson distributed V +
ij ∼ Po(λ+

v,ij), V −ij ∼ Po(λ−v,ij),

Pijk ∼ Po(λp,ijk), and Uijk ∼ Po(λu,ijk) conditional on corresponding mean parameters λ+
v,ij,

λ−v,ij, λp,ijk, and λu,ijk for 1 ≤ i ≤ n, 1 ≤ j ≤ Ji, and 1 ≤ k ≤ Vij. A log-linear random

effects regression model characterizes these mean parameters

 λ+
v,ij

λ−v,ij

 = exp

 x′ijα+
v + β+

v,ij

x′ijα−v + β−v,ij

 (2.4)

and

 λp,ijk

λu,ijk

 =



exp

 x′ijkα+
p + β+

p,ij + δp,ijk

x′ijkα+
u + β+

u,ij + δu,ijk

 , if Zijk = 1,

exp

 x′ijkα−p + β−p,ij + δp,ijk

x′ijkα−u + β−u,ij + δu,ijk

 , if Zijk = 0

(2.5)

where average number of protected and unprotected acts with partner k, λp,ijk and λu,ijk, are

parameterized differently depending on partner serostatus. Here, xij is the vector of subject

level covariates and xijk appends partner level covariates to xij. The set of fixed effects α

= (α+
v , α−v , α+

p , α+
u , α−p , α−u ) and subject specific latent effects βij = (β+

v,ij, β−v,ij, β+
p,ij,

β+
u,ij, β−p,ij, β−u,ij)T correspond to the number of HIV+ partners, HIV− partners, protected

acts with an HIV+ partner, unprotected acts with an HIV+ partner, protected acts with

an HIV− partner, and unprotected acts with an HIV− partner respectively. Partner specific

latent effects corresponding to partner k are denoted as δijk = (δp,ijk, δu,ijk).

To complete specification of the hierarchical structure, random effects are modeled as

Gaussian. Subject specific random effects βij evolve through time using a stationary multi-

variate autoregressive(1) process leading to correlation between observations within the same

subject across time. At baseline j = 1, subject specific random effects βi1 are normal with
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6× 6 covariance matrix L

βi1|L ∼ N6(0,L). (2.6)

Future time points j = 2, . . . , Ji model subject specific random effects as conditional normal

βij|βij−1,Σ ∼ N6(Aβij−1,Σ) (2.7)

where A is a diagonal matrix with each diagonal element taking values between -1 and 1,

and Σ is a positive definite covariance matrix. We assume the process is stationary which

implies

L = ALAT + Σ, (2.8)

or equivalently elementwise

Lst = Σst

1− AssAtt
, (2.9)

where Lst, Σst, and Ast denote the sth row tth column element of matrix L, Σ, and A

respectively. Partner specific bivariate random effects δijk are normal with covariance D

δijk|D ∼ N2(0,D). (2.10)

Since partners are not followed over time and we can not determine if any of the same

partners are kept between interviews, we assume no correlation between partner specific

random effects.

Conditionally, observed outcomes for subject i, Yi = (YT
i1,. . . , YT

iJi
)T are multivariate

Poisson-log normal as defined in Aitchison & Ho (1989). The expected value and correlation

between outcomes after marginalizing over subject and partner specific random effects can

be calculated using equations (2.4) and (2.5). Define conditional mean parameters E(Yi|λi)

≡ λi = (λTi1,. . . , λTiJi
)T where λij = (λ+

v,ij, λ−v,ij, λp,ij1, λu,ij1, . . . , λp,ijVij
, λu,ijVij

)T . From
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our hierarchical model specification in equations (2.6), (2.7), and (2.10), it follows naturally

logλi ∼ N(µi,Ω) (2.11)

where µi with rth element µir is a function of fixed effects α while covariance matrix Ω =

(Ωrq) is a function of A, L, and D. The mean and variance of the rth component of Yi are

E(Yir) = exp (µir + 1
2Ωrr) ≡ φir, (2.12)

var(Yir) = φir + φ2
ir{exp (Ωrr)− 1} (2.13)

and the covariance between the qth and rth observations of Yi is

cov(Yiq, Yir) = φiqφir{exp (Ωqr)− 1} (2.14)

where q 6= r. Equation (2.14) shows that the sign and statistical significance of the covariance

between observations can be determined directly from the Ω matrix since cov(Yiq, Yir) is only

positive when Ωqr is positive and only negative when Ωqr is negative. We define a parameter

as statistically significant if the 95% posterior equal-tail credible interval of the parameter

does not contain 0. The credible interval for Ωqr is sufficient to determine if the credible

interval for cov(Yiq, Yir) contains 0.

The eligibility criterion for the study can not be correctly modeled in a univariate frame-

work but is readily incorporated into the joint baseline distributions of our model. The

eligibility criterion excludes two distinct events at baseline j = 1. The first excluded event

is the number of HIV+ and HIV− partners both reported as 0. The second excluded event is

the number of unprotected sex acts with all HIV−/unknown serostatus partners and HIV+

casual partners all reported as 0. To incorporate this information into the model, two joint

zero-truncated Poisson distributions replace the conditionally independent Poisson assump-

tion for partners and separately for acts. We define (X1, . . . , XG) to be distributed joint
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zero-truncated Poisson if the joint density of (X1, . . . , XG) is

1− exp (−
G∑
g=1

λg)


−1

exp (−∑G
g=1 λg)

∏G
g=1 λ

Xg
g∏G

g=1Xg!
(2.15)

for Xg = {0, 1, 2, . . . } where (X1, . . . , XG) are not all equal to 0.

2.3.2 Prior Specification

Proper prior distributions are chosen for model parameters (α, Σ, A, D) to ensure the

posterior is well defined. In selecting values for parameterizing our prior distributions, we

chose values that are neutral favoring no positive or negative effect and non-influential thus

letting the data drive our posterior inference. We consider priors to be non-influential if

a twofold increase in the variance of our priors changes our posterior mean estimates by

less than 1%. Normal priors for each fixed effect covariate αl ∼ N(µα = 0, σ2
α = 10) are

assumed. Inference on the posterior mean number of partners and sex acts per partner

involves exponentiating the diagonal terms of the covariance matrix as shown in equation

(2.12). This results in a complication when the standard conjugate Inverse-Wishart density

priors alone are used for covariance parameters Σ and D since the exponentiated diagonal

terms have undefined posterior means due to long right tails. Details for the univariate

case are shown in the Appendix. To correct this problem, priors for Σ and D are chosen

to be proportional to the product of an Inverse-Wishart density distribution on the entire

covariance matrix times independent left truncated normal density distributions on each of

the diagonal elements truncated at 0. Letting Σs,s and Dt,t be the diagonal elements of Σ

and D, for s = 1, . . . 6 and t = 1, 2, priors for Σ and D are

π(Σ) ∝ |Σ|
mΣ

2 exp
−1

2

tr(ΨΣΣ
−1) +

6∑
s=1

(
Σs,s − µΣ

cΣ

)2

, (2.16)

π(D) ∝ |D|
mD

2 exp
[
−1

2

{
tr(ΨDD−1) +

2∑
t=1

(
Dt,t − µD

cD

)2}]
, (2.17)
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where Σ > 0 and D > 0. This shortens the right tails resulting in less dispersion in the

prior. Values for the parameters were chosen as mΣ = 10, ΨΣ = I6, mD = 10, ΨD = I2,

µΣ = 2, µD = 2, cΣ = 100, cD = 100. Autoregressive factors Al,l, the lth diagonal element of

A are given uniform priors Al,l ∼ Unif(aA = −1, bA = 1).

2.3.3 Posterior Computation

Our posterior computations are sampled with Markov Chain Monte Carlo (MCMC) methods

using the Metropolis algorithm (Metropolis et al. 1953; Hastings 1970; Gelfand & Smith

1990; Casella & George 1992). We provide a brief summary here with a more detailed

step by step algorithm in Appendix A.4. For sampling α, a second-order Taylor expansion

around the current state of the Markov chain (Rue & Held 2005) was used as the proposal

function and this proposal substantially speeds convergence when compared to a random

walk Gaussian proposal function. Sampling of subject specific random effects βij, partner

specific random effects δijk, and autoregressive matrix A use random walk Gaussian pro-

posal functions with the proposal function for the diagonal elements of A truncated at -1

and 1. Covariance parameters Σ and D are sampled using the Metropolis algorithm with

Inverse-Wishart proposal functions that approximate the posterior density. Specifically, we

use the proposal functions q(Σ|βij) and q(D|δijk) that are densities of Inverse-Wishart dis-

tributions IW(mq1,Ψq1) and IW(mq2,Ψq2) respectively where mq1 = mΣ + ∑n
i=1

∑Ji
j=1 1,

Ψq1 = ∑n
i=1

∑6
j=2(βij − Aβij−1)(βij − Aβij−1)T + ΨΣ, mq2 = mD + ∑n

i=1
∑Ji
j=1 Vij, and

Ψq2 = ∑n
i=1

∑Ji
j=1

∑Vij

k=1 δijkδ
T
ijk + ΨD.

Let Sij be the set of partners k for which Pijk and Uijk are not observed in the data. Then

conditional on total protected acts, total unprotected acts, and mean parameters λij, Pijk
and Uijk are Multinomial distributed random variables and can be directly sampled.

The estimation procedure was implemented in R. A total of 100,000 iterations were col-

lected after an initial 30,000 iterations were discarded as burn-in.
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2.4 Seroadaptive behavior

Using our model, we make inference on 3 different forms of seroadaptive behavior to describe

how the choice of (i) partner, (ii) level of sexual activity, and (iii) condom use differs depend-

ing on the serostatus of the partner. We define terms to help quantify these seroadaptive

behaviors respectively as the (i) serodiscordant partner multiple (SPARM), (ii) serodiscor-

dant activity multiple (SAM), and (iii) serodiscordant protection multiple (SPROM) and

discuss them below.

The serodiscordant partner multiple measures whether partners of a specific serostatus

are preferentially selected. To determine SPARM, we first calculate the expected probability

that subjects with characteristics defined by xij would choose an HIV− partner as

πSPARM,ij = Eβij

(
λ−v,ij

λ+
v,ij + λ−v,ij

)
(2.18)

where Eθ(g(θ)) refers to the expectation of the function g(θ) with respect to the random

variable θ. The corresponding serodiscordant partner multiple, SPARMij is then defined as

the odds of picking an HIV− partner

SPARMij = πSPARM,ij

1− πSPARM,ij

(2.19)

and is interpreted to mean HIV− partners are picked SPARMij times as often as HIV+

partners. The SPARM is a relative measure that depends on the prevalence and availability

of HIV+ partners in the area and should not be used by itself to assess the presence of

seroadaptive behavior. It is however possible to compare SPARM between different groups

or time periods to determine differences or changes in seroadaptive behavior. A ratio of

SPARMs less than 1 implies a difference in seroadaptive partner selection with individuals

characterized by the numerator showing greater preference towards selecting partners who

are also HIV+.

The serodiscordant activity multiple (SAM) measures differences in the level of sexual

activity in relationships with partners of differing serostatus. Sexual activity level is mea-
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sured by the total number of reported sex acts in the relationship regardless of protection

status. The expected probability that subjects with characteristics defined by xij choose to

engage in sex with an HIV− over an HIV+ partner adjusting for differences in the number

of partners of each serostatus is

πSAM,ij = Eβij ,δijk

(
λu,ijk + λp,ijk

λu,ijk + λp,ijk + λu,ijk′ + λp,ijk′

)
(2.20)

where partner k is HIV− and partner k′ is HIV+. Correspondingly, SAMij is defined as the

odds of engaging in sex with an HIV− partner,

SAMij = πSAM,ij

1− πSAM,ij

. (2.21)

A SAM value of 1 implies no difference in sexual activity level between partners of different

serostatus while values less than 1 imply seroadaptation towards lower levels of sexual activity

with HIV− partners.

The serodiscordant protection multiple (SPROM) measures selective use of protection

based on partner serostatus. The SPROM measure describes differences in the tendency to

use protection per sex act. The expected probability that a protected sex act is with an

HIV− partner instead of an HIV+ partner adjusting for differences in sexual activity level

and the number of partners is

πSPROM,ij = Eβij ,δijk

(
wijkλp,ijk

wijkλp,ijk + wijk′λp,ijk′

)
(2.22)

where partner k is HIV−, partner k′ is HIV+, and wijk = (λp,ijk + λu,ijk)−1 are weights to

adjust for the sexual activity level of partner k. The corresponding SPROMij is defined as

SPROMij = πSPROM,ij

1− πSPROM,ij

, (2.23)

the odds a protected sex act is with an HIV− partner assuming equal numbers of HIV+

and HIV− partners and equal levels of sexual activity. A SPROM value of 1 implies no

26



seroadaptive use of protection while values greater than 1 imply a greater tendency to use

protection with HIV− partners.

2.5 Results

2.5.1 Model Validation

Accurate modeling of the high activity portions of the population is particularly important.

These cases represent the greatest transmission risk and also test to see if our model ade-

quately accounts for the high levels of variation in sexual behavior. To examine the accuracy

of our model in this area, we compare the tail end of our posterior predictive distributions to

the data for the number of HIV+ partners, number of HIV− partners, total number of pro-

tected acts with all HIV+ partners, total number of protected acts with all HIV− partners,

total number of unprotected acts with all HIV+ partners, and total number of unprotected

acts with all HIV− partners at each time point. A total of 1000 datasets of new values for Yij

are simulated using the sampled posteriors of parameters λij for 1 ≤ i ≤ n and 1 ≤ j ≤ Ji.

Figure 2.2 shows a summary of the tail portions of our posterior predictive distribution.

For comparison, we also plot the percentage of observations in the HLP data that fit into

each bin. In all these outcomes, our model reasonably predicts the percentage of high activity

in the study population.

2.5.2 HLP Covariate Effects

Analysis of the HLP data does not find the counseling intervention to be efficacious. Subjects

in the treatment group did not show evidence for (a) fewer HIV−/unknown partners, (b)

greater numbers of protected acts per HIV−/unknown partner, or (c) fewer unprotected sex

acts per HIV−/unknown partner than their control group counterparts at any time point.

The number of HIV+ and HIV− partners does decrease over the course of the study across

all study participants indicating a reduction in risky behavior as a result of being enrolled

in the study regardless of treatment group assignment. Average number of unprotected acts
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Figure 2.2: Comparison of tail probabilities from the model posterior predictive distributions
and the percentage of HLP data fitting the bin criterion. Each bin reflects the probability of
observing values greater than or equal to the outcome value. Outcomes include the number
of HIV+ partners, number of HIV− partners, total number of protected acts with all HIV+

partners, total number of protected acts with all HIV− partners, total number of unprotected
acts with all HIV+ partners, and total number of unprotected acts with all HIV− partners
for all subjects over all time points.

per partner also decreases across both treatment and control groups while protected acts per

partner stays fairly consistent throughout the duration of the study.

