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Abstract

Project Planning Algorithms:
Lowering Cost and Improving Delivery Time in Capital Projects

by

Arman Jabbari

Doctor of Philosophy in Engineering - Industrial Engineering & Operations Research

University of California, Berkeley

Professor Philip Kaminsky, Chair

With the goal of developing models and approaches leading to better operation of large-scale
project delivery supply chains, we interviewed a variety of consultants and project and supply
chain managers (with a particular emphasis on oil and gas major capital project delivery),
and asked them a set of questions so that we could better understand current capital project
delivery views of supply chain management, inventory, risk management tools, and related
topics (Appendix A). Our interviewees expressed surprisingly diverse opinions, particularly
regarding the future of mega-project delivery and the need for more closely coordinating
supplier deliveries with onsite needs.

The work in the dissertation is particularly motivated by mega-projects in the oil and gas
industry, and our goal is to build models that lead to better operation of capital project
delivery supply chains. The characteristics of this industry, and of these projects, place
specific requirements on project scheduling models, and many of the existing models in the
literature do not meet these requirements. Our focus in this dissertation is to formulate
models and develop approaches that are particularly useful for mega-projects in the oil and
gas industry, and that enable the concurrent determination of the project schedule and
inventory delivery times in order to efficiently manage the project supply chain, and to
effectively control project delivery time and cost.

We consider the Stochastic Resource-Constrained Project Scheduling Problem with inven-
tory, where the objective is to minimize a weighted combination of the expected project
makespan and the expected inventory holding costs. Motivated by the requirements of ma-
jor oil and gas industry projects, we introduce a class of proactive policies for the problem.
We develop several effective heuristics for this problem, as well as deterministic and proba-
bilistic lower bounds on the optimal solution. In computational testing, we demonstrate the
effectiveness of these heuristics and develop insights into the value of explicitly considering
inventory in this setting.
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A related problem that arises is the scheduling of oil field drilling operations, where the goal
is to maximize the expected revenue generated by oil extraction. For this problem, we build
a model and propose a heuristic approach. We confirm the effectiveness of our heuristic
approach by analyzing its performance compared to the current practice in a real-world case
study. Our results demonstrate the potential to increase the efficiency and productivity of
drilling operations significantly and to boost profitability by decreasing the time until wells
start the extraction.

Through our interviews, and through analysis in subsequent models, it is clear that suppliers,
and the timely delivery of supplies, plays a critical role in the successful implementation of
large-scale projects. In the context of oil and gas projects, our focus is on the suppliers
that provide customized materials. While the bulk of this dissertation focuses on projects
from the project planner’s point of view, we were also motivated to consider these problems
from the perspective of the supplier, and hence, to consider scheduling models with due
dates. We present a stylized model, where we consider sequencing decisions on a single
processor, here representing a supplier, in an online setting where no data about the future
incoming opportunities is available. With the goal of minimizing total weighted (modified)
earliness and tardiness cost, we introduce a new scheduling policy, which we refer to as the
list-based delayed shortest processing time policy, and develop lower and upper bounds on
the performance of this policy.

Finally, we consider an alternative view of managing construction in projects, a location-
based method known as the Work Density Method for takt planning. Given a work space
and the number of zones in which to divide that space, the so-called WoLZo problem is
to identify the shape and dimensions of each zone while minimizing the peak in the trades’
workloads per zone. We model this problem and develop an optimization algorithm to divide
a work space into zones while leveling work densities across trades in a process.

The tools presented in this dissertation are useful for managing different elements of mega-
projects and significantly advance the state-of-the-art in those areas. We confirm the ef-
fectiveness of these tools by analyzing their performance compared to current practice in
real-world case studies as well as their performance over the benchmark test problems that
are available in the literature.
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Chapter 1

Introduction

Chen and Lee [13] suggest that the concern of most existing “operations management” liter-
ature is managing the flow of products for which there exist frequent demands. They referred
such supply chains as “product supply chain management.” The focus in product supply
chain management is mostly on the end item production/demand, the level of inventory, and
integration of supply chain stages. The primary trade-off in this area of research is inventory
cost versus shortage cost.

In contrast, supply chain management is also essential for customized projects. Chen and
Lee [13] call it “project supply chain management.” In project supply chain management
the focus is primarily on the schedule of activities and the release dates of materials, and
the primary trade-off is the cost of earliness versus the cost of delay at the primary project
site. Project supply chain management appears to be less-explored in the literature.

The primary reasons that it may be valuable to separately consider product supply chain
management and project supply chain management have to do with different uncertainties
and different model structures in these two categories. Empirical evidence regarding the per-
formance of mega-projects suggests that investigation of project supply chains is important;
however, the bulk of research in this area seems to be qualitative and descriptive, rather
than prescriptive.

According to Flyvbjerg [26], mega-projects are “large-scale, complex ventures that typi-
cally cost $1 billion or more, take many years to develop and build, involve multiple public
and private stakeholders, are transformational, and impact millions of people”.

Merrow [55] investigates data from more than 300 global mega-projects and shows 65%
of the mega-projects fails to meet their objective. He defines a mega-project as successful
if it is delivered without exceeding cost and time estimates by more than 25%. He observes
that cost overruns are frequently so significant that they often make the total project net
present value (NPV) negative, and thus projects in this industry frequently need unexpected
increases in demand or price in order to be profitable. In addition, he argues these results
are not inherent to the nature of mega-projects; instead, they are caused by poor decision-
making.

A study of 365 projects with a proposed capital investment of more than $1 billion
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(which thus count as mega-projects) was conducted by EY Research and Analysis [25] in the
following industries: upstream (or exploration and production – E&P), LNG, pipelines, and
refining. Their research shows that 64% of these projects faced cost overruns and 73% of the
projects were delivered late. Also, these projects spent on average 59% more than their initial
budget. They explain that these cost overruns traditionally were covered by the increase in
oil and gas prices. However, this is no longer the case, and predictability is increasingly
valued as companies need to be certain about the performance of their mega-projects.

Based on the research conducted by Changali, Mohammad, and Nieuwland [12] on mega-
projects (in mining, oil and gas, and infrastructure industries), 98% of mega-projects incur
cost overruns (of more than 30%) or delays. Moreover, the average cost increase is 80% of
the original estimate, and 77% of mega-projects are at least 40% late. The authors observe
that construction productivity has been flat for decades while in manufacturing it has nearly
doubled in the same period. Their reasons for poor mega-project performance include: poor
decision-making, inadequate communication, and insufficient risk management.

According to Flyvbjerg, Bruzelius, and Rothengatter [27], many mega-projects perform
strikingly poorly. They described many cases of infrastructure mega-projects that expe-
rienced major cost overruns. The authors question whether or not the front-end analysis
techniques such as cost-benefit analysis, financial analysis, etc. that are routinely used in
mega-projects preparation are effective. They observe that “mega-project development is
currently a field where little can be trusted at the time of determining the project initial
viability, even – some would say especially not – numbers produced by analysts.” In their
opinion, the main causes of the cost and time overruns are insufficient risk analysis and the
lack of accountability in the decision-making process.

The overall goal of this dissertation is to improve the operation of mega-project supply
chains, and in the early stages of this project, to better understand the current state of
these supply chains, we interviewed a variety of consultants and project and supply chain
managers (with a particular emphasis on oil and gas mega-project delivery). We asked them
a set of questions so that we could better understand current mega-projects delivery views
of supply chain management, inventory management, risk management tools, and related
topics. The details of our interviews with experts appear in Appendix A.

One common theme in these discussions is that there is often too much inventory that
arrives too soon at the projects. This overwhelming amount of inventory makes it challenging
for associates to retrieve what they want when they need it, even though the materials
have been sitting in inventory on-site for months, or even years. In addition, the storage
and handling are often haphazard, often leading to excessive movement that increase the
likelihood of damaged, defective, or unsuitable materials. Therefore, massive amounts of
inventory in mega-projects impacts financial metrics not only by tying up cash, but also
by adding costs for the staging and preservation of materials, and in many cases, potential
repair costs for damaged materials (Jabbari and Kaminsky [37]).

The presence of large amounts of inventory far before it is needed on mega-project sites
is in dramatic contrast to many other industries, such as automobile manufacturing, retail,
and high-tech manufacturing, where the timing of orders and deliveries is more closely co-
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ordinated with actual needs in order to better optimize overall system performance. We
hypothesize that this is a symptom of a sub-optimal supply chain operation, a view that is
further supported by McKinsey & Company [12], who finds that 98% of mega-projects are
facing cost overruns of more than 30%, and 77% are at least 40% late.

Our interviews suggested that it is often the case that owner-operators look to minimize
the risk of schedule delay due to late material and part delivery by mandating that materials
be delivered far in advance of when they are needed, and that the delivery times of materials
are not determined scientifically; instead, delivery times are set in an ad-hoc way, using
industry rules of thumb.

Effective supply chain management strategy focuses on careful integration of the entire
supply chain network. In contrast, the majority of mega-projects suffer from a lack of
integration between project scheduling and other related decisions (specifically the delivery
times of the orders). This is not to say that the challenge is unrecognized; interviewees
highlighted the use of regular multi-disciplinary meetings with stakeholders from the project
and supply chain functions aimed at improving coordination. However, even these regular
meetings appear to be insufficient. Firms appear to lack a comprehensive model to optimize
supply chain activities, and developing such a model is the goal of this dissertation research.

The work in this dissertation is particularly motivated by mega-projects in the oil and gas
industry, and our goal is to build models that address these challenges. The characteristics of
this industry, and of these projects, place specific requirements on project scheduling models,
and many of the existing models in the literature do not meet these requirements.

In Chapter 2, our focus is on formulating models and developing approaches that are par-
ticularly useful for mega-projects in the oil and gas industry, and that enable the concurrent
determination of project schedule and inventory delivery times in order to efficiently manage
the project supply chain, and to effectively control project delivery time and cost. Specifi-
cally, in this chapter, we consider the Stochastic Resource-Constrained Project Scheduling
Problem with inventory, where the objective is to minimize a weighted combination of ex-
pected project duration and expected inventory holding costs.

Motivated by the requirements of major oil and gas industry projects, we introduce the
class of proactive policies. In order to provide reasonable solutions, we develop multiple
deterministic and sample average approximation-based heuristic approaches. We introduce
a lower bound to evaluate the performance of the proposed heuristics; we also propose a
concept that we refer to as the probabilistic lower bound, which we define as an estimated
lower bound along with the probability that it is in fact an actual lower bound, to develop
a better understanding of the optimality gap.

Our results suggest that the advantages of our comprehensive model are two-fold. First,
optimizing the stochastic version of the problem – instead of the simplified deterministic
version – both decreases the expected makespan of the project, and also significantly lowers
the expected inventory holding cost, even when the variability of activity durations is small.
Second, determining the schedule and the suppliers’ delivery times concurrently – instead
of sequentially – significantly reduces the project cost. To demonstrate the inventory cost
versus timeliness trade-off in the project deliveries, we also provide an efficient frontier as
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a managerial decision-making tool that sheds light on the relation between the cost and
timeliness of the projects.

In Chapter 3, our focus is on related issue to the one explored in Chapter 2, but in
the context of scheduling of oil field drilling operations, where the goal is to maximize the
expected revenue generated by oil extraction. For this problem, we build a model and
propose a heuristic approach for solving this model. We confirm the effectiveness of our
heuristic approach by analyzing its performance compared to the current practice in a real-
world case study. Finally, we explore the impact of changing the quantity of resources, and
of constraining resource transportation time, on the profitability of projects. Our results
demonstrate that advanced approaches to the scheduling of oil field drilling operations have
the potential to increase the efficiency and productivity of drilling operations significantly
and to boost profitability by decreasing the time until wells start the extraction.

Without any doubt, suppliers play a critical role in the success of large-scale projects.
In the context of oil and gas projects, our focus is on suppliers that provide customized
materials. While the bulk of this dissertation focuses on projects from the project planner’s
point of view, we were also motivated to consider these problems from the perspective of
the supplier, and hence, to consider scheduling models with due dates. In Chapter 4, we
present a stylized model, where we consider sequencing decisions on a single processor,
here representing a supplier, in an online setting where no data about the future incoming
opportunities is available. We formulate a single machine online scheduling problem where
jobs with distinct processing times, weights, and due dates arrive over time and must be
processed one at a time without preemption in order to minimize the total weighted earliness
and tardiness cost. We introduce a new scheduling policy, the list-based delayed shortest
processing time (LDWSPT) policy, which is amenable to theoretical analysis. We develop
lower and upper bounds on the performance of the LDWSPT policy for the minimization
of total weighted (modified) earliness and tardiness cost for the case of equal earliness and
tardiness costs, and then extend our results for the case when these costs are not equal.
Finally, we close the optimality gap that currently exists in the literature for several variants
of single machine online scheduling problems in the presence of earliness and tardiness by
proving that our proposed policy is an optimal online algorithm for these variants.

Construction management plays a key role in capital projects, and a variety of methods
for production planning of construction work are used in practice. Many are location-based
planning methods, meaning that they explicitly take into consideration where work is to be
done by modeling space in 1, 2, or 3 dimensions. Such methods are known by a variety of
names. Early examples are line of balance (LOB) (e.g., [83]), resource scheduling method
(RSM) (e.g., [33]), Location Based Management System (LBMS) [41], Short Interval Pro-
duction Scheduling (SIPS) [10], even-flow production (e.g., [6]), and space scheduling (e.g,
[84], [72], [73]). More recent examples describe week-beat scheduling ([17]) and takt plan-
ning (e.g., [29], [28]). Some of these methods are more formally described in the literature
than others. They tend to differ in the formulation of the objectives they aim to achieve.
Objectives include aiming to complete the project within a set duration and achieving a
steady flow of work for each of the specialty contractors (trades) involved. Some methods
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also aim to level workloads of trades that follow each other in a “Parade of Trades” [78].
Despite the use of such production planning methods in practice, the underlying mathe-

matical algorithms are not necessarily well-articulated. This may be due to lack of definition
of the construction management principles to be supported. It may also be due to the
heuristic, opportunistic, and intuitive nature of the approach taken and the presumption
that formalization would take a significant amount of effort.

Chapter 5 focuses on a location-based method used in construction, namely the Work
Density Method (WDM) for takt planning. We present a novel problem formulation and an
optimization algorithm to divide a work space into zones while leveling work densities across
trades in a process. Given a work space and the number of zones in which to divide that
space, the so-called WoLZo problem is to identify the shape and dimensions of each zone
while minimizing the peak in the trades’ workloads per zone. Increasing the number of zones
tends to result in lowering the peak, but application of the WoLZo algorithm shows that
this trend levels out due to the spatial distribution of work densities. Application to work
density maps of different granularity sheds light on zoning work spaces and sharpens one’s
intuition on how many zones to select. These findings inform data collection pertaining to
work density as needed when planning construction work on the basis of takt.

Finally, in Chapter 6, we conclude this dissertation and discuss the limitations of this
work as well as the future research directions.



6

Chapter 2

Effective Proactive Policies for the
Stochastic Resource-Constrained
Project Scheduling Problem with
Inventory Considerations

2.1 Introduction

We consider projects that consist of a set of individual tasks that must be completed before
the project can be considered complete. In the project scheduling literature, these individual
tasks are referred to as activities. Activities in a project are not independent from each other
– they may have precedence constraints, which capture that notion that for technical reasons,
some activities cannot be processed before the completion of predecessor activities.

Each activity require different quantity of different types of valuable primary renewable
resources (e.g., a drilling rig), which we will subsequently call “resources.” As these resources
are typically costly, it is often the case that only a limited number of each type are available
for a particular project. Therefore, allocating resources to activities is a key decision that
impacts project completion times. Once an activity is completed, each of its resources must
be transferred to the location of the next activity to which that resource is assigned. In addi-
tion, in many cases, these transportation times can be ignored as they are minimal compared
to activity durations, but in some cases they must be explicitly considered. Particularly in
oil and gas mega-projects, resources are bulky and need specific types of transportation,
which may require building or improving roads. As building or improving roads take time,
the sequence of activities visited by each resource must be determined at the beginning of
the project.

Many research papers in the literature assumed the duration of activities is deterministic.
Scheduling a project with deterministic activity durations typically involves determining the
start and end time of each activity in order to minimize the makespan (project completion
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time) under resource and precedence constraints, and this problem is referred to as the
Deterministic Resource-constrained Project Scheduling Problem (RCPSP) in the literature.

In reality, although there are engineering estimates regarding the duration of each ac-
tivity, these estimates are not necessarily precise. Uncertainties can be a consequence of
inherent uncertainty in the process, as well as as human error, weather conditions, and
technical complications, etc. Some sources of uncertainty, e.g., weather conditions, impact
multiple activities at a time. Therefore, assuming that activity durations are independent
is not realistic. The problem of scheduling a project with stochastic activity durations to
minimize the expected makespan under resource and precedence constraints is referred to as
the Stochastic Resource-constrained Project Scheduling Problem (SRCPSP) in the literature.
Many researchers (e.g., Ballestıén [4]) have observed that when the variability of activity
durations is large, it is worthwhile to explicitly account for this uncertainty in modeling.

In a stochastic setting, it is not possible to specify start and end times for activities, as
activity durations vary in each possible scenario. Indeed, as Hall [31] observes, the effect of
these changes on the project completion time is not symmetrical. Activities which run longer
than expected typically delay the project, whereas those that are shorter than expected fail
to reduce the project completion time. Many experts believe that there are two reasons
for this phenomena, namely: Parkinson’s Law and Merge Bias. Parkinson’s Law is a well-
known principle states that “Work expands so as to fill the time available for its completion”
(Parkinson and Osborn [62]). Merge Bias, as it is explained in Elfving and Tommelein [24],
is about the impact of parallel activities that are precedent to another activity. If only one
of the parallel activities completes early, the start time of the subsequent activity does not
decrease; while if only one of them completes late, the start time of the subsequent activity
is delayed as well.

One approach to the SRCPSP, given that the start and end time of activities cannot be
determined at the beginning of a project, is to characterize a static policy, which is a set
of rules that are applied dynamically as the project is executed. Since in the oil and gas
mega-projects, the sequence of activities visited by each resource needs to be determined at
the start of the horizon, our focus here is on static policies that proactively set the sequence
of activities visited by each resource at the beginning of the project. In contrast, the start
times of activities are determined dynamically during the execution of the project.

In addition to these resources, activities may require specific make-to-order materials
(e.g., special pipe spools). For each activity, the engineering team decides the specifics of
the required materials. It is assumed that all materials that are required for an activity are
delivered together, that processing on an activity cannot start before this delivery, and that
deliveries are made on-time. However, as the make-to-order materials have long lead-times,
their delivery times also need to be determined at the start of the project. The inherent
trade-off in this decision is that early delivery leads to inventory holding costs (as we have
detailed above), and late delivery might delay the completion of the project.

We define the Inventory Integrated Stochastic Resource-constrained Project Scheduling
Problem (iSRCPSP) as the problem of determining a schedule for activities, sequences of
activities visited by each resource, and delivery times of materials, in order to minimize
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the expected total cost of the project under resource, precedence and materials constraints;
where both the expected makespan and the expected inventory holding cost contribute to
the cost of a project.

As with the SRCPSP, our goal here is to find a static policy that proactively specifies
the sequence of activities visited by each resource and the delivery times of materials at the
beginning of the project. In contrast, the start times of activities are determined dynamically
during the execution of the project.

The rest of this chapter is organised as follows. In Section 2.2, we review literature related
to project supply chain management in three categories: empirical evidence of the perfor-
mance of mega-projects, mathematical formulations of the deterministic resource-constrained
project scheduling, and stochastic resource-constrained project scheduling problem.

In Section 2.3, we develop the relevant mathematical optimization formulations. First,
in Subsection 2.3.1, for the sake of completeness, we present the Flow-based Continuous
Time (FCT) model, which is a mixed-integer linear programming (MILP) formulation for
RCPSP. In Subsection 2.3.2, we extend the FCT formulation by extending the deterministic
activity durations to the stochastic parameters. Then, we develop a formulation for the
SRCPSP, which we refer to as the Stochastic Flow-based Continuous Time (SFCT) model,
by introducing the scenario-based equivalent version of its stochastic formulation. Finally, in
Subsection 2.3.3, we extend the SFCT formulation by integrating inventory related decisions
and present a formulation for the iSRCPSP, which we refer to as the Inventory Integrated
Stochastic Flow-based Continuous Time (iSFCT) model.

In Section 2.4, we discuss our solution approaches. In Subsection 2.4.1, we present an
approach for finding a lower bound for both SRCPSP and iSRCPSP. In addition to the
lower bound, we propose a “probabilistic lower bound”, which we define as an estimated
lower bound along with the probability that it is in fact an actual lower bound. The prob-
abilistic lower bounds enhances our intuition about the tightness of both our lower and
upper bounds. We also propose a variety of heuristics for these models, including sample
average approximation-based approaches and deterministic approaches for SRCPSP and iS-
RCPSP, which we present in Subsections 2.4.2 and 2.4.3, respectively. Although all of these
approaches result in upper bounds, they differ in terms of computation time, difficulty of
implementation, and optimality gap. To select a particular approach for a project, one must
trade off level of sophistication and available computing power.

Finally, in Section 2.5, we compare the computational performance of our heuristics on
both SRCPSP and iSRCPSP. We show that even when the variability of activity durations is
small, explicitly accounting for the uncertainty in the model results in a moderate decrease
in the expected makespan and a significant decrease in the expected inventory holding cost.
Lastly, we confirm that determining the schedule and the delivery times of orders concur-
rently helps to reduce the total cost of projects.
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2.2 Literature Review

In this chapter, we present a novel problem, in which the inventory holding cost is consid-
ered along with the project schedule, that we refer to as the iSRCPSP. To the best of our
knowledge, this problem does not exist in the literature. This problem is in some respects
similar to the category of problems with the goal of minimizing the total deviation from the
due date or baseline schedule of activities (e.g., Khalilzadeh, Kianfar, and Ranjbar [42] and
Brčić and Mlinarić [8]). However, they are different as the iSRCPSP minimizes the expected
makespan of the project along with the inventory holding cost, and activities do not have
due dates or baseline schedule.

Here, our primary focus is on mega-projects in the oil and gas industry. Mega-projects
are, as the name implies, very large projects. More specifically, a mega-project is defined by
Flyvbjerg [26] as any project with a total capital cost of more than $1 billion. In Chapter 1,
we explore some empirical research on mega-projects. Although the focus of the literature is
on scheduling, and these models typically do not consider other operational decisions, they
can often be viewed as a key components for creating an inventory integrated stochastic
optimization model that capture additional relevant details. Lastly, in Subsection 2.2.2, we
discuss different classes of policies for stochastic project scheduling problems.

2.2.1 Deterministic Resource-Constrained Project Scheduling
Problem

Garey and Johnson [30] proved that the decision version of RCPSP is NP-complete in the
strong sense by reduction from the 3-partition problem. Thus, RCPSP is NP-hard in the
strong sense. There are several different Mixed Integer Linear Programming (MILP) formu-
lations in the literature for the RCPSP. Two important types of models are time-indexed
and compact models.

Time-indexed models divide the time horizon into discrete equal time intervals and assign
the start time of each activity to one of those time intervals. In these models, the resource
constraint is applied by enforcing the total resource consumption at each time interval to be
less than or equal to the total available resources in the project. The size of these models
increases based on the number of time intervals in the time horizon. The most common
time-indexed model is called the discrete-time (DT) model and is presented by Pritsker
and Watters [64]. Christofides, Alvarez-Valdes, and Tamarit [16] presented an extension of
discrete-time model called the disaggregated discrete-time (DDT) model and proved that
DDT model leads to a stronger linear relaxation than the DT model.

Artigues, Michelon, and Reusser [2] suggested a compact model known as the Flow-
based Continuous Time (FCT) model in which the start time of each activity is a continuous
variable and the resources are assumed to move from one activity to another (similar to
flow problems). In this model, the resource constraint is applied by ensuring that resources
have a feasible flow among the activities. The FCT formulation yields a poor relaxation.
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However, Koné et al. [49] argued that FCT can be preferable to DT and DDT for solving
large time-horizon problem instances.

Koné et al. [49] introduced a compact model which is called the On/Off Event-based
(OOE) model. The OOE model partitions the time horizon into a set of disjoint unequal
intervals, where the start time of each interval is a continuous variable. In each interval,
each of the activities that are being processed are called ‘active’. Each activity must be
active in one or multiple consecutive intervals, and the start time of each activity is defined
to be the start time of the first interval in which it is active. In this model, the resource
constraint is applied by ensuring that in each interval, the total resource consumption from
all active activities is less than or equal to the total available resources in the project. Tesch
[71] replaced some of the constraints in OOE model with new constraints that dominate the
former ones, and showed that the LP-relaxation of the OOE is very weak.

Koné et al. [49] proposed another compact model that is similar to OOE except that
instead of determining all intervals in which an activity is active, just the first and the last
intervals in which an activity is active are determined. This model is called the Start/End
Event-based (SEE) model. Tesch [71] replaced some of the constraints in the SEE model with
new constraints that dominate the former ones, and showed that although the LP-relaxation
of the SEE is stronger than the LP-relaxation of the OOE, it is still very weak. Tesch [71]
offers more details on MILP formulations of the RCPSP.

The RCPSP has been analyzed for over 50 years and numerous computationally effective
solution approaches have been developed.

The exact methods that are applied to the RCPSP include: zero-one programming (Icmeli
and Rom [35]), dynamic programming (Petrović [63]), branch-and-bound (Brucker et al. [9],
Morillo-Torres, Moreno-Velásquez, and Dı́az-Serna [58], and Dorndorf, Pesch, and Phan-Huy
[22]), and and branch and cut (Chakrabortty, Sarker, and Essam [11]). Liess and Michelon
[52] transformed the RCPSP into a satisfiability problem, and showed promising results using
a (SAT) solver.

Many authors, including Kolisch and Hartmann [47], Laborie [50], Demassey, Artigues,
and Michelon [20] and Baptiste and Demassey [5] proposed constraint programming ap-
proaches. Laborie [50] recently was able to find the optimal solution of some of the un-
solved instances of the PSPLIB benchmark. He also reported this approach optimally solves
100.00%, 88.33% and 46.00% of the projects in the PSPLIB benchmark with 30, 60 and 120
activities, respectively.

Other heuristic procedures have also received extensive attention in the literature. Pri-
ority rules (Valls, Ballestıén, and Quintanilla [80] and Klein [44]), insertion techniques (Ar-
tigues, Michelon, and Reusser [2]), and Lagrangean heuristics (Möhring et al. [57]) have all
been considered. Kolisch and Hartmann [47] offers a survey of these heuristic approaches.
Genetic algorithms (GA), tabu search (TS), simulated annealing (SA), particle swarm op-
timization (PSO) and ant colony optimization (ACO) are the most common metaheuristics
used to solve RCPSP. Handbook on Project Management and Scheduling Vol.1 [32] reported
that applying state of the art metaheuristics resulting in an average optimality gap of 0.10%,
11.10% and 34.15%, respectively, on projects in the PSPLIB benchmark with 30, 60 and 120
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activities.
See Demeulemeester and Herroelen [21], Neumann, Schwindt, and Zimmermann [59] and

Kolisch and Padman [46] for surveys of solution methods for RCPSP.

2.2.2 Stochastic Resource-Constrained Project Scheduling
Problem

In the literature, two approaches stand out as the primary focus of research on dealing with
uncertainty of activity durations in the SRCPSP: proactive and reactive scheduling, and
scheduling policies.

Proactive and reactive scheduling is a two-stage process. In the first stage, a baseline
schedule is constructed that is designed to be as robust as possible, and then, in the second
stage, if necessary, the schedule is revised or re-optimized after the realization of the duration
of each activity. For more information about proactive and reactive scheduling, see Van de
Vonder et al. [81] and Davari and Demeulemeester [19].

Scheduling policies do not involve a baseline schedule. Instead, the schedule is determined
dynamically as time progresses and activity durations are realized. Our focus in this chapter
is on a class of policies in which decisions are only made at the start of the time horizon and
at the completion of each activity (decision points). In the literature, this class of policies
is referred to as the elementary policies. Rostami [67] shows that the set of all elementary
policies does not necessarily include the optimal policy. However, as non-elementary policies
are computationally very challenging, they are rarely considered in the literature.

To the best of our knowledge, Creemers [18] is the only work that proposed an exact
algorithm for finding an optimal elementary policy. He modeled the SRCPSP as a Markov
decision process and assumed that activity durations are independent from each other and
a have phase-type distributions. He concluded that this approach is successful for small-
to medium-sized problems in which the coefficient of variation of activity durations is at
least 0.7. Most authors focus on finding the optimal policy within a predefined subclass of
elementary policies. In the following, we review the most common subclasses of elementary
policies:

1. Resource-based policies (RB-policies):
RB-policies (Ashtiani, Leus, and Aryanezhad [3]) take a list of all activities as an input.
At each decision point, RB-policies go through all activities one at a time in the order
of the list, and for each activity, if processing it does not create a resource conflict, its
processing starts and it is removed from the list.

2. Activity-based policies (AB-policies):
AB-policies (Ballestıén [4]) take a list of all activities as an input and at each decision
point, remove the top k activities from the list and start processing them, where k, at
each decision point, is the largest number of activities that does not result in a resource
conflict.
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3. Earliest-start policies (ES-policies):
ES-policies (Radermacher [66]) find all sets of activities that cannot be processed si-
multaneously due to resource constraints and add a precedence constraint between at
least a pair of activities in each set in order to remove all possible resource conflicts.
Then, every activity start as soon as possible given the set of precedence constraints.

4. Preselective policies (PS-policies):
PS-policies (Igelmund and Radermacher [36]) find all sets of activities that cannot be
processed simultaneously due to resource constraints. Then, one activity in each set
is selected and its start time is forced to be after at least one of the other activities in
that set is completed. Every activity starts as soon as possible.

5. Preprocessor policies (PP-policies):
PP-policies (Ashtiani, Leus, and Aryanezhad [3]) take a set of pairs of activities, E ′,
and a list of all activities, L, as input. Then, a precedence constraint is added between
activities of any pair in E ′, and finally, the altered project is scheduled by an RB-policy
over the list L. Note that the precedence constraints that are added to the project do
not necessarily remove all possible resource conflicts.

6. Generalized preprocessor policies (GP-policies):
GP-policies (Ashtiani, Leus, and Aryanezhad [3]) are generalization of PP-policies.
They take two sets of pairs of activities, EFS and ESS, and a list of all activities, L,
as an input. Then, a precedence constraint is added between activities of any pair in
EFS. Note that a precedence constraint from activity i to activity j prevents activity j
from starting before the completion of activity i. SS-constraints are a similar concept
to precedence constraints, except that when there is an SS-constraint from activity i to
activity j, it prevents activity j from starting before the start of activity i. GP-policies
add an SS-constraint between activities of any pair in ESS. Finally, the altered project
is scheduled by an RB-policy over the list L. Note that the precedence constraints and
the SS-constraints that are added to the project do not necessarily remove all possible
resource conflicts.

For more information on the different classes of scheduling policies, see Chen et al. [15].
Motivated by the requirement for scheduling mega-projects in oil and gas industry, our

goal in this chapter is develop an effective approach to resource constrained project scheduling
that determines, prior to the start of the project, the sequence of activities visited by each
resource as well as the delivery times for all materials. Therefore, our focus in this chapter
is on a subclass of elementary policies that makes these decisions before the execution of the
project, and then starts as soon as possible given these decisions. We refer to this class of
policies as “proactive policies”.

For SRCPSP, the set of all proactive policies is equivalent to the set of all ES-policies,
as in any ES-policy, without impacting the expected makespan of the project, we can fix
the sequence of activities visited by each resource at the beginning of the horizon. Note
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that ES-policies are specific to SRCPSP, while proactive policies can be applied to many
variations of resource-constrained project scheduling problems, including iSRCPSP.

Our goal in this chapter is to develop heuristics to find effective policies within the class
of proactive policies for both SRCPSP and iSRCPSP. In what follows, the optimal solution
of the SRCPSP refers to the policy within this class that results in the minimum expected
makespan, and the optimal solution of the iSRCPSP refers to the policy within this class that
results in the minimum expected cost. We are interested in heuristic approaches that allow
for dependencies between activity durations, and apply to instances of the size we observed
when talking to industry experts, projects with 30-60 activities. As far as we know, none of
the approaches in the literature meet these requirements.

2.3 The Models

In this section, we develop the relevant mathematical models. In all of our models, a project
and its precedence constraints are represented by a directed acyclic graph G(A, E), where
A is the set of nodes and E is the set of arcs that represent the precedence constraints.
Each node in A = {0, 1, ..., n+ 1} represents an activity. Activities 0 and n+ 1 are dummy
zero-duration activities that indicate the start and end of the project. All activities must be
executed without preemption. R is the set of resource types and Dr units of resource type
r for r ∈ R are available to be utilized by the project. The processing on activity i requires
di,r units of resource type r for i ∈ A and r ∈ R. For dummy nodes, d0,r = dn+1,r = Dr for
r ∈ R.

In Subsection 2.3.1, we begin by presenting a relevant formulation of the deterministic
RCPSP, the mixed-integer linear programming (MILP) Flow-based Continuous Time (FCT)
formulation. In the RCPSP, activity durations are deterministic, and we denote these de-
terministic activity durations by pi for i ∈ A.

In Subsection 2.3.2, we develop a MILP formulation to find the optimal solution of the
SRCPSP within the class of proactive policies. In our formulations, we assumed activity
durations are stochastic with known distributions, and we represent these stochastic dura-
tions by random variables Pi for i ∈ A. The dummy activities have deterministic activity
durations of zero; all other durations have no restrictions on distributions or dependencies.

Finally, in Subsection 2.3.3, we develop a MILP formulation to find the optimal solution
of the iSRCPSP within the class of proactive policies.

2.3.1 Flow-based Continuous Time (FCT) Formulation of the
RCPSP

The FCT formulation (Artigues, Michelon, and Reusser [2]) is a MILP formulation that
focuses on the flow of resources rather than the start time of activities. In this formulation,
the processing of an activity starts after all required resources have moved to that activity.
Also, each resource that moves to an activity stays there until the completion of processing of
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that activity. The flow of resources is represented by a continuous variable, fi,j,r for i, j ∈ A
and r ∈ R, which represents the quantity of type r resource that moves to activity j from
activity i (after i has completed processing).

In Lemma 1, we prove that when the flow of resources, fi,j,r for i, j ∈ A and r ∈ R,
has only integer values, we can construct the sequence of activities visited by each resource
in pseudo-polynomial time. Thus, because the FCT formulation determines the flow of re-
sources, it is well-suited for our setting in which we must determine the sequence of activities
visited by each resource at the beginning of the horizon. Therefore, we focus on FCT as a
starting point for developing our formulations.

Lemma 1. When the flow of resources (fi,j,r for i, j ∈ A and r ∈ R) takes on integer values,
the sequence of activities visited by each resource can be constructed in pseudo-polynomial
time.

Proof. Let Υ represent the set of all resources, and [τ ] represent the type of resource τ ∈ Υ.
Consider any integer feasible flow of resources, fi,j,r for i, j ∈ A and r ∈ R. The sequences
of activities visited by each resources can be constructed by the following procedure:

Create an empty list, Lτ for each resource τ ∈ Υ.
Step 1:

Select a resource (e.g., resource τ) from Υ and remove it from Υ.
Add activity 0 to the Lτ .