We find key differences in behavior across the different risk groups and summarize our

findings in Figure 2.3. Females exhibited the riskiest sexual behavior, reporting the greatest

numbers of unprotected sex acts with HIV− partners. Even though the MSM group reported

the largest numbers of HIV− partners and the IDU group reported the largest numbers of

total unprotected sex acts, both groups appear to mitigate their risk when their partner was

HIV− and reported fewer unprotected sex acts with those partners than the FEM group.
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Figure 2.3: Summary of sexual behaviors across the 4 risk groups. All plots are average
predicted outcomes with our model for participants who were white, assigned to the control
group, less than 40 years old, from Los Angeles, did not graduate high school, were out of
work, had no history of hard drug use, and reported only 1 main partner if any partners
were reported.

The covariance parameters in the model do not directly affect interpretation of the co-

variates but show the extent and direction of correlation between the multiple outcomes in

the model. Posterior estimates of the covariance parameters in the model can be found in

Appendix A.5.

Covariate effects in our model are now explored in detail.

2.5.2.1 Treatment Over Time

We evaluated treatment efficacy of the HLP trial at each followup comparing the treatment

group to the control group looking for evidence of any of the following scenarios:

29



Table 2.1: Difference between treatment and control groups at each followup time after
adjusting for baseline. Values are multiplicative and reported as posterior mean PM followed
by the 95% equal-tail credible interval (LCI , UCI).

Variable Followup 1 Followup 2 Followup 3 Followup 4 Followup 5
Number of Partners
HIV+ 1.04 (0.81, 1.33) 1.10 (0.83, 1.46) 1.14 (0.83, 1.55) 1.31 (0.92, 1.81) 0.89 (0.61, 1.24)
HIV−/unknown 0.92 (0.74, 1.12) 0.87 (0.68, 1.11) 0.90 (0.68, 1.15) 0.92 (0.69, 1.21) 0.86 (0.63, 1.15)
Protected Acts
HIV+ partner 0.78 (0.38, 1.46) 0.74 (0.34, 1.47) 0.84 (0.33, 1.68) 1.29 (0.49, 2.75) 1.64 (0.62, 3.47)
HIV−/unknown partner 0.90 (0.61, 1.26) 1.19 (0.77, 1.75) 1.39 (0.87, 2.10) 1.30 (0.78, 2.04) 1.19 (0.71, 1.88)
Unprotected Acts
HIV+ partner 1.08 (0.73, 1.55) 1.05 (0.68, 1.56) 1.16 (0.71, 1.79) 0.73 (0.43, 1.18) 1.13 (0.68, 1.79)
HIV−/unknown partner 1.16 (0.81, 1.64) 1.21 (0.79, 1.80) 0.99 (0.59, 1.49) 0.87 (0.53, 1.38) 1.11 (0.65, 1.76)

• decrease in the number of HIV−/unknown partners

• increase in the number of protected acts per HIV−/unknown partner

• decrease in the number of unprotected acts per HIV−/unknown partner.

A comparison of sexual behavior profiles for the treatment and control groups across time

are shown in Figure 2.4. An overall decrease in the average number of both HIV+ and

HIV−/unknown partners is observed across the entire study population. The average number

of unprotected acts per partner also decreases across both treatment and control groups

across partners of either serostatus while protected acts per partner stays fairly consistent

throughout the study. However, the treatment group does not appear to behave differently

from the control group at any time point. We show the difference between the treatment

and control groups at each followup time period adjusting for baseline differences in Table

2.1. Values greater than 1 imply higher estimated counts in the treatment group than the

control group after adjusting for initial differences in the two groups at baseline while values

less than 1 imply lower estimated counts. For example, our estimates suggest the treatment

group reported only 0.92 (0.74, 1.12) times as many HIV−/unknown partners as the control

group at followup 2 after adjusting for baseline differences.
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2.5.2.2 Site, Risk Group, and Race

The HLP study was carried out across multiple geographical sites, contained multiple HIV

transmission risk groups, and included multiple ethnicities of participants. Table 2.2 shows

estimates for these covariate effects.

San Francisco appears to be the most risky population for HIV transmission followed by

Los Angeles. New York and Milwaukee are less risky but for different reasons. Participants

in Milwaukee behaved differently from those in Los Angeles, San Francisco, and New York,

reporting significantly fewer HIV+ partners likely due to the demographics of the population

there. Participants at the New York site reported more protected sex with their partners

than all other sites. Participants in San Francisco reported greater numbers of partners

than the other locations. Most of the difference comes from the number of HIV−/unknown

serostatus partners.

Among the 4 risk groups, females report the largest numbers of unprotected sex acts with

HIV− partners. While MSMs have reported significantly greater numbers of HIV−/unknown

partners, their transmission risk is mitigated by their increased propensity to use protection

with these partners. The IDU group also exhibits unsafe behavior, reporting the lowest

number of protected sex acts per partner and the second highest number of unprotected sex

acts among the 4 risk groups. However, their HIV transmission risk is partially mitigated

because relative to other risk groups, a larger proportion of their partners are HIV+ serostatus

partners.

The race of the participant did not have as pronounced an effect on transmission risk as

risk group and location. We found no significant differences between whites and others. The

Hispanic group reported significantly larger numbers of HIV−/unknown serostatus partners

than all other groups but also report fewer unprotected sex acts with them. The African

American group reported significantly fewer numbers of HIV−/unknown serostatus partners

than whites and Hispanics but also reported slightly higher numbers of unprotected sex acts

per partner.

We spend the remainder of this section on presenting the new findings specific to seroad-
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aptive behavior in this study population.

2.5.3 HLP Seroadaptation

We first examine seroadaptive behavior in white men who have sex with men (MSM) that

are less than 40 years old from Los Angeles who did not graduate high school and were out

of work with no history of hard drug use. Our model estimates these participants to have

a SPARM of 1.50 (1.09, 1.99) entering relationships with HIV− partners roughly 50% more

often than with HIV+ partners. We denote inference estimates as aM (aL, aU) where aM is the

posterior mean, aL and aU are respectively the 2.5% quantile and 97.5% quantile estimates of

the posterior distribution. Over the course of the study, the SPARM stays around this level

with a slight dip to 1.32 (0.93, 1.78) by the end of the study. Lower levels of sexual activity

were reported when the relationship was with an HIV− partner resulting in a SAM of 0.78

(0.56, 1.07) though the value is not significant. The SAM stays fairly consistent throughout

the study staying below 1 at each followup with values reported at followup 2 and followup 4

being marginally significant. The SPROM of 1.48 (1.22, 1.77) provides significant evidence

that participants were almost 50% more likely to use protection during sex if their partner

was HIV−. This value increases somewhat during the course of the study to as much as 1.87

(1.44, 2.39) by followup 5 indicating participants may have further increased seroadaptive

use of condoms while in the study although the difference in SPROMs at the two time

points is not significant. Comparison with the treatment group shows that the treatment

and control groups exhibit very similar behavior throughout the study. This shows that the

counseling intervention did not significantly alter subjects’ seroadaptive strategies. Overall,

clear evidence exists for seroadaptive use of protection in our study group.

Seroadaptive behavior varies also across the 4 risk groups of the study population. Since

most studies of seroadaptive behavior study MSM, we examine seroadaptive behavior across

the risk groups using MSM as the comparison group. Our findings show the 4 risk groups do

not significantly differ in SAM or SPROM values indicating similar seroadaptive behavior

once relationships are formed. However, females reported a significantly higher SPARM
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value of 4.26 (2.89, 5.93) compared to the SPARM value of 1.50 (1.09, 1.99) reported by the

MSM population indicating that females chose HIV− partners far more frequently over HIV+

partners compared to MSM. The HTM population also report a relatively high SPARM value

of 2.05 (1.37, 2.93) choosing HIV− partners about twice as often as HIV+ partners. Part of

the observed difference in SPARM values between the heterosexual and MSM populations is

likely a result of the higher percentage of HIV+ individuals in the MSM population though

this does not account for differences between the heterosexual males and females. Our

findings suggest interventions targeting females and heterosexual males may benefit from

encouraging seroadaptive selection of partners to reduce the SPARM value.

Our analysis also examined seroadaptive behavior differences across race and location.

Among the race categories of white, black, Hispanic, and other, seroadaptive behavior strate-

gies were fairly similar with Hispanics choosing the largest percentage of HIV− partners

though differences were not significant. HLP was a multisite study across Los Angeles,

Milwaukee, New York, and San Francisco. Our findings indicate participants in Milwaukee

reported a significantly higher SPARM value of 3.16 choosing HIV− partners far more of-

ten than participants in the other locations. This could be a result of differences in HIV+

partner availability in these respective areas. Nonetheless, it is important to recognize the

increased percentage of HIV susceptible partners of people living with HIV in a location like

Milwaukee and respond accordingly with the appropriate intervention.

A full summary of seroadaptive results is shown in Table 2.3.

2.6 Discussion

Our Bayesian model for multilevel multivariate longitudinal count data has distinct advan-

tages in the modeling of sexual behavior data and allows a more comprehensive evaluation of

covariate effects such as the effects of counseling intervention. Our proposed model differen-

tiates between different forms of risk reduction in sexual behavior. HIV transmission risk can

be lowered through decreasing the number of partners, decreasing the number of sex acts per

partner, or increasing the proportion of sex acts where condoms are used. Each of these risk
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reduction scenarios may also be selectively modified based on partner serostatus illustrating

seroadaptation. The counseling to achieve and to respond to each of these scenarios can

be very different. Identifying the specific areas of behavior that present the highest risk for

transmission can highlight key points of interest for future intervention studies. For example,

future intervention studies targeting females may prefer to focus on partner selection since

that risk group chose a significantly larger proportion of HIV− partners than any other risk

group.

Our model is the first model to mathematically quantify different types of seroadaptive

behavior providing a quantitative basis for future seroadaptation studies. In the HLP study,

we find that subjects living with HIV already make some seroadaptive behavioral decisions

that reduce the risk of transmission and that the current intervention under evaluation did

not appear to alter these seroadaptive behaviors significantly. In addition, there is evidence

that seroadaptive partner selection specifically varies based on the risk group and location.

Individually tailored interventions focusing on enhancing these already existing seroadaptive

behaviors may be another route of transmission risk reduction.

We also highlighted the importance of disaggregation on a per partner basis when analyz-

ing sexual behavior data. Disaggregation of the number of protected and unprotected acts

per partner treats behavior with each partner as separate events permitting partner level

analysis and allowing the modeling of partner contributed variation, explicitly differentiat-

ing it from subject contributed variation. The situation of multiple unprotected sex acts

with a single partner where only 1 possible HIV transmission could occur is now weighed

differently than the situation of 1 unprotected sex act with multiple partners where multiple

transmission acts could occur. The resulting multilevel model is ideal for sexual behavior

data since we can separately model the effects of following subjects longitudinally through

time even when their partners may be different at each followup. We make use of a gener-

alized autoregressive stationary process on the subject specific latent effects accounting for

heterogeneity of time trajectories across all outcomes.

Other intervention studies of sexual behavior may not record total number of acts across

all partners. Instead, only partner specific information for the first few partners and the
34



total number of partners are recorded. In this scenario, imputation of the acts data for

the remaining partners without the constraint on total number of acts is theoretically still

possible with our model.

Although we have focused on modeling longitudinal sexual behavior profiles, our model

can readily be applied to any application with nested longitudinal count data.
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Figure 2.4: Sexual behavior profiles of treatment and control groups over time. Graphs
represent averages for participants who are white, MSM, less than 40 years old, from Los
Angeles, did not graduate high school, were out of work, and had no history of hard drug
use
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Table 2.2: The effects of covariates on sexual behavior. Multiplicative effects from the
comparison group are reported as posterior mean PM followed by the 95% equal-tail credible
interval (LCI , UCI). The comparison group are white MSMs assigned to the control group
who are less than 40 years old, from Los Angeles, did not graduate high school, out of work,
and had no history of hard drug use. Values with * indicate statistically significant evidence
of difference from the comparison group.

Variable Number of Partners Protected Acts Unprotected Acts
HIV+ Partner
Site
Milwaukee 0.34 (0.23, 0.49)* 0.68 (0.31, 1.71) 1.29 (0.78, 2.12)
New York 1.10 (0.87, 1.38) 1.34 (0.85, 2.25) 0.94 (0.70, 1.23)
San Francisco 1.15 (0.93, 1.43) 0.78 (0.51, 1.19) 0.85 (0.66, 1.11)

Risk Group
Female 0.14 (0.10, 0.19)* 2.06 (1.16, 3.76)* 1.98 (1.37, 2.94)*
HTM 0.36 (0.25, 0.51)* 3.35 (1.77, 6.13)* 1.12 (0.75, 1.66)
IDU 1.21 (0.94, 1.54) 0.50 (0.30, 0.85)* 1.65 (1.22, 2.18)*

Education
HS grad or some college 0.92 (0.70, 1.18) 1.43 (0.94, 2.20) 1.00 (0.76, 1.30)
College graduate 1.34 (0.95, 1.87) 0.75 (0.39, 1.47) 0.98 (0.69, 1.45)

Age
More than 40 yrs old 0.89 (0.75, 1.08) 1.07 (0.76, 1.52) 0.99 (0.82, 1.22)

Career
Working 1.22 (1.08, 1.37)* 1.09 (0.82, 1.42) 1.14 (0.97, 1.36)

Race
Black 0.96 (0.76, 1.22) 2.70 (1.81, 4.08)* 0.83 (0.65, 1.05)
Hispanic 0.83 (0.61, 1.12) 3.37 (1.98, 5.94)* 0.87 (0.64, 1.22)
Other 0.77 (0.53, 1.07) 1.70 (0.95, 3.15) 1.05 (0.72, 1.55)

Drug Use
Hard drug usage (Lifetime) 1.31 (1.05, 1.66)* 0.94 (0.60, 1.42) 0.92 (0.71, 1.16)
Recent hard drug usage 1.09 (0.76, 1.56) 0.82 (0.43, 1.43) 1.13 (0.76, 1.64)

HIV− or unknown Partner
Site
Milwaukee 1.08 (0.82, 1.41) 1.07 (0.73, 1.58) 1.07 (0.72, 1.56)
New York 0.95 (0.78, 1.16) 1.72 (1.28, 2.34)* 0.95 (0.74, 1.23)
San Francisco 1.50 (1.24, 1.80)* 0.93 (0.72, 1.22) 0.88 (0.67, 1.11)

Risk Group
Female 0.69 (0.57, 0.84)* 1.70 (1.22, 2.30)* 1.88 (1.41, 2.54)*
HTM 0.58 (0.45, 0.77)* 2.39 (1.57, 3.56)* 1.29 (0.88, 1.87)
IDU 0.60 (0.47, 0.76)* 0.51 (0.35, 0.77)* 1.66 (1.19, 2.32)*

Education
HS grad or some college 1.09 (0.90, 1.33) 1.05 (0.76, 1.44) 0.88 (0.68, 1.15)
College graduate 1.95 (1.53, 2.53)* 0.76 (0.49, 1.16) 0.84 (0.58, 1.23)

Age
More than 40 yrs old 0.84 (0.73, 0.98)* 0.96 (0.79, 1.21) 0.79 (0.63, 0.96)*

Career
Working 1.13 (1.02, 1.26)* 0.99 (0.83, 1.17) 1.15 (0.97, 1.37)

Race
Black 0.83 (0.68, 0.99)* 1.26 (0.94, 1.73) 1.05 (0.80, 1.34)
Hispanic 1.36 (1.09, 1.69)* 1.90 (1.35, 2.73)* 0.78 (0.57, 1.06)
Other 0.86 (0.65, 1.14) 1.37 (0.89, 2.10) 0.94 (0.63, 1.40)

Drug Use
Hard drug usage (Lifetime) 0.95 (0.79, 1.14) 0.90 (0.68, 1.17) 1.18 (0.90, 1.53)
Recent hard drug usage 0.98 (0.74, 1.34) 0.95 (0.64, 1.41) 1.41 (1.00, 1.96)*

Partner type
Main Partner 3.70 (3.41, 4.00)*
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Table 2.3: Seroadaptive behavior comparison. Comparison group is white men who have
sex with men (MSM) at baseline that are less than 40 years old from Los Angeles who did
not graduate high school and were out of work with no history of hard drug use. For each
group, we evaluated the serodiscordant partner selection (SPARM), serodiscordant activity
multiple (SAM), and the serodiscordant protection multiple (SPROM). Values of SAM and
SPROM with * indicate statistically significant evidence for seroadaptation. Values in bold
are significantly different from the value in the comparison group.

Seroadaptive measures SPARM SAM SPROM
Comparison group 1.50 (1.09, 1.99) 0.78 (0.56, 1.07) 1.48 (1.22, 1.77)*

Time
Followup 1 1.55 (1.10, 2.09) 0.74 (0.52, 1.03) 1.71 (1.36, 2.14)*
Followup 2 1.56 (1.10, 2.12) 0.67 (0.46, 0.93)* 1.80 (1.41, 2.28)*
Followup 3 1.58 (1.11, 2.16) 0.73 (0.51, 1.02) 1.69 (1.30, 2.15)*
Followup 4 1.47 (1.05, 2.00) 0.72 (0.50, 1.00)* 1.82 (1.39, 2.32)*
Followup 5 1.32 (0.93, 1.78) 0.88 (0.60, 1.23) 1.87 (1.44, 2.39)*

Treatment (Trt)
Trt Baseline 1.55 (1.10, 2.10) 0.82 (0.59, 1.13) 1.42 (1.16, 1.73)*
Trt Followup 1 1.48 (1.05, 2.03) 0.80 (0.56, 1.12) 1.62 (1.28, 2.03)*
Trt Followup 2 1.39 (0.98, 1.91) 0.82 (0.57, 1.15) 1.82 (1.42, 2.32)*
Trt Followup 3 1.41 (1.00, 1.94) 0.82 (0.56, 1.15) 1.91 (1.47, 2.49)*
Trt Followup 4 1.23 (0.87, 1.69) 0.90 (0.61, 1.27) 1.83 (1.33, 2.44)*
Trt Followup 5 1.35 (0.95, 1.87) 0.88 (0.58, 1.24) 1.75 (1.31, 2.30)*

Risk Group
FEM 4.26 (2.89, 5.93) 0.72 (0.49, 1.02) 1.44 (1.14, 1.73)*
HTM 2.05 (1.37, 2.93) 0.86 (0.56, 1.28) 1.48 (1.08, 1.95)*
IDU 0.96 (0.65, 1.34) 0.69 (0.45, 1.00)* 1.31 (1.10, 1.54)*

Race
Black 1.35 (0.99, 1.79) 0.79 (0.58, 1.05) 1.27 (1.01, 1.57)*
Hispanic 2.02 (1.47, 2.72) 0.75 (0.55, 1.01) 1.52 (1.18, 1.92)*
Other 1.59 (1.07, 2.28) 0.75 (0.51, 1.06) 1.53 (1.18, 1.93)*

Location
Milwaukee 3.16(2.09, 4.65) 0.76 (0.49, 1.11) 1.58 (1.26, 1.93)*
New York 1.36 (0.95, 1.87) 0.89 (0.63, 1.25) 1.64 (1.27, 2.02)*
San Francisco 1.77 (1.26, 2.37) 0.82 (0.58, 1.13) 1.51 (1.25, 1.81)*
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CHAPTER 3

The cmDPM model

3.1 Introduction

The Dirichlet process mixture (DPM) model first introduced by Ferguson (1973) and An-

toniak (1974) has been used extensively as a non-parametric Bayesian model. The DPM

model can be used in clustering problems where the number of clusters are not known a

priori. The standard DPM model assumes exchangeable observations from a single unknown

distribution.

In the longitudinal data setting, Kleinman & Ibrahim (1998) has applied the DPM to

the random effects model. In this model, multivariate subject specific random effects are

distributed as from a single unknown multivariate distribution with a Dirichlet process prior.

This model is restrictive since each subject is assumed to belong to the same cluster of the

DPM model throughout the study. A more flexible approach specifies a separate distribution

at each time point resulting in a collection of distributions.

Recent work has extended the DPM model to model a collection of distributions. These

distributions are specified in the model so that they are not independent and identically

distributed but instead share some common parameterization. MacEachern (1999) and

MacEachern (2000) introduced the dependent Dirichlet process (DDP) that induces de-

pendence between distributions by replacing the elements of the stick-breaking construction

(Sethuraman 1994) of the Dirichlet process with stochastic processes. Along these lines, a

number of models have been developed. De Iorio et al. (2004) uses a “single-p” DDP model

where dependencies are introduced only through the point masses but not the weights of the

stick breaking construction to create an ANOVA dependent Dirichlet process model. Teh
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et al. (2006) introduces the hierarchical Dirichlet process (HDP) that models the baseline

measure itself as a Dirichlet process. Dependence is induced in this case by sharing clusters

and the corresponding values assigned to these clusters across all distributions. Rodríguez

et al. (2008) introduced the nested Dirichlet process (nDP) which clusters similar distribu-

tions together. Dependent distributions across longitudinal data should also account for the

ordering of time. In this area, Zhu et al. (2005) and Caron et al. (2007) introduced time

dependent DP models based on varying the Polya urn-type scheme. Griffin & Steel (2006)

developed a dependent Dirichlet process where the weights of the stick-breaking construction

are conditional on an ordered covariate which could be time. Jensen & Shore (2011) extends

the HDP model for longitudinal data allowing parameter values for each individual to either

stay the same across time or be drawn from a time dependent distribution induced from the

HDP.

With the exception of Jensen’s Markovian hierarchical Dirichlet process, the other men-

tioned models model dependence on the distribution level but do not account for dependence

resulting from the same subjects being followed over time. Parameter values at each time

point ignore individual history and are only dependent on the past history of the population

as a whole treating each subsequent time point as a new draw of subjects from the same

general population instead of observations of the same subjects.

Jensen’s Markovian hierarchical Dirichlet process accounts for individual history by spec-

ifying a nonzero probability to retain each subject’s parameter value from the previous time

point. Subjects whose parameter values were not retained are then modeled separately from

the HDP model. However, this model only allows for flat trends over time for subjects who

stay in the same cluster since the subject’s parameter value is the same as the previous time

point. More importantly, since the model only specifies whether values of subject parameters

are retained, subjects can never join an existing cluster from the previous time point that

was not their own cluster. A subject’s parameter value drawn separately from the HDP

model will never match that of a previously existing value. This implies all clusters eventu-

ally die out over time with new ones being created. We propose a model that approaches

the longitudinal data analysis problem from the clustering perspective to address these two
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restrictions.

In this chapter, we propose the cluster memory Dirichlet process mixture (cmDPM) model

for the modeling of longitudinal data in a nonparametric Bayesian framework accounting for

individual history through both previous cluster membership and previous parameter value.

Subjects that behaved similarly at a given time point should continue to behave similarly at

future time points as well. A probability parameter ρ is defined in the model to reflect how

often this occurs. Alternatively, an individual may leave its current cluster with probability

1 − ρ giving it freedom to move to any cluster at the following time point. We refer to the

characteristic describing how often observations reevaluate their cluster membership at each

time point as cluster mobility. Cluster mobility is also an important statistic for describing

the data. Low levels of cluster mobility indicate cluster membership that is “sticky” over

time and corresponds to a high dependence of future behavior on historical behavior. In

extreme cases, cluster mobility can be 0 implying no change in cluster membership at any

time or 1 implying complete independence from previous cluster membership. When the

cluster mobility is 0, a single standard Dirichlet model applied to the longitudinal vector of

outcomes together (Kleinman & Ibrahim 1998) is appropriate to model the data. When the

cluster mobility is 1, independent DPM models applied at each time point are appropriate

to model the data. The cmDPM model with the ρ parameter is a flexible model that spans

the range of possibilities between these two extremes.

Figure 3.1 shows six simulated datasets with varying levels of cluster mobility suitable for

modeling with the cmDPMmodel. Each dataset contains 75 subjects recorded over 4 discrete

time points. Subjects are assigned into one of three clusters with each cluster given a cluster

specific value that may be different at each discrete time point. At baseline, 25 subjects are

assigned into each cluster. At each following time point, each subject may reassess which

cluster they are assigned to with probability equal to the dataset’s cluster mobility. The top

three plots show examples of data where the cluster specific values do not change over time

but subjects occasionally switch clusters with the top left plot showing the highest level of

cluster mobility at 1 − ρ = 0.2, the top middle plot having 1 − ρ = 0.1, and the top right

plot showing the lowest level of cluster mobility at 1 − ρ = 0.05. These are examples of
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data where no overall change is occurring in the density at each time point but individuals

are moving around between clusters. The information on cluster mobility that could be

gained from the cmDPM model could help us determine the predictability of individuals

in the dataset at future time points. Modeling this data without accounting for individual

history would not show any differentiation between these three examples. The bottom three

plots show other data examples that the cmDPM model would be well suited for. In the

bottom left plot, cluster specific values are dropping over time in all three clusters. This

could be a dataset where there are three unique groups of participants for which a treatment

was effective in all groups. In the bottom middle plot, cluster specific values in two groups

swap at time point 3. In this case, the treatment could have been effective in one group

but counterproductive in the other group. In both of these datasets, we can only accurately

estimate cluster mobility and the behavior in the data by modeling dependence on previous

cluster membership of the participants using the cmDPM model since the cluster specific

values are changing. The bottom right plot shows an example of simulated data that gets

progressively noisier with increasing variance over time. Estimating cluster mobility in the

dataset with the cmDPM model can help us better estimate the clustering structure at the

last time point by borrowing clustering information for each subject from the earlier time

points.

The cmDPM model forms clusters at future time points by carrying an existing cluster

forward in time or creating a new cluster. When existing clusters are retained over time, the

cluster specific value of that cluster at the previous time point can be useful to determine

future cluster specific values. This information does not exist when new clusters are created.

To make this distinction, and properly use individual parameter values at the previous time

point when appropriate, we use two distinctly different distributions to model the cluster

specific values at a new time point. When an existing cluster is carried forward, the cluster

specific value is modeled under a cluster time specific distribution parameterized by the

cluster specific value of that cluster at the previous time point. On the other hand, when a

new cluster that was not present at the previous time is formed, the cluster specific value is

modeled under a general time specific distribution to represent the lack of information. This
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Figure 3.1: Simulated datasets with three clusters and four time points with various levels
of cluster mobility, 1-ρ, that are suitable for the cmDPM model. Colors of lines indicate
cluster membership at the previous time point.

distinction on how to model new cluster specific values makes use of the previous individual

parameter values only from those individuals we believe are relevant to better predict the

new cluster specific values at each time point.

The remainder of this chapter is organized as follows. We review the standard DPM model

in Section 3.2. The cmDPM model is presented in Section 3.3. We develop the cmDPM

model in three different ways. We first develop the model as an extended DPM model

with two parts. We then develop the model by taking a finite mixture model and allowing

the number of components to approach infinity. A persistent multi-day Chinese restaurant

process is developed last which leads to the same limit. The cmDPM model is extended to

include other parameters and hyperpriors. Finally, a summary of the posterior computation

is given. In Section 3.4, we model tuberculosis incidence data from 197 countries around the
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world over the last 21 years using our model. We conclude with a discussion in Section 3.5.

3.2 Dirichlet Process Mixture Models

Let Y1, . . . , Yn be the data assumed to be independently drawn from some unknown distri-

bution U . The basic DPM model characterizes U by associating each observation Yi with

parameter θi and some specified likelihood density f(Yi|θi). The parameter θi has a prior

distribution G. To model uncertainty regarding the functional form of G, G is treated as

random and modeled as a draw from a Dirichlet process characterized by strength parameter

α and base distribution G0. The full model can be summarized as

Yi|θi ∼ f(Yi|θi)

θi|G ∼ G

G|α,G0 ∼ DP (α,G0) (3.1)

for i from 1, . . . , n where X ∼ f(X|θ) means that random variable X is distributed as some

distribution F with density f(X|θ). Integrating over G gives the sequential conditional

priors of θi (Blackwell & MacQueen 1973)

θi|θ1, . . . , θi−1 ∼
1

i− 1 + α

i−1∑
j=1

δ(θj) + α

i− 1 + α
G0, (3.2)

where δ(θ) is the distribution concentrated at a single point θ. Equation (3.2) shows that

conditionally, each θi for i = 1, . . . , n has a nonzero probability of being equal to one of the

previously given parameters θ1, . . . , θi−1 since the conditional distribution has a point mass

at each of these values. The resulting draw of θ1, . . . , θn from G is therefore clustered at

some K ≤ n values.