Step 2:
Find j : fLτ [−1],j,[τ ] > 0, where Lτ [−1] is the last activity that is added to Lτ .
Add activity j to Lτ .
Update fLτ [−1],j,[τ ] := fLτ [−1],j,[τ ] − 1.

Step 3:
If j 6= n+ 1, go to step 2 ; otherwise, if Υ is not empty, go to step 1.

The running time of this procedure is O(|Υ|×|A|), which is a pseudo-polynomial function
of the problem size. Note that in practice, as the total number of resources is bounded, the
run-time of this procedure is a polynomial function of the problem size (O(|A|)).

The FCT formulation determines the flow of resources in order to minimize the makespan
of the project. It captures precedence and resource constraints, but not uncertainty in
durations, delivery times, or inventory.

We present the FCT formulation below. In this formulation, the binary variable xi,j for
i, j ∈ A equals zero if activity i does not complete before activity j starts, it equals one if any
resource moves from activity i to activity j, and it can equal either zero or one otherwise.
The variable zi for i ∈ A equals the start time of activity i, and lastly, constants M and N
are very large numbers (a.k.a. big-M).
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(FCT) Minimize zn+1 (2.1)

xi,j = 1 ∀ (i, j) ∈ E (2.2)

fi,j,r −min(di,r, dj,r) xi,j ≤ 0 ∀ i, j ∈ A, r ∈ R (2.3)

zj − zi ≥ pi −M(1− xi,j) ∀ i, j ∈ A (2.4)

∑
j∈A

fi,j,r = di,r ∀ i ∈ A− {n+ 1}, r ∈ R (2.5)

∑
i∈A

fi,j,r = dj,r ∀ j ∈ A− {0}, r ∈ R (2.6)

fi,j,r ≥ 0 ∀ i, j ∈ A, r ∈ R (2.7)

zi ≥ 0 ∀ i ∈ A (2.8)

xi,j ∈ {0, 1} ∀ i, j ∈ A (2.9)

The objective function (Equation 2.1) minimizes the makespan, which is equal to the
start time of the dummy activity that represents the completion of the project. Constraints
2.2 and 2.3 enforce binary variables xi,j for i, j ∈ A to equal one if the processing of activity
i must be completed before the processing of activity j starts, or if any resource moves
from activity i to activity j. Constraint 2.4 ensures that activity j ∈ A starts after the
completion of activity i ∈ A when variable xi,j is one. Constraints 2.5 and 2.6 ensure that
for each type of resource, the quantity of resources that move to each activity equals the
quantity of resources that move from that activity and equals the quantity of resources that
the activity requires in order to be processed.

In most cases, the resources are discrete and indivisible, and this is assumed for the rest
of this chapter. In this case, we can substitute Constraint 2.10 for Constraint 2.7.

fi,j,r ∈ {0, 1, 2, ...} ∀ i, j ∈ A, r ∈ R (2.10)

In Lemma 2, we prove that when the resources are discrete and indivisible, for any
given feasible solution for the FCT formulation in which the flow of resources has non-
integer values, in polynomial time, we can construct another feasible solution with the same
objective function value in which the flow of resources has only integer values. Thus, we
conclude that substituting Constraint 2.10 for Constraint 2.7 does not change the objective
function value.
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Lemma 2. If Dr and di,r for all r ∈ R and i ∈ A take integer values, there exists an optimal
solution in which fi,j,r for i, j ∈ A and r ∈ R has only integer values.

Proof. Consider any feasible solution for the FCT formulation and denote its flow of resources
f ′i,j,r for i, j ∈ A and r ∈ R. For resource type r′ ∈ R, create graph G′r′(A′, E ′) as follows:

Nodes (A′): for each activity i ∈ A, create two nodes and let a(i) and b(i) represent
them.
Arcs (E′): for each i ∈ A, add an arc from a(i) to b(i) with lower bound of di,r′
and upper bound of di,r′ . Note that d0,r′ = dn+1,r′ = Dr′ . Also, for each i, j ∈ A,
if xi,j = 1, add an arc between b(i) and a(j) with lower bound of zero and upper
bound of infinity, otherwise, add an arc between b(i) and a(j) with lower bound of
zero and upper bound of zero. Finally, add an arc from node b(n+ 1) to node a(0)
with the lower bound of zero and upper bound of infinity.

We can construct a feasible network flow (f̂i,j for (i, j) ∈ A′) for G′r′(A′, E ′) as follows:

f̂a(i),b(i) = di,r′ ∀ i ∈ A

f̂b(i),a(j) = f ′i,j,r′ ∀ i, j ∈ A, if i 6= j, (i, j) 6= (n+ 1, 0)

f̂b(n+1),a(0) = Dr′

As the formulation of the network flow problem is totally unimodular, and there exists
a feasible network flow for G′r′(A′, E ′), there also exist an integer feasible network flow and

it can be found in polynomial time. Represent that integer feasible network flow by f̂ ′i,j for
(i, j) ∈ A′. We create a new feasible solution for the FCT formulation by substituting f ′i,j,r
with f ′′i,j,r for i, j ∈ A and r ∈ R, where:

f ′′i,j,r = f ′i,j,r ∀ i, j ∈ A, r ∈ R− {r′}

f ′′i,j,r′ = f̂ ′b(i),a(j) ∀ i, j ∈ A, if i 6= j, (i, j) 6= (n+ 1, 0)

f ′′i,i,r′ = 0 ∀ i ∈ A

f ′′n+1,0,r′ = 0

As activity start times in the new feasible solution are the same as activity start times
in the former feasible solution, the objective function value of both feasible solutions are the
same. Also, f ′′i,j,r′ for i, j ∈ A takes on only integer values.

By repeating this procedure for all resource types, we can construct a feasible solution
with the same objective function value in which the flow of resources has only integer values.
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Thus, we conclude that there exists an optimal solution in which fi,j,r for i, j ∈ A and r ∈ R
has only integer values.

2.3.2 Stochastic Flow-based Continuous Time (SFCT) Model

In the RCPSP, we assume that activity durations are deterministic. However, in most
projects, activity durations are highly uncertain. Hence, we modify the RCPSP to allow
random processing times with known distributions, resulting in the SRCPSP. The dummy
activities have deterministic activity durations of zero; all other durations have no restrictions
on distributions or dependencies. We model the problem of finding the optimal solution of
SRCPSP within the class of proactive policies as an optimization problem, and we refer to
it as the Stochastic Flow-based Continuous Time (SFCT) model:

SFCT : min
~f
E~P

[
F (~P , ~f)

]
, (2.11)

where
~f : Vector of flow of resources (fi,j,r for i, j ∈ A and r ∈ R);
~P : Vector of activity durations, where each element has an associated probability
distribution (Pi for i ∈ A);
F (.): A function that provides the stochastic makespan of the project.

Note that this model identifies the flow of resources, from which, by Lemma 1, we can
identify the sequence of activities visited by each resource.

The expected value component in Model 2.11 is a high-dimensional integral. Define a
“scenario” as a realization of the stochastic activity durations. Intuitively, a scenario can
be interpreted as a plausible realizations of the stochastic durations. By using the Sample
Average Approximation (SAA) technique (as in Kleywegt, Shapiro, and Homem-de-Mello
[45]), the SFCT (Model 2.11) can be approximated by SFCT(S):

SFCT(S) : min
~f

∑
s∈S

F̂ (~ps, ~f)/|S|, (2.12)

where
S: Set of scenarios;
|.|: cardinality of the set;
~ps: Vector of activity durations in scenario s ∈ S;
F̂ (.): A function that provides the makespan of the project given the flow of re-

sources, ~f , and the realized durations, ~ps.

Let Z∗SFCT and ZSSFCT , respectively, denote the optimal objective function values of SFCT
and SFCT(S). Shapiro and Philpott [68] show that when i.i.d. scenarios are randomly
selected (e.g., Monte Carlo simulation), the sample average converges to the corresponding
expectation at a rate of O(|S|−0.5). In other words, the error, denoted |Z∗SFCT − ZSSFCT |, is
bounded by O(|S|−0.5). Therefore, the number of scenarios selected in practice should be
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sufficiently large to reduce the error to an acceptable threshold. In Lemma 3, we show that
the optimal objective function value of SFCT(S) converges to the optimal objective function
value of SFCT as |S| goes to infinity.

Lemma 3. When |S|→ ∞, the optimal objective function value of SFCT(S) converges to
the optimal objective function value of SFCT with probability one.

Proof. Let F denote the set of all feasible flow of resources. For any ~f ∈ F , based on the
law of large numbers:∑

s∈S

F̂ (~ps, ~f)/|S|→ E~P [F (~P , ~f)], w.p.1 as |S|→ ∞,

and since |F| is finite, we conclude that:

ZSSFCT → Z∗SFCT , w.p.1 as |S|→ ∞.

In Lemma 4, we show that when activity durations are mutually independent and have
light-tailed distributions (any distribution where the tail is lighter than an exponential func-
tion), the probability of converging to an ε-optimal solution approaches one at an exponential
rate, where an ε-optimal solution is a solution in which the objective function value is at
most ε away from the optimal objective function value.

Lemma 4. Under mild regularity conditions, given activity durations are mutually indepen-
dent and have light tailed distributions, the probability of converging to an ε-optimal solution
approaches one exponentially fast by increasing the sample size.

Proof. Kleywegt, Shapiro, and Homem-de-Mello [45] prove in SAA, under mild regularity
conditions, the probability of converging to an ε-optimal solution approaches one exponen-
tially fast by increasing the sample size when the following assumption holds:

For every feasible solution, ~f , the moment-generating function of the random
variable H(~P , ~f) is finite valued in a neighborhood of 0,

where

H(~ps, ~f) := F̂ (~ps, u(~f))− F̂ (~ps, ~f) ∀ s ∈ S,

and the mapping u(~f) returns ~f when ~f is ε-optimal, and as follows when ~f is not ε-optimal:

E[F (~P , u(~f))] ≤ E[F (~P , ~f)]− ε.

Let ~f ′ represent a feasible resource flow that enforces activities to be processed sequen-
tially (one at a time and without any idle time). For any scenario s ∈ S:
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|H(~f, ~ps)|:= |F̂ (~ps, u(~f))− F̂ (~ps, ~f)|≤ max (F̂ (~ps, u(~f)), F̂ (~ps, ~f)) ≤ F̂ (~ps, ~f ′) =
∑
j∈A

psj ,

and therefore:

M(t) = E
[
et.H(~f, ~P )

]
≤ E

[
et.|H(~f, ~P )|

]
≤ E

[
et.

∑
j∈A Pj

]
=

∫
· · ·
∫
Pj

et.
∑
j∈A Pjf(P1, . . . , Pn) dP1 . . . dPn,

where n is the number of activities (|A|) and f(P1, . . . , Pn) is the joint distribution of activity
durations. Finally, as activity durations are mutually independent:

M(t) ≤
∫
P1

et.P1f(P1) dP1 × . . .×
∫
Pn

et.Pnf(Pn) dPn,

where f(Pi) denote the probability distribution of random variable Pi. For any distribution
with a tail lighter than the tail of an exponential distribution, the value of

∫
Pi
et.Pif(Pi) dPi

is finite when t is in the neighborhood of zero. As multiplying a finite number of finite values
remains finite, we conclude that M(t) is finite in the neighborhood of zero.

Next, we present a MILP formulation of SFCT(S) that determines the flow of resources
in order to minimize the expected makespan over the scenarios in S, while capturing resource
and precedence constraints. The parameter psi for i ∈ A and s ∈ S represents the duration
of activity i in scenario s, variable zsi for i ∈ A and s ∈ S represents the start time of activity
i in scenario s, and the remaining notation is the same as the FCT formulation presented in
Subsection 2.3.1. (

SFCT(S)
)

Minimize E(zsn+1) =
∑
s∈S

zsn+1/|S| (2.13)

xi,j = 1 ∀ (i, j) ∈ E (2.14)

fi,j,r −min(di,r, dj,r)xi,j ≤ 0 ∀ i, j ∈ A, r ∈ R (2.15)

zsj − zsi ≥ psi −M(1− xi,j) ∀ i, j ∈ A, s ∈ S (2.16)

∑
j∈A

fi,j,r = di,r ∀ i ∈ A− {n+ 1}, r ∈ R (2.17)

∑
i∈A

fi,j,r = dj,r ∀ j ∈ A− {0}, r ∈ R (2.18)
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fi,j,r ≥ 0 ∀ i, j ∈ A, r ∈ R (2.19)

zsi ≥ 0 ∀ i ∈ A, s ∈ S (2.20)

xi,j ∈ {0, 1} ∀ i, j ∈ A (2.21)

The objective function (Equation 2.13) minimizes the expected makespan of the project.
Constraints 2.14 and 2.15 force binary variable xi,j for i, j ∈ A to equal one if activity i must
be completed before activity j can start, or if any resource moves from activity i to activity
j. Constraint 2.16 ensures that in all scenarios, activity j ∈ A starts after the completion
of activity i ∈ A when variable xi,j is one. Finally, Constraints 2.17 and 2.18 ensure that
for each type of resources, the quantity of resources that move to each activity equals the
quantity of resources that move from that activity and equals the quantity of resources that
activity requires to be processed.

2.3.3 Inventory Integrated Stochastic Flow-based Continuous
Time (iSFCT) Model

In most projects, in addition to the resources, processing each activity requires specific
make-to-order materials (e.g., special pipe spools), and processing of an activity cannot start
before the delivery of required materials. For each activity, the engineering team decides the
specifics of the required materials. In our formulations, we assume that all materials that
are required for an activity are delivered together and that deliveries are made on time.
Similar to the SRCPSP, activity durations are random variables with known distributions,
and durations have no restrictions on distributions or dependencies.

We model the problem of finding the optimal solution of iSRCPSP within the class of
proactive policies as an optimization problem, and we refer to it as the Inventory Integrated
Stochastic Flow-based Continuous Time (iSFCT) model:

iSFCT : min
~f

min
~o
E~P

[
G(~P , ~f, ~o)

]
, (2.22)

where
~f : Vector of flow of resources (fi,j,r for i, j ∈ A and r ∈ R);
~o: Vector of materials delivery times (oi for i ∈ A);
~P : Vector of activity durations, where each element has an associated probability
distribution (Pi for i ∈ A);
G(.): A function that provides the stochastic cost of the project, given the resource

flow, ~f , and the delivery times of materials, ~o.

Note that our goal here is to minimize the expected cost of a project. In iSFCT, both
expected makespan and expected inventory holding cost contribute to the cost of a project.
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The inventory holding cost is a consequence of early deliveries. At each activity, when
materials is delivered early, an inventory holding cost proportional to the amount of time
that it is delivered before the start of the process is accrued. iSFCT identifies delivery time
of materials as well as the flow of resources, from which, by Lemma 1, we can determine the
sequence of activities visited by each resource.

By using SAA technique, the iSFCT (Model 2.22) can be approximated by iSFCT(S):

iSFCT(S) : min
~f

min
~o

∑
s∈S

Ĝ(~ps, ~f , ~o)/|S|, (2.23)

where
S: Set of scenarios;
|.|: cardinality of the set;
~ps: Vector of activity durations in scenario s ∈ S;
Ĝ(.): A function that provides the cost of the project given the flow of resources, ~f ,
the delivery times of materials, ~o, and the realized durations, ~ps.

Note that in iSFCT(S), given the flow of resources ~f , min~o
∑

s∈S Ĝ(~ps, ~f , ~o)/|S| is a
linear programming (LP) formulation that determines materials delivery times to minimize
the expected cost of the project over the set of scenarios S.

As to Subsection 2.3.2, the number of scenarios selected in practice should be sufficiently
large to reduce the error to an acceptable threshold. In Lemma 3, we show that the optimal
objective function value of iSFCT(S) converges to the optimal objective function value of
iSFCT as |S| goes to infinity.

Lemma 5. When |S|→ ∞, the optimal objective function value of iSFCT(S) converges to
the optimal objective function value of iSFCT with probability of one.

Proof. Proof is similar to the proof of Lemma 3.

Next, we propose the MILP formulation for iSFCT(S) that is an extension to the MILP
formulation of SFCT(S). iSFCT(S) determines the flow of resources and the delivery times of
the materials simultaneously, in order to minimize the expected total cost of the project over
the scenarios in S, while capturing precedence, resource and inventory-related constraints.

We define the objective function to be the minimization of the expected makespan plus
γ times the expected inventory holding cost, where the parameter 1/γ can be interpreted as
the monetary cost of extending the expected makespan of the project by one time unit. The
value of parameter γ must be estimated in practice – this estimation is beyond the scope of
this research.

In this formulation, the parameter ωi for i ∈ A represents the rate of inventory holding
cost for materials of activity i and the variable oi for i ∈ A represents the delivery time of
materials of activity i. The remaining notation is the same as that of the MILP formulation
of SFCT(S) presented in Subsection 2.3.2.
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(
iSFCT(S)

)
Minimize

∑
s∈S

zsn+1/|S|+γ
∑
i∈A

ωi ×
∑
s∈S

(zsi − oi)/|S| (2.24)

xi,j = 1 ∀ (i, j) ∈ E (2.25)

fi,j,r −min(di,r, dj,r)xi,j ≤ 0 ∀ i, j ∈ A, r ∈ R (2.26)

zsj − zsi ≥ psi −M(1− xi,j) ∀ i, j ∈ A, s ∈ S (2.27)

zsi ≥ oi ∀ i ∈ A, s ∈ S (2.28)

∑
j∈A

fi,j,r = di,r ∀ i ∈ A− {n+ 1}, r ∈ R (2.29)

∑
i∈A

fi,j,r = dj,r ∀ j ∈ A− {0}, r ∈ R (2.30)

fi,j,r ≥ 0 ∀ i, j ∈ A, r ∈ R (2.31)

zsi ≥ 0 ∀ i ∈ A, s ∈ S (2.32)

xi,j ∈ {0, 1} ∀ i, j ∈ A (2.33)

The objective function (Equation 2.24) minimizes the expected cost of the project. Con-
straints 2.25 and 2.26 enforce the value of the binary variable xi,j for i, j ∈ A to be equal to
one if the completion of activity i must precede to the start of processing of activity j, or
if any resource moves from activity i to activity j. Constraint 2.27 ensures that in all sce-
narios, activity j ∈ A starts after the completion of activity i ∈ A when variable xi,j is one.
Constraint 2.28 ensures that processing of an activity does not start before the delivery of its
required materials. Finally, Constraints 2.29 and 2.30 ensure that for each type of resources,
the quantity of resources that moves to each activity equals the quantity of resources that
moves from that activity and equals the quantity of resources that activity requires to be
processed.
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2.4 Solution Approach

Consider any instance of deterministic RCPSP. The optimal solution of the RCPSP can be
found by finding the optimal policy within the class of proactive policies for SRCPSP or
iSRCPSP when activity durations are deterministic. Thus, we conclude that finding the
optimal policies within the class of proactive policies for SRCPSP and iSRCPSP are at least
as hard as solving RCPSP, so they are NP-hard in the strong sense.

The MILP SFCT(S) and iSFCT(S) formulations have O(|A|2) binary variables, O(|A||S|
+|A|2|R|) continuous variables and O(|A|2(|R|+|S|)) constraints, where |A| is the number
of activities, |S| is the number of scenarios, and |R| is the number of resource types. As we
discussed in Subsections 2.3.2 and 2.3.3, a sufficiently large number of scenarios are required
to impose an acceptable bound on the error. For large |S|, e.g., |S|= 2000, we observed
Gurobi (version 9.0.0) cannot provide even a feasible solution within the time limit of 3600
seconds for instances of PSPLIB benchmark with 30 activities and |R|= 4. Although by
increasing |S|, the number of binary variables remains the same, we conjecture that the
computational challenges increases due to the increase in the number of constraints, which
increases the computation time at each node.

We are not aware of any approach that can find the optimal solution of SFCT(S) and
iSFCT(S), given A = 30, 60 and |S| is large. Therefore, in this chapter, we focus on devel-
oping heuristics to find feasible solutions. In order to compare the performance of heuristics,
in Subsection 2.4.1, we present an approach for finding a lower bound for both SFCT and
iSFCT. In addition to the lower bound, in Subsection 2.4.1, we propose a probabilistic lower
bound (that is, an approximate lower bound along with the probability that it is in fact
an actual lower bound). The probabilistic lower bounds enhances our intuition about the
tightness of both our lower and upper bounds.

We suggest two alternative strategies for developing heuristics. One involves restricting
the number of scenarios for SAA approach, and the other involves leveraging successful
computational methods for the deterministic version of the problem. In Subsection 2.4.2,
we propose multiple deterministic and SAA-based heuristics for finding feasible solutions for
SFCT. Finally, in Subsection 2.4.3, we extend those heuristics to provide feasible solutions
for iSFCT. Although all proposed heuristics result in feasible solutions, they differ in terms
of computation time, difficulty of implementation, and optimality gap. To select a particular
approach for a project, one must trade off level of sophistication and available computing
power.

2.4.1 Lower Bound and Probabilistic Lower Bounds

Lower Bound

In Lemma 6, we prove that regardless of the distribution of activity durations, the optimal
objective function value of the RCPSP when activity durations are assumed to be equal to
their means is a lower bound on both SFCT and iSFCT.
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Lemma 6. The optimal objective function value of the RCPSP in which activity durations
are assumed to be equal to the mean of their distributions is a lower bound on the optimal
objective function value of both SFCT and iSFCT.

Proof. Define F̂ (~p, ~f) to be a function that given the flow of resources, ~f , and vector of
deterministic durations, ~p, provides the optimal objective function value of the FCT for-
mulation. For a fixed flow of resources, ~f , there are a finite number of paths between the
source and the tail of a project. Let Ω~f denote the set of such paths, ~p1 and ~p2 denote two
vectors of activity durations, and p1,i and p2,i denote the duration of activity i in ~p1 and ~p2,
respectively. It follows that:

F̂ (~p1, ~f) = max
ω∈Ω~f

(∑
i∈ω

p1,i

)
F̂ (~p2, ~f) = max

ω∈Ω~f

(∑
i∈ω

p2,i

)
F̂ (~p1 + ~p2, ~f) = max

ω∈Ω~f

(∑
i∈ω

(p1,i + p2,i)
)

For a given flow of resources, ~f :

max
ω∈Ω~f

(∑
i∈ω

(p1,i + p2,i)
)
≤ max

ω∈Ω~f

(∑
i∈ω

p1,i

)
+ max

ω∈Ω~f

(∑
i∈ω

p2,i

)
,

thus, we conclude that for a given flow of resources, ~f , function F̂ (., ~f) is convex. So, for

any two vectors of activity durations, ~p1 and ~p2, and a flow of resources ~f :

F̂ (~p1 + ~p2, ~f) ≤ F̂ (~p1, ~f) + F̂ (~p2, ~f). (2.34)

Let ~pmean represent the vector of activity durations that contains E[Pi] for each activity
i ∈ A. With this notation, the optimal objective function value of the FCT formulation
when activity durations are equal to the mean of their distribution is F̂ (~pmean, ~f ∗mean),

where ~f ∗mean is the optimal resource flow with regards to ~pmean. Also let ~psum represent the
vector of activity durations that contains

∑
s∈S p

s
i for i ∈ A, where |S|→ ∞. By changing

the scale of time, it is straightforward to see that for any resource flow ~f :

|S|×F̂ (~pmean, ~f) = F̂ (|S|×~pmean, ~f) = F̂ (~psum, ~f) (2.35)

Let ~ps for s ∈ S represents the vector of activity durations that contain psi for i ∈ A, and
~f ∗ represents the optimal flow of resources for the SFCT(S). Based on Equations 2.34 and
2.35:

F̂ (~pmean, ~f
∗
mean) ≤ F̂ (~pmean, ~f

∗) = lim
|S|→∞

F̂ (~psum, ~f
∗)/|S|≤ lim

|S|→∞

∑
s∈S

F̂ (~ps, ~f
∗)/|S| (2.36)
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Let ZSSFCT and Z∗SFCT represent the optimal objective function value of SFCT(S) and
SFCT, respectively. Based on Equation 2.36 and Lemma 3:

F̂ (~pmean, ~f
∗
mean) ≤ lim

|S|→∞

∑
s∈S

F̂ (~ps, ~f ∗)/|S|= lim
|S|→∞

ZSSFCT = Z∗SFCT (2.37)

Thus, F̂ (~pmean, ~f
∗
mean) is a lower bound for the SFCT. Also, the optimal objective function

value of the iSFCT is always grater than or equal to the optimal objective function value of
the SFCT, therefore, F̂ (~pmean, ~f

∗
mean) is also a lower bound for the iSFCT.

Probabilistic Lower Bound

Consider a randomly selected sample subset of scenarios with finite cardinality, S ′, and
let ZS

′
SFCT represents the optimal objective function value of SFCT(S ′). As S ′ is selected

randomly, ZS
′

SFCT is neither an upper bound nor a lower bound for the optimal objective
function value of the SFCT. However, by Lemma 7, its expected value (ES′ [Z

S′
SFCT ]) is a

lower bound for the optimal objective function value of the SFCT.

Lemma 7. ES′ [Z
S′
SFCT ], where ZS

′
SFCT is the optimal objective function value of the SFCT(S ′),

is a lower bound for SFCT.

Proof. Consider the following notation:
F̂ (.): A function that provides the makespan of the project given the flow of re-

sources, ~f , and the realized durations, ~ps;
S ′1,S ′2, ...,S ′m: m i.i.d randomly selected subsets of scenarios with the same finite
cardinality;
~fs′k for k ∈ {1, 2, ...,m}: Vector of the optimal resource flow of SFCT (S ′k);
~f ∗: Vector of the optimal resource flow of SFCT;
~ps: Vector of activity durations in scenario s.

Based on the strong law of large numbers and Lemma 3:

ES′ [Z
S′
SFCT ] = lim

m→∞

∑m
k=1

∑
s∈S′k F̂ (~ps, ~fs′k)∑m
k=1|S ′k|

≤

lim
m→∞

∑m
k=1

∑
s∈S′k F̂ (~ps, ~f

∗)∑m
k=1|S ′k|

= Z∗SFCT (2.38)

Therefore, ES′ [Z
S′
SFCT ] is a lower bound for the optimal objective function value of the

SFCT.

By Lemma 7, ES′ [Z
S′
SFCT ] is a lower bound for the SFCT. Nonetheless, the distribution of

ZS
′

SFCT and its expected value (ES′ [Z
S′
SFCT ]) are unknown. To calculate ES′ [Z

S′
SFCT ], one ap-

proach is to sample infinite number of subsets of scenarios (S ′1,S ′2, ...), solve the SFCT (S ′k)
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for k ∈ {1, 2, ...}, and averaging the results. However, as almost always the computational
power is limited, this approach is not practical.

Instead, we can sample k′ number of subsets of scenarios (S ′1,S ′2, ...,S ′k′) and solve
SFCT (S ′k) for k ∈ {1, 2, ..., k′}. This case is equivalent to having k′ observations from an

unknown distribution. When k′ is sufficiently large,
∑k′

k=1 Z
S′k
SFCT/k

′ has a t-distribution.
The 1−α percentile confidence interval represents an interval that contains ES′ [Z

S′
SFCT ] with

probability of 1 − α for any α strictly between zero and one. We define the “probabilistic
lower bound” as the lower wing of the 1 − α percentile confidence interval for ES′ [Z

S′
SFCT ].

Thus, the probabilistic lower bound is lower than ES′ [Z
S′
SFCT ] and consequently lower than

the optimal objective function value of the SFCT with the probability of at least 1− α/2.
For a fixed sample size (|S ′|) and a fixed maximum number of replications (k′), represent

the probabilistic lower bound with LB(β). Note that LB(β) is the largest number that we
can verify it is in fact an actual lower bound with the probability of at least β. For any given
β, LB(β) can be calculated with Equation 2.39.

LB(β) = µ̂− t1−β,k′−1 × σ̂/
√
k′, (2.39)

where t1−β,k′−1 is the β percentile of t-distribution with k′ − 1 degrees of freedom,

µ̂ =
k′∑
k=1

ZS
′
k

SFCT/k
′

and

σ̂2 =

∑k′

k=1 (ZS
′
k

SFCT − µ̂)2

k′ − 1
.

The probabilistic lower bound can also be used to provide the probability that any esti-
mated lower bound is an actual lower bound. For a fixed sample size and a fixed maximum
number of replications, given the observations, the maximum probability (β) that any esti-
mated lower bound, L̂B, is an actual lower bound can be calculated with Equation 2.40 if
all observations are greater than L̂B.

β = LB−1(L̂B), (2.40)

where LB−1(.) is the inverse of the probabilistic lower bound function that is presented in
Equation 2.39.

Note that we can also introduce the probabilistic lower bound for iSFCT with similar
approach and reasoning (substitute Lemma 8 for Lemma 7).

Lemma 8. ES′ [Z
S′
iSFCT ], where ZS

′
iSFCT is the optimal objective function value of the iSFCT(S ′),

is a lower bound for iSFCT.

Proof. Consider the following notation:
Ĝ(.): A function that provides the cost of the project given the flow of resources, ~f ,
the delivery times of materials, ~o, and the realized durations, ~ps;
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S ′1,S ′2, ...,S ′m: m i.i.d randomly selected subsets of scenarios with the same finite
cardinality;
~fs′k for k ∈ {1, 2, ...,m}: Vector of the optimal resource flow of iSFCT (S ′k);
~f ∗: Vector of the optimal resource flow of iSFCT;
~o: Vector of materials delivery times;
~ps: Vector of activity durations in scenario s.

Based on the strong law of large numbers and Lemma 5:

ES′ [Z
S′
iSFCT ] = lim

m→∞

∑m
k=1 min~o

∑
s∈S′k Ĝ(~ps, ~fs′k , ~o)∑m
k=1|S ′k|

≤

lim
m→∞

∑m
k=1 min~o

∑
s∈S′k Ĝ(~ps, ~f

∗, ~o)∑m
k=1|S ′k|

≤

lim
m→∞

min
~o

∑m
k=1

∑
s∈S′k Ĝ(~ps, ~f

∗, ~o)∑m
k=1|S ′k|

= Z∗iSFCT (2.41)

Therefore, ES′ [Z
S′
iSFCT ] is a lower bound for the optimal objective function value of the

iSFCT.

2.4.2 Heuristics for SFCT

This subsection is divided into two sections, as we consider two alternative strategies for
heuristics. The first involves restricting the number of scenarios for SAA approach, and we
discuss this in the first part. The other involves leveraging successful computational methods
for the deterministic version of the problem, and we discuss this in the second part.

Although all of these approaches result in feasible solutions, they differ in terms of compu-
tation time, difficulty of implementation, and optimality gap. To select a particular approach
for a project, one must trade off level of sophistication and available computing power.

Sample Average Approximation-based Heuristics

As we discussed above, solving SFCT(S) is not practical when S is large. SAA technique
approximates stochastic problems by solving them over a small sample of scenarios. Define S ′
as a set of scenarios with small cardinality (|S ′|� |S|). In SAA, instead of solving SFCT(S),

we solve SFCT(S ′), and define ~fs′ as its optimal solution. As ~fs′ satisfies all constraints in
SFCT(S) and SFCT, it is a feasible solution for them.

To measure the quality of solutions, given a feasible solution ~fs′ , we calculate F̂ (~ps, ~fs′) for

each scenario s ∈ S, and define ZSSFCT (~fs′), as in Equation 2.42, as their average. Note that

calculating F̂ (~ps, ~fs′) is equivalent to finding the longest path in a graph, and can be done

in polynomial time. Then, ZSSFCT (~fs′) denote the objective function value of this solution in



CHAPTER 2. PROACTIVE POLICIES FOR MEGA-PROJECT PLANNING 28

the SFCT(S), and by Lemma 3, in the SFCT when |S| is large. Using this objective function
value and the lower bound provided in Subsection 2.4.1, we can analyse the optimality gap.

ZSSFCT (~fs′) =
∑
s∈S

F̂ (~ps, ~fs′)/|S| (2.42)

One way to decrease the optimality gap of SAA solution is to increase the number of
scenarios in S ′. However, when standard solvers are utilized to optimize SFCT(S ′), we
observed that they are unable to find even a feasible solution within a reasonable time limit
when |S ′| is large. As a result, we can only increase the sample size up to some extent.

SAA solution is a function of the selected set of scenarios S ′, and if it changes, the solution
might change as well. Hence, independently applying SAA multiple times results in multiple
solutions. We use this fact and propose the Reinforced Sample Average Approximation
Decomposition (SAAD+) approach in order to find feasible solutions with lower optimality
gap.

In SAAD+, we replicate SAA for k times to find k feasible solutions. Then, we select the
solution with the lowest objective function value in the SFCT(S). The summary of SAAD+
is depicted in Figure 2.1.

Figure 2.1: Summary of SAAD+.

The complexity of SAAD+ approach increases linearly as the number of replications
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increases. Therefore, we can have many replications while maintaining the same order of
magnitude of solution time. Moreover, as different replications are independent from each
other, this process can be parallelized. Note that it is not worthwhile to have an extremely
large number of replications, as the incremental expected decrease in the objective function
value in the SFCT(S) due to this approach, and by Lemma 3, in the SFCT when |S| is large,
decreases as the number of replications increases (Lemma 9).

Lemma 9. Increasing k decreases E
[

minkr=1 Z
S
SFCT ( ~fs′r)−mink+1

r=1 Z
S
SFCT ( ~fs′r)

]
.

Proof. Let θ(k) denotes E
[

minkr=1 Z
S
SFCT ( ~fs′r) − mink+1

r=1 Z
S
SFCT ( ~fs′r)

]
. Consider any k1 and

k2 where k1 < k2. Then, for any constant y:

Pr
( k1

min
r=1

ZSSFCT ( ~fs′r) > y
)
≥ Pr

( k2
min
r=1

ZSSFCT ( ~fs′r) > y
)

,

and since all replications are i.i.d.:

Pr
(

max
( k1

min
r=1

ZSSFCT ( ~fs′r)− Z
S
SFCT ( ~fs′k1+1

), 0
)
> y
)
≥

Pr
(

max
( k2

min
r=1

ZSSFCT ( ~fs′r)− Z
S
SFCT ( ~fs′k2+1

), 0
)
> y
)

. (2.43)

From 2.43, we conclude that:

θ(k1)− θ(k2) = E
[

max
( k1

min
r=1

ZSSFCT ( ~fs′r)− Z
S
SFCT ( ~fs′k1+1

), 0
)]
−

E
[

max
( k2

min
r=1

ZSSFCT ( ~fs′r)− Z
S
SFCT ( ~fs′k2+1

), 0
)]
≥ 0

Deterministic Heuristics

Our interviews with a variety of consultants and project and supply chain managers (see
Jabbari and Kaminsky [37] and Appendix A) reveal that in practice, the mean of activity
durations are often used to obtain a project plan in a deterministic manner. This is a natural
approach to approximating stochastic problems, and in fact, as Ballestıén [4] discussed, an
effective way to schedule SRCPSP when the variability in activity durations is moderate.