Neal (2000) shows an equivalent model to (3.1) can be obtained from a finite mixture

model with K components by taking the limit as K goes to infinity. The finite mixture
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model has the form

Yi|ci,φ ∼ f(Yi|φci
)

ci|π ∼ Discrete(π1, . . . , πK)

φc ∼ G0

π|α ∼ Dirichlet
(
α

K
, . . . ,

α

K

)
. (3.3)

Here, ci is a cluster label that shows the cluster that observation Yi belongs to. Each

cluster c ∈ {a1, . . . aK} has a corresponding parameter φc that determines the distribution

f(Yi|φc) for that cluster. A discrete distributed random variable with mixing parameter

π = (π1, . . . , πK) takes on values a1, . . . , aK with corresponding probabilities (π1, . . . , πK)

where the values a1, . . . , aK are any assigned values. The mixing parameter π determines

the probability of falling into each cluster c ∈ {a1, . . . aK} and is given a symmetric Dirichlet

prior with concentration parameter α/K. In the limit as K goes to infinity, the two models

in equations (3.1) and (3.3) are identical if we define θi = φci
for i = 1, . . . , n.

3.3 Cluster Memory Dirichlet Process Mixture Model

We give three different elaborations of the cmDPM model in the following section which

derive the model from three different perspectives. We first present the cmDPM model as

a 2 part model where Mj observations remain in the clusters they were assigned to at the

previous time point j and the remaining n −Mj observations exhibit clustering properties

like a standard DP with Mj already observed values. We then derive the cmDPM model

directly from a longitudinal finite mixture model taking the number of components at each

time point to infinity. In our final presentation, we give a process centered presentation of the

cmDPM analogous to a Markovian Chinese restaurant process. We follow the specifications

of the cmDPM model with a discussion of hyperpriors appropriate for the model. Posterior

computation and an efficient estimation algorithm is presented in the final section.
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3.3.1 Model Specification

3.3.1.1 DPM Extension

Let Yij denote longitudinal observations with Yij|θij ∼ f(Yij|θij) for subject i (i = 1, . . . , n)

at discrete time points j (j = 1, . . . , J). The parameter θij is a subject specific parameter for

subject i at time point j. At any given time point j, the parameters θj = (θ1j, . . . , θnj) are

clustered into Kj clusters with all subject specific parameters in the same cluster assigned

the same cluster specific value. A cluster label cij is used to denote which cluster subject i

belongs to. Observations i and i′ are in the same cluster at time j if cluster labels are equal,

cij = ci′j. An alternative parameterization of θj assigns a value for each cluster instead of

each subject with φjcij
≡ θij. The parameter φjcij

denotes the cluster specific value for the

cluster with label cij.

At discrete time point j = 1, there is no prior history and observations at the first time

point Yi1 are modeled using a standard DPM model,

Yi1|θi1 ∼ f(Yi1|θi1), (3.4)

θi1|G1 ∼ G1, (3.5)

G1 ∼ DP(α,G01), (3.6)

where α is the strength parameter and G01 is a time specific base distribution for j = 1.

At discrete time points 2 ≥ j ≥ J , a cluster stickiness parameter ρ is used to determine

how well clusters stay together over time. For each observation 1 ≤ i ≤ n, we model a cluster

memory indicator Zij as

Zij|ρ ∼ Bernoulli(ρ), (3.7)

ρ ∼ Beta(aρ, bρ). (3.8)

When Zij = 1, cluster label cij will retain the same value as the previous time point ci(j−1).

When Zij = 0, cluster label cij is redrawn. Conditioned on Zj = (Z1j, . . . Znj), the cmDPM
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model at time point j is a 2 part model which we now specify.

Let S1
j = {i|Zij = 1} denote the set of observations 1 ≤ i ≤ n at time j with Zij = 1 and

let S0
j = {i|Zij = 0} denote the set of observations at time j with Zij = 0. For i ∈ S1

j ,

Yij|θij ∼ f(Yij|θij), (3.9)

θij ≡ φjcij
, (3.10)

cij|Zij = ci(j−1), (3.11)

φjcij
|θi(j−1), cij ∼ G0jcij

(θi(j−1)), (3.12)

where cluster label cij = ci(j−1) because Zij = 1 and G0jcij
(θi(j−1)) is the cluster time specific

distribution parameterized by the value θi(j−1). This implies that when Zij = 1, subject i

stays in the same cluster as the previous time point and the cluster specific value is allowed

to vary as a function of the cluster specific value of that cluster at the previous time point.

A total of Mj = ∑n
i=1 Zij subjects stay in the same cluster as the previous time point in the

first part of the model which provides some structure for the remaining observations.

The remaining observations i ∈ S0
j are now modeled as a DPM that has already observed

Mj observations. Conditioned on θ1
j = (θij) for i ∈ S1

j , observations i ∈ S0
j are modeled as

Yij|θij ∼ f(Yij|θij), (3.13)

θij|Gj ∼ Gj, (3.14)

Gj|θ1
j ∼ DP

(
α +Mj,

αG0j +∑
i∈S1

j
δθij

α +Mj

)
, (3.15)

where G0j is a time specific base distribution for time j.

We define an abbreviated notation for equations (3.7), (3.8), (3.10), (3.11), (3.12), (3.14),

and (3.15) for 1 ≤ i ≤ n and 2 ≤ j ≤ J as

θij|Gj ∼ Gj, (3.16)

Gj ∼ cmDP(α,G0jc, cj−1,θj−1, ρ), (3.17)
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where cj = (c1j, . . . , cnj) and cluster time specific base distributions G0jc are

G0jc =


G0jc(φ(j−1)c), if c ∈ cj−1,

G0j, otherwise.
(3.18)

Parameterizing the cluster specific base distribution G0jc for clusters carried over from the

previous time point and new clusters formed at the current time point differently in our

model reflects the belief that additional information is gained when we know where the

cluster had previously been. When a new cluster is formed, the cluster specific value is

drawn from the entire range of possible cluster specific values distributed as G0j. However,

a carried over cluster c already contains a cluster specific value φ(j−1)c from the previous

time point j − 1 which helps us identify where the value at the current time point might

be. Therefore, G0jc(φ(j−1)c) will generally be a distribution with much smaller variance than

G0j. For example, both G0j and G0jc(φ(j−1)c) may be Gaussian distributions but cluster time

specific distribution G0jc(φ(j−1)c) would be informatively centered with mean φ(j−1)c and a

much smaller variance.

3.3.1.2 Finite Mixture

The cmDPM model can also be presented by extending the finite mixture model (3.3). In

the finite mixture model, the likelihood of observations Yij|φjcij
is denoted as Yij|φjcij

∼

f(Yij|φjcij
) where cluster labels cij define the mixture components. The cluster labels of all

the observations at time j, cj = (c1j, . . . , cnj), map each subject to the appropriate mixture

component. Vector cj defines the cluster structure at time j and has Kj unique values. At

time point j = 1 when no clustering history is available for the subjects, the standard DPM

model is used. For time points j ≥ 2, specification of the cluster structure cj depends on the

cluster structure at the previous time point cj−1. Observations retain the same cluster label

value as the previous time point with probability cluster stickiness parameter ρ. Otherwise,

they are assigned a cluster label value drawn from a discrete distribution determined by time

specific mixing parameter πj. As the number of components goes to infinity, we show that
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cluster assignment of the later scenario behaves the same as a DPM updated with the Mj

observations retained from the previous time point. At the end of this section, we marginalize

out Zij to show how cluster stickiness parameter ρ changes the conditional cluster assignment

probabilities from those in the standard DPM model.

For observation i at time point j = 1,

ci1|π1 ∼ Discrete(π11, . . . , π1K1), (3.19)

φ1c ∼ G01, (3.20)

π1|α ∼ Dirichlet
(
α

K1
, . . . ,

α

K1

)
, (3.21)

where c is the value of ci1 drawn from (3.19). This specifies the model for the initial cluster

structure c1. At times 2 ≤ j ≤ J ,

cij|Zij, ci(j−1),πj ∼


δ(ci(j−1)), if Zij = 1,

Discrete(πj1, . . . , πjKj
), if Zij = 0,

(3.22)

φjc ∼ G0jc, (3.23)

Zij|ρ ∼ Bernoulli(ρ), (3.24)

ρ ∼ Beta(aρ, bρ) (3.25)

πj|α, c1
j ∼ Dirichlet

(
n1
j1 + α

Kj

, . . . , n1
jKj

+ α

Kj

)
. (3.26)

The time specific mixing parameter πj has a non-symmetric Dirichlet prior (3.26), given α

and the cluster structure c1
j where c1

j = (cij) for all i ∈ S1
j is the vector of all cij with Zij = 1.

Let |S| be the number of elements in set S. The values n1
jc = |{cij|(Zij = 1 and cij = c)}|

are the number of cij in c1
j equal to c.
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The joint conditional density of cj is

p(cj|α,Zj, cj−1) = p(c1
j |Zj, cj−1)p(c0

j |c1
j , α,Zj)

=

∏
i∈S1

j

δcij
(ci(j−1))

 p(c0
j |c1

j , α,Zj). (3.27)

where c0
j = (cij) for all i ∈ S0

j and δx(c) is the point mass of random variable x with value

of 1 at x = c and 0 everywhere else. The joint conditional density p(c0
j |c1

j , α,Zj) can also be

specified as the product of individual conditional densities

p(c0
j |c1

j , α,Zj) =
∏
i∈S0

j

p(cij|c1
j , c0

<ij, α,Zj) (3.28)

where c0
<ij = {crj|(r < i and r ∈ S0

j )} is the set of c0
j with all observations r < i.

The conditional probability mass function of cij ∈ c0
j at cij = c is

P (cij = c|c1
j , c0

<ij, α,Zj)

=
P (c0

<ij, cij = c|n1
j1, . . . , n

1
jKj

)
P (c0

<ij|n1
j1, . . . , n

1
jKj

)

=

∫  ∏
crj∈c0

<ij

πjcrj

πjc Γ(α +∑Kj

k=1 n
1
jk)∏Kj

k=1 Γ(n1
jk + α/Kj)

π
n1

j1+(α/Kj)−1
j1 . . . π

n1
jKj

+(α/Kj)−1
jKj

dπj

∫  ∏
crj∈c0

<ij

πjcrj

 Γ(α +∑Kj

k=1 n
1
jk)∏Kj

k=1 Γ(n1
jk + α/Kj)

π
n1

j1+(α/Kj)−1
j1 . . . π

n1
jKj

+(α/Kj)−1
jKj

dπj

=
n1
jc + n0

<ijc + (α/Kj)
α +Mj + i1 − 1 (3.29)

where n0
<ijc = |{crj|(crj = c and crj ∈ c0

j)}| is the number of crj = c for all crj ∈ c0
<ij and

i1 = |c0
<ij| is the number of observations k < i that are in S0

j , the cardinality of c0
<ij. Let

n<ijc = n1
jc + n0

<ijc be the total number of observations r with either Zrj = 1 or with r < i

in cluster c. We can rewrite equation (3.29) as

P (cij = c|c1
j , c0

<ij, α,Zj) = n<ijc + (α/Kj)
α +Mj + i1 − 1 . (3.30)
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Allow Kj to go to infinity; the conditional probability that cluster label cij ∈ c0
j takes on the

value of an existing cluster c then approaches

P (cij = c|c1
j , c0

<ij, α,Zj)→
n<ijc

α +Mj + i1 − 1 , (3.31)

while the conditional probability that cij takes on a new cluster approaches

P (cij = c|c1
j , c0

<ij, α,Zj)→
α

α +Mj + i1 − 1 , (3.32)

which is the standard DPM model after having first observed all Mj observations for i ∈ S1
j .

This implies that for 2 ≤ j ≤ J , conditional on cluster memory indicators Zj, observations

in the model either belong to an assigned cluster defined by previous cluster membership as

in (3.9), (3.10), and (3.11) or they belong in a DPM model with observations carried over

from the previous time point as in (3.13), (3.14), and (3.15).

The conditional probabilities for cij ∈ S0
j in (3.31) and (3.32) can also be written condi-

tional on all other cluster labels by treating observation i as the nth observation.

Marginalizing out Zij from the conditional probabilities of cij shows that the cluster

stickiness parameter ρ puts additional weight on the probability of keeping the same cluster

label as the previous time point ci(j−1) and gives insight on what happens to the model at

the extreme conditions of ρ = 0 and ρ = 1. First, we define some needed notation. Let c−ij

denote the vector of parameters cj without observation i and let c−(ij) denote the vector of

parameters (c1, . . . , c−ij, . . . , cJ). Further let n−ijc be the total number of observations in

cluster c at time j other than observation i, n1
−ijc be the total number of observations in

cluster c that were carried over from the previous time point excluding observation i, and

M−ij = ∑n
r=1 Zrj − Zij be the total number of observations carried over from the previous

time point excluding observation i. We can then specify the conditional probabilities of
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p(cij|c−ij, ρ, α) marginalizing out Zij as 3 mutually exclusive and exhaustive cases

P (cij = c|c−ij, cj−1, ρ, α) =



b
[
(1− ρ)n−ijc + ρ(α +M−ij)n−ijc

n1
−ijc

I(c = ci(j−1))
]
,

bρ(α +M−ij),

b(1− ρ)α,

(3.33)

with corresponding values of c in each case defined as



c = crj for some r 6= i,

[c = ci(j−1)] and [c 6= crj for every (crj ∈ c0
j , r 6= i)],

c 6= any value in c−(ij),

(3.34)

where b in (3.33) is the normalizing constant

b−1 =
∑
c

P (cij = c|c−ij, cj−1, ρ, α). (3.35)

The standard DPM model conditional probabilities for cluster label cij are down weighted

by a factor of 1− ρ and the cluster with c = ci(j−1) is given additional weight to account for

retained memory. Cluster c = ci(j−1) is given weight bρ(α + M−ij) if not in c−ij and given

additional weight bρ(α + M−ij)n−ijc/n1
−ijc if already in c−ij. When ρ = 0, the effect of the

cluster structure at the previous time point ci(j−1) becomes null and the model is equivalent

to the standard Dirichlet model applied independently to each time point. When ρ = 1,

all observations maintain their previous cluster structure and the model is equivalent to a

single standard Dirichlet model applied to the longitudinal vector of outcomes together. The

introduction of cluster stickiness parameter ρ maintains flexibility and presents a model with

a clustering structure somewhere between the 2 extremes.
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3.3.1.3 Markovian Chinese Restaurant Process

An alternative way to visualize the cluster memory Dirichlet process G ∼ cmDP(α,G0c, c1,

θ1, ρ) is by examining the conditional distributions of Yi|Y1, . . . , Y(i−1) through using the

Markovian Chinese restaurant process (MCRP). The MCRP is a novel variant of the Chi-

nese restaurant process (CRP) (Aldous 1985) used to visualize the Dirichlet process that

allows partial retention of the cluster structure. We first describe the CRP then present

the modified MRCP. The CRP in simplest terms describes a distribution on clusters. In

the CRP metaphor, the Chinese restaurant has infinitely many tables where each table can

seat infinitely many customers. The tables are ordered and customers coming in can sit at

any occupied table or the next unoccupied table. Specifically, customer i sits at an already

occupied table k with probability nk/(α+ i−1) where nk is the number of customers already

at table k or sits at the next unoccupied table with probability α/(α+ i− 1). Each table is

then served a dish φk taken from a distribution G0.