In this subsection, we also assume activity durations are deterministic and equal to the
mean of their distributions, and select an optimal resource flow of the FCT formulation of
the deterministic problem. An important consideration is that, as it is highlighted in Exam-
ple 1, there are many alternative optimal solutions for the FCT formulation and we must
decide which one to select. Note that by utilizing different approaches for selecting an opti-
mal solution among the large number of alternatives, different variants of our deterministic
heuristics can be created.
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Example 1. Consider a project with 2N activities with the deterministic duration of one,
and no precedence constraint. All resources are similar, N resources are available at the
project and each activity requires one resource to be processed.

The optimal objective function value for this problem is 2. However, there are (2N)! /N !
optimal flow of resources for this problem. Even for a given optimal activity start times,
there are N ! optimal flow of resources.

SAA-based heuristics involve solving SFCT(S ′), which is NP-hard in the strong sense,
requires extensive computational power and have been rarely considered in the literature. All
deterministic heuristics are also NP-hard in the strong sense, as they required the solution
of the deterministic RCPSP. However, as we discussed in Subsection 2.2.1, a large amount
of technology has been developed to solve the deterministic problem effectively. The goal
of these heuristics is to leverage that technology for the stochastic problem. Note that in
deterministic heuristic, it is not necessary to solve the FCT formulation directly. Instead, we
can use any formulation, and then, given the optimal activity start times, construct an FCT
optimal solution. In Section 2.5, we show that deterministic heuristics in general requires
much less computational power that SAA-based heuristics and can be applied to projects
with more activities.

In recent years, Laborie [50] developed a package specifically for solving RCPSP that
performs well on all benchmark test problems and extends to project with many activities.
In this chapter, for our deterministic heuristics, we leverage this black-box package through
the Constraint Programming solver of IBM ILOG CP Optimizer (version 2.12.182) to solve
the deterministic RCPSP, as it is explained in Laborie [50]. The output of this solver is the
optimal activity start times, and if an instance is not solved optimally within the time limit,
its output is the activity start times in the best solution it found. Let ẑi for i ∈ A represents
the start time of activity i that is provided by this CP Optimizer.

In the following, we propose three variants of our deterministic heuristics, namely: Naive
Deterministic Heuristic (NDH), Effective Arc Cardinality Minimization Heuristic (EACH),
and Penalized Arc Minimization Heuristic (PAH). The difference among these deterministic
heuristics is that they utilize different approaches in selecting an optimal solution among the
large number of alternatives. Figure 2.2 depict a summary of these heuristics.

Figure 2.2: Summary of NDH, EACH and PAH.
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NDH:

NDH randomly selects one of the optimal resource flows. This approach represents the
current practice, as practitioners completely neglect the uncertainty in activity durations in
the initial planning phase of projects (see Jabbari and Kaminsky [37]). Given the optimal
activity start times from the CP optimizer, to construct an optimal solution for the FCT,
we find a resource flow that satisfies set of Equations 2.44-2.47. As all of these equations are
linear, a feasible solution can be found in polynomial time.

fi,j,r = 0 ∀ i, j ∈ A, r ∈ R if ẑi + pi > ẑj (2.44)

∑
j∈A

fi,j,r = di,r ∀ i ∈ A− {n+ 1}, r ∈ R (2.45)

∑
i∈A

fi,j,r = dj,r ∀ j ∈ A− {0}, r ∈ R (2.46)

fi,j,r ≥ 0 ∀ i, j ∈ A, r ∈ R (2.47)

Equation 2.44 ensures that resources cannot move from activity i ∈ A to activity j ∈ A
it process on activity j starts before the completion of activity j. Equations 2.45 and 2.46
ensure that for each type of resources, the quantity of resources that move to each activity
equals the quantity of resources that move from that activity and equals the quantity of
resources that activity requires to be processed.

The limitation of NDH is that it does not distinguish between the alternative optimal
solutions, which is why we refer to it as naive. In Example 2, we highlight this limitation.

Example 2. A project with three activities is presented in Figure 2.3. In this project, the
duration of activities 1 and 2 are uniform distribution between zero and one, and activity 3
has deterministic activity duration of one. Two similar resources are available at the project,
each activity requires one resource to be processed, and activity 1 must precede activity 1.

Figure 2.3: Illustration of the project that is introduced in Example 2.
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The deterministic activity durations, which are defined as the mean of their distribution,
are: p1 = p2 = 0.5 and p3 = 1. NDH, can select both resource flows that are presented in
Figure 2.4, as they are both optimal for the FCT formulation. However, the true expected
makespan of the project given the flow of resources that are presented in Figures 2.4a and
2.4b are 3/2 and 5/3, respectively. The reason is that the flow of resources presented in
Figure 2.4b prevents activity 3 from starting before the completion of activity 2 while it is
not necessary to add such constraint.

(a) (b)

Figure 2.4: Two optimal resource flows for the FCT. Different colors illustrate the flow of
different resources.

EACH:

Example 2 inspired a new heuristic, EACH, which never selects the resource flow pre-
sented in Figure 2.4b in that project. In any resource flow, when the quantity of resources
that move from activity i ∈ A to activity j ∈ A is greater than zero, the processing of activ-
ity j must start after the completion of activity i. In other words, by selecting that resource
flow we are imposing a precedence constraint between activities i and j. In what follows,
we refer to the precedence constraints that are imposed by the resource flow and that add
restrictions to the project as “effective arcs”. Note that some of the imposed precedence
constraints are not effective. For instance, when there is an arc from activity i to activity j,
and there is another arc from activity j to activity k, it is already enforced that activity k
cannot start before the completion of activity i, and hence, imposing a precedence constraint
between activity i and k does not add any restrictions.

In EACH, the goal is to select a resource flow that imposes the minimum number of
effective arcs among the alternative optimal solutions with the given activity start times. To
find such resource flow, EACH solves the MILP formulation (2.48-2.57). In this model, the
notation is the same as in the FCT formulation presented in Subsection 2.3.1. Note that
although EACH does not consider alternative optimal solutions with different start times,
and the search is limited to the alternative optimal solutions with the same activity start
times that is given by the CP optimizer, as we show in Lemma 10, this MILP formulation
is NP-complete in the strong sense. However, as we discuss in Section 2.5, Gurobi (version



CHAPTER 2. PROACTIVE POLICIES FOR MEGA-PROJECT PLANNING 33

9.0.0) with default settings efficiently optimizes this MILP formulation for projects with our
desired sizes (30 and 60 activities.)

Minimize
∑
i∈A

∑
j∈A

xi,j (2.48)

xi,j = 1 ∀ (i, j) ∈ E (2.49)

fi,j,r −Nxi,j ≤ 0 ∀ i, j ∈ A, r ∈ R (2.50)

xi,j = 0 ∀ i, j ∈ A if ẑi + pi > ẑj (2.51)

∑
j∈A

fi,j,r ≥ di,r ∀ i ∈ A− {n+ 1}, r ∈ R (2.52)

∑
i∈A

fi,j,r ≥ dj,r ∀ j ∈ A− {0}, r ∈ R (2.53)

∑
j∈A

fk,j,r =
∑
i∈A

fikr ∀ k ∈ A− {0, n+ 1}, r ∈ R (2.54)

∑
j∈A

f0,j,r =
∑
i∈A

fi,n+1,r = Dr ∀ r ∈ R (2.55)

fi,j,r ≥ 0 ∀ i, j ∈ A, r ∈ R (2.56)

xi,j ∈ {0, 1} ∀ i, j ∈ A (2.57)

The objective function (Equation 2.48) minimizes the total number of effective arcs.
Constraints 2.49 and 2.50 ensure that binary variable xi,j for i, j ∈ A equals one if the
completion of activity i must precede to start the process of activity j, or if any resource
moves from activity i to activity j. Constraint 2.51 enforces binary variable xi,j for i, j ∈ A
equals zero if the completion of activity i is after the process starts on activity j. Constraints
2.52-2.54 ensure that for each type of resources, the quantity of resources that move to each
activity at least equals the quantity of resources that activity requires to be processed, and
equals the quantity of resources that move from that activity. Finally, Constraint 2.55 defines
the total quantity of resources of each type that are available at the project.

Lemma 10. Given fixed activity start times of a project, finding the resource flow that
imposes the minimum number of effective arcs is NP-complete in the strong sense.
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Proof. Consider any instance of a 3-partition problem with a set L = {l1, l2, ..., l3m} that
contains 3m positive integer numbers that are strictly between B/2 and B/4 (where B is a
constant), and:

3m∑
j=1

lj = m×B

The goal is to find whether it is possible to partition set L into m disjoint sub-sets in a
way that the summation of numbers in each sub-set be equal to B. We reduce this problem
to finding the flow of resources that imposes the minimum number of effective arcs in a
project.

To do so, consider the project that is depicted in Figure 2.5. In this project, the start
times of activities in Group 1 are zero and their completion times are one, and the start
times of activities in Group 2 are one and their completion times are two. Only one resource
type exists at the project, and m×B units of that resource is available. Activities 1, 2, ..., 3m
require l1, l2, ..., l3m resources, respectively, and each of the activities 1′, 2′, ...,m′ requires B
resources. Note that arcs in this figure represent the precedence constraints.

Figure 2.5: Reducing a 3-partition problem to finding the resource flow that imposes the
minimum number of effective arcs, where activity start times are fixed.

As each activity in Group 2 requires B resources, and the number of available resources
at each activity in Group 1 is strictly between B/4 and B/2, resources from at least three
activities in Group 1 needs to move to each activity in Group 2. So, any feasible solution
imposes at least 3m arcs between two groups. If the set L can be partitioned into triples
that all have the same sum (equal to B), then, there exists a resource flow that only imposes
exactly 3m arcs between two groups as all resources in each activity in Group one only move
to one activity in Group 2.
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If no such partition exists, then it is impossible to find a feasible flow that imposes only
3m arcs between two groups, as at least the resources from one of the activities in Group 1
needs to move to more than one activity in Group 2, which makes the number of imposed
arcs between two groups at least 3m+ 1.

As any 3-partition problem with the positive integer numbers that are strictly between
B/4 and B/2 can be solved by finding the flow of resources that imposes the minimum
number of effective arcs in the project that is depicted in Figure 2.5, finding such resource
flow is at least as hard as 3-partition problem, or in other words, it is NP-complete in the
strong sense.

The limitation of EACH is that it does not consider the tightness of different imposed
constraint. In Example 3, we highlight how imposing different constraints impacts the project
differently.

Example 3. Consider the project that is depicted in Figure 2.6a. In this figure, arcs repre-
sent the precedence constraints. There are only two similar units of resources, and activities
2, 4, 5 and 6 require one unit of resources to be processed. In this project, P1 = 2, P2 = 2,
P3 = 3, P4 = 1, P5 = unif(0, 2), and P6 = unif(1, 3). When activity durations are assumed
to be equal to their mean, as it shown in Figure 2.6b, the optimal makespan is 4 and an
optimal activity start times are: ẑ1 = 0, ẑ2 = 2, ẑ3 = 0, ẑ4 = 3, ẑ5 = 0, and ẑ6 = 0.

(a) (b)

Figure 2.6: (a) Illustration of the project that is introduced in Example 3, and (b) the
optimal solution of the deterministic version, where activity durations are assumed to be
equal to their mean.

Two optimal resource flows for the FCT are presented in Figure 2.7. As they are both
optimal for the FCT, NDH can select both, and as they both impose two effective arcs, EACH
can also select both. However, the true expected makespan of the project given the resource
flows that are presented in Figures 2.6a and 2.6b are 4.00 and 4.25, respectively. This happens
because the completion time of activity 6 (when activity durations are assumed to be equal
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to their mean) is so close to the start time of activity 2. This suggests that the imposed
precedence constraint between activity 6 and activity 2 is very likely to delay to the project.

(a) (b)

Figure 2.7: Two optimal resource flows for the FCT. Different colors illustrate the flow of
different resources.

PAH:

Example 3 inspired us to propose a heuristic, PAH, that accounts for the different tight-
ness of imposed constraints, never selects the resource flow presented in Figure 2.4b for the
project that is introduced in Example 2, and never selects the resource flow presented in
2.7b for the project that is introduced in Example 3.

To account for the tightness of different imposed constraints, for every i, j ∈ A, we first
define a penalty function(Equation 2.58) for imposing a precedence constraint from activity
i to activity j.

Penalty(i, j) =
σi

ẑj − ẑi − pi + 0.5
, (2.58)

where σi for i ∈ A is the standard deviation of duration of activity i. Note that the constant
0.5 can be changed to any strictly positive number and is thus a hyper-parameter for this
heuristic approach.

This penalty function is designed to assign a higher penalty when the completion time
of activity i is close to the start time of activity j. It also assigns a higher penalty if the
duration of activity i has higher uncertainty. PAH selects a resource flow with the minimum
total penalty among the alternative optimal solutions with the given activity start times
by solving the MILP formulation (2.59-2.66). although PAH does not consider alternative
optimal solutions with different start times, and the search is limited to the alternative
optimal solutions with the same activity start times that is given by the CP optimizer, as
we show in Lemma 11, this MILP formulation is NP-complete in the strong sense. However,
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as we discuss in Section 2.5, Gurobi (version 9.0.0) with default settings efficiently optimizes
this MILP formulation for projects with our desired sizes (30 and 60 activities).

Minimize
∑
i∈A

∑
j∈A

σi × xi,j
ẑj − ẑi − pi + 0.5

(2.59)

xi,j = 1 ∀ (i, j) ∈ E (2.60)

fi,j,r −min(di,r, dj,r)xi,j ≤ 0 ∀ i, j ∈ A, r ∈ R (2.61)

xi,j = 0 ∀ i, j ∈ A if ẑi + pi > ẑj (2.62)

∑
j∈A

fi,j,r = di,r ∀ i ∈ A− {n+ 1}, r ∈ R (2.63)

∑
i∈A

fi,j,r = dj,r ∀ j ∈ A− {0}, r ∈ R (2.64)

fi,j,r ≥ 0 ∀ i, j ∈ A, r ∈ R (2.65)

xi,j ∈ {0, 1} ∀ i, j ∈ A (2.66)

The objective function (Equation 2.59) minimizes the total penalty. Constraints 2.60 and
2.61 enforce binary variable xi,j for i, j ∈ A equals one if the completion of activity i must
precede to start the process of activity j, or if any resource moves from activity i to activity
j. Constraint 2.62 enforces binary variable xi,j for i, j ∈ A equals zero if the completion
of activity i is after the process starts on activity j. Constraints 2.63 and 2.64 ensure that
for each type of resources, the quantity of resources that move to each activity equals the
quantity of resources that move from that activity and equals the quantity of resources that
activity requires to be processed.

Lemma 11. Given fixed activity start times of a project, finding the flow of resources with
the minimum total penalty is NP-complete in the strong sense, where the penalty is defined
as in Equation 2.58.

Proof. We reduce any 3-partition problem in which the integer values are strictly between
B/4 and B/2 to finding the resource flow with the minimum total penalty. To do so, consider
the project that is presented in Figure 2.5 and assign the same standard deviation to the
duration of all activities. Then, the penalty of any imposed precedence constraint between
an activity in Group 1 to an activity in Group 2 is equal. The rest of the proof is similar to
the proof of Lemma 10.
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Similar to SAA, to measure the quality of solutions, given a feasible solution ~f ′, we
calculate F̂ (~ps, ~f ′) for each scenario s ∈ S. Then we define ZSSFCT (~f ′), as in Equation 2.42,
as their average, which denote the objective function value of this solution in the SFCT(S),
and by Lemma 3, in the SFCT when |S| is large. Using this objective function value and
the lower bound provided in Subsection 2.4.1, we can analyze the optimality gap.

2.4.3 Heuristics for iSRCPSP

In Subsection 2.4.2, we present SAA and proposed SAAD+. We also introduced three
variations of deterministic heuristics, namely: NDH, EACH and PAH. All of these heuristics
find feasible solutions for the SFCT. In this subsection, we extend these heuristics to find
feasible solutions for the iSFCT. In the first part, we focus on the deterministic heuristics
and in the second part, we focus on SAA-based heuristics.

Deterministic Heuristics

A feasible solution for iSFCT consist of a resource flow (~f ′) and the delivery times of materials
(~o′). We find the feasible solutions for iSFCT by extending the deterministic approaches into
two stage heuristics. In our two stage heuristics, some of the decisions (the flow of resources)
are determined in the first stage, and given the flow of resources, the rest of the decisions
(the material delivery times) are determined in the second stage.

We refer to the extended NDH, EACH and PAH, respectively, iNDH, iEACH and iPAH.
Their first stages are identical to their original version, in which first a deterministic RCPSP
is solved, and given the optimal activity start times, an optimal resource flow, ~f ′, is selected.
In the second stage, given the selected resource flow ~f ′, the delivery times of material must
be determined. We model the determination of the delivery times of materials as follows,
and we refer to it as the ZāL(S):

ZāL(S) : min
~o

∑
s∈S

Ĝ(~ps, ~f ′, ~o)/|S| (2.67)

where the notation is identical to that of Subsection 2.3.3. The linear programming (LP)
formulation of the ZāL(S) is as follows:(

ZāL(S)
)

Minimize
∑
s∈S

zsn+1/|S|+γ
∑
i∈A

ωi ×
∑
s∈S

(zsi − oi)/|S| (2.68)

zsj − zsi ≥ psi ∀ i, j ∈ A, s ∈ S if (i, j) ∈ E or
∑
r∈R

f ′i,j,r > 0 (2.69)

zsi ≥ oi ∀ i ∈ A, s ∈ S (2.70)



CHAPTER 2. PROACTIVE POLICIES FOR MEGA-PROJECT PLANNING 39

oi ≥ 0 ∀ i ∈ A (2.71)

The objective function (Equation 2.68) minimizes the expected cost of the project. Con-
straint 2.69 ensures that in all scenarios, activity j ∈ A starts after the completion of activity
i ∈ A if the completion of activity i must precede to the start of processing of activity j,
or if any resource moves from activity i to activity j. Finally, Constraint 2.70 ensures that
processing of an activity does not start before the delivery of its required materials.

We represent the optimal objective function value of ZāL(S) by ZSiSFCT (~f ′, ~o′), which
also denotes the objective function value of this solution in the iSFCT(S), and by Lemma
5, in the iSFCT when |S| is large. Using this objective function value and the lower bound
provided in Subsection 2.4.1, we can analyse the optimality gap. The extended deterministic
heuristics are summarized in Figure 2.8.

Figure 2.8: Summary of iNDH, iEACH and iPAH.

Sample Average Approximation-based Heuristics

Similar to the extended deterministic heuristics, we extend SAA by transforming it into a
two stage heuristic. We refer to the extended version Sample Average Approximation-based
Decomposition Heuristic (iSAAD). Similar to SAA, define S ′ as a set of scenarios with small

cardinality (|S ′|� |S|). In the first stage of iSAAD, we solve iSFCT(S ′), and define ~fs′
as its optimal solution. The second stage of iSAAD is identical to the second stage of the
extended deterministic heuristic, which is given the resource flow ~fs′ , finding the optimal
delivery times of materials in ZāL(S). The summary of iSAAD is depicted in Figure 2.9.



CHAPTER 2. PROACTIVE POLICIES FOR MEGA-PROJECT PLANNING 40

Figure 2.9: Summary of iSAAD.

Note that iSAAD distinguishes activities with different rate of inventory holding cost
while determining the resource flow, as it solves iSFCT(S ′) in the first stage and concurrently
determines the optimal resource flow and delivery times over S ′. The second stage of iSAAD,
given the flow of resources, refines the delivery times by determining the optimal delivery
times over S.

Finally, we extend SAAD+ to iSAAD+ by replicating iSAAD rather than SAA for k
times. The summary of iSAAD+ is presented in Figure 2.10.

Figure 2.10: Summary of iSAAD+.
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2.5 Computational Experiments

We use the benchmark library PSPLIB instances with 30 and 60 activities (32 and 62 ac-
tivities when dummy activities are included) to analyze our proposed solution approaches.
In PSPLIB, there are 48 categories of instances for the RCPSP and 10 instances of each
category for projects with 30 and 60 activities, which results in 960 instances in total (480
instances with 30 activities and 480 instances with 60 activities). These categories are differ-
entiated based on three characteristics of the problem – network complexity (NC), resource
factor (RFr) and resource strength (RSr).

NC describes the complexity of networks and it is defined as the average number of non-
redundant arcs (precedence constraints) per node (activity, including dummy activities). RFr
provides information on the average variety of required resources per activity, and finally,
RSR represents the average number of units of resources per activity. The 48 categories of
instances in benchmark library PSPLIB are constructed by taking any combinations of NC,
RFr and RSr that are presented in the Table 2.1.

Table 2.1: Parameters that generate 48 different categories of instances in PSPLIB.

parameters levels

NC 1.50 1.80 2.10

RFr 0.25 0.50 0.75 1.00

RSr 0.20 0.50 0.70 1.00

In PSPLIB, activity durations are deterministic. After our discussions with consultants
and project and supply chain managers (see Jabbari and Kaminsky [37]), we defined the
stochastic activity durations as having Weibull distributions with coefficient of variation of
0.22. The mean of the distributions are assumed to be equal to the deterministic activity
durations provided by PSPLIB.

As PSPLIB instances are designed for the RCPSP, they do not offer any data regarding
the inventory holding cost. Therefore, we extent them by randomly generating the per unit
time inventory holding cost (wj for j ∈ A) with a distribution that is zero with a probability
of 0.5, as the per unit time inventory holding cost of materials of some activities are negligible,
and uniformly distributed between zero and one with a probability of 0.5.

In this section, the cardinality of set S in SFCT(S) and iSFCT(S) presented in Subsec-
tions 2.3.2 and 2.3.3, respectively, is set to 2000. We assumed 2000 is sufficiently large to
make the error negligible. To generate the scenarios, for each activity, we sampled a set of
2000 observations from the Weibull distribution, adjust the mean to equal the deterministic
duration of that activity, and setting the coefficient of variation equal to 0.22. The cardinal-
ity of subset S ′ in SFCT(S ′) and iSFCT(S ′) is set to be 20. Also, the number of replications
in SAAD+ and iSAAD+, k′, is set to be 30.

http://www.om-db.wi.tum.de/psplib/library.html
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As we discussed in Section 2.4, due to the complexity and the size of the SFCT(S)
when |S| is large (2000 in this section), we are unable to solve it directly. Therefore, we
proposed various deterministic and SAA-based heuristics that provides feasible solutions for
SFCT(S) and iSFCT(S). Let UB represent the objective function value of a feasible solution
in SFCT or in iSFCT. In Subsection 2.4.1, we showed that the optimal objective function
value of the RCPSP in which activity durations are assumed to be equal to their means is a
lower bound for the SRCPSP. Let LB represents this lower bound. Then, for each instance,
we can calculate the optimality gap which is the maximum possible percentage distance
that the upper bound has from the optimal solution. The optimality gap is calculated as:
(UB − LB)/LB.

To to find the LB (the optimal objective function value of RCPSP), we use IBM ILOG
CP Optimizer (version 2.12.182) to solve the CP formulation of RCPSP as is explained in
Laborie [50]. It optimally solved 480 (out of 480) instances with 30 activities within the
time limit of 180 seconds, and 450 (out of 480) instances with 60 activities within the time
limit of 600 seconds. For each of those 30 instances with 60 activities that are not solved
optimally within the time limit, we set the LB to be the best lower bound that has been
reported in the literature (available here).

All computations in this section are performed using a 2.6 GHz 6-Core Intel Core i7, and
all algorithms are implemented in Python 3.7.4.

In Subsection 2.5.1, we analyze the performances of proposed heuristics on the SFCT, and
in Subsection 2.5.2, we analyze the performances of the extended heuristics on the iSFCT.

2.5.1 Computational Analysis of SFCT

This subsection is divided into two sections. In the first part, we consider all 960 instances,
and compare the performance of the deterministic heuristic on them. However, as SAA-
based heuristics are not able to find feasible solution for all 960 instances, we do not consider
them here.

We select a set of 282 instances with 30 activities for which Gurobi (version 9.0.0) with
default settings can solve SFCT(S ′), where |S ′|= 20, to optimality within the time limit
of 1800 seconds. Figure 2.11 represents characteristics (NC, RFr and RSr) of these 282
instances. This figure shows that instances with larger NC, larger RSr and smaller RFr are
easier to solve with SAA-based heuristics, and thus, we conclude that SAA and SAAD+ are
more suitable for the instances with these characteristics. In the second part, we compare
the performance of all heuristics on these 282 instances.

http://www.om-db.wi.tum.de/psplib/library.html
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Figure 2.11: Characteristics of the selected 282 instances.

Deterministic Heuristics: NDH, EACH and PAH

Table 2.2 provides the average, median, minimum and maximum optimality gap and the
total solution times when different deterministic heuristics are used to find feasible solutions
for SFCT. This table also provides the number of instances out of 480 for which each heuristic
provides the best solution among all three heuristics. Note that for some instances, both
EACH and PAH provide identical solutions, and this is why the summation of the numbers
in the last row of the table for projects with 30 and 60 activities is more than 480.

Table 2.2: Optimality gap and total solution time of deterministic heuristics.

30 Activities 60 Activities
Approach NDH EACH PAH NDH EACH PAH

Average 0.0915 0.0558 0.0492 0.1418 0.0817 0.0706
Optimality Median 0.0910 0.0532 0.0473 0.1425 0.0808 0.0676

gap Minimum 0.0121 0.0000 0.0012 0.0796 0.0104 0.0025
Maximum 0.1633 0.1236 0.1193 0.2202 0.1506 0.1462
Average 2.02 2.19 2.26 70.28 90.56 147.66

Total solution Median 0.05 0.24 0.30 0.09 11.47 11.94
time (sec) Minimum 0.03 0.06 0.04 0.06 0.63 0.08

Maximum 177.40 177.51 177.55 600.09 607.06 6387.81
Best solution (out of 480)∗ 0 81 415 0 27 453
∗ For some instances more than one approach finds the best solution.

Tables 2.3 and 2.4, respectively, provide extensive details on the average solution time for
instances of each of the 48 categories of projects with 30 and 60 activities. The solution times
in these tables are split into two parts. In each deterministic heuristic, first, a constraint
programming model is solved. The solution time for the CP model is presented in column
‘Avg CP time’. Then, a flow of resource is selected among alternative optimal solution. The
solution time for selecting a resource flow is presented in column ‘Avg FL time’. Finally, the
optimality gap of each of the heuristics is presented in column ‘Avg OptGap’.
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Table 2.3: Average optimality gap and average solution time of deterministic heuristics for
each category of instances with 30 activities.

NDH EACH PAH

# 1 NC RFr RSr
Avg Avg Avg Avg Avg Avg Avg

CP time 2 FL time 3 OptGap 4 FL time OptGap FL time OptGap

all 5 - - - 2.01 0.01 0.0915 0.18 0.0558 0.25 0.0492
1

1.5

0.25

0.2 0.14 0.01 0.0970 0.08 0.0553 0.01 0.0498
2 0.5 0.04 0.01 0.1078 0.09 0.0482 0.02 0.0400
3 0.7 0.03 0.01 0.0773 0.08 0.0295 0.01 0.0237
4 1.0 0.03 0.01 0.0859 0.09 0.0410 0.01 0.0258
5

0.5

0.2 0.99 0.01 0.0832 0.13 0.0632 0.06 0.0587
6 0.5 0.26 0.01 0.1125 0.20 0.0779 0.10 0.0710
7 0.7 0.05 0.01 0.1076 0.21 0.0634 0.13 0.0574
8 1.0 0.04 0.01 0.0948 0.19 0.0450 0.11 0.0288
9

0.75

0.2 5.56 0.01 0.0677 0.17 0.0590 0.26 0.0520
10 0.5 0.32 0.01 0.1289 0.30 0.0995 0.30 0.0931
11 0.7 0.05 0.01 0.1048 0.29 0.0787 0.45 0.0677
12 1.0 0.04 0.01 0.1048 0.36 0.0484 0.50 0.0371
13

1.0

0.2 21.58 0.01 0.0835 0.18 0.0699 0.31 0.0688
14 0.5 0.79 0.01 0.1173 0.32 0.0891 0.51 0.0863
15 0.7 0.19 0.01 0.0994 0.38 0.0566 0.98 0.0503
16 1.0 0.04 0.01 0.1027 0.27 0.0386 0.78 0.0275
17

1.8

0.25

0.2 0.14 0.01 0.0873 0.08 0.0485 0.01 0.0432
18 0.5 0.03 0.01 0.0919 0.08 0.0385 0.01 0.0319
19 0.7 0.03 0.01 0.1030 0.10 0.0508 0.02 0.0448
20 1.0 0.03 0.01 0.1037 0.06 0.0462 0.02 0.0344
21

0.5

0.2 0.89 0.01 0.0725 0.10 0.0550 0.06 0.0507
22 0.5 0.20 0.01 0.1041 0.22 0.0718 0.12 0.0675
23 0.7 0.04 0.01 0.0779 0.19 0.0462 0.12 0.0395
24 1.0 0.04 0.01 0.0995 0.16 0.0537 0.11 0.0357
25

0.75

0.2 2.67 0.01 0.0720 0.14 0.0620 0.19 0.0577
26 0.5 0.05 0.01 0.1017 0.22 0.0709 0.33 0.0632
27 0.7 0.04 0.01 0.0977 0.27 0.0577 0.64 0.0486
28 1.0 0.04 0.01 0.0858 0.32 0.0360 0.38 0.0314
29

1.0

0.2 25.66 0.01 0.0711 0.15 0.0601 0.27 0.0594
30 0.5 0.75 0.01 0.1214 0.20 0.0950 0.39 0.0911
31 0.7 0.17 0.01 0.0995 0.38 0.0622 1.02 0.0556
32 1.0 0.04 0.01 0.0969 0.27 0.0413 0.72 0.0373
33

2.1

0.25

0.2 0.06 0.01 0.0841 0.06 0.0448 0.01 0.0424
34 0.5 0.03 0.01 0.0883 0.06 0.0452 0.01 0.0341
35 0.7 0.03 0.01 0.0789 0.07 0.0348 0.01 0.0305
36 1.0 0.03 0.01 0.0730 0.06 0.0319 0.01 0.0254
37

0.5

0.2 0.85 0.01 0.0662 0.11 0.0488 0.06 0.0447
38 0.5 0.04 0.01 0.0897 0.12 0.0591 0.10 0.0532
39 0.7 0.04 0.01 0.0898 0.16 0.0509 0.14 0.0398
40 1.0 0.04 0.01 0.0920 0.11 0.0473 0.10 0.0354
41

0.75

0.2 2.71 0.01 0.0475 0.12 0.0367 0.13 0.0364
42 0.5 0.11 0.01 0.0874 0.25 0.0644 0.22 0.0591
43 0.7 0.04 0.01 0.0910 0.17 0.0672 0.24 0.0631
44 1.0 0.04 0.01 0.0966 0.14 0.0452 0.35 0.0410
45

1.0

0.2 30.89 0.01 0.0422 0.13 0.0367 0.22 0.0352
46 0.5 0.64 0.01 0.1073 0.17 0.0895 0.28 0.0874
47 0.7 0.10 0.01 0.1127 0.24 0.0727 0.38 0.0718
48 1.0 0.04 0.01 0.0829 0.17 0.0422 0.58 0.0323

1 the category number 4 the optimality gap
2 the resource flow selection solution time 5 the average over all instances
3 the solution time of CP model
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Table 2.4: Average optimality gap and average solution time of deterministic heuristics for
each category of instances with 60 activities.

NDH EACH PAH

# 1 NC RFr RSr
Avg Avg Avg Avg Avg Avg Avg

CP time 2 FL time 3 OptGap 4 FL time OptGap FL time OptGap

all 5 - - - 70.24 0.04 0.1418 20.32 0.0817 77.42 0.0706
1

1.5

0.25

0.2 0.46 0.03 0.1420 1.38 0.0745 0.08 0.0653
2 0.5 0.04 0.03 0.1533 11.00 0.0643 0.12 0.0461
3 0.7 0.14 0.03 0.1400 6.92 0.0642 0.12 0.0444
4 1.0 0.04 0.03 0.1336 7.56 0.0448 0.11 0.0231
5

0.5

0.2 29.73 0.04 0.1503 1.87 0.1172 0.45 0.1095
6 0.5 0.19 0.04 0.1637 19.21 0.1119 2.30 0.0972
7 0.7 0.04 0.03 0.1473 23.49 0.0706 13.60 0.0608
8 1.0 0.04 0.03 0.1474 22.90 0.0587 10.60 0.0464
9

0.75

0.2 513.89 0.05 0.1460 2.00 0.1222 1.95 0.1190
10 0.5 0.05 0.04 0.1613 64.66 0.1039 37.01 0.0955
11 0.7 0.04 0.04 0.1561 91.53 0.0868 158.26 0.0748
12 1.0 0.04 0.04 0.1447 91.89 0.0483 453.68 0.036
13

1.0

0.2 600.02 0.06 0.1498 3.05 0.1237 5.87 0.1204
14 0.5 69.37 0.05 0.1703 21.23 0.1272 133.45 0.1195
15 0.7 0.05 0.05 0.1458 46.02 0.0645 373.22 0.0534
16 1.0 0.05 0.04 0.1516 44.44 0.0648 470.74 0.0498
17

1.8

0.25

0.2 0.23 0.03 0.1427 1.13 0.0818 0.07 0.0719
18 0.5 0.04 0.03 0.1369 3.74 0.0624 0.14 0.0463
19 0.7 0.03 0.03 0.1382 8.56 0.0640 0.11 0.0397
20 1.0 0.03 0.03 0.1309 2.52 0.0476 0.14 0.0316
21

0.5

0.2 5.96 0.04 0.1276 1.43 0.0990 0.49 0.0908
22 0.5 0.15 0.03 0.1543 8.15 0.1055 4.47 0.0920
23 0.7 0.04 0.03 0.1475 29.07 0.0760 10.65 0.0576
24 1.0 0.04 0.03 0.1391 16.10 0.0631 5.41 0.0473
25

0.75

0.2 511.48 0.05 0.1279 1.88 0.1074 1.07 0.1028
26 0.5 1.16 0.04 0.1573 11.40 0.1095 27.51 0.1012
27 0.7 0.04 0.04 0.1493 96.51 0.0789 220.21 0.0698
28 1.0 0.04 0.04 0.1314 44.82 0.0512 238.14 0.0400
29

1.0

0.2 600.02 0.06 0.1301 2.20 0.1101 3.47 0.1059
30 0.5 102.31 0.05 0.1587 31.53 0.1127 60.99 0.1063
31 0.7 0.05 0.05 0.1558 38.44 0.0848 203.38 0.0712
32 1.0 0.05 0.05 0.1287 63.13 0.0420 863.34 0.0340
33

2.1

0.25

0.2 0.47 0.03 0.1196 1.25 0.0589 0.07 0.0480
34 0.5 0.05 0.03 0.1377 2.14 0.0714 0.08 0.0567
35 0.7 0.04 0.03 0.1347 5.23 0.0618 0.13 0.0476
36 1.0 0.03 0.03 0.1373 2.32 0.0570 0.12 0.0365
37

0.5

0.2 8.54 0.04 0.1165 1.13 0.0920 0.47 0.0866
38 0.5 0.39 0.03 0.1540 7.55 0.1082 2.68 0.0987
39 0.7 0.04 0.03 0.1361 11.74 0.0788 5.54 0.0663
40 1.0 0.04 0.03 0.1294 7.38 0.0509 7.41 0.0341
41

0.75

0.2 224.37 0.05 0.1124 1.73 0.0947 1.35 0.0918
42 0.5 1.45 0.04 0.1477 9.35 0.1105 20.33 0.1021
43 0.7 0.05 0.04 0.1325 20.74 0.0753 61.22 0.0670
44 1.0 0.04 0.04 0.1291 13.03 0.0530 73.06 0.0400
45

1.0

0.2 600.02 0.06 0.1196 1.83 0.1023 2.75 0.1002
46 0.5 100.08 0.05 0.1602 9.67 0.1235 16.31 0.1190
47 0.7 0.05 0.05 0.1534 32.06 0.0944 111.96 0.0864
48 1.0 0.05 0.04 0.1282 28.38 0.0457 111.58 0.0379

1 the category number 4 the optimality gap
2 the resource flow selection solution time 5 the average over all instances
3 the solution time of CP model
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For each instance, define the “best optimality gap” as the optimality gap of the best
solution among the solutions provided by our deterministic heuristics (NDH, EACH and
PAH) for that instance. Figure 2.12 represents the average best optimality gap among 10
instances of each category of instances. This figure suggests that the optimality gap is very
sensitive to the instances’ characteristic.