The MCRP starts with an existing seating arrangement c1 describing a previous cluster

structure and a set of corresponding observation specific values θ1 for observations 1, . . . , n.

This existing seating arrangement could be obtained through an exchangeable process like the

CRP, another MCRP, or be simply assigned based on prior belief. The customers represent

subjects in longitudinal data and the tables represent clusters. All customers seated at the

same table as customer i are served a dish φ1ci1 = θi1. After tasting the dish, customers leave

the table with probability ρ with a total of M customers leaving their tables to return to the

front of the restaurant. A partially retained cluster structure remains from those customers

who did not leave. If a table is left empty, that table is removed. The customers who left their

tables and returned to the front of the restaurant then get seated sequentially at an already

occupied table k with probability nk/(α + M + i1 − 1) or the next unoccupied table with

probability α/(α+M+i1−1) whereM+i1−1 is the total number of customers already seated.

This portion of the seating process is the same as a CRP that had already seated n −M

customers exactly the same way as they were seated in the previous seating arrangement. The

seating arrangement of customers are therefore dependent on the previously existing seating
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Figure 3.2: Graphical summary of the Markovian Chinese restaurant process. We start with
a predefined seating arrangement for n customers. In step 1, each customer is removed with
probability ρ. If an entire table is left empty, the table is removed as well. In step 2, removed
customers are assigned seating with probability defined in the CRP. In step 3, each table is
served a dish φ2,c. For each table c, if the table existed in the original seating arrangement,
customers are served a similar dish from G0c(φ1,c). If the table is new, customers are served
a new dish from a non-specific base distribution G0 instead.

arrangement c1 as inferred by the name Markovian Chinese restaurant process. Each table

c is then served dishes φ2,c depending on whether that table existed in the original seating

arrangement. Tables that existed in the original seating arrangement are served a dish similar

to their original dish from a table specific distribution G0c(φ1c). Tables that did not exist are

served a dish from a non-specific base distribution G0. In this manner, each time point j > 1

after the initial time point j = 1 of our cmDPM model is a Markovian Chinese restaurant

process with the cluster structure based on the previous time point’s cluster structure. A

graphical summary of the MCRP is shown in Figure 3.2.
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3.3.2 Hyperpriors

The presented model can be extended with hyperpriors to incorporate uncertainty about

some parameters that were considered constants in the previous section.

Rather than a fixed strength parameter α, a hyperprior for α can be specified to incor-

porate uncertainty. The posterior of strength parameter α is only dependent on the number

of new unique clusters at each time point. We define K0
j as the number of new values of

cluster labels cij for 1 ≤ i ≤ n that appears in cj but did not previously appear at any time

l < j and the number of retained cluster labels is Mj where at the initial time point j = 1,

we have M1 = 0. The posterior of α given K0
j across all time points 1 ≤ j ≤ J is

f(K0
1 , . . . , K

0
J |α) ∝

J∏
j=1

αK
0
j
Γ(α +Mj)
Γ(α + n) ,

f(α|K0
1 , . . . , K

0
J) ∝ f(α)f(K0

1 , . . . , K
0
J |α). (3.36)

A reasonable hyperprior for α could be based on prior belief of the number of unique clusters

across all time points. We use an extension of Antoniak (1974) to establish an approximate

relationship between α and the total number of unique clusters. Let Wij be 1 when a new

cluster cij is chosen for subject i at time j and 0 otherwise. Then from (3.32) in the cmDPM

model,

Pr(Wij = 1) = α

α +Mj + i1 − 1 , for i ∈ S0
j ,

= 0, for i ∈ S1
j . (3.37)

Let Zn = ∑J
j=1

∑n
i=1Wij be the total number of unique clusters over all time points. Then

the expected number of unique clusters across all time points can be approximated as

E(Zn|M2, . . .MJ , α) =
J∑
j=1

n∑
m=Mj+1

α

α +m− 1 ≈ α
J∑
j=1

log
(
n+ α

α +Mj

)
(3.38)

since there are n −Mj observations total in S0
j at each time point j. A prior distribution
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for α can be established by estimating some reasonable number of unique clusters and using

(3.38) to approximate reasonable α values. To faciliate computation of the expected number

of clusters E(Zn), we can estimate a possibly subjective value for ρ and substitute nρ in

place of Mj.

The cluster time specific base distributions G0jc is parameterized with additional cluster

time specific base distribution parameters ηj = (η1
j , ηj0) such that

G0jc =


G0jc(φ(j−1)c, η

1
j ), if c ∈ cj−1,

G0j(ηj0), otherwise,
(3.39)

where η1
j parameterizes G0jc for clusters c ∈ cj−1 carried over from the previous time point

and ηj0 parameterizes G0jc for new clusters c /∈ cj−1. Hyperpriors on η1
j and ηj0 further

incorporate uncertainty regarding the base distribution G0jc.

Similarly, the conditional distribution describing our outcome Yij can also include addi-

tional likelihood distribution parameter λ so that Yij|θij, λ ∼ f(Yij|θij, λ). A hyper prior on

λ incorporates uncertainty regarding this distribution.

3.3.3 Posterior Computation

Our posterior computations are sampled with Markov Chain Monte Carlo (MCMC) methods

using the Gibbs sampler and the Metropolis algorithm. Neal (2000) provides a basis for

sampling the standard DPM model which we extend. In theory, jointly sampling cluster

memory indicator Zij and cluster label cij for each subject 1 ≤ i ≤ n at each time 1 ≤ j ≤ J

and sampling a cluster specific value φjc only when cluster c first appears at time j is

sufficient for sampling each cluster and the values of each cluster. In practice, this results

in an extremely slow convergence rate and we implement two additional sampling steps to

speed convergence. The other parameters in the model are sampled one at a time from their

full conditional distributions.

The full cmDPM model is defined by strength parameter α, cluster stickiness parameter
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ρ, additional likelihood distribution parameter λ, vectors of cluster memory indicators Zj

for j = 2, . . . J , vectors of subject specific parameters θj, vectors of cluster labels cj, and

cluster time specific base distribution parameters ηj for j = 1, . . . , J . We use parameters

φjcij
and θij interchangeably based on the equivalence relationship φjcij

= θij. To speed

convergence,we first determine at each iteration sets of cluster labels for each subject that

will take on the same value staying in the same cluster over several time points conditioned

on the cluster memory indicator at those time points. These sets of bound cluster labels

which we define more rigorously below are sampled jointly. Second, we resample cluster

specific values φjc for each cluster c at each time point j.

When conditionally conjugate priors are used, conditional posteriors of each are sampled in

turn using a Gibbs sampling step. We present a brief summary of the posterior computation

algorithm here. A detailed description of the computation algorithm is included in the

Appendix.

Let G(φ; η) represents the density of the distribution G at φ parameterized by η.

1. For 1 ≤ i ≤ n and j = 1, sample cluster label ci1|α, c−i1, Zi2, Yi1, λ. When a new cluster

c is formed with observation Yi1, a value of φ1c is sampled from f(φ1c|Yi1, η10, λ) ∝

f(Yi1|φ1c, λ)G01(φ1c; η10).

2. For 1 ≤ i ≤ n and 2 ≤ j ≤ J jointly sample (cij, Zij)|α, ρ, c−(ij), Yij, λ . When a new

cluster c is formed with observation Yij, a value of φjc is sampled from f(φjc|Yij, ηj0, λ) ∝

f(Yij|φjc, λ)G0j(φjc; ηj0). When a cluster c is retained from the previous time point

j − 1 for observation Yij with no current cluster specific value φjc at time point j, a

new φjc is sampled from f(φjc|Yij, φ(j−1)c, η
1
j , λ) ∝ f(Yij|φjc, λ)G0jc(φjc;φ(j−1)c, η

1
j ).

3. When cluster stickiness parameter ρ is high, cluster labels can mix very slowly since

multiple cluster labels across time are set equal. We introduce a cluster mixing step

across time for each observation 1 ≤ i ≤ n to speed up convergence. Given Zi, define

a set of consecutive cluster labels (cip, . . . , ciq) as bound if (i) Zi(p+1) = Zi(p+2) = · · · =

Ziq = 1, (ii) p = 1 or Zip = 0, and (iii) q = J or Zi(q+1) = 0. These bound cluster

labels (i) are all equal to each other because the value is retained from the previous
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time point, (ii) begin either at time point j = 1 or at a time p where the cluster label

was not carried over from time p − 1 and the cluster labels at these two times are

therefore not guaranteed to be the same, and (iii) ends at either time point j = J or

at a time q where the cluster label was not carried over to time point q + 1 and the

cluster labels at these two times are therefore not guaranteed to be the same. From

our model, this implies cip = ci(p+1) = · · · = ciq and q − p is as large as possible

with as many observations in each bound set as possible. Each observation i has a

total of J − ∑J
j=2 Zij bound clusters. We jointly sample sets of bound cluster labels

(cip, . . . , ciq)|α,Zi, c−ip, . . . , c−iq, Yip, . . . , Yiq for each subject 1 ≤ i ≤ n. If a new cluster

c is formed at any time point p ≤ j ≤ q, sample a new φjc.

4. When clusters do not disappear very often, the cluster specific values will mix very

slowly if they are not resampled. A remixing step for cluster specific values φjc sig-

nificantly speeds up convergence. This is used in the standard DPM model as well.

Sample φjc from f(φjc|Yj,ηj, λ) ∝ ∏i s.t. ci=c f(Yij|φjc, λ)G0jc(φjc;φ(j−1),c,ηj)

G0jc(φ(j+1)c;φjc,ηj). Repeat for 1 ≤ j ≤ J and all unique values of φjc.

5. Sample ρ from f(ρ|Z2, . . . ,ZJ).

6. Sample additional hyperparameters α, η1, . . . ,ηJ , and λ.

3.4 Applications

In this section, we apply the cmDPM model to data on annual tuberculosis (TB) incidence

rates around the world over the last 21 years. The cmDPM model clusters countries that

behave similarly together each year. The clustering takes into account their currently ob-

served incidence rates and where they were clustered previously. We summarize the change

in world TB incidence rates over the last 21 years as modeled by the cmDPM model show-

ing how the overall density and clustering structures have evolved over time and we make

individual country predictions for 2011, the following year. A comparison to the standard

time independent DPM model is also given.
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3.4.1 Tuberculosis incidence by country from 1990-2010

Tuberculosis (TB) is a common infectious disease that in humans typically result in an

asymptomatic, latent infection. However, those co-infected with HIV are at substantially

increased risk of developing active disease compared to those who are not. Gibson et al.

(2008) states that among people who are infected with tuberculosis, roughly 30% of people

who are HIV+ go on to develop active disease during their lifetime as opposed to only 5-10%

of those who are HIV−. Glynn (1998) compares the relative risk of tuberculosis between

individuals infected with HIV compared to those not infected in a number of studies and

while these studies show large variation in estimates of relative risk, it is consistent that

those infected with HIV have greater risk. Due in part to the impact of HIV on tuberculosis

at the population level, the World Health Organization (WHO) declared TB to be “a global

health emergency” in 1993.

We examine annual tuberculosis incidence per 100k population across 197 countries in

the world over the last 21 years from 1990-2010. The dataset is available publicly at http:

//data.worldbank.org. Let Xij be the annual tuberculosis incidence rate per 100k for

country i at time j for 1 ≤ i ≤ 197 and 1 ≤ j ≤ 21 and let Yij = log (Xij + 1) be the

corresponding annual log tuberculosis incidence rate.

A profile plot of the annual tuberculosis incidence rate data across all 21 years is shown

in Figure 3.3. Annual tuberculosis incidence rates for each country are connected by a

single line. Most countries show a slow but steady drop in tuberculosis incidence over the

last 2 decades. It is possible to visually identify clusters of countries that behave similarly

over time as some countries report tuberculosis incidence rates that are very close to each

other year after year. A few countries also show mobility between clusters moving over the

years to join different clusters of countries. The overall level of cluster mobility is of interest

when studying tuberculosis incidence on a global scale as it is an indication of the cluster

predictability across time. Low levels of cluster mobility indicates that most countries do

not vary behavior from their peers over time and cluster membership tends to stay the same.

Longitudinal trends of entire clusters tend to be a result of global changes. Identifying specific
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Figure 3.3: Longitudinal data of tuberculosis incidence per 100k population for 197 countries
in the world. Each line plots the reported tuberculosis incidence rates for a single country over
21 years. Posterior clustering of countries based on the cmDPM model is shown. Countries
i and i′ are considered in the same cluster at a given time j if the cluster labels cij and ci′j
are equivalent at least 75% of the time.

countries that do change cluster memberships often can be important in understanding how

large changes in TB incidence can occur.
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3.4.2 The cmDPM model for tuberculosis incidence

We model log tuberculosis incidence as

Yij|θij, σ2 ∼ N(θij, σ2),

θij ∼ Gj,

G1 ∼ DP(α,N(µG, σ2
G)),

Gj ∼ cmDP(α,G0jc, cj−1, ρ) for j ≥ 2,

ρ|aρ, bρ ∼ Beta(aρ, bρ)

G0jc =


N(φ(j−1)c, σ

2
c ), if c ∈ cj−1,

N(µG, σ2
G), otherwise,

(3.40)

with hyperpriors

σ2|aσ2 , bσ2 ∼ InvGamma(aσ2 , bσ2),

µG|σ2
G, µG, v ∼ N(µ0, σ

2
G/v),

σ2
G|aσ2

G
, bσ2

G
∼ InvGamma(aσ2

G
, bσ2

G
),

σ2
c |aσ2

c
, bσ2

c
∼ InvGamma(aσ2

c
, bσ2

c
),

α|aα, bα ∼ Uniform(aα, bα) (3.41)

where X ∼ InvGamma(a, b) denotes a random variable X is distributed inverse-gamma

with mean b/(a − 1) and X ∼ Beta(a, b) denotes a random variable X drawn from a beta

distribution with mean a/(a + b). From Section 3.3.2, σ2 ≡ λ is the additional likelihood

distribution parameter; parameters (µG, σ2
G) ≡ ηj0 and σ2

c ≡ η1
j are the cluster time specific

base distribution parameters in this model.

Parameters for the hyperpriors are selected to reflect constraints that Xij tuberculosis

incidence per 100,000 must be between (0, 100,000) and correspondingly, Yij must be between

(0, 11.5). We estimate incidences of around 55 per 100,000 to be the median and choose

µ0 = 4 ≈ log (55). We select parameters for aσ2 , bσ2 , and v so that the expected standard
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Table 3.1: Parameters of hyperpriors chosen in (3.40). Selection of parameters reflect prior
belief that median annual tuberculosis incidence per 100k should be around 150.

Parameter Name Parameter Value
Hyperprior parameter 1 for σ2 aσ2 4
Hyperprior parameter 2 for σ2 bσ2 2
Mean of hyperprior for µG µ0 4
Inverse variance scale parameter for µG v 2
Hyperprior parameter 1 for σ2

G aσ2
G

6
Hyperprior parameter 2 for σ2

G bσ2
G

10
Hyperprior parameter 1 for σ2

c aσ2
c

21
Hyperprior parameter 2 for σ2

c bσ2
c

2
Cluster stickiness hyperprior parameter 1 aρ 1
Cluster stickiness hyperprior parameter 2 bρ 1
Cluster strength hyperprior parameter 1 aα 0.5
Cluster strength hyperprior parameter 2 bα 10

deviation in µG is approximately 0.35 allowing flexible overall population average values

of incidence per 100,000 with typical values ranging from 20 to 150. A priori, we believe

variation of 1 log incidence rate for observations within the same cluster would not be

uncommon. We chose values of aσ2 and bσ2 so that the mean of the prior for σ2 was 0.66

corresponding to an expected standard deviation of approximately 0.82 around the cluster

specific value for each cluster to reflect this belief. Similarly, values of aσ2
c
and bσ2

c
for the

prior of σ2
c were chosen so that the mean of the prior was 0.1. This reflects our belief that

variations of the mean value of the same cluster from year to year should mostly stay within
√

0.1 ≈ 0.3 log incidence rate from one year to the next. The upper and lower limits of

strength parameter α was selected based on (3.38) and assuming a value for ρ = 0.9 to

reflect our prior belief that total number of different clusters across all time points should

be between 4 to 46. Table 3.1 provides a full list of chosen values characterizing all priors in

the model.

Posterior calculations are done using the MCMC algorithm discussed in Section 3.3.3.

After an initial 5,000 iterations used for burn-in, we ran the algorithm for 40,000 iterations

and thin the resulting MCMC chain to save on every 4th iteration. Estimation of the subject

time specific variables θij is of primary interest in this model as this directly reflects estimates

of the annual log TB incidence rates for country i at time j. Trace plots for select θij
parameters are shown in Appendix B.2 providing a visual cue for convergence. Some posterior
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estimates of θij are multimodal and do jump between multiple modes reflecting uncertainty

of cluster assignments for these countries.

Table 3.2 shows select results for the model. The tuberculosis incidence dataset shows

low levels of cluster mobility. The parameter ρ has a posterior mean of 0.97 implying 97%

of countries retained cluster membership without any reevaluation. When cluster mobility

is low, information on cluster membership is borrowed over time and the distribution on the

partitioning of the countries is closely related at each time point. Figure 3.3 is color coded to

show posterior clustering of the TB incidence data across all 197 countries. Countries i and

i′ are considered to be in the same cluster in this Figure if their cluster labels cij and ci′j are

the same a posteriori at least 75% of the time. Lines in black were used to represent clusters

with fewer than 3 members. This color coding shows cluster membership with a single cutoff

value. A more detailed graphical representation of the cluster structure at select time points

is shown in Appendix B.3. Figure B.2 shows a heat map of how cluster memberships evolve

over time. Country IDs are ordered by the value of the observed tuberculosis incidence rate

in 1990. Each individual graph shows the posterior probabilities of two countries sharing the

same cluster in a given year. Over time, countries tend to join neighboring clusters but not

those further away.

Comparison of values between the across time cluster variance σ2
c and the new cluster

parameter variance σ2
G gives us an idea of how much information is gained in determining

cluster specific value φjc when cluster c is carried over time from j − 1 to j. If a country is

retained in the same cluster from year to year, variation in annual log incidence rate only

has a standard deviation of 0.08 with 95% credible interval (0.04, 0.13) whereas a country

moving into a new unknown cluster would have a standard deviation of 2.95 with a 95%

credible interval of (1.70, 5.00). The combination of having a low level of cluster mobility

as determined by ρ and a high level of retained information on cluster specific values as

determined by a comparison between σ2
c and σ2

G implies the cmDPM model should allow

for considerably better modeling of the posterior density functions than a time independent

method. Further proof is provided by a comparison of the kernel density estimates of Yij in

the data using a Gaussian smoothing kernel compared to the posterior predictive densities
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Table 3.2: Posterior summaries of select parameters for TB data with the cmDPM model.

Parameter Name Parameter Posterior Mean Credible Interval (2.5%, 97.5%)
Cluster strength parameter α 3.48 (1.84, 5.67)
Cluster stickiness parameter ρ 0.97 (0.96, 0.98)
New cluster parameter mean µG 3.33 (2.52, 4.16)
Within cluster variance σ2 0.04 (0.02, 0.08)
New cluster parameter variance σ2

G 2.95 (1.70, 5.00)
Across time cluster variance σ2

c 0.08 (0.04, 0.13)

of Yij using both the cmDPM model and the time independent DPM models at select years

is shown in Appendix B.4.

Figure 3.4 provides a summary of how the posterior predictive densities of annual log

tuberculosis incidence rate, Yij, changes with time. Overall, Yij has only been decreasing

over the past 2 decades in the countries lower than the median while the countries reporting

tuberculosis incidence rates higher than the median has roughly stayed the same or even

increased slightly. This implies that the countries managing the rate of TB disease well in

2010 are doing even better than the countries who managed the rate of TB disease well in

1990. However, the countries managing the rate TB disease poorly in 2010 are managing

it just as badly or worse than the countries who managed the rate of TB disease poorly in

1990. Alarmingly as of 2010, we continue to have roughly the same percentage of countries

reporting annual log incidence rates higher than 100 per 100k population. Furthermore,

given the low cluster mobility estimated from our model, these countries are also unlikely to

move out of this situation in the near future.

We can make predictions for individual countries in future years and of other unobserved

countries. Posterior predictions are done by first simulating cluster memory indicator Zij for

the desired observation i at time j. Cluster label cij is then simulated based on the value

of Zij and all other cluster labels c−(ij). Finally the value of φjc is sampled given which

cluster c observation i belongs to. This is repeated to obtain a posterior predictive density

for observation i at time j. Posterior predictive densities for 3 select countries are shown

in Figure 3.5 as an example. The United States is slated to improve while Uganda and

Argentina are slated to get a little worse if all trends continue.
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Figure 3.4: Quantiles of the posterior predicted densities of annual TB incidence rate at
specific time points. Error bars shown are the 95% credible intervals at selected quantile
measures. Overlapping quantile lines across different years at a specific TB incidence rate
value imply that there has been no change in the total percentage of countries reporting TB
incidence rates at or below that value.

3.5 Discussion

The cmDPM model is ideally suited for modeling longitudinal data in a nonparametric

Bayesian framework. Our model is the first model to account for observation level clustering

history. Clusters are given greater tendency to stay together while parameter values assigned

to these clusters are still allowed to change at each time point. We show that density

estimation can be significantly improved from the independent DPM case by borrowing

clustering information across time. We also introduce the concept of cluster mobility in

datasets. This is modeled directly in the cmDPM model as the parameter 1− ρ describing

how often subjects change their cluster assignments from the previous time point. This
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Figure 3.5: Posterior predictive densities of annual tuberculosis incidence rate per 100,000
in 2011 for three select countries (United States, Uganda, Argentina). Lines in red represent
observed tuberculosis incidence rates in 2010. The tails of these distributions show small
modes where our model predicts there is a possibility of the country moving to a different
cluster.

parameter can be used to quantify the durability of current clusters in the data at future

time points.
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CHAPTER 4

Future Work

In this chapter, I discuss plans for future work. The proposed work is divided into near term

and long term goals based on a mix of importance and ease of implementation.

4.1 Near term goals

In the near term, I will submit a paper on the cmDPM model with application to tuberculosis

to an appropriate statistical journal. I plan to extend the cmDPM model to incorporate

subject level covariates x′ijβ where xij are the observed subject level covariates at time j

and β are a set of fixed covariate effects with specified prior distributions. For example, in

the tuberculosis incidence data, we could modify (3.40) with

Yij|xij,β, θij, σ2 ∼ N(x′ijβ + θij, σ
2), (4.1)

β ∼ N(µβ,Σβ), (4.2)

where µβ and Σβ are specified parameters for the prior of β and specification of the remaining

parameters remain the same. Covariate effects β are part of the set of λ parameters defined at

the end of Section 3.3.2 and standard estimation techniques can be used when conditioned on

all other parameters. Implementation of subject level covariates should significantly tighten

prediction ranges for individual outcomes at future time points. An R package will be

released to facilitate use of the cmDPM model in this form.
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4.2 Long term goals

I wish to extend the cmDPM model to accommodate for a variety of likelihood densities

f(Yij;φ) and allow for the selection of a variety of non-conjugate cluster time specific base dis-

tributions G0jc. Both these extensions significantly broaden the applications of the cmDPM

model. Using different likelihood densities f(Yij;φ) allows the cmDPM model to be applied

to a larger variety of data types. Selection of different distributions of G0jc allows us to

alter how we specify the evolution of cluster specific values over time. For example, cluster

specific values may have a greater probability of decreasing than increasing from one time

point to the next. Cluster specific values over multiple previous time points may also also

be incorporated in parameterizing G0jc.

Both these extensions can be difficult with the existing estimation algorithm. Currently,

the estimation algorithm for the cmDPM model to determine the probability of assigning

observation i at time j to a cluster c that exists at time point j − 1 but does not currently

exist at time j relies on the value of
∫
f(Yij;φ)dG0jc(φ;φ(j−1)c) having a closed form solution.

When this is not the case, the algorithm becomes significantly more cumbersome requiring

numerical estimation of the integral. An efficient solution to this problem is required to

make these two proposed extensions feasible.

One interesting application of the cmDPM model is to cluster groups of participants in

the HLP dataset. Subjects can be cross-classified by all possible combinations of race, site,

and risk group; we can then see which of these groups behave similarly across time. This

can be done by assigning a group specific effect to each combination of groups present in the

dataset and applying the cmDPM model to those specific effects. This will cluster groups

of participants that behave similarly together yet still allow changes in cluster membership

across time. Implementation of this model requires adding subject level covariates, assign-

ing a distribution to the outcomes that suitably accounts for count data, and finding an

appropriate G0jc density.

The cmDPM model can also be modified with a number of other extensions that I propose

from a mechanistic perspective. The cluster stickiness parameter ρ is currently constant

68



across all subjects. Incorporation of subject or time specific ρij parameters based on observed

covariates could provide additional information about how these covariates affect movement

between clusters. In the context of data like the annual tuberculosis incidence data, this is

particularly interesting as it could allow us to identify characteristics that promote changes

in tuberculosis incidence.

Current assignment of clusters for each subject is Markovian and depends on the cluster

location of that subject only through the previous time point. An argument could be made

that subjects that have stayed in the same cluster for multiple years should be less likely

to leave that cluster than a subject which has just been in a cluster for a single year.

Furthermore, a subject that has just left a cluster may be more likely to return to that

cluster if not too much time has passed. I can extend the cmDPM model to incorporate

information on subject specific cluster membership over multiple previous years. Currently,

a subject will stay in the same cluster as the previous year with probability ρ and reevaluate

cluster membership with probability 1 − ρ. One option is to assign a weighting for the

previous r years such that w1 ≥ w2 ≥ · · · ≥ wr ≥ 0 and ∑r
q=1wq = 1. The probability of

subject i being assigned to some previous cluster ci(j−q) at time j could then be specified as

wqρ and the probability of reevaluating cluster membership would stay as 1− ρ.

The current version of the cmDPM model does not account for the ordinal nature of the

cluster specific parameters φjcij
at time j for all unique values of cij. In a dataset like the

tuberculosis incidence data, it is reasonable to assume a priori that countries may be more

likely to move to an adjacent cluster where the value of the adjacent cluster is similar than to

jump to a cluster that is far away. Adding this information to the model is another potential

improvement that can be made.

Finally, it will be useful to extend the cmDPM model to accommodate continuous time

data.
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APPENDIX A

Health Living Project

A.1 Estimation benefits of modeling separate sources of variation

Our multilevel model introduces separate sources of variation for estimating the number

of protected and unprotected acts. Not only do subjects behave differently but the same

subject varies their behavior with different partners bringing another level of heterogeneity to

observed outcomes. In the Poisson model, when the variation comes from multiple sources,

some estimation benefits can be gained by correctly modeling these sources of variation. We

examine the effects of failing to account for this level of heterogeneity through simulation

of univariate random variables with 2 levels of heterogeneity. This is similar to our study

data limited to a single outcome at a single time point but repeatedly observed for multiple

partners.

Simulation data is generated assuming Yik ∼ Po(λik) for participant i = 1, . . . , 12, and

partner k = 1, . . . Ki where Ki is itself a zero-truncated Poisson distributed variable with

parameter λKi
= 10. Mean parameters λij follow a log linear function

log λik = µ+ βi + δik (A.1)

with Gaussian distributed latent effects βi ∼ N(0, σ2) and δik ∼ N(0, d2). Values of µ,

σ2, d2 are set to 1, 1.5, and 2 respectively with the resulting expected value E(Yik) =

exp {µ+ 0.5(σ2 + d2)} = 15.64.

We consider 3 separate analyses for making inference on the expected value of Yik. Analy-

sis 1 uses the full disaggregated data and the correct 2 level heterogeneity model as presented
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in (A.1). This is analogous to the ideal situation where all partner level data in the HLP

study is observed. Analysis 2 also uses the correct model but assumes we only observe

Yik for k ≤ 5 and the aggregated totals YiT=
∑Ki
k=1 Yik. Unobserved disaggregated values

Yi,miss = (Yi6, . . . YiKi
) for Ki ≥ 6 are imputed from observed info as

Yi,miss|YiT , Yi1, . . . , Yi5 ∼ Multinomial(Ni,pi) (A.2)

where Ni = YiT −
∑5
k=1 Yik, pi = (λi6/λiT , . . . , λiKi

/λiT ), and λiT = ∑Ki
k=6 λik. This analysis

mimics the actual data from the HLP study. Analysis 3 uses only aggregated totals, YiT ∼

Po(λi), with mean parameters

log λi = µ+ βi (A.3)

using a single level of Gaussian distributed latent effect βi ∼ N(0, σ2). This mimics the

traditional analysis of total sex acts in studies like HLP. Inference in analysis 3 is made from

E(YiT ) = EKi
E(YiT |Ki) = EKi

E(∑Ki
k=1 Yik|Ki) = E(Ki)E(Yik).