Figure 2.12: Impact of NC, RFr and RSr on the best optimality gap for SFCT for
instances with (a): 30 activities and (b): 60 activities.

Figure 2.13 illustrates the sensitivity analyses over the characteristics of the instances
(NC, RFr and RSr) on the best optimality gap. This figure suggests that the optimality
gap is not very sensitive to the changes in the NC. It also suggests the optimality gap
increases as RFr increases and as RSr decreases. This figure also suggests that the impact
of RFr and RSr escalates as the number of activities in the project increases.
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Figure 2.13: Sensitivity analysis of the best optimality gap over NC, RFr and RSr for
instances with 30 and 60 activities.

Table 2.2 shows that for most instances, PAH finds the best solutions, and for some
instances, EACH finds the best solution. When the choices of heuristics is limited to the
deterministic ones, as Tables 2.2-2.4 show, it is best for practitioners to use both EACH and
PAH and select the best solution. However, if the computation power is limited, then PAH is
the best choice as on average, it provides better solutions. Note that one might prefer EACH
over PAH as the maximum solution time of EACH is significantly less than the maximum
solution time of PAH, while their average optimality gaps are comparable.

All Heuristics: NDH, EACH, PAH, SAA and SAAD+

We define the probabilistic optimality gap as (UB−LB(β))/LB(β). In Table 2.5, β is set to
be 97.5%, which means that the probabilistic lower bound is in fact an actual lower bound
with the probability of at least 97.5%. This table provides the average, median, minimum
and maximum optimality gap and total solution times, and the median and maximum prob-
abilistic optimality gap of 282 instances with 30 activities when different heuristics are used
to find feasible solutions for the SFCT. This table also demonstrates the number of instances
(out of 282) that each approach finds the best solution.
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Table 2.5: Optimality gap and total solution time of all proposed heuristics.

Approach NDH EACH PAH SAA SAAD+

Average 0.0921 0.0457 0.0376 0.0297 0.0269

Optimality Gap
Median 0.0911 0.0433 0.0341 0.0261 0.0236

Minimum 0.0456 0.0000 0.0012 0.0003 0.0000

Maximum 0.1594 0.1039 0.0989 0.0924 0.0893

Probabilistic Median 0.0712 0.0247 0.0158 0.0100 0.0080

Optimality Gap 1 Maximum 0.1324 0.0743 0.0597 0.0347 0.0194

Average 0.05 0.21 0.27 29.55 1901.70

Total Solution Median 0.05 0.16 0.14 2.61 418.53

Time (sec) Minimum 0.03 0.06 0.04 0.08 38.30

Maximum 0.99 1.13 2.39 1049.07 15567.77

Best Solution (out of 282) 2 0 3 23 22 263
1 β = 0.975
2 For some instances more than one approach finds the best solution.

Table 2.6 provides extensive details on the average solution time of all proposed heuristics
on each category of the selected 282 instances. The solution times in this table are split into
two parts.

Figure 2.14, for each instance, depicts the lower bound (pink line), NDH solution which
represents the current practice (purple line), the objective function value of SFCT(S ′r) for
r ∈ {1, 2, ..., 30} (grey lines), SAAD+ solution (green line), and the probabilistic lower bound
that is an actual lower bound with the probability of 97.5% (orange line). In this figure, the
light blue area represents the histogram of the the objective function value of SFCT(S ′r)
for r ∈ {1, 2, ..., 30}, and the red t-distribution PDF shows the estimated distribution of
the ES′ [Z

S′
SFCT ], and the yellow area represents the 95% confidence interval of the estimated

distribution. This figure illustrates instances (1−2), (17−4) and (47−8). The same figures
for all 282 instances (in PNG format) are available here.

https://github.com/arm4nn/Figures/tree/master/Probabilistic%20Lower%20Bound
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Table 2.6: Average solution time of all proposed heuristics for each category of instances.

Average Solution Time

#∗ NC RFr RSr NDH EACH PAH SAA SAAD+

1

1.5

0.25

0.20 0.09 0.17 0.10 31.79 2291.32

2 0.50 0.04 0.12 0.05 2.71 348.36

3 0.70 0.04 0.11 0.05 1.18 174.53

4 1.00 0.04 0.12 0.05 0.39 97.89

6

0.5

0.50 0.47 0.59 0.57 305.93 10824.87

7 0.70 0.06 0.26 0.18 108.74 6651.02

8 1.00 0.04 0.22 0.14 2.22 400.55

10

0.75

0.50 0.05 0.58 0.40 158.28 6575.84

11 0.70 0.05 0.23 0.66 9.27 1448.46

12 1.00 0.05 0.40 0.54 7.73 1168.65

15
1.0

0.70 0.06 0.54 1.16 80.97 6360.34

16 1.00 0.05 0.31 0.82 5.03 789.67

17

1.8

0.25

0.20 0.14 0.21 0.15 11.00 894.20

18 0.50 0.04 0.12 0.05 1.45 204.53

19 0.70 0.04 0.13 0.05 0.80 142.49

20 1.00 0.04 0.09 0.05 0.20 64.83

22

0.5

0.50 0.05 0.29 0.12 73.77 5030.81

23 0.70 0.04 0.23 0.16 182.79 4760.39

24 1.00 0.04 0.20 0.14 12.11 1332.87

26

0.75

0.50 0.05 0.19 0.30 27.90 4041.65

27 0.70 0.05 0.30 0.74 60.36 4462.54

28 1.00 0.05 0.38 0.44 5.56 1102.73

31
1.0

0.70 0.06 0.44 0.84 24.99 3161.39

32 1.00 0.06 0.31 0.76 10.61 1846.55

33

2.1

0.25

0.20 0.06 0.12 0.07 3.33 551.32

34 0.50 0.04 0.10 0.04 0.74 161.94

35 0.70 0.04 0.10 0.05 0.62 113.34

36 1.00 0.04 0.09 0.04 0.15 52.22

38

0.5

0.50 0.05 0.17 0.15 71.74 5133.26

39 0.70 0.05 0.20 0.19 11.33 1652.43

40 1.00 0.05 0.15 0.15 2.06 362.76

42

0.75

0.50 0.05 0.27 0.20 160.21 11730.20

43 0.70 0.05 0.18 0.21 212.47 9456.76

44 1.00 0.05 0.18 0.39 3.43 615.68

47
1.0

0.70 0.06 0.25 0.41 133.64 9694.60

48 1.00 0.06 0.21 0.62 4.05 636.50
∗ the category number
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Figure 2.14: Illustration of the lower bound, the probabilistic lower bound, SAA solutions,
SAAD+ solution, and NDH solution (indicator of current practice in real world).

We cannot be sure if the probabilistic lower bounds in Figure 2.14 are in fact actual
lower bounds (there is at most 2.5% chance that each one is not an actual lower bound).
Nevertheless, the probabilistic lower bounds reveal that the majority of the optimality gaps
that we report are due to the loose lower bounds and the actual optimality gaps are most
likely much smaller than what we reported in Table 2.5.
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Table 2.7 provides extensive details on the average optimality gap and the median of
probabilistic optimality gap, where the probability that the probabilistic lower bound is in
fact an actual lower bound is set to be 97.5% (β = 97.5%), for all proposed heuristics on
each category of the selected 282 instances.

Table 2.7: Average optimality gap and median probabilistic optimality gap of
deterministic heuristics for each category of instances.

Average Optimality Gap Median Probabilistic Optimality Gap 1

# 2 NC RFr RSr NDH EACH PAH SAA SAAD+ NDH EACH PAH SAA SAAD+

1

1.5

0.25

0.2 0.0950 0.0500 0.0450 0.0360 0.0340 0.0660 0.0230 0.0200 0.0110 0.0090

2 0.5 0.1090 0.0460 0.0370 0.0320 0.0300 0.0810 0.0180 0.0150 0.0110 0.0060

3 0.7 0.0770 0.0300 0.0240 0.0150 0.0140 0.0670 0.0240 0.0160 0.0080 0.0070

4 1 0.0860 0.0410 0.0260 0.0180 0.0160 0.0790 0.0290 0.0140 0.0080 0.0050

6

0.5

0.5 0.0920 0.0520 0.0510 0.0520 0.0470 0.0540 0.0160 0.0140 0.0150 0.0100

7 0.7 0.1080 0.0630 0.0570 0.0450 0.0400 0.0730 0.0350 0.0290 0.0150 0.0120

8 1 0.0950 0.0450 0.0290 0.0170 0.0150 0.0840 0.0360 0.0140 0.0090 0.0070

10

0.75

0.5 0.1140 0.0570 0.0480 0.0060 0.0020 0.1260 0.0680 0.0600 0.0160 0.0130

11 0.7 0.0590 0.0330 0.0170 0.0010 0.0000 0.0680 0.0420 0.0260 0.0100 0.0100

12 1 0.1050 0.0480 0.0370 0.0320 0.0240 0.0910 0.0310 0.0180 0.0160 0.0080

15
1.0

0.7 0.0940 0.0470 0.0410 0.0170 0.0100 0.0900 0.0380 0.0360 0.0120 0.0090

16 1 0.1030 0.0390 0.0280 0.0180 0.0160 0.0950 0.0330 0.0180 0.0110 0.0090

17

1.8

0.25

0.2 0.0870 0.0490 0.0430 0.0380 0.0360 0.0560 0.0190 0.0130 0.0090 0.0090

18 0.5 0.0920 0.0390 0.0320 0.0260 0.0260 0.0780 0.0180 0.0100 0.0070 0.0070

19 0.7 0.1030 0.0510 0.0450 0.0380 0.0350 0.0730 0.0220 0.0180 0.0110 0.0090

20 1 0.1040 0.0460 0.0340 0.0330 0.0320 0.0820 0.0180 0.0090 0.0080 0.0070

22

0.5

0.5 0.1020 0.0680 0.0640 0.0530 0.0500 0.0580 0.0230 0.0210 0.0140 0.0120

23 0.7 0.0780 0.0460 0.0400 0.0340 0.0300 0.0540 0.0180 0.0160 0.0130 0.0090

24 1 0.1000 0.0540 0.0360 0.0270 0.0230 0.0890 0.0380 0.0240 0.0120 0.0100

26

0.75

0.5 0.1250 0.0530 0.0440 0.0110 0.0080 0.1290 0.0570 0.0480 0.0150 0.0120

27 0.7 0.0910 0.0490 0.0380 0.0260 0.0210 0.0760 0.0350 0.0270 0.0090 0.0080

28 1 0.0810 0.0310 0.0260 0.0170 0.0140 0.0760 0.0250 0.0180 0.0090 0.0060

31
1.0

0.7 0.0880 0.0380 0.0350 0.0150 0.0110 0.0850 0.0190 0.0330 0.0150 0.0070

32 1 0.0970 0.0410 0.0370 0.0270 0.0250 0.0790 0.0230 0.0170 0.0110 0.0080

33

2.1

0.25

0.2 0.0840 0.0450 0.0420 0.0390 0.0370 0.0550 0.0140 0.0090 0.0080 0.0070

34 0.5 0.0880 0.0450 0.0340 0.0290 0.0280 0.0650 0.0150 0.0080 0.0060 0.0060

35 0.7 0.0790 0.0350 0.0310 0.0240 0.0230 0.0650 0.0140 0.0090 0.0070 0.0070

36 1 0.0730 0.0320 0.0250 0.0220 0.0210 0.0620 0.0160 0.0110 0.0090 0.0090

38

0.5

0.5 0.0900 0.0590 0.0540 0.0490 0.0440 0.0530 0.0250 0.0200 0.0110 0.0070

39 0.7 0.0900 0.0510 0.0400 0.0350 0.0320 0.0630 0.0280 0.0140 0.0110 0.0090

40 1 0.0920 0.0470 0.0350 0.0290 0.0270 0.0730 0.0270 0.0130 0.0100 0.0080

42

0.75

0.5 0.0680 0.0390 0.0350 0.0250 0.0190 0.0580 0.0300 0.0260 0.0160 0.0100

43 0.7 0.1070 0.0750 0.0690 0.0620 0.0590 0.0650 0.0260 0.0240 0.0130 0.0130

44 1 0.0970 0.0450 0.0410 0.0370 0.0330 0.0690 0.0190 0.0140 0.0120 0.0070

47
1.0

0.7 0.1130 0.0620 0.0620 0.0460 0.0440 0.0770 0.0310 0.0330 0.0160 0.0120

48 1 0.0830 0.0420 0.0320 0.0230 0.0210 0.0720 0.0240 0.0190 0.0070 0.0060
1 β = 0.975
2 the category number
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Figure 2.15, for each instance, depicts the best solution among the solutions of the de-
terministic heuristics (red line), the solutions provided by 30 replication of SAA (gold lines),
and the solution provided by SAAD+ (green line). Note that the solution provided by
SAAD+ is the best solution among the 30 replications of SAA. This figure illustrates only
nine instances. The same Figures for all 282 instances (in PNG format) are available here.

Figure 2.15: SAAD+ solution, solutions of 30 replication of SAA and the best solution
provided by the our deterministic heuristics.

Out of 282 instances, in 125 instances, every replication of SAA results in a better solution
than the best deterministic solution (e.g., instance (4− 10)), in 131 instances (e.g., instance
(40 − 10)) the best deterministic solution is better than some but not all SAA solutions,
in 7 instances (e.g., instance (18 − 8)) the best deterministic solution is equal to SAAD+
solution, and finally, in 19 instances (e.g., instance (20− 3)) the best deterministic solution
is better than SAAD+ solution.

Table 2.5 and Figure 2.15 show that, when sufficient computational power is available,
it is best for a practitioner to use SAAD+, as its performance is significantly superior to
the performance of other proposed heuristics. The limitation of SAAD+ is that it cannot
be applied to projects with many activities. Among projects with 30 activities, SAAD+ is
most suitable for projects with large RSr and small RFr, as it is easier to optimally solve
SFCT(S ′) for those projects.

The complexity of SAAD+ increases linearly as the number of replications increases,
and thus, we can choose large numbers of replications without significantly increasing the
required computational effort. Figure 2.16 shows the impact of increasing the number of

https://github.com/arm4nn/Figures/tree/master/SAAD%20Upper%20Bounds
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replications (from 1 to 30) on the average optimality gap of SAAD+. In Lemma 9, we
proved the incremental benefit of increasing the number of replications is decreasing, which
as well can be seen in this figure.

Figure 2.16: Average optimality gap of SAAD+ for different number of replications.

2.5.2 Computational Analysis of iSFCT

As in the previous subsection, we divide this subsection into two sections. In the first part,
we analyze the performance of deterministic heuristics over all 960 instances. Then, in
the second part, we compare the performance of all heuristics over the same selected 282
instances as in the previous subsection.

To illustrate the performance of the alternative heuristics on iSFCT(S), we add constraint
2.72 to the LP formulation of the ZāL(S). This constraint ensures the expected makespan
of the project is equal to ŨB, where ŨB is a predefined parameter. Also, we modify the
objective function to only minimize the expected inventory holding cost (2.73).∑

s∈S

zsn+1/|S|= ŨB (2.72)

Minimize
∑
i∈A

ωi ×
∑
s∈S

(zsi − oi)/|S| (2.73)

We refer to this adjusted LP formulation of ZāL(S) as the AZāL(S). Then, for a given
expected makespan, ŨB, and given the flow of resources that is selected in the first stage of
the extended heuristics, we find the objective function value of the AZāL(S), which is the
expected inventory holding cost. Note that the expected inventory holding cost is a function
of the selected resource flow and the given expected makespan.
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Deterministic Heuristics: iNDH, iEACH and iPAH

Let ~fNDH, ~fEACH and ~fPAH denote the flow of resources that NDH, EACH and PAH, re-
spectively, select in their first stages. To compare the performance of all three deterministic
heuristics, we select ŨB so that given any of the ~fNDH, ~fEACH and ~fPAH, AZāL(S) has a
feasible solution. To ensure this, for each instance, we define U3 as:

U3 = max
(
ZSSFCT (~fNDH), ZSSFCT (~fEACH), ZSSFCT (~fPAH)

)
. (2.74)

Tables 2.8 and 2.9 represent the expected inventory holding cost and the total solution
times of our deterministic heuristics when we set the expected makespan to be 1.005 × U3

and 1.02× U3.

Table 2.8: Expected inventory holding cost of deterministic heuristics for instances with 30
activities.

ŨB 1.005× U3 1.02× U3

Approach iNDH iEACH iPAH iNDH iEACH iPAH

Expected
Average 18.8214 7.2699 6.3993 10.3618 4.9976 4.4727

Total Inventory
Median 17.6826 5.1875 4.4213 9.7300 3.8367 3.3061

Holding Cost
Minimum 3.5011 0.1448 0.0831 1.7318 0.0986 0.0545

Maximum 56.0612 43.6031 40.6248 32.8500 27.5585 26.7212

Average 24.54 8.63 11.12 22.87 9.01 11.44

Total Solution Median 22.15 6.77 9.33 20.13 7.10 9.77

Time (sec) Minimum 11.65 1.72 2.36 12.34 1.84 2.47

Maximum 203.39 185.00 186.09 198.53 184.42 188.94

Best Solution (out of 480)∗ 0 83 405 0 83 406
∗ For some instances more than one approach finds the best solution.

Table 2.9: Expected inventory holding cost of deterministic heuristics for instances with 60
activities.

ŨB 1.005× U3 1.02× U3

Approach iNDH iEACH iPAH iNDH iEACH iPAH

Expected
Average 42.2537 9.2837 7.8018 21.9206 6.5326 5.5566

Total Inventory
Median 39.6311 5.8385 4.6427 20.2670 4.4313 3.4933

Holding Cost
Minimum 12.2353 0.1841 0.1551 5.5562 0.1332 0.1131

Maximum 111.7436 67.1258 65.7836 59.9718 42.5978 41.7576

Average 205.24 129.80 194.71 196.38 130.14 195.83

Total Solution Median 134.17 55.97 67.89 126.96 57.33 69.30

Time (sec) Minimum 74.72 14.42 15.12 76.43 15.01 14.38

Maximum 838.51 673.03 6443.68 832.92 681.48 6448.06

Best Solution (out of 480) 0 32 448 0 38 442
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From Tables 2.8 and 2.9, it is clear that both EACH and PAH are superior to NDH (with
regard to both the expected inventory holding cost and the solution time), where NDH
models current practice. To further compare the performance of EACH and PAH, we define
U2 as follows and compare the expected inventory holding costs by setting the expected
makespan to be 1.005× U2 and 1.02× U2. Tables 2.10 and 2.11 summarize the results.

U2 = max
(
ZSSFCT (~fEACH), ZSSFCT (~fPAH)

)
(2.75)

Table 2.10: Expected inventory holding cost of iEACH and iPAH for instances with 30
activities.

ŨB 1.005× U2 1.02× U2

Approach iEACH iPAH iEACH iPAH

Expected
Average 16.0999 12.9022 8.9599 7.7220

Total Inventory
Median 14.7334 11.4274 8.2339 6.9543

Holding Cost
Minimum 1.7970 0.2498 0.8456 0.1618

Maximum 54.2814 50.5242 31.5095 30.4822

Average 8.01 11.00 8.45 10.79

Total Solution Median 6.15 9.33 6.50 8.95

Time (sec) Minimum 1.67 2.32 1.88 2.28

Maximum 184.64 185.89 184.46 188.74

Best Solution (out of 480)∗ 74 414 83 402
∗ For some instances more than one approach finds the best solution.

Table 2.11: Expected inventory holding cost of iEACH and iPAH for instances with 60
activities.

ŨB 1.005× U2 1.02× U2

Approach iEACH iPAH iEACH iPAH

Expected
Average 33.2897 22.5116 17.3952 13.3990

Total Inventory
Median 30.3365 18.4800 15.8161 11.4682

Holding Cost
Minimum 3.5854 2.1721 1.4985 1.1205

Maximum 107.1510 104.3751 57.0591 55.9068

Average 123.41 193.26 125.85 193.03

Total Solution Median 47.97 66.77 52.05 67.41

Time (sec) Minimum 12.38 11.79 12.12 12.44

Maximum 677.85 6421.83 679.57 6448.36

Best Solution (out of 480) 27 453 33 447
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For any given resource flow, by solving AZāL(S) for different values of , we can create an
efficient frontier that represents the trade-off between the expected inventory holding cost
and the expected makespan of the project. Figure 2.17 represents the efficient frontier for
instances (4− 2) and (39− 5) with 30 activities, and instances (2− 2) and (22− 5) with 60
activities. The same figures (in HTML format) for all 960 instances are available here.

Figure 2.17: Efficient frontier of expected makespan vs. expected inventory holding cost.

Table 2.12 represents the average and median percentage of decrease in the expected
inventory holding cost when the solution of one heuristic replaces the solution of the another

https://github.com/arm4nn/Figures/tree/master/Efficient%20Frontier%20-%20Deterministic%20Approaches
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heuristic. Note that for each instance, the percentage of decrease in the expected inventory
holding cost when, for example, PAH solution replaces NDH solution is calculated as:

CNDH − CPAH

CNDH

,

where CNDH and CPAH are the expected inventory holding cost of NDH solution and PAH
solution, respectively. Note that for most of the instances, when the expected makespan is
set to be U2× 1.005 or U2× 1.02, NDH is unable to find a feasible solution, and that is why
N/A appears in some fields of the table.

Table 2.12: Percentage of decrease in expected inventory holding cost when, given the
fixed expected makespan, one heuristic replaces another one.

ŨB 1.005× U2 1.02× U2 1.005× U3 1.02× U3

30
A

ct
iv

it
ie

s iPAH →∗ iNDH
Average N/A N/A 69.94% 61.31%

Median N/A N/A 74.08% 64.94%

iPAH → iEACH
Average 21.02% 14.98% 13.14% 11.97%

Median 19.80% 11.56% 9.68% 8.49%

iEACH → iNDH
Average N/A N/A 65.55% 56.32%

Median N/A N/A 69.11% 58.66%

60
A

ct
iv

it
ie

s iPAH → iNDH
Average N/A N/A 84.05% 77.86%

Median N/A N/A 88.62% 82.96%

iPAH → iEACH
Average 34.31% 24.82% 19.04% 17.96%

Median 36.54% 24.08% 17.64% 16.47%

iEACH → iNDH
Average N/A N/A 80.77% 73.61%

Median N/A N/A 85.10% 78.42%
∗ X → Y denote X replaces Y .

Table 2.12 demonstrates that applying either EACH or PAH, on average, decreases the
expected inventory holding cost of a project by approximately 55-90% compared to the
current practice (NDH). When the choice of heuristics is limited to the deterministic ones,
as Tables 2.10-2.12 show, although on average PAH approach perform better than EACH,
for each project, it is best to use both approaches and select the best solution. However,
if the computational power is limited, a practitioner should use PAH. Note that one might
prefer EACH over PAH as the maximum solution time of EACH is significantly less than
the maximum solution time of PAH. Other than the heuristic approach, a practitioner must
trade-off the expected makespan vs. the expected inventory holding cost, and the efficient
frontiers depicted in Figure 2.17 can help them to make such decisions.
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All Heuristics: iNDH, iEACH, iPAH, iSAAD and iSAAD+

iSAAD solves iSFCT(S ′) in its first stage. Recall that the objective function of iSFCT(S ′)
minimizes the expected cost of a project over S ′, while the objective function of SFCT(S ′)
minimizes the expected makespan of the project over S ′. A valid question is if solving
iSFCT(S ′) in the first stage adds value over solving SFCT(S ′)?

To answer this question, we find the optimal resource flow of both iSFCT(S ′) and
SFCT(S ′), and solve AZāL(S) for those resource flows, given the expected makespan of
the project is set to be 1.005×U2, 1.02×U2, 1.005×U3 and 1.02×U3, where U2 and U3 are
defined in Equations 2.75 and 2.74. In the iSFCT(S ′), we set the value of γ to 10−4. Table
2.13 depict the summary of the results.

Table 2.13: Impact of solving iSFCT(S ′) rather than SFCT(S ′) in the first stage of iSAAD.

ŨB 1.005× U2 1.02× U2 1.005× U3 1.02× U3

Heuristic iSAADI
1 iSAADS

2 iSAADI iSAADS iSAADI iSAADS iSAADI iSAADS

Expected Total
Average 7.4263 7.9959 4.8626 5.1827 2.9051 3.0605 2.2129 2.3243

Inventory
Median 6.8454 7.3959 4.5436 4.9663 2.5729 2.7292 1.9652 2.1269

Holding Costs
Minimum 0.2322 0.2384 0.1468 0.1500 0.0621 0.0635 0.0451 0.0462

Maximum 25.2049 25.3503 16.3477 16.4117 16.5518 16.6169 11.9965 12.0323

Best Solution (Out of 282) 3 235 58 241 54 242 55 241 56

Avg Decrease in Inv Costs 4 6.58% 6.22% 5.71% 5.58%

P-value 5 1.4440 e-27 1.0010 e-29 1.0439 e-29 1.9202 e-29
1 The iSFCT(S ′) is solved in the first stage.
2 The SFCT(S ′) is solved in the first stage.
3 For some instances more than one approach finds the best solution.
4 Average decrease in expected inventory holding costs when in the first stage, the iSFCT(S ′) is solved rather than

the SFCT(S ′).
5 Wilcoxon signed-rank test.

The last row in Table 2.13 represents the P-value of Wilcoxon signed-rank test of whether
solving iSFCT(S ′) rather than SFCT(S ′) in the first stage reduces the expected inventory
holding cost. For all given expected makespan (Ũ) in this table, the test suggests that we
can strongly reject the hypothesis that solving iSFCT(S ′) instead of SFCT(S ′) in the first
stage leads to no improvement. In other words, solving iSFCT(S ′) in the first stage results
in lower expected inventory holding cost.

To compare the performance of the proposed deterministic heuristics to SAA-based
heuristics, similar to Table 2.13, we consider Ũ to be 1.005 × U2, 1.005 × U2, 1.005 × U2

and 1.005 × U2. Table 2.14 represents the expected inventory holding cost and the total
solution times of all proposed heuristics when the expected makespan is set to be Ũ .
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Table 2.14: Expected inventory holding cost and solution times of all proposed heuristics.

Best expected inventory holding cost Total Solution Time (sec)

ŨB Approach Solution∗ Average Median Min Max Average Median Min Max

1.005
iEACH 2 12.9601 12.5400 1.7970 33.8279 5.49 5.22 1.91 14.87

× iPAH 14 9.6667 9.1708 0.2498 27.7585 8.95 8.62 2.32 21.67

U2
iSAAD 17 7.4263 6.8454 0.2322 25.2049 98.49 26.96 6.75 3645.11

iSAAD+ 266 6.7899 6.1724 0.2017 24.2902 5250.78 1423.95 382.79 49137.61

1.02
iEACH 2 7.2422 7.0847 0.8456 19.9954 5.92 5.74 1.88 15.00

× iPAH 16 5.9097 5.7028 0.1618 17.7944 8.54 8.16 2.28 18.97

U2
iSAAD 15 4.8626 4.5436 0.1468 16.3477 98.33 26.68 8.24 3651.59

iSAAD+ 264 4.5127 4.2057 0.1257 15.7704 5253.84 1394.80 368.03 48983.34

iNDH 0 16.3725 15.9639 3.5011 37.2681 21.70 21.11 11.65 39.52

1.005 iEACH 2 4.1488 3.7591 0.1448 20.2580 6.32 5.97 2.56 18.17

× iPAH 12 3.4710 3.1626 0.0831 18.0166 8.94 8.77 2.36 18.86

U3 iSAAD 18 2.9051 2.5729 0.0621 16.5518 98.57 28.50 6.99 3648.66

iSAAD+ 268 2.7167 2.3787 0.0512 15.9665 5264.35 1392.55 407.25 49079.60

iNDH 0 8.9666 8.6093 1.7318 21.9254 19.89 18.99 12.34 38.31

1.02 iEACH 2 3.0768 2.8163 0.0986 14.4517 6.55 6.20 2.51 18.45

× iPAH 11 2.6138 2.3534 0.0545 12.9981 9.23 8.99 2.47 19.37

U3 iSAAD 23 2.2129 1.9652 0.0451 11.9965 99.03 28.77 6.63 3645.26

iSAAD+ 269 2.0765 1.8253 0.0373 11.5391 5272.70 1435.51 348.78 49091.41
∗ Out of 282. For some instances more than one approach finds the best solution.

As in the previous subsection, for any given resource flow, by solving AZāL(S) for different
values of ŨB, we can create an efficient frontier that represents the trade-off between the
expected inventory holding cost and the expected makespan of the project. Figure 2.18
represents the efficient frontier for instances (15 − 3) and (31 − 6). The same figures (in
HTML format) for all 282 instances are available here.

Figure 2.18 illustrates that for instance (15 − 3), when the upper bound is set to be
1.005 × U3, the expected inventory holding cost of SAAD+ solution is 86.74% less than
NDH solution. Similarly, it shows when the upper bound is set to be 1.02 × U2, SAAD+
solution results in 57.7% less expected inventory holding cost than PAH solution. Table 2.15
represents the average and median percentage of decrease in the expected inventory holding
cost when one heuristic replaces another one. Note that for most of the instances, when the
expected makespan is set to be U2 × 1.005 or U2 × 1.02, NDH is unable to find a feasible
solution, and that is why N/A is appeared in some fields of the table.

https://github.com/arm4nn/Figures/tree/master/Efficient%20Frontier%20-%20All%20Approaches
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Figure 2.18: Efficient frontier of expected makespan vs. expected inventory holding cost.

Table 2.15: Percentage of decrease in expected inventory holding cost when, given the
fixed expected makespan, one heuristic replaces another one.

ŨB 1.005× U2 1.02× U2 1.005× U3 1.02× U3

iSAAD+ →1 iSAAD
Average 8.29% 7.4% 6.78% 6.61%

Median 3.54% 3.56% 3.06% 2.99%

iSAAD+ → B-det 2 Average 26.93% 22.19% 19.55% 18.71%

Median 26.49% 21.17% 17.43% 15.95%

iSAAD+ → iNDH
Average N/A N/A 84.22% 78.03%

Median N/A N/A 84.91% 78.54%
1 X → Y denote X replaces Y .
2 B-det denote the best solution among deterministic heuristics

Tables 2.14 and 2.15 and Figure 2.18 show that, when sufficient computational power
is available, it is best for a practitioner to use iSAAD+, as it results in significantly lower
expected inventory holding cost. The limitation of iSAAD+ is that it cannot be applied to
projects with many activities. Among project with 30 activities, iSAAD+ is most suitable
for those with large RSr and small RFr, as it is easier to optimally solve iSFCT(S ′) for those
projects.

The complexity of iSAAD+ increases linearly as the number of replications increases.
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Thus, we can choose large numbers of replications without significantly increasing the re-
quired computational effort. Figure 2.19 shows the impact of increasing the number of
replications (from 1 to 30) on the average expected inventory holding cost of iSAAD+ solu-
tion. This figure suggests that the impact of increasing the number of replications is higher
when the given expected makespan is smaller.

Figure 2.19: Average expected inventory holding cost of iSAAD+ solution for different
given expected makespan and different number of replications.
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Chapter 3

Scheduling of Oil Field Drilling
Operations
(A Case Study)

3.1 Problem Description

To create a well, an expensive drilling rig (which we subsequently call the resource) is re-
quired. As these resources are costly, only a limited number of them are available at each
project, and each of them needs to be utilized multiple times to create multiple wells. So
allocating these renewable resources to the wells is a key decision.

In a project, wells are positioned in different locations. After a resource finishes drilling
a well, it is transferred to the location of the next well that it will process. Although all
resources can process all wells at the same speed, their transportation times can be different.
The transportation of resources is slow and expensive, and this time and cost depend on
the start and end locations. This transportation also requires special licenses, and possibly
building roads, which is very time-consuming. Hence, it is essential to determine at the
start of the project the sequence of wells that each resource will process, as this sequence
determines the resources’ transportation route.

In addition to one resource (a drilling rig), unique materials and equipment (e.g., special
pipe spools) are required to create a well. While the engineering team decides the specifics of
materials and equipment required for each well, we need to determine the delivery time of this
materials/equipment to each well. It is assumed that all materials/equipment required for
a well are delivered together, and that processing on a well cannot start before the delivery.
Also, as the materials/equipment is mostly make-to-order, it has long lead-times for which
delivery dates need to be determined at the beginning of the project. Delivering too soon
increases inventory holding cost of the project dramatically, while delivering too late delays
the start of the process on wells.

Although there are engineering estimates regarding the duration of drilling for each well,
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these estimates are not necessarily accurate due to reasons such as human errors, weather,
and technical complications. In this research, we assumed the duration of drilling a well has
a known distribution.

Most research in the literature that considers problems similar to the scheduling of oil field
drilling operations considers the objective function of minimizing the expected overall project
delivery time (expected makespan). However, the goal here is maximizing the expected
revenue generated by oil extraction. We frame this as a penalty, potentially different for
each well, that captures missed revenue generation opportunities when production at a well
is delayed. To mathematically describe the goal, for each well j, we define a weight wj that
represents a per unit timed missed revenue generation opportunity. Then, the objective
function is to minimize the expected average weighted production start time of the wells.
Let zj denotes the production start time of well j, and N denotes the set of all wells. Then,
the objective function is min

∑
j∈N wj × zj.

After a well is drilled, it is necessary to further process the well, in what is known as the
completion phase. The duration of the completion phase is adequately predictable, and the
required machinery is attainable. Hence, we assume production at a well starts a constant
time (which is proportional to the duration of drilling) after it is drilled. Then:∑

j∈N

wj × zj =
∑
j∈N

wj × (Cj + α× Pj) =
∑
j∈N

wj × Cj + constant,

where Pj is the stochastic duration of drilling well j (which we subsequently call the duration
of well j), α × Pj is the duration of the completion phase of well j, and Cj the time of
completion of the drilling of well j (which we subsequently call the finish time). From
a modeling perspective, adding a constant to the objective function does not impact the
solution; consequently, the objective function is equivalent to min

∑
j∈N wj × Cj, which is

the expected average weighted finish time.
In this problem, a solution is a static policy, which is a set of rules that are applied dynam-

ically to determine the schedule of the project. The policy needs to proactively determine the
sequence of wells that each resource visits, and the delivery time of materials/equipment for
all wells at the beginning of the project, and dynamically determine the starting time of the
drilling process at each well to minimize the expected average weighted finish time of wells.
To better motivate why the expected average weighted finish time rather than the expected
makespan best represents the objective function for this problem, consider Example 4.