Table A.1 shows summary results from 600 simulated datasets. Use of aggregated totals

in analysis 3 results in longer intervals, an average width of 7.8 as compared to 7.3 from

analysis 2 and 7.2 from analysis 1. A bigger mean square error was also found in analysis

3, an average of 8.4 as compared to 6.8 from analysis 2 and 6.5 from analysis 1. This shows

that failing to account for subject and partner level variation correctly can result in posterior

estimates with larger credible intervals.
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Table A.1: A summary of the average estimated posterior median (PMed), posterior mean
(PM), lower limit (LCI) and upper limit (UCI) of the 95% equal-tail credible interval (CI),
coverage probability of the CI (CP ), length of the CI (GCI), and mean square error MSE
from 3 analysis methods across 600 simulated datasets with 2 levels of heterogeneity to
examine the effects of disaggregation. Analysis 1 uses the true model with complete disag-
gregated observations. Analysis 2 uses the true model with partial disaggregated observa-
tions. Analysis 3 looks at only aggregated totals and assumes data with only a single level
of heterogeneity.

Analysis PMed PM LCI UCI CP GCI MSE
1 16.0 16.1 13.0 20.2 97.3 7.2 6.5
2 16.0 16.2 13.0 20.3 96.9 7.3 6.8
3 16.2 16.3 13.0 20.8 95.4 7.8 8.4
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A.2 HLP Demographics

A summary of participants’ demographics information at baseline is given in Table A.2.

Table A.2: General demographics of n = 936 subjects at baseline with stratification by
intervention assigment.

Variable Treatment Control Total
(n=467) (n=469) (n=936)

Site, n (%)
Los Angeles 163 (34.9) 170 (36.2) 333 (35.6)
Milwaukee 43 (9.2) 44 (9.4) 87 (9.3)
New York 127 (27.2) 118 (25.2) 245 (26.2)
San Francisco 134 (28.7) 137 (29.2) 271 (29.0)
Risk Group, n (%)
MSM 256 (54.8) 278 (59.3) 534 (57.1)
IDU 57 (12.2) 50 (10.7) 107 (11.4)
FEM 103 (22.1) 93 (19.8) 196 (20.9)
HTM 51 (10.9) 48 (10.2) 99 (10.6)
Education, n (%)
Less than HS 88 (18.8) 97 (20.7) 185 (19.8)
HS Grad 126 (27.0) 99 (21.1) 225 (24.0)
Some College 176 (37.7) 183 (39.0) 359 (38.4)
College Grad 77 (16.5) 90 (19.2) 167 (17.8)
Race, n (%)
White 143 (30.6) 157 (33.5) 300 (32.1)
Black 231 (49.5) 190 (40.5) 421 (45.0)
Hispanic 61 (13.1) 82 (17.5) 143 (15.3)
Other 32 ( 6.9) 40 ( 8.5) 72 ( 7.7)
Gender, n (%)
Male 364 (77.9) 376 (80.2) 740 (79.1)
Female 103 (22.1) 93 (19.8) 196 (20.9)
Mean Age (sd)
Age 39.57 (7.15) 40.11 (7.68) 39.84 (7.42)
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A.3 Choice of priors on variance hyperparameters

We consider the hierarchical Poisson model with random effects

Yi ∼ Po(λi) (A.4)

λi = exp (µ+ βi) (A.5)

βi ∼ N(0, σ2) (A.6)

for i = 1, . . . , n. When prior independence is assumed between µ and σ2, the sampling mean,

E(Yi), can be found using iterated conditional expections

E(Yi) = E(E(Yi|λi)) = E(λi) = E(E(λi|µ, σ2)) = E(exp (µ+ 1
2σ

2))

= E(exp (µ))E(exp (1
2σ

2)). (A.7)

Use of the conjugate inverse gamma prior for σ2 ∼ IG(a, b) results in a posterior density

f(σ2|βi, Yi) ∝ exp
(
− b
∗

σ2

)
(σ2)−a∗−1 (A.8)

where a∗ = a + n/2 and b∗ = b + ∑n
i=1 β

2
i /2 for σ2 ∈ (0,∞). Letting v = exp (σ2/2), the

corresponding posterior density

f(v|βi, Yi) ∝
1
v

exp
(
− b∗

2 log (v)

)
(log v)−a∗−1 (A.9)

has undefined mean E(v). As a direct result, E(Yi) is also undefined. The use of a zero left

truncated normal prior for σ2 ∼ truncN(c, d2) where c and d2 are respectively the mean and
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variance of the untruncated normal density results in posterior densities

f(σ2|βi, Yi) ∝ (σ2)−n/2 exp
(
−1

2

(
(σ2 − c)2

d2 +
∑n
i=1 βi
σ2

))
(A.10)

f(v|βi, Yi) ∝
1
v

(log v)−n/2 exp
(
−1

2

(
(2 log v − c)2

d2 +
∑n
i=1 βi

2 log v

))
(A.11)

∝ 1
v

(log v)−n/2v(2c−2 log v)/d2 exp
(
−
∑n
i=1 βi

4 log v

)
(A.12)

that avoid this complication and has a finite E(Yi). In the multivariate case, use of zero

left truncated normal priors on each diagonal element of the covariance matrix has the same

effect.

A.4 Posterior sampling

Posterior sampling of model parameters (α, βij, δijk, Σ, D, A) for 1 ≤ i ≤ n, 1 ≤ j ≤ Ji,

1 ≤ k ≤ Vij uses Markov Chain Monte Carlo (MCMC) methods (Metropolis et al. 1953;

Hastings 1970; Gelfand & Smith 1990; Casella & George 1992). We also simultaneously

sample from unobserved partner level outcomes (Pijk, Uijk) for k ∈ Sij where Sij denotes the

set of partners for subject i at time tij for which partner specific act information was not

observed. Posterior sampling of the conditional distributions of α, Σ, D, and A use the

Metropolis-Hastings algorithm with a non-symmetric proposal function. Detailed sampling

algorithms are given here.

In this section, we use the notation r̂ to denote the current iteration of parameter r.

A proposal function q(rprop|r̂) ∼ G(h(r̂)) where G is a specified distribution denotes that

q(rprop|r̂) is the density of the distribution G with parameters defined by h(r̂) evaluated at

rprop.

1. Sampling from the posterior distributions of α+
v and α−v takes on the same form. We
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only present the sampling density f(α+
v |.) here. Sample α+

v from

f(α+
v |.) ∝ exp

 n∑
i=1

Ji∑
j=1

{
V +
ij x′ijα+

v − λ+
v,ij

}
−G(α+

v )
 {1− exp(−λ+

v,i1 − λ−v,i1)}−1

(A.13)

where λ+
v,ij = exp (x′ijα+

v + β+
v,ij), λ−v,ij = exp (x′ijα−v + β−v,ij) and G(α+

v ) = 1
2(α+

v −

µα+
v

)′Σα+
v

(α+
v −µα+

v
) comes from the prior of α+

v . Prior parameters µα+
v
and Σα+

v
are

correspondingly a vector with each element set to µα = 0 and a diagonal matrix with

each diagonal element set to σ2
α = 10. We use a second-order Taylor approximation of

equation (A.13) as the adaptive proposal function. When µα = 0 and Σα+
v
is diagonal,

we use a multivariate normal proposal function q(α+
v,prop|α̂+

v ) ∼ MVN(T−1
v+ M′

v+ ,T−1
v+ )

with

Tv+ = Σ−1
α+

v
+

n∑
i=1

Ji∑
j=1

λ̂+
v,ijxijx′ij −

n∑
i=1

Rixi1x′i1, (A.14)

Mv+ =
n∑
i=1

Ji∑
j=1

(λ̂+
v,ijα̂

+′
v xij − λ̂+

v,ij + V +
ij )x′ij −

n∑
i=1

(Riα̂
+′
v xi1 −Hi)x′i1, (A.15)

where λ̂+
v,ij = exp (x′ijα̂+

v + β+
v,ij), Hi = −λ̂+

v,i1{1− exp (−λ̂+
v,i1 − λ−v,i1)}−1

exp (−λ̂+
v,i1 − λ−v,i1), and Ri = H2

i −Hiλ̂
+
v,i1 +Hi.

2. Sampling the posterior distributions of α+
u ,α

−
u ,α

+
p , and α−p is similar in form to sam-

pling α+
v but uses the partner level observations. We present here only the posterior

sampling algorithm for α+
u . To sample from posterior distributions of α+

u , we first

define a set Φi such that k ∈ Φi denotes all partners nested within subject i who at

baseline were defined as an HIV− partner or an HIV+ partner who was not catego-

rized as a primary partner. We also reorder partner observations for each subject i at

each time point j such that partners 1, . . . , V +
ij are HIV+ and the rest are HIV− for
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notational convenience. We sample α+
u from

f(α+
u |.) ∝ exp

 n∑
i=1

Ji∑
j=1

V +
ij∑

k=1

{
Uijkx′ijkα+

u − λu,ijk
}
−G(α+

u )

 {1− exp(−
∑
k∈Φi

λu,i1k)}−1

(A.16)

where λu,ijk = exp (x′ijkα+
u + β+

u,ij + δu,ijk) for k ≤ V +
ij , λu,ijk =

exp (x′ijkα−u + β−u,ij + δu,ijk) for k > V +
ij , and G(α+

u ) = 1
2(α+

u − µα+
u

)′Σα+
u

(α+
u − µα+

u
)

comes from the prior of α+
u . Prior parameters µα+

u
and Σα+

u
are correspondingly

a vector with each element set to µα = 0 and a diagonal matrix with each diag-

onal element set to σ2
α = 10. Similar to the proposal function q(α+

v,prop|α̂+
v ), we

use a second-order Taylor approximation of equation (A.16) as the adaptive pro-

posal function q(α+
u,prop|α̂+

u ). When µα = 0 and Σα+
u

is diagonal, q(α+
u,prop|α̂+

u ) ∼

MVN(T−1
u+M′

u+ ,T−1
u+) with

Tu+ =Σ−1
α+

v
+

n∑
i=1

Ji∑
j=1

V +
ij∑

k=1
λ̂u,ijkxijkx′ijk −

n∑
i=1

∑
k∈Φi

Ri,u+xi1kx′i1k, (A.17)

Mu+ =
n∑
i=1

Ji∑
j=1

V +
ij∑

k=1
(λ̂u,ijkα̂+′

u xijk − λ̂+
u,ijk + Uijk)x′ijk−

n∑
i=1

∑
k∈Φi

(Ri,u+α̂+′
u xi1k −Hi,u+)x′i1k, (A.18)

where

λ̂u,ijk = exp (x′ijkα̂+
u + β+

u,ij + δu,ijk) for k ≤ V +
ij , (A.19)

Hi,u+ =− λ̂+
u,i1T{1− exp (−λ̂+

u,i1T − λ−u,i1T )}−1 exp (−λ̂+
u,i1T − λ−u,i1T ), (A.20)

λ̂+
u,i1T =

∑
k

λ̂u,i1k for (k ∈ Φi) ∩ (k ≤ V +
ij ), (A.21)

λ−u,i1T =
∑
k

λu,i1k for (k ∈ Φi) ∩ (k > V +
ij ), and (A.22)

Ri,u+ =H2
i,u+ −Hi,u+λ̂+

u,i1T +Hi,u+ . (A.23)
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3. Sample βi1, . . . ,βiJ for 1 ≤ i ≤ n from

f(βi1|.) ∝ f(Yi1|βi1)f(βi1|L)f(βi2|A,Σ,βi1), (A.24)

f(βij|.) ∝ f(Yij|βij)f(βij|A,Σ,βi(j−1))f(βi(j+1)|A,Σ,βij), for 2 ≤ j < J, (A.25)

f(βiJ |.) ∝ f(YiJ |βiJ)f(βiJ |A,Σ,βi(J−1)), (A.26)

where f(Yij|βij) = f(V +
ij |λ+

v,ij)f(V −ij |λ−v,ij)
∏Vij

k=1 f(Uijk|λu,ijk)f(Pijk|λp,ijk),

λp,ijk = exp (x′ijkα+
p + β+

p,ij + δp,ijk) for k ≤ V +
ij , λp,ijk = exp (x′ijkα−p + β−p,ij + δp,ijk)

for k > V +
ij . We use a random walk Gaussian proposal function q(βij,prop|β̂ij) ∼

MVN(β̂ij,Σβ,q) where Σβ,q is a diagonal matrix with diagonal elements chosen to

obtain an acceptable rate of acceptance for βij,prop.

4. Sample δijk = (δp,ijk, δu,ijk)T for 1 ≤ i ≤ n, 1 ≤ j ≤ Ji, 1 ≤ k ≤ Vij from

f(δijk|.) ∝ f(Pijk|λp,ijk)f(Uijk|λu,ijk)f(δijk|D) (A.27)

using the Metropolis algorithm with a random walk Gaussian proposal function

q(δijk,prop|δ̂ijk) ∼ MVN(δ̂ijk,Σδ,q) where Σδ,q is a diagonal matrix with diagonal ele-

ments chosen to obtain an acceptable rate of acceptance for δijk,prop.

5. Sample Σ from

f(Σ|.) ∝
n∏
i=1

Ji∏
j=1

f(βij|Σ)π(Σ) (A.28)

where the prior π(Σ) is defined in Section 2.3.2. A proposal function, q(Σprop|Σ̂) ∼

IW(ΨΣ,q,mΣ,q) is used to approximate f(Σ|.) whereΨΣ,prop = ∑n
i=1

∑Ji
j=2(βij−Aβi(j−1))

(βij − Aβi(j−1))′ + ΨΣ and mΣ,prop = mΣ + ∑n
i=1

∑Ji
j=2 1. The proposal function

q(Σprop|Σcurrent) is modestly overdispersed compared to f(Σ|.) due to the normal prior

terms in the diagonal elements.
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6. Sample D from

f(D|.) ∝
n∏
i=1

Ji∏
j=1

Vij∏
k=1

f(δijk|D)π(D) (A.29)

where the prior π(D) is defined in Section 2.3.2. A proposal function, q(Dprop|D̂) ∼

IW(ΨD,q,mD,q) is used to approximate f(D|.) where ΨD,q = ∑n
i=1

∑Ji
j=1

∑Vij

k=1 δijkδ
′
ijk+

ΨD and mD,q = mD +∑n
i=1

∑Ji
j=1

∑Vij

k=1 1.

7. Since parameter A is diagonal with diagonal elements Al,l, we can sample A from

f(A|.) ∝
n∏
i=1

f(βi1|L)
Ji∏
j=2

f(βij|A,Σ,βi(j−1))


6∏
l=1

π(Al,l) (A.30)

where π(Al,l) = 1/2 1(−1 ≤ Al,l ≤ 1) is a uniform distribution from -1 to 1. A random

walk truncated Gaussian proposal function is used for Al,l

q(A(l,l),prop|Âl,l) ∼ truncN(Âl,l, σ2
A) (A.31)

where A(l,l),prop is between -1 to 1 and joined to create the new proposed A.

8. Let PijT = ∑Vij

k=1 Pijk and UijT = ∑Vij

k=1 Uijk respectively be the total protected and un-

protected acts for subject i at time tij. Also let Sij be the set of partners k with subject

i at time tij for which partner specific protected and unprotected acts is not recorded

and let PijSij
and UijSij

be the set of protected and unprotected acts corresponding

to these partners. We sample PijSij
and UijSij

for 1 ≤ i ≤ n, 1 ≤ j ≤ Ji from

PijSij
|λij, PijT , (Pijk for k /∈ Sij) ∼ Multinomial(NP,ij,πPij), (A.32)

UijSij
|λij, UijT , (Pijk for k /∈ Sij) ∼ Multinomial(NU,ij,πUij), (A.33)

where λij = (λ+
v,ij, λ−v,ij, λp,ij1, λu,ij1, . . . , λp,ijVij

, λu,ijVij
)T , NP,ij = PijT −

∑
k/∈Sij

Pijk,

NU,ij = UijT −
∑
k/∈Sij

Uijk, πPij
= (πPijk

) = (λp,ijk/λp,ijT ) for every k ∈ Sij, λp,ijT =∑
k∈Sij

λp,ijk, πUij
= (πUijk

) = (λu,ijk/λu,ijT ) for every k ∈ Sij, and λu,ijT = ∑
k∈Sij

λu,ijk.
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We repeat Steps 1 through 8 until convergence and to collect a sample from the posterior.

A.5 Summary of HLP covariance estimates

Table A.3 shows estimated covariance between log mean parameters of the corresponding

outcomes, (V +
ij , V −ij , P+

ijk, U+
ijk, P−ijk, U−ijk), which are a function of parameters L and D in

the model. Significant positive (negative) covariance estimates represent significant posi-

tive (negative) correlation between corresponding outcomes. Estimates and 95% posterior

intervals for the autoregressive parameter A are also shown.

We find significant negative correlation between the number of protected acts per partner

and the number of unprotected acts per partner with the same subject regardless of partner

serostatus. Our results also suggest significant positive correlation between both the number

of protected acts per partner across different partners with the same subject and the number

of unprotected acts per partner across different partners with the same subject regardless of

partner serostatus. These findings suggest that subjects who tend to report greater number

of protected acts per partner tend to report fewer unprotected acts per partner and vice

versa. In addition, if the subject reports greater numbers of protected or unprotected acts

for a single partner, they tend to consistently report greater numbers of the same type of act

for other partners. There is marginally significant positive correlation between the number

of HIV+ and number of HIV− partners though the correlation is very low. Finally, fairly high

and consistent values of across time correlation A at each time point suggests that subject

behavior was highly correlated from interview to interview and that the strong correlation

remained over the course of the study.
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Table A.3: Summary of variance and covariance for the log mean parameters of the outcomes
and the autoregressive parameter A. Values are reported as posterior mean PM on the first
line and the 95% equal-tail credible interval (LCI , UCI) on the second.

Outcomes V +
ij V −ij P+

ijk
U+

ijk
P−

ijk
U−

ijk

Different Partners

V +
ij

2.05 0.11 -0.38 -0.47 -0.14 0.06
(1.84, 2.28) (0.01, 0.21) (-0.66, -0.12) (-0.65, -0.31) (-0.29, 0.03) (-0.10, 0.22)

V −ij
– 1.68 -0.13 -0.22 -0.61 -0.60
– (1.55, 1.84) (-0.34, 0.07) (-0.35, -0.10) (-0.78, -0.46) (-0.74, -0.44)

P+
ijk′

– – 5.09 -1.17 2.08 -0.82
– – (4.34, 5.79) (-1.45, -0.91) (1.72, 2.55) (-1.17, -0.43)

U+
ijk′

– – – 1.84 -0.35 0.98
– – – (1.58, 2.10) (-0.57, -0.13) (0.74, 1.21)

P−
ijk′

– – – – 2.84 -0.46
– – – – (2.52, 3.20) (-0.64, -0.27)

U−
ijk′

– – – – – 2.46
– – – – – (2.18, 2.75)

Same Partner

P+
ijk

– – 6.71 -1.44 – –
– – (5.96, 7.41) (-1.72, -1.17) – –

U+
ijk

– – – 3.45 – –
– – – (3.19, 3.72) – –

P−
ijk

– – – – 4.46 -0.72
– – – – (4.11, 4.86) (-0.91, -0.54)

U−
ijk

– – – – – 4.07
– – – – – (3.79, 4.36)

Across time correlation

A
0.77 0.72 0.64 0.67 0.75 0.67

(0.74, 0.80) (0.69, 0.75) (0.59, 0.70) (0.62, 0.72) (0.72, 0.79) (0.63, 0.72)
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APPENDIX B

The cmDPM model

B.1 Posterior computation for the cmDPM model

The cmDPM model is first specified in Section 3.3.1.1 with strength parameter α, cluster

stickiness parameter ρ, vectors of cluster memory indicators Zj for j = 2, . . . , J , vectors of

subject specific parameters θj, and vectors of cluster labels cj for j = 1, . . . , J . Hyperpriors

for the model are specified in Section 3.3.2 with cluster time specific base distribution pa-

rameters ηj for j = 1, . . . , J and additional likelihood distribution parameter λ. Posterior

sampling of these model parameters uses Markov Chain Monte Carlo (MCMC) methods and

the detailed posterior sampling algorithm is provided here.

1. For 1 ≤ i ≤ n, we sample the cluster labels cij for subject i at time point 1 from the

conditional density f(ci1|c−(i1), Yi1, α,φ1,η1, λ). The conditional density of ci1 at c can

be broken down into two discrete cases.

(a) If c = ck1 for some k 6= i :

Pr(ci1 = c|c−i1, α, Yi1,φ−i1, λ) = b(n− 1 + α)−1n−i1,cf(Yi1|φ1c, λ).

(b) If c 6= any current value in c−(ij)

Pr(ci1 = c|c−(i1), α, Yi1,φ−i1, λ) = b(n− 1 + α)−1α
∫
f(Yi1|φ, λ)dG01(φ;η1),

where b is the normalizing constant.

When a new cluster c is formed with observation Yi1, a value of φ1c is sampled from

f(φ1c|Yi1, η10, λ) ∝ f(Yi1|φ1c, λ)G01(φ1c; η10).

2. For 1 ≤ i ≤ n at each time point 2 ≤ j ≤ J , we jointly sample both the cluster label

cij and the cluster memory indicator Zij from the conditional density
82



f(cij, Zij|c−(ij), Yij, α,φj, Zi(j+1),ηj,ηj+1, λ). For this step, we define values of Zi(J+1) =

0 for 1 ≤ i ≤ n. The joint conditional density of of (cij, Zij) can be broken down into

three discrete cases.

(a) If Zi(j+1) = 1, ci(j+1) = ci(j−1), and n1
−ijc 6= 0,

Pr(cij, Zij|.) =


(c, 1) = bρ(α +M−ij)(n1

−ijc)−1(n−ijc + n1
−ijc)

(c, 0) = b(1− ρ)n−ijc
where c = ci(j−1) and b is the normalizing constant. Otherewise, if n−ijc = 0 or

n1
−ijc = 0, (cij, Zij) = (c, 1) where c = ci(j−1).

(b) If Zi(j+1) = 1 and ci(j+1) 6= ci(j−1)

(cij, Zij) = (c, 0) where c = ci(j−1).

(c) If Zi(j+1) = 0, let c1 6= ci(j−1) and c1 = ckj for some k 6= i, c2 = ci(j−1) and c2 = ckj

for some k 6= i, c3 = ci(j−1) and c3 6= ckj for any k 6= i, c4 6= any current value in

c−(ij). The joint probability can be sampled as

Pr(cij, Zij|.) =



(c1, 0) = b [(1− ρ)n−ijcf(Yij|φjc, λ)]

(c2, 0) = b [(1− ρ)n−ijcf(Yij|φjc, λ)]

(c2, 1) = bρ(α +M−ij)(n1
−ijc)−1n−ijcf(Yij|φjc, λ)

(c3, 1) = bρ(α +M−ij)
∫
f(Yij;φ, λ)

dG0jc(φ;φ(j−1)c,ηj)G0(j+1)c(φ(j+1)c;φ,ηj+1)

(c4, 0) = b(1− ρ)α
∫
f(Yij;φ, λ)dG0j(φ, ηj0)

if n1
−ijc 6= 0. If n−ijc 6= 0 and n1

−ijc = 0, then (cij, Zij) = (c2, 1). The constant b is

used as a normalizing constant.

When a new cluster c is formed with observation Yij, a value of φjc is sampled from

f(φjc|Yij, ηj0, λ) ∝ f(Yij|φjc, λ)G0j(φjc; ηj0). When a cluster c is retained from the

previous time point j − 1 for observation Yij with no current cluster specific value φjc
at time point j, a new φjc is sampled from f(φjc|Yij, φ(j−1)c, η

1
j , λ) ∝ f(Yij|φjc, λ)

G0jc(φjc;φ(j−1)c, η
1
j ).
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3. For 1 ≤ j ≤ J , sample a new cluster specific value φjc from f(φjc|Y1j, . . . , Ynj) ∝∏
i s.t. cij=c f(Yij|φjc, λ)G0jc(φjc;φ(j−1)c,ηj)G0(j+1)c(φ(j+1)c;φjc,ηj+1) for every unique value

of φjc. This resampling of cluster specific values significantly speeds convergence.

4. For 1 ≤ i ≤ n, jointly sample each set of bound cluster labels (cip, . . . , ciq).

(a) Let c1 = crp for some r 6= i and c2 6= any current value in c−(ip). Also let Apq be

the set of times p ≤ j ≤ q for which cluster label cij 6= ckj for every k 6= i and Bpq

be the set of times (p, . . . , q) /∈ Apq. Then the bound cluster labels (cip, . . . , ciq)

can be sampled as

Pr(cip, . . . , ciq) =


(c1, . . . , c1) = b(n− 1 + α)−1n−ip,cLc1

(c2, . . . , c2) = b(n− 1 + α)−1αLc2

where Lc = ∏
j∈Bpq

f(Yij;φjc, λ)∏j∈Apq

∫
f(Yij;φ, λ)G0jc(φ;φ(j−1)c,ηj)

G0(j+1)c(φ(j+1)c;φ,ηj+1)dφ. This joint sampling of bound cluster labels is another

remixing step that significantly speeds convergence.

Resampling of bound cluster labels can lead to clusters that previously did not

exist at some of these time points. For these clusters, we then sample new cluster

specific values. When a new cluster label c is formed with observation Yip, a

value of φpc is sampled from f(φpc|Yip, ηp0, λ) ∝ f(Yip|φpc, λ)G0p(φpc; ηp0). For

j = p+1, . . . , q, when a cluster c is retained from the previous time point j−1 for

observation Yij with no current cluster specific value φjc at time point j, a new

φjc is sampled from f(φjc|Yij, φ(j−1)c, η
1
j , λ) ∝ f(Yij|φjc, λ)G0jc(φjc;φ(j−1)c, η

1
j ).

(b) For j ∈ Apq, sample new φjc from f(φjc|Yij) ∝ f(Yij|φ, λ)G0jc(φ;φ(j−1)c,ηj)

G0(j+1)c(φ(j+1)c;φ,ηj+1).

5. Sample cluster stickiness parameter ρ from Beta(apost,ρ, bpost,ρ) where apost,ρ = aρ +∑J
j=2 Zij and bpost,ρ = bρ + n(J − 1)−∑J

j=2 Zij.

6. Sample cluster time specific base distribution parameters ηj = (η1
j , ηj0) from f(η1

j |φj) ∝
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∏
k∈c1

j
f(φjk|η1

j )H1(η1
j ) and f(ηj0|φj) ∝

∏
c∈Uj

f(φjc|ηj0)H2(ηj0) where Uj is the set of

all spontaneously created unique clusters c that appears in cj but not at any prior time

point, H1(η1
j ) is the prior specified for η1

j , and H2(ηj0) is the prior specified for ηj0.

7. Sample cluster strength parameter α from f(α|K1, . . . Kj) from (3.36).

8. Let Y = (Y11, . . . , Ynj)T be the vector of all observed outcomes for 1 ≤ i ≤ n

at times 1 ≤ j ≤ J . Sample additional likelihood distribution parameter λ from

f(λ|Y,θ1, . . . ,θJ) ∝ ∏n
i=1

∏J
j=1 f(Yij|θij, λ)H3(λ) where H3(λ) is the prior specified for

λ.

Repeat steps 1 through 8 until convergence.
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B.2 Trace plots of posterior estimates for subject specific param-

eters θij

Trace plots of posterior estimates of a few subject specific parameters at different time

points are shown in Figure B.1 to provide a visual assessment of convergence. Subject

specific parameters θij may have multiple modes in their posterior densities. This reflects

uncertainty of which cluster that particular country i may belong to at a given time j.
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Figure B.1: Trace plots of posterior estimates for subject specific parameters θij. Iterations
have been thinned to every 4th value in the MCMC chain.
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B.3 Evolution of cluster memberships for the countries over time

We show how cluster membership evolves over time for all 197 countries in Figure B.2.

Darker shades of blue represent higher posterior probabilities of countries sharing the same

cluster. A heat map legend matching the shade of blue to the posterior probabilities is given

at the right of each plot. Cluster membership is mostly maintained over time. Countries

that do move between clusters still move between clusters with similar cluster specific values.

This indicates we should be able to make fairly accurate predictions of cluster membership

even several years in the future. Countries are also fairly distinctly clustered in the model.

Most posterior probabilities between two countries sharing the same cluster is either close

to 1 (dark blue) or close to 0 (white).
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Figure B.2: Posterior probabilities of shared cluster membership between countries at select
years. Darker shades of blue represent higher posterior probabilities with a legend given
at the right of each plot. Country IDs are ordered by observed values of annual log TB
incidence rate in 1990 from lowest to highest.
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B.4 Comparison of posterior predictive densities for cmDPM and

DPM models

In Figure B.3, we show for select years, the (1) estimated densities of the data, (2) the

posterior predictive densities of the annual TB incidence rate in the cmDPM model, and

(3) the posterior posterior predictive densities of the annual TB incidence rate in the DPM

model. It is evident that the cmDPM model results in significantly better approximations of

the density of the data at each time point by borrowing clustering information across time.
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Figure B.3: A comparison of estimated densities at select years for the data Yij, the posterior
predictive densities of Yij in the cmDPM model, and the posterior predictive densities of Yij
in the time independent DPM model.
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