Example 4. Consider the project that is depicted in Figure 3.1. Well 1 extracts oil with an
associated production rate of 2.5, and Wells 2 and 3 have production rates of 1.0 and 2.0,
respectively. The duration of drilling Wells 1-3 are deterministic and equal to 2.00, 0.75,
and 2.50, respectively, and the duration of the completion phase is zero for them. Also, all
wells are in one location (so there is no transportation time).
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Figure 3.1: Details of the project that is introduced in Example 4.

Two schedules are suggested in Figure 3.2. In the first schedule, the makespan of the
project is 2.75, while in the second schedule, the makespan is 3.25. However, when we
consider the total amount of oil extracted by time 3.25, schedule one extracts a total of
5.125 units, while schedule two extracts a total of 5.625 units. In this example, although the
makespan of schedule two is not as good as that of schedule one, it generates more revenue.

Figure 3.2: Two alternative schedules for the project.

We present the mathematical formulation of the integrated problem in Section 3.2. We
describe the current practice that we refer to as the decomposed approach because it effec-
tively relaxes the mathematical formulation and decomposes it into smaller problems, and
our proposed heuristic approach, which we refer to as the partially decomposed approach in
Section 3.3. Finally, in a case study, using the data from a real-world project, we compare
the performance of our approach to current practice in Section 3.4.

3.2 Mathematical Model Formulation

As described in Section 3.1, in reality, the duration of the drilling processes is uncertain. We
introduce the following notation to express the objective function of minimizing the expected
average weighted finish times:
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E~P [F (~P , ν)], (3.1)

where
ν: Set of all decision variables;
~P : Vector of durations (each element has an associated probability distribution);
F (.): A function that provides the average weighted finish times.

The expected value in Equation 3.1 is a high-dimensional integral. However, we can solve
this problem numerically by sampling a set of independently and identically distributed
(i.i.d.) realizations of the stochastic durations (S), which we call scenarios. Given this
approach, the expectation can be written as:

E~P [F (~P , ν)] = lim
|S|→∞

∑
s∈S

F (~ps, ν)/|S|, (3.2)

where
S: Set of sampled scenarios;
~ps: The vector of realized durations in scenario s.

With this approach, as the number of stochastic parameters (durations) is finite, we
can convert our stochastic problem into an equivalent massive deterministic scenario-based
problem. Intuitively, a scenario can be interpreted as a plausible realization of the stochastic
durations of all wells.

We propose the following mixed-integer linear programming (MILP) formulation to model
the equivalent deterministic scenario-based version of the stochastic scheduling of oil field
drilling operations. The problem contains three types of decisions, namely: assignment of
resources to the wells, determination of the sequences of wells that each resource visits, and
determination of the delivery times of materials/equipment. The following MILP formulation
considers all of these decisions concurrently, and hence we call it the Integrated Model.

min
∑
j∈N

∑
s∈S

wjC
s
j /(|S|×

∑
j∈N

wj) (3.3)

∑
j∈N0
j 6=k

∑
i∈M

xijk = 1 ∀ k ∈ N (3.4)

∑
k∈N
j 6=k

∑
i∈M

xijk = 1 ∀ j ∈ N (3.5)

∑
j∈N

xi0j ≤ 1 ∀ i ∈M (3.6)

∑
k∈N0
j 6=k

xijk =
∑
h∈N0
h6=j

xihj ∀ j ∈ N, i ∈M (3.7)
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Cs
k − Cs

j + V (1− xijk) ≥ Tijk + psk ∀ j ∈ N0, k ∈ N, i ∈M, s ∈ S (3.8)

Cs
0 = 0 ∀ s ∈ S (3.9)

Isj = Cs
j −Oj − psj ∀ j ∈ N, s ∈ S (3.10)

∑
j∈N

∑
s∈S

θjI
s
j /|S|≤ Ī (3.11)

xijk ∈ {0, 1} ∀ j ∈ N0, k ∈ N0, j 6= k, i ∈M

Isj ≥ 0 ∀ j ∈ N, s ∈ S

where:

Sets
M : Set of resources;
N : Set of wells;
N0: N + a dummy node indexed by 0;
S: Set of scenarios;

Parameters and Constants
psj for j ∈ N and s ∈ S: Realized Duration of well j in scenario s;
Tijk for i ∈ M and j, k ∈ N0: Transportation time of resource i from well j to well
k;
wj for j ∈ N : Weight of well j (per unit timed missed revenue generation opportu-
nity);
θj for j ∈ N : The per unit of time inventory cost for materials/equipment of well j;
Ī: Upper bound on the expected inventory holding cost;
V : A very large positive number (a.k.a. big-M);

Variables
xijk for i ∈M and j, k ∈ N0: 1 if resource i process well k directly after well j, zero
o/w;
Cs
j for j ∈ N0 and s ∈ S: Finish time of well j in scenario s;

Oj for j ∈ N : Arrival time of materials/equipment of well j;
Isj for j ∈ N and s ∈ S: Total time materials/equipment of well j stays in inventory
in scenario s.

The objective function, Equation 3.3, is the expected average weighted finish time. Con-
straints 3.4-3.7 ensure that all resources visit a feasible sequence of wells, Constraint 3.8
ensures that the value of finish times are determined correctly, and Constraint 3.9 sets the
start of the project to zero.
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Constraint 3.10 defines a variable Isj for j ∈ N and s ∈ S to represent the total time
that materials/equipment of each well j stays in inventory in scenario s. The fact that this
variable is non-negative ensures the processing of each well cannot start before the delivery of
its materials/equipment. Lastly, Constraint 3.11 ensures that the expected inventory holding
cost is less than a predefined limit. Intuitively, increasing (decreasing) the limit decreases
(increases) the expected average weighted finish times.

While our goal is to solve the integrated model, realistically sized instances of the schedul-
ing of oil field drilling operations are intractable. For instance, Gurobi (version 8.1.1) is
unable to find even a feasible solution for our case study in 3600 seconds.

3.3 Solution Approach

3.3.1 Decomposed Approach (Current Practice)

Based on our discussions with experts, current practice for addressing the scheduling of oil
field drilling operations is to make the decisions listed in Section 3.2 sequentially. We depict
this approach in Figure 3.3. Formally, this is a so-called “decomposition approach.” However,
in general experts do not explicitly consider and formally make this decomposition – this is
just considered the “natural” way to solve this problem.

Figure 3.3: Decomposed Approach – decomposing the integrated model into three modules.

In the decomposed approach, Module 1 assigns the resources to the wells. The assignment
is determined by minimizing the expected average weighted finish time of wells, while the
inventory holding costs and transportation times are ignored. The allocation of resources
to the wells is an input to Module 2, which minimizes the expected average weighted finish
time of wells for each resource while accounting for the transportation times and ignoring
the inventory holding costs. Then, the assignment of activities along with the sequences
of wells that each resource visits are given to Module 3, in which the delivery times of
materials/equipment are determined. Module 3 minimizes the expected average weighted
finish times in a way that the expected inventory holding cost be less than or equal to a
predefined limit.

The mathematical formulations of these modules are presented in Subsections 3.3.1, 3.3.1,
and 3.3.1, respectively. As we show in Lemma 12, sequentially solving Modules 1 and 2 is
not necessarily as useful as solving them concurrently. Similarly, in Lemma 13, we show
that solving Module 3 after Modules 1 and 2 might not result in the optimal solution of the
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integrated model. The decomposed approach is also relatively inflexible in terms of adding
constraints on the transportation times because the assignment of resources to the wells is
arranged before considering the transportation times.

Lemma 12. Sequentially solving Modules 1 and 2 does not necessarily find the optimal
solution.

Proof. A simple counterexample is provided here. Consider three wells in three different
locations as it is illustrated in Figure 3.4.

Figure 3.4: Illustration of the counterexample for Lemma 12

With two resources, the optimal solution of Module 1 is assigning one resource to wells
one and two and the other resource to well three. Solving Module 2 subsequently shows the
first resource should first dig well two and then well one, and the other resource should only
dig well three. The value of the objective function for this solution is 27.

On the other hand, concurrently solving Modules 1 and 2 shows that it is optimal to
create well two and then well three with the first resource and well one with the other
resource. The objective value of this solution is 19.

Lemma 13. The optimal solution resulting from solving Module 3 with the given assignment
of resources and sequence of wells that each resource visits is not guaranteed to be the same
as the optimal solution of the integrated model.

Proof. A simple counterexample is presented in Figure 3.5. The optimal sequence of wells
for the resources is to process well one and then two with one of the resources, and well three
and then four with the other one. The expected objective value of this solution is 22. In
Module 3, when no inventory holding cost can be tolerated, the materials/equipment delivery
time for wells one and two are zero and seven, respectively. Hence, given the sequence, the
optimal objective value of Module 3 is 24. On the contrary, the optimal solution of the
integrated model is to process well one and then well three with one resource, well two and
then four with the other one, and delivering the materials/equipment of all wells at time
zero. The objective value of this solution is 23.
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Figure 3.5: Illustration of a counterexample for Lemma 13

Modules 1 and 2 in the decomposed approach are both NP-hard, and the size of these
problems are very large as we account for uncertainties in the durations by defining a massive
set of scenarios. Hence, they are both intractable.

We refer to these problems with uncertainties in durations are considered as the stochastic
versions of the drilling problem (SDP). In contrast to the SDP, we define the deterministic
versions of the drilling problem (DDP) by replacing the stochastic durations with their
expected values.

Lemma 14 proves that the optimal solution to the SDP and the DDP versions of Modules
1 and 2 are the same. As a result, there is no need to factor in the uncertainties of durations to
find the optimal solution of these parts, which significantly reduces their size and complexity.

Lemma 14. For Modules 1, Module 2, and the Combined Modules 1-2 (which is presented
in Subsection 3.3.2), the optimal solution to the SDP and the DDP versions are the same .

Proof. Consider any solution to the SDP version of one of Module 1, Module 2, or the
Combined Modules 1-2. The objective function of the SDP version (Zs) and the DDP
version (Zd) are:

Zs =
∑
j∈N

∑
s∈S

wjC
s
j /(|S|×

∑
j∈N

wj)

Zd =
∑
j∈N

wjCj/
∑
j∈N

wj,

where Cs
j is the finish time of well j ∈ N in scenario s ∈ S in the SDP version of the problem,

and Cj is the finish time of well j ∈ N in the DDP version of the problem.
For each well j, let seq(j) denote the sequence of wells that are drilled before well j

(including itself) by the same resource, seq−1(j) denote the sequence of wells that are drilled
after well j (including itself) by the same resource, and res(j) denote the resource that
drilled well j. As there is no inventory consideration in these problems, Cj for j ∈ N and



CHAPTER 3. SCHEDULING OF OIL FIELD DRILLING OPERATIONS 70

Cs
j for j ∈ N and s ∈ S can be calculated solely from seq(j) and res(j) for j ∈ N . As a

result, for each well j ∈ N , Cj and Cs
j for s ∈ S can be expressed as:

Cj =
∑

k∈seq(k)

(Tres(j)(k−1)k + E[Pk])

Cs
j =

∑
k∈seq(k)

(Tres(j)(k−1)k + psk).

Therefore,

Zs =
∑
j∈N

∑
s∈S

wj

( ∑
k∈seq(k)

Tres(i)(k−1)k + psk

)
/(|S|×

∑
j∈N

wj) =

∑
j∈N

∑
k∈seq(k)

wjTres(i)(k−1)k/
∑
j∈N

wj +
∑
j∈N

(
wj

∑
k∈seq(k)

∑
s∈S

psk/|S|
)
/
∑
j∈N

wj

As
∑

s∈S p
s
j/|S| is the expected value of Pj for j ∈ N , we conclude:

Zs =
∑
j∈N

∑
k∈seq(k)

wjTres(i)(k−1)k/
∑
j∈N

wj +
∑
j∈N

(
wj

∑
k∈seq(k)

E[Pk]
)
/
∑
j∈N

wj =

∑
j∈N

wj

( ∑
k∈seq(k)

Tres(i)(k−1)k + E[Pk]
)
/
∑
j∈N

wj = Zd

By straightforward algebraic manipulation, it is easy to see that the proof is also correct
in the other direction, so each solution results in the same objective value in both SDP and
DDP versions. Therefore, the optimal solutions of SDP and DDP are the same.

Mathematical Optimization Formulation of the Module 1

As we proved in Lemma 14, there is no need to consider uncertainties of durations in Module
1. Hence, instead of the SDP version of the model, we create its equivalent DDP version
by replacing the distributions of the durations with their expected values. This model
determines the assignment of resources to the wells to minimize the average weighted finish
times without accounting for the transportation times and the inventory constraints.

In this mixed-integer programming (MIP) formulation, we use the optimality property
of weighted shortest processing time (WSPT) algorithm for the problem 1||

∑
j wjCj ([70]).

In this formulation, without loss of generality, it is assumed that the numerical indices of
wells are arranged in decreasing order of wj/E[Pj], so that wj/E[Pj] ≥ wj+1/E[Pj+1] for all
j ∈ N .
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min
∑
j∈N

wjCj/
∑
j∈N

wj (3.12)

∑
i∈M

xij = 1 ∀ j ∈ N (3.13)

Cj =
∑
i∈M

xij(E[Pj] +
∑
k<j

E[Pk]xik) ∀ j ∈ N (3.14)

xij ∈ {0, 1} ∀ i ∈M, j ∈ N
where:

Sets
M : Set of resources;
N : Set of wells;

Parameters and Constants
Pj for j ∈ N : The stochastic duration of well j;
E[Pj] for j ∈ N : The expected duration of well j;
wj for j ∈ N : Weight of well j (per unit timed missed revenue generation opportu-
nity);

Variables
Cj for j ∈ N0: Finish time of well j;
xij for i ∈M and j ∈ N0: 1 if resource i process well j, zero otherwise.

The objective function in this model (Equation 3.12) minimizes the average weighted
finish time. Constraint 3.13 ensures that precisely one resource is assigned to each well,
and Constraint 3.14 defines the finish times of wells. Recall that wells are indexed based on
decreasing wj/E[Pj], and based on the WSPT rule, among all wells that are assigned to the
same resource, wells are processed in increasing index order.

This problem is equivalent to a machine scheduling problem, where each resource rep-
resents a machine, and each well denotes a job. With this representation, the problem is
equivalent to the parallel machine scheduling problem, denoted Pm||

∑
wjCj in the machine

scheduling literature.
Although Module 1 is in practice significantly more straightforward to solve than the

original integrated problem, as [51] showed, it is still NP-hard in the strong sense for an
arbitrary number of resources. In our case study, the default settings of Gurobi (version
8.1.1), is unable to solve it optimally in 3600 seconds. The best optimality gap it can
achieve in 3600 seconds is 38.17%, where the optimality gap is defined as:

optimality gap =
the smallest upper bound− the largest lower bound

the largest lower bound

A well-known approximation algorithm for this problem, the WSPT rule ([40]), achieves
an objective value that is at most (1 +

√
2)/2 times the optimal objective value. In our
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case study, the solution generated by this heuristic is 3.53% more than the optimal objective
value.

[14] suggested a column generation algorithm for solving Pm||
∑
wjCj. In our case study,

the column generation approach finds solutions with the optimality gap of less than 0.01%
in a few seconds. In what follows, we consider a solution with an optimality gap of less than
0.01% as an optimal solution.

Mathematical Optimization Formulation of the Module 2

In Module 2, the assignment of resources to the wells is given. Therefore, the schedule of
each resource can be determined independently from the schedule of other resources. Also,
as we prove in Lemma 14, there is no need to consider uncertainties of the durations. The
following MILP formulation determines the sequence of wells that resource i ∈ M should
drill to minimize the average weighted finish times. Note that this module does not account
for inventory-related constraints.

min
∑
j∈N i

wjCj/
∑
j∈N i

wj (3.15)

∑
j∈N i

0
j 6=k

xjk = 1 ∀ k ∈ N i (3.16)

∑
k∈N i

j 6=k

xjk = 1 ∀ j ∈ N i
0 (3.17)

Ck − Cj + V (1− xjk) ≥ Tjk + E[Pk] ∀ j ∈ N i
0, k ∈ N i (3.18)

C0 = 0 (3.19)

xjk ∈ {0, 1} ∀ j ∈ N i
0, k ∈ N i

0, j 6= k

where:

Sets
M : Set of resources;
N i for i ∈M : Set of wells that are assigned to resource i in sub-model one;
N i

0 for i ∈M : N i + a dummy node indexed by 0;

Parameters and Constants
Pj for j ∈ N : The stochastic duration of well j;
E[Pj] for j ∈ N : The expected duration of well j;
Tijk for i ∈ M and j, k ∈ N i

0: Transportation time of resource i from well j to well
k;
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wj for j ∈ N i: Weight of well j (per unit timed missed revenue generation opportu-
nity);
V : A very large positive number (a.k.a. big-M);

Variables
Cj for j ∈ N i

0: Finish time of well j;
xjk for j ∈ N i

0 and k ∈ N i: 1 if well k is processed directly after well j, zero
otherwise.

The objective function (Equation 3.15) minimizes the average weighted finish time of
wells that are assigned to the resource i. Constraints 3.16 and 3.17 ensure that wells are
feasibly sequenced, and Constraints 3.18 and 3.19 define the finish time of each well with
respect to the sequence, process durations and transportation times.

This problem can be represented as a machine scheduling problem, denoted 1|Sj,k|
∑
wjCj

in machine scheduling literature. In our case study, the problem size for each resource is
relatively small: ∼50 binary variables, ∼7 continuous variables, and ∼50 constraints. As
a result, the optimal solution can be found in a few seconds using the default settings of
Gurobi (Version 8.1.1).

To analyze the impact of limiting the total transportation time in Section 3.4, we need
to solve Module 2 for all resources concurrently. In that case, the model has ∼300 binary
variables, ∼ 40 binary variables, and ∼ 300 constraints, and Gurobi (Version 8.1.1) is still
capable of solving it optimally.

Mathematical Optimization Formulation of the Module 3

In Module 3, the assignment of resources to the wells and the sequence of wells that each
resource drills are given. This module determines the delivery date of materials/equipment
to minimize the expected average finish times in a way that the total expected inventory
holding cost remains less than the maximum allowed.

In contrast to Modules 1 and 2, it is essential to consider the uncertainties of durations
in Module 3, as uncertainty is what leads to inventory holding costs. To do this, as discussed
before, we formulate the scenario-based equivalent of the stochastic problem, resulting in the
following linear programming (LP) formulation for Module 3.

min
∑
j∈N

∑
s∈S

wjC
s
j /(|S|×

∑
j∈N

wj) (3.20)

Cs
k − Cs

j ≥ Tijk + psk ∀ j ∈ N0, k ∈ N, i ∈M, s ∈ S if x̂ijk = 1 (3.21)

Cs
0 = 0 ∀ s ∈ S (3.22)

Isj = Cs
j −Oj − psj ∀ j ∈ N, s ∈ S (3.23)
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∑
j∈N

∑
s∈S

θjI
s
j /|S|≤ Ī (3.24)

Isj ≥ 0 ∀ j ∈ N, s ∈ S

where:

Sets
M : Set of resources;
N : Set of wells;
N0: N + a dummy node indexed by 0;
S: Set of scenarios;

Parameters and Constants
x̂ijk for i ∈ M , j ∈ N0 and k ∈ N : The fixed assignment and processing sequence
of resources;
psj for j ∈ N and s ∈ S: The realized duration of well j in scenario s;
Tijk for i ∈ M and j, k ∈ N0: Transportation time of resource i from well j to well
k;
wj for j ∈ N : Weight of well j (per unit timed missed revenue generation opportu-
nity);
θj for j ∈ N : The per unit of time cost of holding materials/equipment of well j in
inventory;
Ī: Upper bound on the expected inventory holding cost;

Variables
Cs
j for j ∈ N0 and s ∈ S: Finish time of well j in scenario s;

Oj for j ∈ N0: Delivery time of materials/equipment of well j;
Isj for j ∈ N0 and s ∈ S: Total time materials/equipment of well j stays in inventory
in scenario s.

The objective function, Equation 3.20, minimizes the expected average weighted finish
times. Constraints 3.21 and 3.22 define the finish time of each well, and Constraint 3.23 de-
fines a variable that captures how long the material/equipment for each well in each scenario
is stored in the inventory. Note that as variable I for j ∈ N0 and s ∈ S is non-negative,
the processing of each well cannot start before the delivery of its materials/equipment. Con-
straint 3.24 ensures that the expected inventory holding cost is less than the given limit. Intu-
itively, increasing (decreasing) the limit decreases (increases) the expected average weighted
finish times.

This mathematical formulation is an LP that is known to be solvable in polynomial time.
The model size increases linearly with the increasing the number of scenarios, which allows
us to consider thousands of scenarios and still find the optimal solution in a reasonable time
using the default settings of Gurobi (Version 8.1.1).
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3.3.2 Partially Decomposed Approach

There is a trade-off in heuristically decomposing a problem. Each module of a decomposed
problem is more convenient to solve, but the final solution is more likely to be far from the
globally optimal solution. On the other hand, without decomposition, the problem might be
intractable, or the best achievable optimality gap might be unacceptable. Thus, we propose
an intermediate approach – the partially decomposed approach, which is described in Figure
3.6. In this approach, the assignment of resources to the wells and the sequence of wells that
each resource drills are determined concurrently via Combined Module 1-2, and Module 3 is
solved sequentially after the Combined Module.

Figure 3.6: Partially Decomposed Approach – decomposing the integrated model into two
modules.

The mathematical formulation of the Combined Modules 1-2 is presented in Subsection
3.3.2, and the mathematical formulation of Module 3 is shown in Subsection 3.3.1. As it is
shown in the next section, the partially decomposed approach finds reasonable solutions in
a reasonable amount of time. Additionally, its flexibility enables us to analyze the cost of
imposing multiple types of constraints on the transportation of resources.

Mathematical Optimization Formulation of the Combined Modules 1-2

As discussed in Lemma 14, there is no need to consider the uncertainties of durations in the
Combined Module 1-2. This model can be formulated as the following MILP:

min
∑
j∈N

wjCj/
∑
j∈N

wj (3.25)

∑
i∈M

∑
j∈N0
j 6=k

xijk = 1 ∀ k ∈ N (3.26)

∑
k∈N
j 6=k

∑
i∈M

xijk = 1 ∀ j ∈ N (3.27)

∑
j∈N

xi0j ≤ 1 ∀ i ∈M (3.28)
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∑
k∈N
j 6=k

xijk =
∑
h∈N0
h6=j

xihj ∀ j ∈ N, i ∈M (3.29)

Ck − Cj + V (1− xijk) ≥ Tijk + E[Pk] ∀ i ∈M, j ∈ N0, k ∈ N (3.30)

C0 = 0 (3.31)

xijk ∈ {0, 1} ∀ i ∈M, j ∈ N0, k ∈ N

where:

Sets
M : Set of resources;
N : Set of wells;
N0: N + a dummy node indexed by 0;

Parameters and Constants
Pj for j ∈ N : The stochastic duration of well j;
E[Pj] for j ∈ N : The expected duration of well j;
Tijk for i ∈ M and j, k ∈ N0: Transportation time of resource i from well j to well
k;
wj for j ∈ N : Weight of well j (per unit timed missed revenue generation opportu-
nity);
V : A very large positive number (a.k.a. big-M);

Variables
Cj for j ∈ N0: Finish time of well j;
xijk for i ∈ M , j ∈ N0 and k ∈ N : 1 if resource i process well k directly after well
j, zero otherwise.

The objective function (Equation 3.25) minimizes the average weighted finish times.
Constraints 3.26-3.29 ensure that the assignment of resources and sequence of wells are
feasible, and Constraints 3.30 and 3.31 define the finish time of each well.

For our case study, within 3600 seconds, the best solution Gurobi (Version 8.1.1) finds
has an optimality gap of 95.77%. In the literature, few methods such as a branch and price
algorithm (proposed by [54]), and branch and check algorithms (introduced by [74] and [7])
are available that can solve the proposed model for small instances. However, we are not
aware of any approach that can optimize the proposed model for instances that are the size
of our case study.

To solve this model, we use LocalSolver, which is a solver that “combines local and direct
search techniques, constraint propagation and inference techniques, linear and mixed-integer
programming techniques, as well as nonlinear programming techniques, to solve the problem
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at best”1. In our case study, the best solution that Gurobi finds within 3600 seconds is 2.68%
higher than the solution that LocalSolver (Version 9.0) finds in a few seconds.

3.4 Case Study

In the decomposed approach, the assignment of resources to wells and the sequence of wells
that each resource drills are determined sequentially, while in the partially decomposed
approach, these decisions are determined concurrently. If we find the optimal decision while
we determine those decisions concurrently, as it is discussed in Lemma 12, the final solution of
the partially decomposed approach should, in general, be better than that of the decomposed
approach. Nevertheless, we are not aware of any approach that can optimally solve the
Combined Module 1-2, and solving this problem heuristically degrades the overall objective
value. In Subsection 3.4.2, we analyze this trade-off and show the partially decomposed
approach outperforms the decomposed approach in numerous ways, even though we cannot
solve the Combined Module 1-2 optimally.

In practice, managing transportation of resources is challenging and expensive, requiring
special licenses and possibly building or improving roads. As a result, there are always strong
biases towards preventing any resource from having a long transportation time, and limiting
the total transportation times. In Subsection 3.4.3, we discuss the impact of having such
biases on project metrics. Additionally, in Subsection 3.4.4, we perform further analysis to
estimate the value of providing additional resources.

3.4.1 Test Data Set

In this research, we used the data of a real-world project. Depending on the particular anal-
ysis we are performing, we process the data in appropriate ways. For instance, to generate
scenarios, we estimate the distribution of the drilling durations based on the historical data
and use the distributions to generate scenarios. Also, to determine transportation times
between the real locations, we use the Google Maps API. For the purpose of confidentiality,
we are not able to reveal additional details about the data.

3.4.2 Decomposed Approach vs. Partially Decomposed
Approach

For the first comparison, we ignore the inventory-related constraints by assuming that any
amount of expected inventory holding cost is tolerable, and force an upper bound on the ex-
pected average weighted finish times and minimize the total transportation time. Figure 3.7
depicts the performance of both the decomposition approach and the partially decomposed
approach in this setting.

1https://www.LocalSolver.com

https://www.localsolver.com/product.html
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Figure 3.7 shows that by using the partially decomposed approach rather than the de-
composed approach, the total transportation time decreases by 55% to 70% without affecting
the expected average weighted finish times. We expect that the total transportation time of
both approaches will decrease as the forced upper bound on the expected average weighted
finish times increases. However, we can see for the decomposed approach (the brown line),
the line flattens promptly, which is the result of the inflexibility of the current approach.

Figure 3.7: Minimum total transportation time with respect to the forced upper bound on
the expected average weighted finish times

For the second comparison, we force an upper bound on the expected average weighted
finish times and minimize the expected inventory holding cost. Figure 3.8 illustrates the min-
imum inventory holding cost that each of the approaches achieves while enforcing different
upper bounds on the expected average weighted finish times.

As Figures 3.7 and 3.8 indicate, the partially decomposed approach outperforms the
decomposed approach in terms of total transportation time and expected inventory hold-
ing cost. Furthermore, the partially decomposed approach outperforms the decomposed
approach in other transportation time-related metrics. For instance, when it is desired to
minimize the maximum transportation time of the resources, the partially decomposed ap-
proach finds a solution with a maximum transportation time that is 62% less than the best
solution that the decomposed approach achieves.

The partially decomposed approach is capable of finding feasible solutions in the presence
of more rigorous transportation-related constraints. To investigate the capacity of approaches
on satisfying rigorous constraints, we add a constraint to force an upper bound on the
total transportation time as well as a constraint to force an upper bound on the maximum
transportation time of the resources. Figure 3.9 represents the range of values for which each
of the approaches finds a feasible solution.
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Figure 3.8: Minimum expected inventory holding cost with respect to the forced upper
bound on the expected average weighted finish times

Figure 3.9: Range of feasible upper bounds on the total transportation times and the
maximum transportation time of the resources

3.4.3 Impacts of Imposing Constraints on Transportation

In this subsection, the inventory-related constraints are ignored, and the results are based
on the best solution that the partially decomposed approach can achieve.

It might be counter-intuitive that a solution with longer total transportation time leads
to a lower expected average weighted finish times in a project; however, there is a trade-off
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between the expected average weighted finish times and the maximum allowed total trans-
portation time. To illustrate the trade-off, we place upper bounds on the total transportation
time and calculate the minimum expected average weighted finish times. The result is de-
picted in Figure 3.10, which shows that the expected average weighted finish times reduce
26% by allowing a 5% increase in the total transportation time compared to the schedule
that achieves the minimum possible total transportation time. Also, increasing the total
transportation time by 15% and 100% decrease the expected average weighted finish times
30% and 38%, respectively.

Figure 3.10: Efficient frontier of the upper bound on the total transportation time and the
expected average weighted finish times

Limiting the total transportation time requires a holistic view; without it, approaches
used to minimize it are likely to be myopic. For instance, in a project with several resources,
a myopic approach tries to minimize the transportation time of one resource at a time. In
comparison, an advanced holistic approach might choose to increase the transportation time
of one resource to reduce to total transportation time of the whole project.

Myopic limits on the transportation of resources can be modeled by two types of con-
straints. First, one might prevent resources from having any trip longer than a threshold.
In other words, an upper bound on the length of each trip might be enforced. Second, one
might restrict the transportation time of each resource by enforcing an upper bound on it.

The efficient frontier of total transportation time versus the expected average weighted
finish times in the presence of upper bounds on the maximum length of each trip is shown
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in Figure 3.11. Similarly, the efficient frontier in the presence of upper bounds on the
transportation time of each resource is depicted in Figure 3.12.

Figure 3.11: Efficient frontier of the upper bound on the total transportation time vs. the
expected average weighted finish times. Distinct colors indicate different values of upper
bound on the maximum length of trips.

Figure 3.12: Efficient frontier of the upper bound on the total transportation time vs. the
expected average weighted finish times. Distinct colors indicate different values of upper
bound on the maximum transportation time of resources.
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Figures 3.11 and 3.12 demonstrate that by imposing tighter upper bounds, the perfor-
mance of the solution gets worst in terms of both the expected average weighted finish times
and the total transportation time. Figure 3.11 shows that imposing a tight upper bound
on the maximum trip length increases the expected average weighted finish times up to
60%, and Figure 3.11 indicates that forcing a tight upper bound on the transportation time
of resources increases the expected average weighted finish times up to 10%. As a result,
restricting the maximum length of trips has a more substantial detrimental impact than
restricting the transportation time of resources.

3.4.4 Value of Acquiring Additional Resources

As mentioned above, the required resources for drilling operations are costly, and therefore,
only a limited number of these resources are available at each project. To analyze the benefits
of providing an additional resource, we calculate the incremental decrease in the expected
average weighted finish times per additional resource in our case study. Figure 3.13 presents
the results of these calculations. The marginal and cumulative decreases in the expected
average weighted finish times shed light on the trade-off between the cost and benefit of
acquiring new resources.

Figure 3.13: Percentage of decrease in the expected average weighted finish times per
additional resource
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Chapter 4

Online Scheduling to Minimize Total
Weighted (Modified) Earliness and
Tardiness Cost

4.1 Introduction and Problem Description

We consider the online scheduling of a single machine, to which jobs with distinct weights
wj, and due dates dj arrive over time. The jobs must be processed one at a time on the
machine without preemption, in order to minimize the total weighted earliness and tardiness
cost. This problem is denoted 1|rj, dj, online|

∑
j wj (ζE Ej + ζTTj), where rj is the arrival

time of each job (also called the release date), Ej and Tj are the earliness and tardiness of
job j, and ζE and ζT are the penalties per unit time associated with earliness and tardiness,
respectively.

We focus on an online setting, where no information about future arrivals, even the
number of jobs that will arrive, is available. The weight, due date, and processing time of
each job are available upon that job’s arrival, and our goal is to develop a scheduling policy
that is effective in this online setting.

Typically, the performance of online scheduling policies is analyzed using the competitive
ratio, which was first formally introduced by Sleator and Tarjan [69]. If the objective function
value of the schedule produced by online policy ψ for the instance I is Cψ

I , and the optimal
offline objective function value of the instance is C∗I , then the competitive ratio of policy ψ,
ρψ, is defined as:

ρψ = sup
I∈I
{ρψI },

where I is the set of all possible instances and for each instance I, ρψI is defined as:

ρψI = inf{ρ |Cψ
I ≤ ρ× C∗I }.
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If there exists an online policy ψ with a competitive ratio of ρ for a problem, then the
problem is called ρ-competitive. On the other hand, if no online policy can exist with a
competitive ratio smaller than ρ′, then ρ′ is called a lower bound for the problem. Formally,
ρ′ is a lower bound if and only if:

ρ′ ≤ inf
ψ∈Ψ
{ρψ},

where Ψ is the set of all online policies. Therefore, an online policy is called optimal for a
problem if its competitive ratio matches a lower bound. Note that here, optimal indicates
that no online policy can have a smaller competitive ratio. The goal of minimizing the com-
petitive ratio can be interpreted as minimizing the maximum relative regret of the objective
function.

In this chapter, we prove that the competitive ratio of 1|rj, dj, online|
∑

j wj(ζEEj+ζTTj)
is unbounded. Given this we consider a modified version of the objective function, which was
first introduced by Kolliopoulos and Steiner [48], in which a constant,

∑
j wj(ζddj), where

dj is the due date of job j and ζd is a constant coefficient, is added to the objective function.
The modified problem is thus denoted 1|rj, dj, online|

∑
j wj(ζE Ej + ζTTj + ζddj). Since

a constant is added to the objective function, for each instance the optimal schedule (the
schedule that minimizes the objective function) remains the same for this modified problem.
However, adding this allows us to find a policy with a finite competitive ratio.

When all release dates are equal to zero, so that all information is available at the start
of the horizon, the online and offline versions of this model are equivalent. For this case, the
objective function can be viewed as minimizing the work-in-process (WIP) inventory cost
as well as the tardiness cost (in a Just-In-Time (JIT) environment, for example). Since in a
JIT environment no product can be delivered prior to its due date, wjζd can be viewed as
the inventory cost of unprocessed product j, wj(ζT − ζd) can be viewed as the cost of delay
for product j, and wj(ζE + ζd) can be viewed as the inventory cost of completed product j.
In this case, the objective function of

∑
j wj(ζEEj + ζTTj + ζddj) is WIP inventory cost and

delay cost.

4.2 Literature Review

Pruhs, Sgall, and Torng [65] categorize common online scheduling frameworks. In the online
over time framework, jobs are assumed to arrive over time, and no information about any
job is available before its arrival. In addition, the total number of jobs is unknown. In this
chapter, we consider the non-preemptive online over time scheduling problem detailed in the
previous section.

Vestjens [82] showed that for the online over time version of problem of minimizing the
total completion times, denoted 1|rj, online|

∑
j Cj, the Delayed Shortest Processing Time

(DSPT) policy is optimal and its competitive ratio is two. The weighted version of that
problem, 1|rj, online|

∑
j wjCj, was studied by Anderson and Potts [1], who showed that the
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Delayed Weighted Shortest Processing Time (DWSPT) policy is optimal and its competitive
ratio is two. The DSPT and DWSPT policy are described in detail in Section 4.3.

To the best of our knowledge, Liu et al. [53] is the first work that considered tardiness in an
‘online over time’ setting. They proved that the competitive ratio of 1|rj, dj, online|

∑
j wjTj

is unbounded, and then minimized the modified total tardiness, denoted 1|rj, dj, online|
∑

j

(Tj +dj). They showed that two is a lower bound for this problem, and that the competitive
ratio of DSPT policy is at most three for this problem. They extended their work by consid-
ering different weights for jobs, 1|rj, dj, online|

∑
j wj(Tj + dj), and proved the competitive

ratio of DWSPT policy is at most three for this problem.
In this chapter, we introduce a new policy, the list-based delayed shortest processing time

(LDWSPT) policy, and we develop lower and upper bounds on its performance for several
related problems. We summarize the state-of-the-art in terms of bounds on the optimal
competitive ratio of these problems, along with our new results, in Table 4.1.

Table 4.1: State of the art bounds on the optimal competitive ratio.

Objective Function
Literature Our result

LB UB Gap% LB UB Gap%∑
j(Tj + dj) 2 [a] 3 [a] 50% 2 2 0%∑

j wj(Tj + dj) 2 [a] 3 [a] 50% 2 2 0%∑
j(Ej + Tj + dj) N/A N/A N/A 2 2 0%∑

j wj(Ej + Tj + dj) N/A N/A N/A 2 2 0%∑
j wj(ζEEj + ζTTj + ζddj) N/A N/A N/A x b y c 0% d

a Liu et al. [53]

b x = max{2, 1 + ζT/ζd}
c y = max{2, 1 + ζE/ζd, 1 + ζT/ζd}
d when ζE ≤ max{ζT , ζd}

The remainder of this chapter is organized as follows. In Section 4.3, we review the
DSPT and the DWSPT policies and introduce the LDWSPT policy. In Section 4.4, we
investigate the problem of minimizing total weighted (modified) earliness and tardiness and
provide its lower and upper bounds. In Section 4.4, we assume that the cost of earliness and
tardiness are equal. In Section 4.5, we relax this assumption and investigate the problem
of minimizing total weighted (modified) unequal earliness and tardiness cost and provide its
lower and upper bounds.
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4.3 DSPT, DWSPT, and LDWSPT Policies

For the sake of completeness, we review the DSPT policy, proposed by Vestjens [82] and the
DWSPT policy. Then, we propose a new policy, the LDWSPT policy.

Algorithm 1 Delayed Shortest Processing Time (DSPT) Policy

Each time the machine becomes available:
Step 1:

If there is no available job, wait until a job arrives.
Step 2:

Among available jobs, SELECT a job, Jj, with the smallest processing time and where
there are ties, SELECT the one with the lowest index where numerical indices are arbi-
trarily assigned to the jobs.

Step 3:
If pj ≤ t, where t is the time since the start of the time horizon, start processing on Jj.
Otherwise, wait until t = pj or until a new job arrives, whichever happens first, and then,
go to step 1.

Here, pj is the processing time of Jj. Note that in general pj will only be greater than t
at the start of the time horizon, so after some initial period, this policy performs similarly
to the Shortest Processing Time (SPT) policy. By delaying the processing of jobs at the
beginning of the time horizon, we can avoid certain degenerate cases in our analysis.

Algorithm 2 Delayed Weighted Shortest Processing Time (DWSPT) Policy

Each time the machine becomes available:
Step 1:

If there is no available job, wait until a job arrives.
Step 2:

Among available jobs, SELECT a job, Jj, with the smallest ratio of pj/wj, and where
there are ties, SELECT the job with the smallest processing times and then the lowest
index where numerical indices are arbitrarily assigned to jobs.

Step 3:
If pj ≤ t, where t is the time since the start of the time horizon, start processing on Jj.
Otherwise, wait until t = pj or until a new job arrives, whichever happens first, and then,
go to step 1.

We utilize a list in the LDWSPT policy in order to ensure that the relative sequence
of any two jobs remains the same once they are added to the list. LDWSPT is a useful
policy for analysis. Since ties are broken arbitrarily, stronger inductions can be used in
proofs. Note that because ties are broken arbitrarily in the LDWSPT policy, an instance
can have various LDWSPT schedules. In particular, for each instance, if we break ties based
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Algorithm 3 List-based Delayed Weighted Shortest Processing Time (LDWSPT) Policy

Create an empty list, L.
Each time the machine becomes available:

Step 1:
INSERT all new jobs (jobs that have been released but have not yet been added to the
list) to L such that the list is arranged in order of increasing pj/wj. Break ties arbitrarily.

Step 2:
If L is empty, wait until a job arrives and then, go to Step 1.
If L is not empty, SELECT the first job, Jj, in L.

Step 3:
If pj ≤ t, where t is the time since the start of the time horizon, start processing on Jj
and REMOVE it from L.
Otherwise, wait until t = pj or until a new job arrives, whichever happens first, and then,
go to step 1.

on the smallest processing time and then the lowest index, the LDWSPT policy generates
the DWSPT schedule. Hence, any upper bound on the competitive ratio of LDWSPT policy
is also an upper bound on the competitive ratio of DWSPT policy.

4.4 Total Weighted (Modified) Earliness and

Tardiness

In the online framework, as we show in Lemma 15, there is no finite upper bound on the
competitive ratio of the unmodified version of our problem:

Lemma 15. There is no finite upper bound on the competitive ratio of 1|rj, dj, online|
∑

j wj
(Ej + Tj).

Proof. Consider two instances I1 and I2:

Instance I1: Only one job arrives, with:
J1 : r1 = 0, d1 = 1, p1 = 1, w1 = 1.

Instance I2: N jobs arrive, with:
J1 : r1 = 0, d1 = 1, p1 = 1, w1 = 1;
Jj for j ∈ {2, ..., N}: rj = ε, dj = 0, pj = ε, wj = 1;
where ε = 1/N2.

In the online setting, for both instances a single job with identical characteristics arrives
at time zero, so it is impossible to distinguish between the instances at the start of the
horizon. The competitive ratio of any policy that starts processing after time zero with the
given information at the start of the horizon goes to infinity, because for the instance I1, the
objective function value of the policy is infinitely worse than the optimal offline objective
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function value. Similarly, the competitive ratio of any policy that starts processing at time
zero with the given information at the start of the horizon goes to infinity. This is because
for the instance I2, the objective function value of any policy that starts processing at time
zero is infinitely worse than the optimal offline objective function value as N increases to
infinity.

Hence, the competitive ratio of all policies goes to infinity, as for any given policy, there
exists an instance for which the objective function value of the policy is infinite times worst
than the optimal offline objective function value.

Thus, in the modified version of the problem, in order to allow the possibility of policies
with finite competitive ratios, a constant, the weighted sum of the due dates, is added to the
objective function, resulting in problem 1|rj, dj, online|

∑
j wj(Ej + Tj + dj). This modified

objective function was first introduced by Kolliopoulos and Steiner [48], and is also used
by Liu et al. [53]. Note that the additional term in the objective function is a constant
independent of the policy, and so the optimal solution in this modified version of problem
(the solution minimizing the value of the objective function) remains the same.

In Subsection 4.4.1, we show there is no online policy with a competitive ratio of less
than two for this modified problem. In other words, we show that two is a lower bound
for this problem. In Subsection 4.4.2, we show that for this problem, LDWSPT policy is
2-competitive. Therefore, it is an optimal policy for this problem.

4.4.1 Lower Bound

Our lower bound is based on two lemmas:

Lemma 16.
∑

j wj(Tj + dj) =
∑

j wj maxj(Cj, dj).

Proof. If Cj ≤ dj, then Tj = 0 and maxj(Cj, dj) = dj. So, wj(Tj + dj) = wjdj =
wj max(Cj, dj).

If Cj > dj, then Tj = Cj − dj and max(Cj, dj) = Cj. So, wj(Tj + dj) = wjCj =
wj max(Cj, dj).

The result follows from summing over all jobs.

Lemma 17. Two is a lower bound for the minimization of 1|rj, dj, online|
∑

j(Ej + Tj + dj)
and consequently for the minimization of 1|rj, dj, online|

∑
j wj(Ej + Tj + dj).

Proof. By Lemma 16, ∑
j

(Ej + Tj + dj) =
∑
j

( max(Cj, dj) + Ej).

When all due dates equal zero, the problem is equivalent to the minimization of
∑

j Cj,
which Vestjens [82] show has a lower bound of two. Therefore, two is a lower bound for∑

j(Ej + Tj + dj). Additionally, when all wj equal one,
∑

j wj(Ej + Tj + dj) is equivalent to
to
∑

j(Ej + Tj + dj); thus, two is its lower bound.
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4.4.2 Competitiveness of the LDWSPT Policy

We prove that the LDWSPT policy is 2-competitive. The proof is based on contradiction,
where we assume there exists an instance, I, for which ρLDWSPT

I > 2.

Definition 1. “LDWSPT schedule” refers to the schedule of jobs resulting from applying an
LDWSPT policy and “LDWSPT sequence” refers to the sequence of jobs in the LDWSPT
schedule.

Definition 2. “Counterexample” refers to an instance, I, for which ρLDWSPT
I > 2.

Definition 3. A “block” of jobs refers to a set of jobs that are processed consecutively (with
no idle time between them).

Lemma 18. If there exists a counterexample, the LDWSPT schedule of the counterexample,
which has the smallest possible number of jobs among all counterexamples, is composed of
only one block of jobs.

Proof. By contradiction, assume there exists a counterexample, I0, with the smallest possible
number of jobs for which the LDWSPT schedule is composed of at least two blocks of jobs
(similar to Figure 4.1). Since I0 is a counterexample:∑

j∈I0

wj(Ej + Tj + dj) = CLDWSPT
I0

> 2C∗I0 = 2
∑
j∈I0

wj(E
∗
j + T ∗j + dj) (4.1)

where Ej and Tj denote the earliness and tardiness of job j in the LDWSPT schedule of I0,
and E∗j and T ∗j denote the earliness and tardiness of job j in the optimal offline schedule of
I0.

Figure 4.1: Illustration of an instance for which the LDWSPT schedule consist of k blocks
of jobs.

Split the counterexample into two separate instances: I1 and I2. I1 consists of all jobs in
the first block, and I2 consists of all other jobs.

There exists an LDWSPT schedule for I1 in which the start times of jobs are the same
as their start times in the LDWSPT schedule of I0. In the LDWSPT schedule of I0, there is
idle time before the start of the first job in the second block. Immediately before the start
of the first job in the second block, either there is no available job or the SELECTED job,
Jj, cannot be processed because pj > t. In the latter case, we create a new instance I2′ by
setting the release date of the SELECTED job (rj) to zero. In the former case, I2′ is the
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same as I2. Our goal here is to ensure that the first job in the LDWSPT schedule of I2′ is
not processed before the first job in the second block of the LDWSPT schedule of I0. Hence,
we can claim there exists an LDWSPT schedule of I2′ in which the start times of jobs are
the same as their start times in the LDWSPT schedule of I0. Thus,

CLDWSPT
I1

=
∑
j∈I1

wj(Ej + Tj + dj)

CLDWSPT
I2′

=
∑
j∈I2′

wj(Ej + Tj + dj)

In addition:

C∗I1 ≤
∑
j∈I1

wj(E
∗
j + T ∗j + dj)

C∗I2′ ≤
∑
j∈I2′

wj(E
∗
j + T ∗j + dj)

C∗I1 + C∗I2′ ≤ C∗I0

Consequently, based on Equation 4.1:

CLDWSPT
I1

+ CLDWSPT
I2′

= CLDWSPT
I0

> 2C∗I0 ≥ 2C∗I1 + 2C∗I2′

Therefore, either CLDWSPT
I1

> 2C∗I1 or CLDWSPT
I2′

> 2C∗I2′ . In other words, either I1 or I2′

is a counterexample which contradicts our assumption that I0 is a counterexample with the
smallest possible number of jobs.

Lemma 19. If there exists a counterexample, there also exists a counterexample (with the
same number of jobs) which has an optimal offline schedule in which all jobs finish at their
due dates.

Proof. Consider a counterexample, I, which has an optimal offline schedule with at least
one job, Jj, that does not finish at its due date. Define Cj and Zj as the completion time of
Jj in the optimal offline schedule and the LDWSPT schedule, respectively. Create Inew by
altering I as follows:

• If Cj < dj and Zj ≥ dj, set dnewj = dj − x, where x = dj − Cj > 0. Inew is also a
counterexample because:

CLDWSPT
Inew = CLDWSPT

I > 2(C∗I − 2wjx) ≥ 2C∗Inew

• If Cj > dj and Zj ≤ dj, set dnewj = dj + x, where x = Cj − dj > 0. Inew is also a
counterexample because:

CLDWSPT
Inew = CLDWSPT

I + 2wjx > 2C∗I ≥ 2C∗Inew
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• If Cj < dj and Zj < dj, set dnewj = dj − x − y, where y = max(0, Zj − Cj), and
x = dj − Cj − y. Inew is also a counterexample because:

CLDWSPT
Inew = CLDWSPT

I − 2wjx > 2(C∗I − 2wjx− 2wjy) ≥ 2C∗Inew

• If Cj > dj and Zj > dj, set dnewj = dj + x + y, where y = max(0, Cj − Zj), and
x = Cj − dj − y. Inew is also a counterexample because:

CLDWSPT
Inew = CLDWSPT

I + 2wjy > 2C∗I ≥ 2C∗Inew

As a result, Inew is a counterexample in which there are fewer jobs that do not finish
at their due dates in the optimal offline schedule than in I. By repeating this procedure,
we can create a counterexample in which all jobs finish at their due dates in the resulting
optimal offline schedule.

Lemma 20. If there exists a counterexample which has an optimal offline schedule in which
all jobs finish at their due dates, there also exists a counterexample (with the same number
of jobs) which has an optimal offline schedule in which all jobs finish at their due dates and
there is no feasible way to start any job earlier without changing the sequence of jobs.

Proof. Consider a counterexample, I, which has an optimal offline schedule in which all jobs
finish at their due dates and at least one job, Jj, can start xj time unit earlier without
changing the sequence of jobs.

We create Inew by setting dnewj = dj − xj in I. Note that Jj starts xj time unit earlier
in the optimal offline schedule of Inew than in the optimal offline schedule of I; hence, it
finishes at its due date in Inew. In addition, Inew is a counterexample, because:

• If Zj < dj:

CLDWSPT
Inew ≥ CLDWSPT

I − 2wjxj > 2(C∗I − wjxj) = 2C∗Inew

• If Zj ≥ dj:
CLDWSPT
Inew = CLDWSPT

I > 2(C∗I − wjxj) = 2C∗Inew

As a result, Inew is a counterexample that has an optimal offline schedule in which all
jobs finish at their due dates. Also,

∑
j d

new
j <

∑
j dj. Since there is a lower bound on the

summation of the the due dates of all jobs, repeatedly applying this procedure results in a
counterexample in which all jobs finish at their due dates in the optimal offline schedule and
there is no feasible way without changing the sequence to start any job earlier.

Definition 4. We define “distinctive counterexample” to be a counterexample with the fol-
lowing properties:
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1. The number of jobs is the smallest possible in a valid counterexample.

2. Jobs finish at their due dates in the optimal offline schedule.

3. In the optimal offline schedule, there is no feasible way, without changing the sequence
of jobs, to start any job earlier.

It follows from Lemmas 19 and 20 that a distinctive counterexample exists if and only if
any counterexample exists. In Subsection 4.4.2, we prove that for the special case, in which all
jobs have equal ratios of pj/wj, no distinctive counterexample exists. By extending the result
of this special case, in Subsection 4.4.2, we prove that no distinctive counterexample exists
for which jobs are arranged in increasing ratios of pj/wj in the LDWSPT schedule. Lastly,
in Subsection 4.4.2 we extent the results of the special cases and prove that no distinctive
counterexample and consequently, no counterexample exists in the general case, which proves
the LDWSPT policy is 2-competitive for the minimization of 1|rj, dj, online|

∑
j wj(Ej+Tj+

dj).

Special Case: When All Jobs Have Equal Ratios of pj/wj

Consider an instance I in which all jobs have equal ratios of pj/wj. For simplicity, from now
on, we refer to the ratio of pj/wj as the “ratio.” Let κ represents the greatest common divisor
of processing times of all jobs in instance I. We create a new instance, I ′, that we refer to
as the “split version”, in which we divide each job of instance I (e.g., Jj) into nj = pj/κ
jobs (J ′j1, J

′
j2, ..., J

′
jnj

), and we refer to them as sub-jobs. For each of the sub-jobs, we set the
processing time to p′ = κ, the weight to w′ = κ.wj/pj, and the release date to zero. Also,
the due date of each sub-job that is created by dividing job j of instance I is dj. Note that
the weights and processing time of all sub-jobs of instance I ′ are equal. As an illustration,
consider Example 1.

Example 1. There exist an instance, I, with three jobs: p1 = 2, w1 = 4, d1 = 9; p2 = 4, w2 =
8, d2 = 7; and p3 = 3, w3 = 6, d3 = 3. Note that the ratio of all jobs are equal (

pj
wj

= 0.5 ∀j).

To create instance I ′, job one is divided into two sub-jobs, J ′11, J ′12; job two is divided into
four sub-jobs, J ′21, J ′22, J ′23, J ′24; and job three is divided into three sub-jobs, J ′31, J ′32, J ′33. Note
that all sub-jobs have equal processing times p′ = κ = 1, and equal weights w′ = κ.wj/pj = 2,
and their release dates are zero. The due date of sub-jobs J ′11, J ′12 is d1 = 9, sub-jobs J ′21,
J ′22, J ′23, J ′24 is d2 = 7, and sub-jobs J ′31, J ′32, J ′33 is d3 = 3.

Definition 5. Consider instance I in which all jobs have equal ratios, and its split version,
I ′. The “LDWSPT-equivalent schedule” for the instance I ′ is a schedule in which the start
time of sub-job J ′jk is Sj+p′(k−1), where Sj is the start time of Jj in the LDWSPT schedule
for instance I. Similarly, the “optimal-equivalent schedule” for the instance I ′ is a schedule
in which the start time of sub-job J ′jk is S∗j + p′(k − 1), where S∗j is the start time of Jj in
the optimal offline schedule of instance I.
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As an illustration, for Example 1, the LDWSPT schedule for the instance I as well as
the LDWSPT-equivalent schedule for the instance I ′ are depicted in schedule (a) of Figure
4.2. Also, the optimal offline schedule of the instance I as well as the optimal-equivalent
schedule for the instance I ′ are illustrated in the schedule (b) of Figure 4.2.

Similar to Figure 4.2, let Zj denotes the completion time of Jj in the LDWSPT schedule,
Cj denotes the completion time of Jj in the optimal offline schedule, z′jk denotes the comple-
tion time of sub-job J ′jk in the LDWSPT-equivalent schedule, and c′jk denotes the completion
time of sub-job J ′jk in the optimal-equivalent schedule. Note that in Figure 4.2, the indices
are assigned based on the sequence of appearance of jobs in the LDWSPT schedule. In
addition, let s refers to the start time of the first job in the LDWSPT schedule, and q refers
to s minus the start time of the first job in the optimal offline schedule.

Figure 4.2: Illustration of an instance of three jobs with equal ratios of pj/wj, and its split
version.

Lemma 21. q ≤ pmax where pmax = maxj pj.

Proof. Since jobs are ordered in a list in the LDWSPT policy, the relative position of any two
jobs does not change after they join the list. Hence, there are two possibilities for the start
time of the first job (Jj) in the LDWSPT schedule. First, s = pj. In this case, q ≤ pj ≤ pmax.
Second, s = rj. In this case, when rj ≤ pmax, it is trivially true that q ≤ rj ≤ pmax; and when
rj > pmax, we conclude that no job was available before rj; otherwise, it would processed
before rj. So, the processing starts at least at time rj in the optimal offline schedule and in
this case q ≤ 0 ≤ pmax.

Definition 6. For any given instance, I, in which jobs have equal ratios, and its split version,
I ′, a “sub-job schedule” refers to any arbitrary schedule for sub-jobs of instance I ′. We call
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a sub-job schedule “feasible” if the first sub-job does not start before max{0, s − pmax}. We
define a new metric, ρ̂I′(φ), for any feasible sub-job schedule, φ, for the instance I ′ as:

ρ̂I′(φ) =

∑
j (
∑nj

j′=1w
′(| z′jj′ − cjj′ | +cjj′) + A(pj))∑

j (
∑nj

j′=1w
′cjj′ + A(pj))

= 1 +

∑
j

∑nj
j′=1 w

′ | z′jj′ − cjj′ |∑
j (
∑nj

j′=1 w
′cjj′ + A(pj))

,

where cjj′ is the completion time of sub-job J ′jj′ in the sub-job schedule φ for the instance I ′,

and A(pj) =
w′pj(pj−p′)

2p′
.

Lemma 22. For any distinctive counterexample, I, in which jobs have equal ratios, and its
split version, I ′, there exists a feasible sub-job schedule, φ, for which ρ̂I′(φ) ≥ ρLDWSPT

I .

Proof. To prove there exists a feasible sub-job schedule, φ, for which ρ̂I′(φ) ≥ ρLDWSPT
I , we

show for the optimal-equivalent schedule, φ′, ρ̂I′(φ
′) = ρLDWSPT

I .
The optimal-equivalent schedule for I ′ is a feasible sub-job schedule because the first job

in the optimal offline schedule of I starts at s− q, which is based on Lemma 21 greater than
or equal to max{s− pmax, 0}.

In the optimal-equivalent schedule of I ′:

Ej + Tj =| Zj − dj |=| z′jj′ − c′jj′ | ∀j, j′

wj(Ej + Tj) =

nj∑
j′=1

w′ | z′jj′ − c′jj′ | ∀j

∑
j

wj(Ej + Tj) =
∑
j

nj∑
j′=1

w′ | z′jj′ − c′jj′ | .

In addition:

dj = Cj = c′jnj = c′jj′ + p′(nj − j′)

wjdj =

nj∑
j′=1

w′c′jj′ + w′p′
nj∑
j′=1

(nj − j′)

w′p′
nj∑
j′=1

(nj − j′) =
p′2wj(n

2
j − nj)

2pj
=
wj(pj − p′)

2
= A(pj)

wjdj =

nj∑
j′=1

w′c′jj′ + A(pj)
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∑
j

wjdj =
∑
j

(

nj∑
j′=1

w′c′jj′ + A(pj));

hence:

ρ̂I′(φ
′) = 1 +

∑
j

∑nj
j′=1w

′ | z′jj′ − c′jj′ |∑
j (
∑nj

j′=1w
′c′jj′ + A(pj))

= 1 +

∑
j wj(Ej + Tj)∑

j wjdj
= ρLDWSPT

I

Definition 7. For any given sequence of sub-jobs, we define an “efficient sub-job schedule”
as a specific feasible sub-job schedule in which the first sub-job of the sequence starts at time
max(0, s− pmax), the second sub-job of the sequence starts at the completion of the first sub-
job, the third sub-job of the sequence starts at the completion of the second sub-job, and so
on.

Lemma 23. For any given instance, I, in which jobs have equal ratios, its split version, I ′,
and any feasible sub-job schedule, φ, for which ρ̂I′(φ) > 2:

ρ̂I′(ϕ) ≥ ρ̂I′(φ),

where ϕ is an efficient sub-job schedule for the instance I ′, in which the sequence of sub-jobs
is the same as the sequence of sub-jobs in φ.

Proof. When both the efficient sub-job schedule and any arbitrary feasible sub-job schedule
have the same sequence of sub-jobs, the start time of each sub-job in the efficient sub-job
schedule is less than or equal to its start time in the arbitrary feasible sub-job schedule.

The remainder of the proof is similar to the proof of Lemma 20.

Lemma 24. For any given instance, I, in which jobs have equal ratios, and its split version,
I ′:

ρ̂I′(ϕ
∗) = max

ϕ∈Φ
ρ̂I′(ϕ),

where ϕ∗ is the efficient sub-job schedule in which the sequence of sub-jobs is the reverse of
the sequence of sub-jobs in the LDWSPT-equivalent schedule, and Φ represent the set of all
possible efficient sub-job schedules for the instance I ′.

Proof. By contradiction, assume:

ρ̂I′(ϕ
∗) 6= max

ϕ∈Φ
ρ̂I′(ϕ) = ρ̂I′(ϕ

′).

Clearly, there exists at least a pair of sub-jobs (e.g., J ′jj′ and J ′kk′) that J ′jj′ appears
before J ′kk′ in both ϕ′ and the LDWSPT-equivalent schedule. We create a new efficient



CHAPTER 4. ONLINE SCHEDULING POLICIES 96

sub-job schedule, ϕ′′, by substituting sub-jobs J ′jj′ and J ′kk′ in the ϕ′. With straightforward
algebra it is easy to see that:

ρ̂I′(ϕ
′′) ≥ ρ̂I′(ϕ

′).

By repeating this procedure until no pair of sub-jobs exists that has the same relative
sequence in both efficient sub-job schedule and the LDWSPT-equivalent schedule, we can
shows that ρ̂I′(ϕ

∗) = maxϕ∈Φ ρ̂I′(ϕ).

Lemma 25. For any given instance, I, in which jobs have equal ratios, its split version, I ′,
and any sub-job schedule, φ:

ρ̂I′(φ) ≤ 2.

Proof. Based on Lemma 24:
ρ̂I′(ϕ

∗) = max
ϕ∈Φ

ρ̂I′(ϕ),

where ϕ∗ is the efficient sub-job schedule in which the sequence of sub-jobs is the reverse of
the sequence of sub-jobs in the LDWSPT-equivalent schedule. For ϕ∗:

When (
∑

j pj + pmax)/p
′ is an even number:

∑
j

nj∑
j′=1

w′ | z′jj′ − cjj′ |≤
(
∑

j pj)
2 + p2

max

2p′/w′
,

and when (
∑

j pj + pmax)/p
′ is an odd number:

∑
j

nj∑
j′=1

w′ | z′jj′ − cjj′ |≤
(
∑

j pj)
2 + p2

max − p′
2

2p′/w′
.

In addition: ∑
j

nj∑
j′=1

w′cjj′ ≥
(
∑

j pj)
2 + (

∑
j pj)p

′

2p′/w′

A(pmax) =
pmax(pmax − p′)

2p′/w′
;

hence: ∑
j

(

nj∑
j′=1

w′cjj′ + A(pj)) ≥ A(pmax) +
∑
j

nj∑
j′=1

w′cjj′ ≥
∑
j

nj∑
j′=1

w′ | z′jj′ − cjj′ | ,

which conclude:

ρ̂I′(ϕ
∗) = 1 +

∑
j

∑nj
j′=1 w

′ | z′jj′ − cjj′ |∑
j (
∑nj

j′=1w
′cjj′ + A(pj))

≤ 2

Since ρ̂I′(ϕ
∗) ≤ 2, based on Lemma 23, for any sub-job schedule, φ, ρ̂I′(φ) ≤ 2.
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Theorem 1. ρLDWSPT
I ≤ 2 for any instance, I, in which all jobs have equal ratios of pj/wj.

Proof. By Lemma 22, for any distinctive counterexample, I, in which jobs have equal ratios,
and its split version, I ′, there exists a sub-job schedule, φ, for which:

ρ̂I′(φ) ≥ ρLDWSPT
I > 2.

By Lemma 25, for any sub-job schedule, φ, ρ̂I′(φ) cannot be greater than two. As a result,
no distinctive counterexample in which all jobs have equal ratios exists. Consequently, by
Lemmas 19 and 20, no counterexample in which all jobs have equal ratios exists.

Special Case: When Jobs are Arranged in Increasing Ratios of pj/wj in the
LDWSPT Sequence

For each job, Jj, in the LDWSPT schedule of an instance, I, let

V I
j = Ej + Tj − dj

and
V̂ (I) =

∑
j∈I

wjV
I
j .

Note that for any instance, I, when all jobs (similar to the distinctive counterexamples)
complete at their due dates in the optimal offline schedule, ρLDWSPT

I > 2 is equivalent to
V̂ (I) > 0.

Definition 8. For any distinctive counterexample, I0, in which jobs are arranged in in-
creasing ratios of pj/wj in its LDWSPT sequence, if ∃k′ = min{k : pk/wk < pk+1/wk+1},
we create a new instance, I0′, and we refer to it as the “mutated version”, by making the
following changes to the instance I0:

wnewj =
pj × wk′+1

pk′+1

∀j ∈ {1, 2, ..., k′},

where the numerical indices of jobs are assigned based on their appearance in the LDWSPT
schedule for I0.

Lemma 26. For any distinctive counterexample, I0, in which jobs are arranged in increasing
ratios of pj/wj in its LDWSPT sequence and ∃k′ = min{k : pk/wk < pk+1/wk+1}, its mutated
version, I0′, is a distinctive counterexample.

Proof. In the proof, the numerical indices of jobs are assigned based on their appearance in
the LDWSPT schedule for I0. Create a new instance, I1, that only contains J1, J2, ..., Jk′ .
As the ratio of all jobs in instance I1 are equal, by Theorem 1, ρLDWSPT

I1
≤ 2.

It is easy to see that there exists an LDWSPT schedule for I1 that is the same as the
schedule of the first k′ jobs in the LDWSPT schedule for I0. Therefore, for the instance I0:
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k′∑
j=1

wjV
I0
j ≤ 0. (4.2)

In I0, since ρLDWSPT
I0

> 2:

V̂ (I0) =
N∑
j=1

wjV
I0
j =

k′∑
j=1

wjV
I0
j +

N∑
j=k′+1

wjV
I0
j > 0,

where N denotes the number of jobs in I0. As the relative sequence of jobs in a sorted list of
ratios are the same in I0 and I0′ , there exist an LDWSPT schedule for I0′ that is the same
as the LDWSPT schedule for I0. In addition:

pk′ .wk′+1

pk′+1.wk′
< 1;

therefore:

0 <
k′∑
j=1

wjV
I0
j +

N∑
j=k′+1

wjV
I0
j ≤

pk′ .wk′+1

pk′+1.wk′

k′∑
j=1

wjV
I0
j +

N∑
j=k′+1

wjV
I0
j = V̂ (I0′)

The optimal offline schedules of I0 and I0′ are the same; thus, all jobs finish at their due
dates in the optimal offline schedule of I0′ . As a result, from V̂ (I0′) > 0, we conclude that
I0′ is a distinctive counterexample.

Note that as there exists an LDWSPT for I0′ that is the same as the LDWSPT for I0,
jobs in the LDWSPT schedule for I0′ are arranged in increasing ratios of pj/wj.

Theorem 2. ρLDWSPT
I ≤ 2 for any instance, I, in which jobs are arranged in increasing

ratios of pj/wj in the LDWSPT sequence.

Proof. Assume there exists a distinctive counterexample, I0, in which jobs are arranged in
increasing ratios of pj/wj in the LDWSPT sequence.

If @ k′ = min{k : pk/wk < pk+1/wk+1}, the ratio of all jobs in I0 are equal.
If ∃ k′ = min{k : pk/wk < pk+1/wk+1}, the ratio of the first k′ jobs that appear in

the LDWSPT schedule for I0 are equal. By Lemma 26, there exists another distinctive
counterexample (the mutated version of I0), in which jobs are arranged in increasing ratio
of pj/wj in its LDWSPT sequence, and the ratio of at least the first k′ + 1 jobs that appear
in its LDWSPT schedule are equal. By repeating this procedure, we can create a distinctive
counterexample in which the ratio of all jobs are equal.

By Theorem 1, no counterexample exists in which the ratio of all jobs are equal. There-
fore, the assumption of existence of a distinctive counterexample, in which jobs are arranged
in increasing ratio of pj/wj in its LDWSPT sequence, is not true. Consequently, by Lemmas
19 and 20, no counterexample in which jobs are arranged in increasing ratio of pj/wj in its
LDWSPT schedule exists.
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General Case

Definition 9. Define a “sub-block” to be a set of all jobs that appear consecutively and are
arranged in increasing ratios of pj/wj in an LDWSPT sequence. Represent the ith sub-block
by Bi, the i

′th job in Bi by Ji,i′, the number of jobs in Bi by Ni, the total number of sub-blocks
by l, and the start time of Jl−1,Nl−1

by r′.
Note that in this Subsection, to represent jobs, we use two notations interchangeably: Jj

for j ∈ {1, ..., N} where N denotes the total number of jobs, and Ji,i′ for i ∈ {1, ..., l} and
i′ ∈ {1, ..., Ni}. We transform the indices by function [., .]. For example, if J5 is the third
job in the fourth sub-block of an LDWSPT schedule, [4, 3] = 5.

For illustration, Figure 4.3 captures the general formation of an LDWSPT sequence for
an arbitrary instance I. In this figure, each bar represents a job. Jobs are positioned on the
X-axis based on their position in the LDWSPT sequence for I, and the Y-axis represents
the ratios.

Figure 4.3: General formation of the LDWSPT sequence that contains l sub-blocks of jobs.

Note that when all jobs have equal ratios (Subsection 4.4.2), and when jobs are arranged
in increasing ratios of pj/wj in the LDWSPT sequence (Subsection 4.4.2), only one sub-block
of jobs exists, while in the general form, similar to Figure 4.3, there can be many sub-blocks.

Definition 10. Define set A as the set of all jobs in Bl (last sub-block) that have ratios
strictly less than p[l−1,Nl−1]/w[l−1,Nl−1], which is the ratio of the last job in the second to last
sub-block.

Lemma 27. If there exists a distinctive counterexample, I, we can create another distinctive
counterexample, I ′, by setting the release date of all jobs in set A as well as all other jobs in
Bl that have greater release date than r′ to rnew = r′ + ξ, where ξ → 0+.
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Proof. The release dates of all jobs in set A are greater than r′; otherwise, they would have
appeared before Jl−1,Nl−1

in the LDWSPT schedule of I. Since after r′ jobs are arranged
increasingly based on their ratios, setting the release dates of jobs in set A as well as all
other jobs of Bl that have greater release date than r′ to rnew does not affect the LDWSPT
schedule. Hence the LDWSPT schedule for I and for I ′ are the same. In addition, the
optimal offline schedule of I and I ′ are the same since all jobs complete at their due dates.
Thus, I ′ is also a distinctive counterexample, because:

ρLDWSPT
I′ = ρLDWSPT

I > 2

Definition 11. We define Fj(k) to represent the set of jobs among the first k jobs of set A
that appear before Jj (including itself) in an LDWSPT schedule. Similarly, we define Hj(k)
to represent the set of jobs among the first k jobs of set A that appear before Jj (including
itself) in an optimal offline schedule. Lastly, we define P̃j(k) and P ′j(k) as follows:

P̃j(k) =
∑

i∈Fj(k)

pi

and

P ′j(k) =
∑

i∈Hj(k)

pi.

Lemma 28. For any distinctive counterexample, I0, in which the release date of each job in
Bl is at most r′ + ξ where ξ → 0+, there exist small enough δ1 > 0 and δ2 > 0 for which at
least one of the following statements is true.

Statement 1: A distinctive counterexample, I1, can be created by altering the processing
times of the first k′ jobs of set A as: pnewj = (1 − δ1)pj, and their due dates as: dnewj =
dj − δ1P

′
j(k
′);

Statement 2: A distinctive counterexample, I2, can be created by altering the processing
times of the first k′ jobs of set A as: pnewj = (1 + δ2)pj, and their due dates as: dnewj =
dj + δ2P

′
j(k
′);

where:
k′ = min {min{k :

p[l,k]

w[l,k]

<
p[l,k+1]

w[l,k+1]

}, |A|}.

Proof. Define v1
j and v1

j as follows:

v1
j = V I1

j − V
I0
j

v2
j = V I2

j − V
I0
j
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In Table 4.2, for each job j, the values of v1
j and v2

j based on whether Jj is tardy (T), is
early (E) or is neither (-) in the LDWSPT schedule for I0 is presented.

Table 4.2: Values of v1
j and v2

j for each job.

Job T/E v1
j v2

j

j

T +(P ′j(k
′)− P̃j(k′))δ1 + P ′j(k

′)δ1 −(P ′j(k
′)− P̃j(k′))δ2 − P ′j(k′)δ2

E −(P ′j(k
′)− P̃j(k′))δ1 + P ′j(k

′)δ1 +(P ′j(k
′)− P̃j(k′))δ2 − P ′j(k′)δ2

- +|P ′j(k′)− P̃j(k′)|δ1 + P ′j(k
′)δ1 +|P ′j(k′)− P̃j(k′)|δ2 − P ′j(k′)δ2

In I0, I1, and I2, all jobs finish at their due dates in the optimal offline schedule. Therefore,
ρLDWSPT
I0

> 2, ρLDWSPT
I1

> 2, and ρLDWSPT
I2

> 2 are equivalent to V̂ (I0) > 0, V̂ (I1) > 0, and

V̂ (I2) > 0, respectively. Furthermore:

V̂ (I1) = V̂ (I0) +
∑
j

wjv
1
j

V̂ (I2) = V̂ (I0) +
∑
j

wjv
2
j

As demonstrated in Table 4.2, for each j, v1
j/δ1 ≥ −v2

j/δ2. Therefore, if
∑

j wjv
2
j < 0,

then
∑

j wjv
1
j > 0. Hence, since V̂ (I0) > 0, at least one of V̂ (I1) or V̂ (I2) is greater than

zero, and consequently, at least one of I1 or I2 is a distinctive counterexample.

Lemma 29. δ1 and δ2 in Lemma 28 can be any arbitrary positive numbers as long as the
LDWSPT sequences for I1 and I2 remain the same as the LDWSPT sequence for I0.

Proof. For any δ1 > 0 and δ2 > 0, as long as the LDWSPT sequences of I1 and I2 remain
the same as the LDWSPT sequence for I0, v1

j ≥ −v2
j remains valid, and thus, at least one

of V̂ (I1) or V̂ (I2) is greater than zero. Therefore, for any δ1 > 0 and δ2 > 0, as long as the
LDWSPT sequences for I1 and I2 remain the same as the LDWSPT sequence of I0, at least
one of the statements one and two is true.

Definition 12. For any distinctive counterexample, I0, in which the release date of each job
in Bl is at most r′ + ξ where ξ → 0+, and ∃k′ = min{k : p[l,k]/w[l,k] < p[l,k+1]/w[l,k+1]}, the
“adjusted version” of I0 is created by altering the processing times and due dates of the first
k′ jobs of set A of I0 as follows:

pnew[l,j] = p[l,k′+1] × w[l,j]/w[l,k′+1],
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and

dnew[l,j] = d[l,j] + (
p[l,k′+1].w[l,j]

p[l,j].w[l,k′+1]

− 1)× P ′[l,j](k′).

for all j ∈ {1, 2, ..., k′}. Note that if k′ exists, by Definition 10, k′ ≤ |A|.

Lemma 30. For any distinctive counterexample, I0, in which the release date of each job
in Bl is at most r′ + ξ where ξ → 0+, and ∃k′ = min{k : p[l,k]/w[l,k] < p[l,k+1]/w[l,k+1]}, the
adjusted version of I0 is a distinctive counterexample.

Proof. For any distinctive counterexample, I0, in which the release date of each job in Bl is
at most r′ + ξ where ξ → 0+, when setting the values of δ1 and δ2 in Lemma 28 to 1 and
p[l,k′+1].w[l,k′]
p[l,k′].w[l,k′+1]

− 1, respectively, by Lemma 29, at least one of the following statements is true:

Statement 1: A distinctive counterexample, I1, can be created by altering the processing
times of the first k′ jobs of set A as: pnewj = 0, and their due dates as: dnewj = dj −P ′j(k′);
Statement 2: The adjusted version of I0 is a distinctive counterexample.

To prove the adjusted version of I0 is a distinctive counterexample, in the following, we
prove the first statement is wrong.

Assume the first statement is true and I1 is a distinctive counterexample. Create a new
instance, I1′ by removing Jl,1, Jl,2, ..., Jl,k′ from I1. Note that the start and end times of all
other jobs in the LDWSPT schedules for I1 and for I1′ are the same. Therefore:

V̂ (I1′) = V̂ (I1)−
∑

j∈{1,2,...,k′}

w[l,j](E[l,j] + T[l,j] − d[l,j]) (4.3)

In I1, r[l,j] > r′ for j ∈ {1, 2, ..., k′}. Therefore, the due dates of Jl,1, Jl,2, ..., Jl,k′ which
are equal to their completion times in the optimal offline schedule of I1 are grater than r′.

As the processing times of Jl,1, Jl,2, ..., Jl,k′ are zero, in the LDWSPT schedule for I1, their
start and end times are equal to the completion time of Jl−1,Nl−1

, which is at most 2r′. So if
any of those jobs is tardy, its tardiness is at most r′. Therefore, for j ∈ {1, 2, ..., k′}, whether
Jl,j has earliness, tardiness or neither:

E[l,j] + T[l,j] ≤ d[l,j]

and thus: ∑
j∈{1,2,...,k′}

w[l,j](E[l,j] + T[l,j] − d[l,j]) ≤ 0. (4.4)

From Equations 4.3 and 4.4, we conclude that V̂ (I1′) > 0. As a result, I1′ is a distinctive
counterexample. However, this contradicts the fact that a distinctive counterexample has
the minimum number of jobs among all counterexamples, as I1′ has fewer jobs than I1.
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Therefore, the assumption made on the correctness of the first statement is not valid, and
thus, we conclude that the adjusted version of I0 is a distinctive counterexample.

Theorem 3. The LDWSPT policy is 2-competitive for the minimization of 1|rj, dj, online|∑
j wj(Ej + Tj + dj).

Proof. Assume a distinctive counterexample exists. Consider any distinctive counterexample
that has the minimum number of sub-blocks among all counterexamples. By Lemma 27,
there exists a distinctive counterexample, I0, in which the release date of each job in Bl is
at most r′ + ξ where ξ → 0+, and that has the minimum number of sub-blocks among all
counterexamples. In I0, the number of sub-blocks are greater than one, because otherwise,
all jobs are arranged in increasing ratios of pj/wj in its LDWSPT schedule, which is not
possible based on Theorem 2.

To prove no distinctive counterexample exists, we prove if I0 exists, another distinctive
counterexample with fewer number of sub-blocks than I0 exists, which contradicts to the
assumption that I0 is a distinctive counterexample that has the minimum number of sub-
blocks among all counterexamples. To do this, we first prove there exists a distinctive
counterexample in which the ratio of all jobs in set A are equal.

For the instance I0, if @k′ = mink∈{1,2,...,|A|−1}{k : p[l,k]/w[l,k] < p[l,k+1]/w[l,k+1]}, the ratios
of all jobs in set A are equal. Also, if ∃k′ = mink∈{1,2,...,|A|−1}{k : p[l,k]/w[l,k] < p[l,k+1]/w[l,k+1]},
the ratios of the first k′ jobs of set A that appear in the LDWSPT schedule for I0 are equal.
In this case, by Lemma 30, there exists another distinctive counterexample (the adjusted
version of I0), in which the ratios of at least the first k′ + 1 jobs of set A that appear in
its LDWSPT schedule are equal. By repeating this procedure, we can create a distinctive
counterexample in which the ratios of all jobs in set A are equal.

Consider a distinctive counterexample, I1, in which the release date of each job in Bl

is at most r′ + ξ where ξ → 0+, that has the minimum number of sub-blocks among all
counterexamples, and the ratios of all its jobs in set A are equal.

If |A|< Nl in I1, by Lemma 30, there exists a distinctive counterexample (the adjusted
version of I1) in which the ratios of the first |A| jobs in the last sub-block are equal to the
ratio of Jl,|A|+1. As by Definition 10, the ratio of Jl,|A|+1 is larger than the ratio of Jl−1,Nl−1

,
the adjusted version of I1 has one sub-block less than I1.

If |A|= Nl in I1, by setting the values of δ1 and δ2 in Lemma 28 to 1 and
p[l−1,Nl−1]

.w[l,|A|]

p[l,|A|].w[l−1,Nl−1]
−1,

respectively, with a similar proof to Lemma 30, we can show that there exists a distinctive
counterexample that has one sub-block less than I1.

As a conclusion, if I0 exists, there exists a distinctive counterexample that has one sub-
block less than I0. This contradicts the fact that I0 has the smallest number of sub-blocks
among counterexamples. Therefore, we conclude that no distinctive counterexample, and
consequently, by Lemmas 19 and 20, no counterexample exists.

Corollary 1. The LDWSPT policy is an optimal policy for the minimization of 1|rj, dj,
online|

∑
j(Ej + Tj + dj) and 1|rj, dj, online|

∑
j wj(Ej + Tj + dj).
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Proof. From Theorem 3, for both problems, the LDWSPT policy is 2-competitive. In addi-
tion, from Lemma 17, two is a lower bound for both problems.

Corollary 2. The DWSPT policy is an optimal policy for the minimization of 1|rj, dj,
online|

∑
j(Ej + Tj + dj) and 1|rj, dj, online|

∑
j wj(Ej + Tj + dj).

Proof. Since the LDWSPT policy is the general form of the DWSPT policy, all schedules
produced by the DWSPT policy can be reproduced by LDWSPT policy. Hence, the DWSPT
policy is also 2-competitive and optimal for both problems.

4.5 Total Weighted (Modified) Unequal Earliness and

Tardiness Cost

Up to this point, we have assumed that earliness and tardiness penalties are equal. In this
section, we relax that assumption by extending our analysis to the problem of minimizing
1|rj, dj, online|

∑
j wj(ζEEj + ζTTj + ζddj), where ζE is the per unit time cost of earliness,

ζT is the per unit time cost of tardiness, and ζd is the per unit time due date cost. In what
follows, we refer to this problem as the “extended problem”.

In Subsection 4.5.1, we prove that max(2, 1 + ζT/ζd) is a lower bound for the extended
problem and in Subsection 4.5.2, we show that the LDWSPT policy is max(2, 1 + ζE/ζd, 1 +
ζT/ζd)-competitive for the extended problem. Thus, when ζE ≤ max{ζT , ζd}, the LDWSPT
policy is optimal for the extended problem.

Note that for the extended problem, when ζd < ζT , the lower bound is a function of ζd
and ζT . Also, when ζd < ζE or ζd < ζE, the upper bound is a function of ζd and max{ζE, ζT}.
This is in contrast to the previous results in this chapter, in which both lower and upper
bounds are independent of the parameters of the problem.

4.5.1 Lower Bound

Lemma 31. max(2, 1+ζT/ζd) is a lower bound on the minimization of 1|rj, dj, online|
∑

j wj
(ζE Ej + ζTTj + ζddj).

Proof. We define Instances I1, I2, I3 and I4 as follows:

Instance I1: jobs = {J1}
J1: r1 = 0, p1 = 1, w1 = 1, d1 = 0.

Instance I2: jobs = {J1, J2, ..., JN}
J1: r1 = 0, p1 = 1, w1 = 1, d1 = 0;
Jj for j ∈ {2, 3, ..., N}: rj = a+ ε, pj = ε, wj = 1, dj = 0;
where ε = 1/N2 and a is a non-negative scalar.

Instance I3: jobs = {J1}
J1: r1 = 0, p1 = 1, w1 = 1, d1 = 1.
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Instance I4: jobs = {J1, J2, ..., JN}
J1: r1 = 0, p1 = 1, w1 = 1, d1 = 1;
Jj for j ∈ {2, 3, ..., N}: rj = a+ ε, pj = ε, wj = 1, dj = a;
where ε = 1/N2 and a is a non-negative scalar.

In the online setting, for both instances I1 and I2, a single job with identical characteristics
arrives at time zero, so it is impossible to distinguish between the instances at the start of
the horizon. Similarly, it is impossible to distinguish between the instances I3 and I4 at
the start of the horizon. In the following, we separately prove two and 1 + ζT/ζd are lower
bounds.

The competitive ratio of any possible policy is at least two, because for the instance I1,
when a is the starting time of process on J1, the objective function value of the policy is 1+a
times its optimal offline objective function value. Also, for the instance I2, when a is the
starting time of the process on J1, the objective function value of the policy, when N →∞,
is 1 + 1/a times its optimal offline objective function value. Therefore, the competitive ratio
of any policy is at least max(1 + a, 1 + 1/a), which is at least equal to two.

Similarly, the competitive ratio of any possible policy is at least 1 + ζT/ζd, because, for
the instance I3, when a is the starting time of the process on J1, the objective function
value of the policy is 1 + a.ζT

ζd
times its optimal offline objective function value. Also, for the

instance I4, when a is the starting time of the process on J1, the objective function value
of the policy, when N → ∞, is 1 + ζT

a.ζd
times its optimal offline objective function value.

Therefore, the competitive ratio of any policy is at least max(1 + a.ζT
ζd
, 1 + ζT

a.ζd
), which is at

least equal to 1 + ζT/ζd.

4.5.2 Competitiveness of the LDWSPT Policy

In this subsection, “counterexample” refers to an instance, I, with

ρLDWSPT
I > α,

where α ≥ 2. (Note that this is different from the “counterexample” of Subsection 4.4.2.)
Additionally, for any instance, I, in which jobs have equal ratios, and its split version, I ′,
the metric ρ̂I′(φ), for any feasible sub-job schedule φ of the instance I ′, is defined as:

ρ̂I′(φ) = 1 +

∑
j

∑nj
j′=1 w

′ζT max{z′jj′ − cjj′ , 0}∑
j ζd(

∑nj
j′=1 w

′cjj′ + A(pj))
+

∑
j

∑nj
j′=1 w

′ζE max{cjj′ − z′jj′ , 0}∑
j ζd(

∑nj
j′=1 w

′cjj′ + A(pj))
.

For any instance, I, V I
j is defined as:

V I
j = ζEEj + ζTTj − (α− 1)ζddj,
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and for any instance, I, when all jobs (similar to the distinctive counterexamples) complete
at their due dates in the optimal offline schedule, ρLDWSPT

I > α is equivalent to V̂ (I) > 0.

Lemma 32. When ζT ≥ ζd, the LDWSPT policy is α-competitive for the minimization of
1|rj, dj, online|

∑
j wj(ζEEj + ζTTj + ζddj), where α = max{1 + ζE/ζd, 1 + ζT/ζd}.

Proof. Below, we present the conditions under which all proofs that are presented in Sub-
section 4.4.2 are valid for the extended problem. These results follow in a straightforward
way from the proofs already presented in this chapter.

For any ζE, ζT , and ζd, Lemmas 18, 21, 22, 24, 27, 28, and 29 are valid for the extended
problem. Note that the proof of the validity of Lemma 28 follows from the the proof of
Lemma 28 in Subsection 4.4.2, substituting Table 4.3 for Table 4.2. In Table 4.3, ζ̃j is ζT
when P ′j(k

′) ≥ P̃j(k
′), and is ζE when P ′j(k

′) < P̃j(k
′).

Table 4.3: Values of v1
j and v2

j for each job in the extended problem.

Job T/E v1
j v2

j

j

T +ζT (P ′j(k
′)− P̃j(k′))δ1 + (α− 1)ζdP

′
j(k
′)δ1 −ζT (P ′j(k

′)− P̃j(k′))δ2 − (α− 1)ζdP
′
j(k
′)δ2

E −ζE(P ′j(k
′)− P̃j(k′))δ1 + (α− 1)ζdP

′
j(k
′)δ1 +ζE(P ′j(k

′)− P̃j(k′))δ2 − (α− 1)ζdP
′
j(k
′)δ2

- +ζ̃ |P ′j(k′)− P̃j(k′)|δ1 + (α− 1)ζdP
′
j(k
′)δ1 +ζEζT/ζ̃ |P ′j(k′)− P̃j(k′)|δ2 − (α− 1)ζdP

′
j(k
′)δ2

Lemmas 19, 20, 23, 25, 26, and 30 are not valid for all α, ζE, ζT , and ζd. However, for
each of these Lemmas, if values of α, ζE, ζT , and ζd meet the following conditions, they are
valid.

Lemma 19 is valid when ζT ≥ ζd, and Lemma 20 is valid when α ≥ 1 + ζE/ζd. When
α ≥ 1 + ζE/ζd, similar to Lemma 23, it can be shown that ρ̂I′(ϕ) > α if ρ̂I′(φ) > α, and
when α ≥ 1 + ζE+ζT

2ζd
, similar to Lemma 25, it can be shown that ρ̂I′(φ) ≤ α. Lemma 26 is

valid when ζT ≥ ζd, α ≥ 1 + ζE/ζd and α ≥ 1 + ζE+ζT
2ζd

. Lastly, when α ≥ 1 + ζE/ζd and

α ≥ 1 + ζT/ζd, Lemma 30 is valid.
In sum, when ζT ≥ ζd, α ≥ 1 + ζE/ζd, and α ≥ 1 + ζT/ζd, similar to Theorems 1, 2, and

3, it can be shown that the LDWSPT policy is α-competitive for the extended problem. In
other words, when ζT ≥ ζd, the LDWSPT policy is max{1 + ζE/ζd, 1 + ζT/ζd}-competitive
for the extended problem.

Theorem 4. The LDWSPT policy is max{2, 1 + ζE/ζd, 1 + ζT/ζd}-competitive for the min-
imization of 1|rj, dj, online|

∑
j wj(ζEEj + ζTTj + ζddj).
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Proof. Consider any instance, I, in which ζd > ζT . For the instance I:∑
j

wj(ζEEj + ζTTj + ζddj) =
∑
j

wj((
ζEζT
ζd

)Ej + ζTTj + ζTdj)

+
∑
j

wj((ζE −
ζEζT
ζd

)Ej + (ζd − ζT )dj) (4.5)

Create a new instance, I1, by altering I and setting the per unit time cost of earliness
and due date to ζ1

E = ζEζT/ζd and ζ1
d = ζT , respectively. Then, the objective function value

for I1 is: ∑
j

wj(ζ
1
EEj + ζTTj + ζ1

ddj) =
∑
j

wj((
ζEζT
ζd

)Ej + ζTTj + ζTdj).

By Lemma 32:

ρLDWSPT
I1

≤ max{1 + ζ1
E/ζ

1
d , 1 + ζT/ζ

1
d} = max{2, 1 + ζE/ζd}.

Create a new instance, I2, by altering I and setting the per unit time cost of earliness,
tardiness, and due date to ζ2

E = (ζE− ζEζT/ζd), ζ2
T = 0 and ζ2

d = ζd− ζT , respectively. Then,
the objective function value for I2 is:∑

j

wj(ζ
2
EEj + ζ2

TTj + ζ2
ddj) =

∑
j

wj((ζE −
ζEζT
ζd

)Ej + (ζd − ζT )dj)

The optimal objective function value of the optimal offline schedule for I2 is at least∑
j wj(ζd − ζT )dj. Therefore,

ρLDWSPT
I2

≤
∑

j wj((ζE −
ζEζT
ζd

)Ej + (ζd − ζT )dj)∑
j wj(ζd − ζT )dj

≤ 1 + ζE/ζd.

As all jobs are the same in the instances I, I1 and I2, their LDWSPT schedules are the
same. By Equation 4.5, the objective function value of I is equal to the sum of the objective
function values of I1 and I2. Thus:

ρLDWSPT
I ≤ max{ρLDWSPT

I1
, ρLDWSPT

I2
} ≤ max{2, 1 + ζE/ζd}. (4.6)

From Equation 4.6, we conclude that the LDWSPT policy is max{2, 1+ζE/ζd}-competitive
when ζT < ζd. Also by Lemma 32, the LDWSPT policy is max{1 + ζE/ζd, 1 + ζT/ζd}-
competitive when ζT ≥ ζd. Hence, for any ζE, ζT and ζd, the LDWSPT policy is max{2, 1 +
ζE/ζd, 1 + ζT/ζd}-competitive for the extended problem.

Corollary 3. When max{ζT , ζd} ≥ ζE, the LDWSPT policy is an optimal policy for the
minimization of 1|rj, dj, online |

∑
j wj(ζEEj + ζTTj + ζddj), and its competitive ratio is

max{2, 1 + ζT/ζd}.
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Proof. By Lemma 4.5.1, max{2, 1 + ζT/ζd} is a lower bound on the competitive ratio, and
also by Theorem 4, the competitive ratio of LDWSPT policy is max{2, 1 + ζT/ζd} when
max{ζT , ζd} ≥ ζE.

Corollary 4. For the minimization of 1|rj, dj, online|
∑

j(Tj + dj) and 1|rj, dj, online|
∑

j

wj(Tj + dj), the LDWSPT policy is 2-competitive and optimal.

Proof. By Theorem 4, for both problems, the LDWSPT policy is 2-competitive. Also, by
a straightforward algebraic manipulation of the proof of Lemma 17, two is a lower bound
on the competitive ratio of both problems. Thus, the LDWSPT policy is optimal for both
problems and its competitive ratio is two.

4.6 Future Research

When ζE > max{ζT , ζd}, the LDWSPT policy is not optimal for the minimization of
1|rj, dj, online|

∑
j wj (ζEEj + ζTTj + ζddj). We conjecture that the following online pol-

icy has a competitive ratio of max{2, 1 + ζT/ζd} for this problem. We leave the proof of this
conjecture for future work.

Algorithm 4 Double Delayed Weighted Shortest Processing Time (DDWSPT) Policy

Create two empty lists, L1 and L2.
Each time the machine becomes available:

Step 1:
INSERT all new jobs (jobs that have been released but have not yet been added to L1)
into L1 such that the list is arranged in order of increasing dj − pj. Break ties arbitrarily.

Step 2:
Define k′ = max{k : dL1[k] − pL1[k] ≤ t}, where t is the time since the start of the time
horizon and L1[k] is the kth job in L1.

REMOVE the first k′ jobs of L1 and INSERT them into L2 such that L2 is arranged in
order of increasing pj/wj. Break ties arbitrarily.

Step 3:
If L2 is empty, wait until t = dL1[1] − pL1[1] or until a new job arrives, whichever happens
first, and then go to Step 1.
If L2 is not empty, SELECT the first job, Jj, in L2.

Step 4:
If pj ≤ t, REMOVE Jj from L2 and start processing it.
Otherwise, wait until t = pj or until t = dL1[1]−pL1[1] or until a new job arrives, whichever
happens first, and then, go to step 1.
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Chapter 5

Workload Leveling Based on Work
Space Zoning for Takt Planning1

5.1 Introduction

This chapter focuses on a location-based method that is used in takt planning, specifically
the Work Density Method (WDM) that is outlined next. The contribution to knowledge of
this chapter is the problem formulation and presentation of an optimization algorithm to
level so-called work density across trades engaged in a sequence of process steps necessary
to realize a phase of construction work.

The following Section 5.2 introduces the concept of work density and describes a takt
planning method based on it. It also formulates the workload leveling with zoning (WoLZo)
problem that is the focus of this chapter. Section 5.3 then highlights the literature on existing
mathematical optimization algorithms that informed the method we developed to solve the
WoLZo problem. Section 5.4 presents the problem formulation and Section 5.5 describes
the algorithm and solution method. The subsequent Section 5.6 illustrates the algorithm’s
application to example data and shows results. Finally, Section 5.7 expands on the discussion
of the results and offers insights gained from running the model with various inputs.

5.2 Work Density Method for Takt Planning

5.2.1 Definition of Work Density

To articulate the production planning method presented in this chapter, the following terms
will be used. The master schedule of a construction project may comprise one or multiple
phases. A phase is defined so as to include the work of all trades who will work on site
more-or-less concurrently in a certain work space. A phase’s start and end are delimited by

1This work is published in [38] and [39].
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milestones in the master schedule. Phases comprise one or several processes. Each process
is made up of steps. Each step is performed by one trade so that the process sequence of
steps forms a Parade of Trades. Trades may be responsible for performing one or multiple
steps in a process. However, to keep explanations simple, we here assume that a phase
comprises only a single process and that each trade performs only one step in a process.

How much time a trade needs to perform the work in their step depends on the project’s
specifics and management decision making. For example: What scope is included in any
one step?, Where is that work located?, and What means-and-methods will be used? Such
questions are addressed in the course of work structuring [79], but that is a topic beyond
the scope of this chapter. To describe this duration, Tommelein ([23], [75], [76]) coined the
term work density, expressed as a unit of time per unit of area. She defined it as follows:
Given a certain work area, work density describes how much time a trade will require to do
their work in that area, based on:

1. the product’s design, i.e., what is in the construction project drawings and specifica-
tions,

2. the scope of the trade’s work,

3. the specific task in their schedule (depending on work already in place and work that
will follow later in the same or another process),

4. the means and methods the trade will use (e.g., when prefabricating off-site, the work
density on-site is expected to decrease),

5. while accounting for crew capabilities and size.

Accordingly, work density serves as a metric common to all trades, that characterizes
at what speed their work will progress through space. It is an expression pertaining to
workload. It is also related to cycle time but augments that concept in that work density
explicitly references where work takes place, with space modeled in 2 dimensions. Knowledge
of work densities informs the task of production planning, for example using takt.

5.2.2 Takt Planning with the Work Density Method

Takt is the German word for beat. It is the “unit of time within which a product must be
produced (supply rate) in order to match the rate at which that product is needed (demand
rate)” (e.g., [34], [77]). Takt is a parameter used in designing a production system.

The goal of takt planning is to produce a production plan for a certain scope of work
and with a level work flow. That plan is then used to steer and control construction work
on- and off-site. Takt planning can have multiple objectives. An objective essential to the
workload leveling problem as formulated here, is that trade stacking is avoided, i.e., no two
trades can be working in the same location at any one time.



CHAPTER 5. TAKT PLANNING - WOLZO METHOD 111

Takt is widely used to pace manufacturing assembly-line processes. In contrast with
manufacturing where the assembly moves, in construction the product is stationary and the
process requires that trades move from one work location to the next. Thus, takt is defined
as the maximum amount of time allowed for each trade’s step in a process to finish their
work in their designated work location. Emulating an assembly line, each trade gets the
same amount of time to do the work for their step in the process, so the step that will need
the largest amount of time in any of their given work locations constrains the takt of the
line.

Aiming to keep the discussion simple, we refer to this largest amount of time as the takt.
However, when there is process time variability in the system, determination of the takt
must include some buffer time being added to this largest amount of time required. While
the elimination of process time variability and subsequent buffering for any that remains are
of utmost importance to the potential success of a takt plan’s implementation, discussion of
how to cope with process time variability is beyond the scope of this chapter.

Assuming the takt has been determined for a given process, if the work area associated
with a phase is undivided, the phase comprises only one process, and trades are not stacked,
then the duration of the phase equals the number of steps in the process multiplied by the
takt.

To speed up the process, the production planning team may divide the work area into
zones (work areas that are mutually exclusive and collectively exhaustive), and develop a
takt plan while continuing to ensure that each trade has their own zone to work in at any
time, never stacking them. In general—although not always—as zones get smaller, steps in
each zone will then have less scope for each trade to complete, and thus require less time for
that scope to be completed prior to the trade moving to the next zone. Less time needed
means that the takt can possibly be reduced, so the achievable takt will vary based on how
zones are defined. We therefore represent takt by T (Z) to emphasize it is a function of
the number of zones Z, as shown in Figure 5.1. Zones may differ in size and shape from
one another, but any work in them must be completed within the takt of the Parade as it
progresses.

Hypothetically, then, the duration of the process corresponds to the sum of (1) the
number of trade steps S in the process (i.e., the steps in the Parade of Trades) and (2) the
number of zones Z minus 1, multiplied by the takt T (Z), as calculated with Equation 5.1.
The increase in zones allows for greater concurrency of process steps. As mentioned, as a
work space gets divided more (i.e., Z increases), generally one might expect zones to become
smaller and the corresponding takt T (Z) will therefore decrease.

D = (S + Z − 1)× T (Z) (5.1)

Extending this equation for the case where the process repeats over multiple floors F ,
the duration is calculated with Equation 5.2.

D = (S + F × Z − 1)× T (Z) (5.2)
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Figures 5.1 and 5.2 illustrate this hypothetical reduction in phase completion time when
the number of zones increases (S = 4 and Z = 1, 2, or 3 in Figure 5.1), and when the process
gets repeated over multiple floors (S = 4, Z = 4, and F = 3 in Figure 5.2).

Figure 5.1: Process with 4 steps, scheduled when work space is divided respectively in 1, 2,
or 3 zones

Figure 5.2: Process with 4 steps that repeats over 3 floors, scheduled when work space is
divided in 4 zones

However, these calculations may not work in reality for one or multiple reasons, e.g.,
work density is unevenly distributed over the work space, and workloads are not divisible
across multiple zones. In any case, the optimization problem is to find a zoning that will
minimize the takt.
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5.2.3 Workload Leveling and Zoning (WoLZo) Problem

To illustrate the Workload Leveling and Zoning (WoLZo) problem to be solved, Figure 5.3
offers a toy problem example. It was inspired by the overhead construction work done on
the pilot project described by Dunnebier et al. [23]. The process is characterized by means
of work density maps of four different trades: (1) Mechanical, (2) Framing, (3) Electrical,
and (4) Plumbing. Each work density map describes work the trade will perform in a certain
work space (e.g., overhead work in a floor).

Figure 5.3: Work density for four trades and one zone

This example is realistic in that it illustrates a case where each trade has some grid cells
with a higher work density than others (e.g., a real-world example may be electrical work
to be done in a lobby vs. in an electrical room). In addition, different trades have different
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work densities in certain grid cells (e.g., a real-world example may be an operating room,
where the work density of the mechanical crew will likely differ from the work density of the
electrical crew).

These work density maps may be used in takt planning according to the following steps of
the Work Density Method. Assume that all overhead work is to be done by trades following
each other in a Parade, with only one trade at a time working in that work space. The
time needed by the Mechanical trade is computed by adding the work densities shown in
each grid cell of their work density map. This adds up to a work density [WD] of 43.5 time
units/floor. Likewise, the aggregate work densities for Framing, Electrical, and Plumbing
are respectively 63.7, 70.1, and 27.6 time units/floor. When compared with one another (see
histogram at the bottom of Figure 5.3), it is clear that the Electrical trade needs the greatest
amount of time to complete their work in the work space. Assuming that this time defines
the takt (see earlier mention of process time variability), the process will take 4 * 70.1 time
units/floor = 280.4 time units to complete all work in the work space (per Equation 5.1 with
S = 4, Z = 1, and T (Z) = 70.1). This is a long time and some trades will have a lot of idle
time because of work density variation.

We premise is that, through data collection with consideration given to what determines
work density, and judicious design of the zones, this peak in work density when considering
all zones and all trades can be reduced. That is, the workload can be leveled and, as this
peak informs the determination of the takt, the resulting takted system will take less time
to complete than would be the case without workload leveling.

Figure 5.4 illustrates this leveling. Whereas Figure 5.3 showed the entire work area as a
single zone (Zone A), Figure 5.4 shows the work area divided into three zones (zones A, B,
and C).

The four rectangles form matrices that have grid cells with work densities of each of the
four trades in the process. Superimposing a zoning pattern over these work density matrices,
one can compute the amount of time each trade will take to complete their task by zone.
A histogram (bottom of Figure 5.4) shows these workloads by zone for each trade in the
process.

With three zones now, the time needed by each trade is computed zone by zone. For
example, the work densities shown in each grid cell of the Mechanical work density map add
up to 11.5 time units/zone A, 21.0 time units/zone B, and 11.0 time units/zone C. Likewise,
the aggregate work densities for Framing, Electrical, and Plumbing are respectively 17.3,
18.4, and 7.2 time units/zone A. Similar computations yield time units/zone B and time
units/zone C. Figure 5.4 illustrates that the Electrical work needing 34.5 time units in zone
B defines the peak in work density when considering all zones and all trades. Assuming this
time defines the takt (see earlier mention of process time variability), the process will take
(4 + 3 - 1) * 34.5 time units = 207.0 time units to complete all work in the work space (per
Equation 5.1 with S = 4, Z = 3, and T (Z) = 34.5). The process takes less time than was
needed in the case of a single zone because, with three zones, trades can work concurrently
in different zones.
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Figure 5.4: Work density for four trades and work space divided into three zones

When for a selected zoning the corresponding histogram is deemed sufficiently level, the
planning team sets the takt, namely the time within which each step in the process must
be completed (see earlier mention of process time variability). Using that takt and zoning,
the planning team can finalize the takt plan by deciding on the order in which trades will
traverse the zones. The planning team must ensure that the takt plan meets the master
schedule and possibly other requirements, or otherwise adjust the plan until it does (e.g.,
modify takt, change the number of zones to allow for increased concurrency of steps, etc.).

The Work Density Method is used to even out- and takt the flow of work. It will take
iteration to change work densities, rezone, and then redraw the histogram to find one that is
deemed better, with no guarantee that a better one will be found when this is done manually.
A 100% level workflow would be best, but in general that will be just about impossible to
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achieve.
The so-called WoLZo algorithm introduced later in this chapter addresses the WoLZo

problem. The WoLZo problem involves leveling work density across trades engaged in a
sequence of steps necessary to realize a process or phase of construction work. The problem
formulation assumes that work density maps and the number of zones in which to divide the
work space are given. In other words, the problem is to determine the zoning that minimizes
the work density peak (the maximum work density) across trades and across zones. A lower
peak corresponds to a lower takt, and thus a shorter duration of the process or phase. As
soon as the zoning is determined, project scheduling and control become straightforward as
trades progress in an orderly fashion at the same, regular pace governed by the takt.

5.3 Literature Review

A literature search did not reveal any prior work that articulated the WoLZo problem.
Closely related to the WoLZo problem is the rectangular tiling problem (also known as
rectangle tiling problem in the literature). The latter has applications in 2-dimensional
histograms, database mining, and data partitioning.

In the rectangular tiling problem, a matrix needs to be partitioned into at most p rect-
angles such that the weight of the rectangle with the largest weight is minimized, where the
weight of a rectangle is the summation of all array elements inside it. (Later in this chapter,
the weight will be expressed as a work density).

Khanna, Muthukrishnan, and Paterson [43] proved that an approximation within a factor
of 5/4 for the rectangular tiling problem is NP-hard. In other words, finding a feasible
solution whose objective value is at most 25% more than the optimal objective value is
proved to be NP-hard. To the best of our knowledge, the tightest approximation algorithm
for this problem is given byPaluch [60]: it is a 17/8 approximation with a running time that
is linear in the size of the matrix.

As the rectangular tiling problem can be reduced to the WoLZo problem (which we
formally define in the next section), that problem is also NP-hard.

Although the rectangular tiling and the WoLZo problem are similar in some respects,
they differ in other respects. First, in rectangular tiling, each array element has one weight,
whereas in the WoLZo problem, each cell has multiple weights with each weight representing
the work density of a trade. In other words, each trade has a separate work density matrix
in which each cell represents how much time that trade will require to do their work in the
associated cell in the work space. Second, in rectangular tiling, each partition/zone must be
rectangular, whereas in the WoLZo problem, the shape of zones can be more complex (e.g.,
L-shapes).

Note also that the WoLZo problem differs from the multidimensional rectangular tiling
problem that was discussed in multiple papers (e.g., [61]). In the WoLZo problem, although
multiple matrices of weights exist, the goal is to find only a single zoning plan, one that levels
the work densities per zone for all trades. In contrast, in the multidimensional rectangular
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tiling problem, each 2-dimensional slice of the multidimensional array can have a distinct
partition.

The following section describes two formulations of the WoLZo problem.

5.4 The Models

We model the WoLZo problem as a MILP because zones are demarcated by grid cells and
the grid is defined using integer values. Given a work density map of the type illustrated in
Figure 5.3, the WoLZo problem involves partitioning the work space into zones in order to
minimize the maximum workload per zone (expressed as work density) across trades engaged
in a sequence of process steps necessary to realize a phase of construction work. For a given
number of zones, Z, and the appropriately subdivided work density map, the problem can
equivalently be seen as partitioning a M×N grid, into Z disjoint zones, in order to minimize
the maximum amount of work density in a zone over all zones and all trades – in other words,
to find the minimum takt for a given number of zones.

Recall that each trade gets the same amount of time to do their work in each zone, so the
minimum takt is equal to the maximum work density of any trade in any zone. For instance
in Figure 5.4, the Electrical crew needs 34.5 time units in zone B, which is the maximum
among all trades and all zones. Hence, takt can be defined as 34.5 time units for the depicted
partition. Thus, to minimize the takt, we minimize the maximum work density of any trade
in any zone.

In order to model this problem as a MILP, and to divide the work area into reasonable
zones, we restrict the possible set of zones in several ways. First, we require each zone to be
a single connected region, since a zone divided into several parts might require the travel of
a trade back and forth between zones, which might disrupt the work of other trades.

In addition, we require zones to have relatively simple shapes. For example, Figure
5.5(a) shows that choosing complex and irregular shapes for the zones—although it might
help reduce the takt—is probably not practical. Without additional detail about the project,
it seems intuitively clear that zoning 5.5(a) is less practical or implementable than zoning
5.5(b).
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(a) (b)

Figure 5.5: Shapes of the zones: (a) irregular complex shapes and (b) simple shapes

To facilitate our optimization model, in Model R (which we formally define in the Section
5.4.1), we define a simple shape as a rectangle, and in Model L (which we formally define
in the Section 5.4.2), we define a simple shape as a shape with at most six facets, where all
facets are horizontal or vertical (perpendicular). Simple shapes are thus both rectangle and
L-shapes, where L-shapes are regions that take the shape of a rotated or flipped “L”. These
shapes are relatively simple and implementable in practice, and also amenable to modeling
in a MILP. Figure 5.6 illustrates shapes that meet these restrictions.

Figure 5.6: Shapes with at most six facets, where all facets are perpendicular

A trade-off exists between the quality of the solution and the simplicity of the shapes.
As the set of allowable shapes become constrained, the optimal takt increases. Hence, we
expect the optimal takt of Model L to be smaller (which means better, as this value is to be
minimized) than that of Model R.

To develop our mathematical optimization model, we first assume that we are optimizing
in an M×N grid. We define set I to be {0, 1, 2, ...,M}, set I(i) to be {i+1, i+2, ...,M}, and
set Ī(i) is to be {0, 1, 2, ..., i}. Similarly, we define sets J , J(j), and J̄(j) to be {0, 1, ..., N},
{j + 1, ..., N}, and {0, 1, ..., j}, respectively.

We introduce binary variables xi1,j1,i2,j2 for each possible rectangular shape, and yi1,j1,i2,j2,i3,j3,q
for each possible L-shape, where these variables equal 1 if the corresponding zone is in the
solution, and 0 otherwise.
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Specifically, for rectangle shapes and corresponding variables xi1,j1,i2,j2 , indices (i1, j1)
represent the coordinates of the lower left corner of the rectangle, and indices (i2, j2) represent
coordinates of the upper right corner of the rectangle.

Any L-shape can be viewed as a smaller rectangle subtracted from a larger rectangle. To
capture these shapes, for corresponding variables yi1,j1,i2,j2,i3,j3,q, indices (i1, j1) represent the
coordinates of the lower left corner of the larger rectangle, indices (i2, j2) represent coordi-
nates of the upper right corner of the larger rectangle, indices (i3, j3) represent coordinates
of the reflex (interior) angle of the L-shape, and index q represents the part of the rectangle
that is missing, where q is in the set Q = {1, 2, 3, 4}. q can be viewed as representing the
missing quadrant assuming (i3, j3) is the origin, as illustrated in Figure 5.7.

Figure 5.7: Notation for rectangular and L-shaped zones

The cost of including a particular zone in the solution is the maximum work density in
that zone, where the maximum is taken over all steps taking place in that zone. Specifically,
we define Ci1,j1,i2,j2 to be the cost of including the rectangular zone xi1,j1,i2,j2 in the solution,
and Ci1,j1,i2,j2,i3,j3,q to be the cost of including the L-shaped zone yi1,j1,i2,j2,i3,j3,q in the solution.

As depicted in Figure 5.8, the work density in each cell is represented by parameter wi,j,
where (i, j) are the coordinates of the lower left corner of the cell.
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Figure 5.8: Notation tying work density to each cell

We define S to be the set of steps, and for every L-shaped region and s ∈ S, we define
As to be the sum of work densities for s in each potential ‘cut-out’ rectangle of the L-shaped
region:

As(1) =

i2−1∑
i=i3

j2−1∑
j=j3

wsi,j

As(2) =

i3−1∑
i=i1

j2−1∑
j=j3

wsi,j

As(3) =

i3−1∑
i=i1

j3−1∑
j=j1

wsi,j

As(4) =

i2−1∑
i=i3

j3−1∑
j=j1

wsi,j

Given these definitions, the cost of including a particular zone in the solution is captured
by the following expressions:

Ci1,j1,i2,j2 = max
s∈S

( i2−1∑
i=i1

j2−1∑
j=j1

wsi,j

)
(5.3)

Ci1,j1,i2,j2,i3,j3,q = max
s∈S

( i2−1∑
i=i1

j2−1∑
j=j1

wsi,j − As(q)
)

(5.4)

Finally, we define parameter Z to represent the number of zones we are identifying, T (Z)
to be a continuous variable equal to the takt, and intermediate variables U q

i1,j1,i2,j2
(i, j) and

Vi1,j1,i2,j2 for clarity of exposition. U q
i1,j1,i2,j2

(i, j) equals the number of L-shaped regions in
the solution with larger rectangle (i1, j1) and (i2, j2) whose missing part is quadrant q and
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the missing part contains the cell identified by (i, j) and (i + 1, j + 1), and Vi1,j1,i2,j2 is the
total number of selected L-shapes whose larger rectangle is formed with (i1, j1) and (i2, j2).

Given these definitions, we can write the following MILPs of Model R (in Subsection
5.4.1) and Model L (in Subsection 5.4.2).

5.4.1 Model R: All Shapes Must be Rectangles

Model R constrains partitions so that they are divided into only simple, rectangular shapes.

(WoLZo) Minimize T (Z) (5.5)

∑
i1∈I

∑
j1∈J

∑
i2∈I(i1)

∑
j2∈J(j1)

xi1,j1,i2,j2 = Z (5.6)

∑
i1∈Ī(i)

∑
j1∈J̄(j)

∑
i2∈I(i)

∑
j2∈J(j)

xi1,j1,i2,j2 = 1 ∀i ∈ I − {M}, j ∈ J − {N} (5.7)

T (Z) ≥ Ci1,j1,i2,j2 × xi1,j1,i2,j2 ∀i1 ∈ I, j1 ∈ J, i2 ∈ I(i1), j2 ∈ J(j1) (5.8)

xi1,j1,i2,j2 ∈ {0, 1} ∀ i1, i2 ∈ I, j1, j2 ∈ J (5.9)

Constraint 5.6 ensures that Z zones are selected. Constraint 5.7 ensures that every cell
is in exactly one zone (zones are mutually exclusive and collectively exhaustive). Constraint
5.8 ensures that the takt is greater than or equal to the cost of all zones that are included
in the solution and Constraint 5.9 ensures variables xi1,j1,i2,j2 for all i1, i2 ∈ I, j1, j2 ∈ J only
get binary values. Finally, Equation 5.5, minimizes the takt.

5.4.2 Model L: All Shapes Must be Either Rectangles or
L-shapes

Model L constrains partitions so that they are divided into simple shapes that are either
rectangular or L-shaped.

(WoLZo) Minimize T (Z) (5.10)

Vi1,j1,i2,j2 =

i2−1∑
i3=i1+1

j2−1∑
j3=j1+1

∑
q∈Q

yi1,j1,i2,j2,i3,j3,q

∀i1 ∈ I, j1 ∈ J, i2 ∈ I(i1), j2 ∈ J(j1) (5.11)
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∑
i1∈I

∑
j1∈J

∑
i2∈I(i1)

∑
j2∈J(j1)

(xi1,j1,i2,j2 + Vi1,j1,i2,j2) = Z (5.12)

∑
i1∈Ī(i)

∑
j1∈J̄(j)

∑
i2∈I(i)

∑
j2∈J(j)

(xi1,j1,i2,j2 + Vi1,j1,i2,j2 −
∑
q∈Q

U q
i1,j1,i2,j2

(i, j)) = 1

∀i ∈ I − {M}, j ∈ J − {N} (5.13)

U1
i1,j1,i2,j2

(i, j) =
i∑

i3=i1+1

j∑
j3=j1+1

yi1,j1,i2,j2,i3,j3,1

∀i ∈ I, j ∈ J, i1 ∈ Ī(i), j1 ∈ J̄(j), i2 ∈ I(i), j2 ∈ J(j) (5.14)

U2
i1,j1,i2,j2

(i, j) =

i2−1∑
i3=i+1

j∑
j3=j1+1

yi1,j1,i2,j2,i3,j3,2

∀i ∈ I, j ∈ J, i1 ∈ Ī(i), j1 ∈ J̄(j), i2 ∈ I(i), j2 ∈ J(j) (5.15)

U3
i1,j1,i2,j2

(i, j) =

i2−1∑
i3=i+1

j2−1∑
j3=j+1

yi1,j1,i2,j2,i3,j3,3

∀i ∈ I, j ∈ J, i1 ∈ Ī(i), j1 ∈ J̄(j), i2 ∈ I(i), j2 ∈ J(j) (5.16)

U4
i1,j1,i2,j2

(i, j) =
i∑

i3=i1+1

j2−1∑
j3=j+1

yi1,j1,i2,j2,i3,j3,4

∀i ∈ I, j ∈ J, i1 ∈ Ī(i), j1 ∈ J̄(j), i2 ∈ I(i), j2 ∈ J(j) (5.17)

T (Z) ≥ Ci1,j1,i2,j2 × xi1,j1,i2,j2 ∀i1 ∈ I, j1 ∈ J, i2 ∈ I(i1), j2 ∈ J(j1) (5.18)

T (Z) ≥ Ci1,j1,i2,j2,i3,j3,q × yi1,j1,i2,j2,i3,j3,q
∀i1 ∈ I, j1 ∈ J, i2 ∈ I(i1), j2 ∈ J(j1),

i3 ∈ I(i1) ∩ Ī(i2 − 1), j3 ∈ J(j1) ∩ J̄(j2 − 1), q ∈ Q (5.19)
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xi1,j1,i2,j2 , yi1,j1,i2,j2,i3,j3,q ∈ {0, 1} ∀ i1, i2, i3 ∈ I, j1, j2, j3 ∈ J, q ∈ Q (5.20)

Constraint 5.11 defines variables Vi1,j1,i2,j2 and Constraint 5.12 ensures that Z zones are
selected. Constraint 5.13 ensures that every cell is in exactly one zone (zones are mutu-
ally exclusive and collectively exhaustive). Constraints 5.14 to 5.17 define U q

i1,j1,i2,j2
(i, j).

Constraints 5.18 and 5.19 ensure that the takt is greater than or equal to the cost of all
zones that are included in the solution and Constraint 5.20 ensures variables xi1,j1,i2,j2 and
yi1,j1,i2,j2,i3,j3,q for all i1, i2, i3 ∈ I, j1, j2, j3 ∈ J, q ∈ Q only get binary values. Finally, Equa-
tion 5.10, minimizes the takt.

5.5 Solution Method

As mentioned, the WoLZo problem is NP-hard. Standard solvers, e.g., Gurobi (version 9.0),
cannot directly find the optimal solution of the formulation (5.10)-(5.19) for a problem with
a realistic size (e.g., 108 cells in the grid) within 3,600 seconds. The WoLZo algorithm was
therefore developed to help solve the WoLZo problem efficiently.

The WoLZo algorithm focuses on reducing the size of the problem by removing the
redundant variables. To identify the redundant variables, the algorithm makes it necessary
to find an upper bound on the optimal takt. Clearly, any zone with a cost higher than
the upper bound will not be selected as the optimal solution; hence, their corresponding
variables can be removed from the model.

A tight upper bound can significantly reduce the size of the problem; however, such an
upper bound is not a-priori known. This inspired us to implement a procedure that attempts
to search for a tight upper bound by first estimating a lower bound, and systematically
increasing estimates of an upper bound as a function of that lower bound, starting at a
small amount above the lower bound, until a feasible solution is found.

Figure 5.9 depicts the flowchart of the WoLZo algorithm. The algorithm starts with a
simple lower bound, LB, computed by dividing the highest [among all trades] total work
density of the entire work space by the number of zones:

LB =
C0,0,M,N

Z
(5.21)

To illustrate, using the data depicted in Figure 5.3 where Electrical has the highest work
density, and assuming Z = 3:

LB =
70.1

3
= 23.367

Next, we select a step ratio, α, for the procedure. This step ratio must be greater than
1 (e.g., 1.05). Then our initial candidate for an upper bound is ÛB := α× LB, and we add
Constraint 5.22 to the model.
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T (Z) ≤ ÛB (5.22)

Similar to what is discussed by Mingozzi and Morigi [56], this constraint limits the
solution to zones whose costs are less than or equal to the ÛB. Hence, variables corresponding
to the zones with higher costs can be eliminated, and doing so significantly reduces the
problem size. Given this constraint, two outcomes are possible.

Figure 5.9: Solution procedure flowchart

One outcome is that, if the candidate upper bound (ÛB) is not in fact an actual upper
bound on the optimal takt, but is strictly less than it, the model will be infeasible. Because
the number of variables in this infeasible model is relatively small, standard solvers can
determine this infeasibility in a matter of seconds. In this case, the procedure iterates: we
guess a new upper bound for the model as ÛB := α × ÛB. As alpha is greater than one,
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the new upper bound is larger than the previous one. After updating Constraint 5.22 and
consequently removing the redundant variables, the model is solved again. This iteration
continues until a model is reached that has a feasible solution.

The other outcome is that, if the candidate ÛB is in fact an actual upper bound, the
model is again typically relatively small, and it can be optimally solved using standard
solvers. The optimal solution of this restricted model is also the optimal solution to the
original problem.

In the WoLZo algorithm, if we choose a relatively tiny step ratio (e.g., α = 1.001), then
many iterations may need to occur before the algorithm reaches a model with a feasible
solution. In contrast, if the step ratio is large (e.g., α = 2.0), the upper bound might not
be tight, which can result in a model with a large number of variables that is not efficient
to solve. Hence, finding an appropriate step ratio can speed up the algorithm. In practice,
if the number of iterations needed to keep increasing ÛB is noticeably high when using the
WoLZo algorithm, increasing alpha is helpful. In contrast, if the final model (the one with
a feasible solution) takes a long time to solve, decreasing alpha might help reduce the total
run time of the algorithm.

5.6 Application Example

5.6.1 Input Data Set

The WoLZo algorithm was used to study four scenarios that differ in the granularity at which
work density is depicted. The goal was to highlight how the number of cells dividing a given
work area impacts the solution space.

The scenarios all use input data regarding work density of the 4-step process illustrated
in Figures 5.3 and 5.4. Using the Electrical trade as an example and given its 6× 9 matrix
(corresponding to Scenario 3), Figure 5.10 shows the work densities for the other three
scenarios. In this example, the densities were computed by aggregating cells into larger ones
or by dividing cells evenly into smaller ones.

Note that in reality, when work density data can be collected directly from project data,
a computation using addition or division might not be in order. For example, a small cell
with a high work density may not be divisible due to the nature of the work (e.g., installation
of a large assembly) or that cell may well be surrounded by cells with 0 work density, so that
aggregating them would result in a larger cell with the same high work density. The four
scenarios are the following:

Scenario 1: 1× 1 matrix (1 cell covers the entire work area)
Scenario 2: 3× 3 matrix (9 cells)
Scenario 3: 6× 9 matrix (54 cells)
Scenario 4: 6× 18 matrix (108 cells)
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Figure 5.10: Electrical work density based on a (1) 1× 1 matrix, (2) 3× 3 matrix, (3) 6× 9
matrix, and (4) 6× 18 matrix

5.6.2 Optimization Results

Optimization of Takt T (Z) for Single Work Space

The results obtained using the WoLZo algorithm to partition the work space are illustrated
next, based on Scenario 3 and Z = 3. Appendixes B and C include detailed results from all
scenarios.

The partition depicted in Figure 5.4—plausibly derived manually—resulted in a takt
T (3) = 34.5. Use of the WoLZo algorithm on Model R (Figure 5.11a) resulted in a partition
with a takt T (3) = 26.4, which is a 23% decrease in time from the initial solution of 34.5.
Similarly, using the WoLZo algorithm on Model L (Figure 5.11b) results in a partition with
a takt T (3) = 23.5, a 32% decrease.
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(a) (b)

Figure 5.11: Optimal partition suggested by the WoLZo algorithm based on (a) Model R
and (b) Model L (NOTE: each zone has its own color)

Figure 5.12 depicts the histograms that correspond to the partitions that the WoLZo
algorithm provided, respectively based on Model R and Model L. The histograms show the
workloads by zone for each step in the process, using as background the same colors as those
used to depict zones in Figures 5.11a and 5.11b.

(a)

(b)

Figure 5.12: Histogram of workloads by zone for each step in the process based on (a)
Model R and (b) Model L (NOTE: the background color matches the color depicting the
zone in Figure 5.11)
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Table 5.1 shows the takt computed by the WoLZo algorithm using Model R for each of
the four scenarios while varying Z from 1 to 15. Similarly, Table 5.2 shows the takt computed
by WoLZo using Model L. Figure 5.13 plots this data, including the zoning that was shown
in Figure 5.11 (Z = 3 and in Model R, T (3) = 26.4, and in Model L, T (3) = 23.5). This
plot supports the following observations:

1. Due to the granularity of any work density matrix, a limit exists on the number of zones
one can choose. At most, Z can be equal to the dimension of the work density matrix.
By construction, a zone cannot be smaller than the size of a cell in that matrix. For
example, in Model L, Scenario 2 with 9 cells reaches its limit at Z = 9, and Scenario
1 with 1 cell reaches its limit at Z = 1.

2. When the entire work area is a single zone (Z = 1), the solution (T (1) = 70.1) for the
1 × 1 matrix of Scenario 1 is indifferent to work densities being specified more finely.
However, boundaries of zones may shift when Z is 2 or larger and matrices with finer
granularity are used.

3. T (Z) does not necessarily become smaller as Z increases. When the number of zones Z
increases, the takt T (Z) decreases or levels out, until the limit is reached. For example,
Scenario 2 illustrates that increasing the number of zones does not keep on reducing
the takt: in Model L, the takt remains constant from Z = 5 onward. This is the
consequence of work density being distributed unevenly across the cells in the matrix.

4. When the granularity of the work density matrix decreases (cells in the matrix become
smaller in area), the takt can become smaller. For example, for any value of Z, the
takt for Scenario 4 is always smaller than or equal to the takt of Scenario 3. The same
is true for Scenario 3 vs. 2, and 2 vs. 1.

(a) (b)

Figure 5.13: Number of zones Z vs. takt T (Z) in (a) Model R and (b) Model L
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Table 5.1: Number of zones Z vs. takt T (Z) computed with WoLZo algorithm for Model R

Number Takt T (Z)
of Zones Scenario 1 Scenario 2 Scenario 3 Scenario 4

Z (1× 1) (3× 3) (6× 9) (6× 18)

1 70.1 70.1 70.1 70.1
2 40.7 40.7 35.9
3 31.3 26.4 25.7
4 22.0 20.9 18.4
5 20.8 16.8 15.2
6 20.8 15.2 13.0
7 20.8 13.7 12.1
8 20.8 11.2 10.9
9 20.8 9.4 9.4
10 8.3 8.3
11 8.2 8.0
12 8.2 7.5
13 8.2 7.2
14 8.2 6.8
15 8.2 6.6

Table 5.2: Number of zones Z vs. takt T (Z) computed with WoLZo algorithm for Model L

Number Takt T (Z)
of Zones Scenario 1 Scenario 2 Scenario 3 Scenario 4

Z (1× 1) (3× 3) (6× 9) (6× 18)

1 70.1 70.1 70.1 70.1
2 39.3 35.2 35.1
3 27.7 23.5 23.5
4 22.0 18.4 17.9
5 20.8 14.6 14.3
6 20.8 12.3 12.1
7 20.8 11.0 10.5
8 20.8 9.7 9.3
9 20.8 8.6 8.2
10 8.2 7.5
11 8.2 7.1
12 8.2 6.5
13 8.2 6.1
14 8.2 5.6
15 8.2 5.3

The details of using the WoLZo algorithm, including the run-times, for both Model R
and Model L for every scenario while varying Z from 1 to 15 are presented in Appendix B.
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Optimization of Process Duration D when Work Space is Replicated over
Multiple Floors

The previous results focused on the takt obtained by zoning a single work space. Now
assume that this work space represents a floor and gets replicated over multiple floors, and
focus on the phase duration D. Based on the data from Tables 5.1 and 5.2 (illustrated in
Figure 5.13), the duration D of a phase of work that extends over respectively 1, 2, 5, and 10
floors is computed by means of Equation 5.2 (these numbers of floors were selected just for
illustrative purposes; the computation can be done likewise for any other number of floors).
The takt times were first rounded up to the nearest integer, because in actuality they may
represent a day or a week and decimal values of such units may be hard to implement. In
practice, the decision of whether and how to round results from the WoLZo algorithm is up
to the project team.

Figures 5.14 and 5.15 show the results for Model R and Model L, respectively. These
support the following observations:

1. Dividing the work space into more zones than 1 tends to reduce the duration D (unless
work density is exceptionally uneven, e.g., concentrated in a small area down to a single
cell). Then, at some point, D starts to increase. Indeed, Equation 5.2 shows that F
gets multiplied by the number of zones Z while (as discussed in Subsection 5.6.2) T (Z)
levels out when Z continues to increase.

2. The duration D may oscillate when Z increases (see for example Scenario 4 (6 x 18
matrix)). This is observable for any number of floors, even when F = 1 where it is
known that the takt T (Z) decreases or levels out as the number of zones Z increases
(Figure 5.13). This is due to variation in the work density of adjacent cells combined
with the imposition of rectangle or L-shapes when zoning the work space.

3. The benefit of dividing a work space into smaller zones (allowing for more concurrency),
diminishes when the number of floors increases. Indeed, in Scenario 4 in Model R, the
minimum D for F = 1 occurs at Z = 11, for F = 2 at Z = 6, for F = 5 also at Z = 6,
and for F = 10 at Z = 4. Similarly, in Scenario 4 in Model L, the minimum D for
F = 1 occurs at Z = 14, for F = 2 at Z = 10, for F = 5 at Z = 4, and for F = 10
also at Z = 4. In other words, the benefit of dividing a work space in more zones is
greater relatively-speaking when the work area is replicated less.

Furthermore, practical considerations such as simplicity of a zoning also favor the selec-
tion of a value for Z on the lower end. For example, one may argue for the use of Z = 4
in the case of F = 1, 2, and 5, even though that does not result in the shortest duration
D. Planners must consider the trade-off between a relatively-small incremental reduction in
duration vs. selecting a lower Z, recognizing that a lower Z has benefits. These benefits in-
clude: requiring fewer hand-offs overall between trades involved in consecutive process steps,
requiring fewer setups and movement of trades from one location to the next, allowing for
larger areas to work in, etc.
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Figure 5.14: Phase duration vs. number of zones for 1, 2, 5, and 10 floors in Model R
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Figure 5.15: Phase duration vs. number of zones for 1, 2, 5, and 10 floors in Model L
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5.6.3 Computer Implementation

The WoLZo algorithm is coded in Python 3 and solved by Gurobi version 9.0 Using a 2.3
GHz Intel Xeon E5-2670 v3. The average run-time of the algorithm for Z ranging from 1
to 15 (or up to the maximum number of cells in the grid in Scenarios 1 and 2) in different
scenarios are summarized in Table 5.3, and the average number of iterations of the model to
find the optimal solution is presented in Table 5.4. The results shown in Figure 5.11 took
(a) 0.2 s and (b) 25.9 s when alpha is 0.05.

Table 5.3: Average run-time of the algorithm in different scenarios when acceptable shapes
are either only rectangles or rectangles as well as L-shapes, and different choices of alpha

Model
Scenario Average run-time (seconds)

(grid size) α = 1.005 α = 1.01 α = 1.05 α = 1.25 α = 1.5

R

1 (1× 1) 0.0 0.0 0.0 0.0 0.0
2 (3× 3) 0.2 0.1 0.0 0.0 0.0
3 (6× 9) 1.5 0.9 0.3 0.2 0.2
4 (6× 18) 6.8 3.7 1.3 1.1 1.2

L

1 (1× 1) 0.0 0.0 0.0 0.0 0.0
2 (3× 3) 0.8 0.5 0.3 0.3 0.3
3 (6× 9) 54.0 37.2 26.3 25.6 37.3
4 (6× 18) 419.5 268.6 201.0 270.5 N/A∗

∗ Some of the instances cannot be solved optimally in 3,600 s

Table 5.4: Average number of iterations of the algorithm in different scenarios when
acceptable shapes are either only rectangles or rectangles as well as L-shapes, and different
choices of alpha

Model
Scenario Average number of iterations

(grid size) α = 1.005 α = 1.01 α = 1.05 α = 1.25 α = 1.5

R

1 (1× 1) 1.0 1.0 1.0 1.0 1.0
2 (3× 3) 94.4 47.6 10.1 2.7 1.7
3 (6× 9) 52.2 26.5 5.9 1.7 1.2
4 (6× 18) 34.1 17.3 3.9 1.3 1.0

L

1 (1× 1) 1.0 1.0 1.0 1.0 1.0
2 (3× 3) 91.0 45.8 9.8 2.6 1.7
3 (6× 9) 36.1 18.5 4.3 1.5 1.2
4 (6× 18) 12.3 6.3 1.8 1.0 N/A∗

∗ Some of the instances cannot be solved optimally in 3,600 s
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For comparison in terms of processing time, on the same computer we ran Gurobi using
its default settings to solve the model presented in Equations 5.10-5.20, that is, without the
algorithm presented in Section 5.9. The solution times were similar for Scenarios 1 and 2,
and for Scenario 3 with rectangles only. However, as the problem gets harder, as is the case
for Scenario 3 considering both rectangles as well as L-shapes, the algorithm is faster by
orders of magnitude. For example, for Scenario 4 and considering rectangles and L-shapes,
(1) for the number of zones ranging from 2 to 4, Gurobi’s solutions had an optimality gap
of 100% (optimality gap defined as the ratio of the solver’s (upper bound - lower bound) /
upper bound), and (2) for the number of zones ranging from 5 to 15 Gurobi could not find
a feasible solution within a 3,600 second time limit.

The individual run-times of each instance, when the algorithm is used and when it is not
used, are shown in Appendix B.

5.7 Discussion

A discussion follows of how the modeling of work density affects the WoLZo problem formu-
lation and optimization algorithm.

5.7.1 Assumptions and Limitations of using Work Density

The problem as formulated is based on the assumption that work density data can be ob-
tained. Indeed, Tommelein [75] described how such data can be captured and represented
cell by cell. While the results from the WoLZo algorithm demonstrate that a finer granu-
larity (a work space divided in more grid cells) will likely result in a lower takt, there is a
practical limit to how small zones (and thus cells) can be. Trades need space to work, e.g., to
stage and handle materials in the zone, maneuver a scissor lift, etc. Each zone must provide
sufficient space to each trade that is to work in it.

How small zones can be relates to how large Z can get and, as mentioned in Subsection
5.6.2, practical considerations will encourage planners to choose the number Z to be smaller
rather than larger. But so far, no mention was made of the physical dimensions of each cell.
Is the cell 1 m x 1 m, 10 m x 15 m, or does it have another length and width? Further study
is in order.

The work density matrix is an abstraction with no mention of physical dimensions of cells.
The WoLZo algorithm applies as long as the topology of the grid is maintained. Accordingly,
the physical dimensions of a column (or row) of cells can differ from the physical dimensions
of the adjacent columns (or rows) of cells.

In terms of the method followed to determine the takt, i.e., lowering the workload peak(s)
across trades by re-zoning the work space, of note is that other methods exist. Work density
maps are an abstract characterization of workloads by zone, reflecting the settings of a
number of throttles for production: e.g., scope of work included, product to be put in place,
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means and methods, crew size, skill of crew members. These throttles may also be used to
lower workload peaks.

A number of other methodological considerations come into play when developing a takt
plan. They pertain to work structuring (e.g., how to phase a project and define Parades
of Trades) including deciding on the sequencing of steps that make up a process (e.g., a
workload peak may be lowered by allowing the crew to do their work not in one but in two
consecutive steps). Further discussion of these methodological considerations is beyond the
scope of this chapter.

5.7.2 Extending or Customizing the WoLZo Model

The WoLZo model is designed for rectangular work spaces but it has broader applicability.
Figure 5.16 shows that it can be generalized to work spaces with any shape by fitting the
given work space inside a rectangle and assuming the work density of all trades is 0 for all
the added grid cells (e.g., when vertical work such as the elevator core and stair well are
planned as a process separate from other work on a floor). In Model L, in case the algorithm
then yields an L-shaped zone with a discontinuity in the middle due to the added grid cells
with 0 work density, then remove those L-shapes from the model.

(a) (b)

Figure 5.16: Transforming (a) any work space to (b) a rectangular work space (hashed area
has work density of 0 for all trades)

For various reasons, it may be desirable to further constrain the problem. For instance,
one might wish to add some or all of the following constraints:

• Forcing a few cells of the grid to be in the same zone:

To do so, remove from Model R every rectangle, xi1,j1,i2,j2 , remove from Model L every
rectangle, xi1,j1,i2,j2 , and L-shape, yi1,j1,i2,j2,i3,j3,q, that contains some of those cells but
not all of them.

• Forcing some of the cells to be in separate zones:
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To do so, remove from Model R every rectangle, xi1,j1,i2,j2 , and remove from Model L
every rectangle, xi1,j1,i2,j2 , and L-shape, yi1,j1,i2,j2,i3,j3,q, that contains more than one of
those cells.

• Forcing the zones to have a minimum/maximum size/height/width:

Figure 5.17 clarifies the definition of size, width, and height of a zone. To add a
constraint on those, remove from Model R every rectangle, xi1,j1,i2,j2 , and remove from
Model L every rectangle, xi1,j1,i2,j2 , and L-shape, yi1,j1,i2,j2,i3,j3,q, that does not follow
the defined standards pertaining to minimum/maximum size/height/width.

Figure 5.17: Definition of size, height, and width of a zone

Such constraints may help make zones somehow “better” to work in. This notwithstand-
ing, added constraints will likely result in a higher takt. They will not likely impact the
WoLZo algorithm’s run-time, however, since we can implement these constraints in pre-
processing by removing some of the variables.

5.7.3 Model R Compared to Model L

A comparison between Model R and Model L is in order. On the one hand, Model R is faster
to solve and it is scalable to larger grid sizes than Model L is. The zones in Model R have
more straightforward shapes compared to those in Model L (rectangles vs. both rectangles
as well as L-shapes). On the other hand, for the same grid size, Model L is likely to find a
better takt than Model R because Model L allows for a greater variety of shapes.

5.7.4 Optimal Solutions Compared with Manual Solutions

It is common practice for construction site managers to divide work spaces into smaller areas.
Superintendents may break up a large floor into quadrants, for example, to make their work
more manageable and speed up the schedule by planning for concurrency. However, their
rationale, if not informed by work density, causes unevenness in the workflow or requires
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that trades crew up or down. People also tend to use very simple shapes (e.g., rectangles)
instead of looking for perhaps more complex ones (e.g., L-shapes) that can be better from a
workload leveling perspective.

These practices are understandable because, depending on the granularity at which work
density is considered, the number of possible zoning arrangements grows exponentially and
there may seem to be infinitely many of them. Constrained by cognitive ability and time, this
is why people settle on simple divisions. It is just about impossible to manually determine
the mathematical optimum.

From our experience working with practitioners to explore zoning options and using takt
planning, we know that people tend to think of zoning the work space with earlier process
steps in mind, rather than considering all steps in the process (that is, we tend to be greedy).
In contrast, the WoLZo model gives equal consideration to the workload associated with each
and every step in any given process. The WoLZo model does not reflect any bias towards
earlier vs. later work.

Computational methods can thus augment construction site managers’ decision making
by helping them pursue clear planning objectives and consider trade-offs. As computational
prowess continues to increase, thanks to the combination of increasing hardware capabilities
and inventive algorithm design, new construction planning methods such as the Work Density
Method will gain adoption in practice.
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Chapter 6

Conclusion

In this dissertation, we developed models and approaches that are particularly useful for
managing different elements of mega-projects, primarily in the oil and gas industry. These
tools enable the concurrent determination of project schedules and inventory delivery times
in order to efficiently manage the project supply chain, and to effectively control project
delivery time and cost.

We integrated the stochastic resource-constrained project scheduling problem with inven-
tory considerations and developed comprehensive models and multiple heuristics to optimize
the problem over the proactive class of policies. We also introduced an approach to find a
lower bound and probabilistic lower bounds to evaluate the performance of heuristics. Our
results indicate that the advantages of our comprehensive model are two-fold. First, imple-
menting the stochastic version of the model both decreases the expected makespan of the
project and also dramatically lowers expected inventory holding cost, even when the vari-
ability of activity durations is small. Second, simultaneously optimizing the schedule and
procurement deliveries significantly reduces the project cost. We also developed techniques
to provide the inventory cost versus timeliness efficient frontier, which can serve as a fruitful
managerial decision-making tool that sheds light on the relationship between the cost and
timeliness of projects.

For oil field drilling operations, we developed a comprehensive model and proposed a
decomposition-based heuristic approach to solve the model. Using data from a real-world
project, we demonstrated that adopting our approach leads to significant improvements in
terms of time and cost compared to the current practice in the industry. We used our model to
evaluate how myopic constraints on the transportation of resources (typically resulting from
the application of rules-of-thumb) impacts project performance. Lastly, we measured the
value of acquiring additional resources on the expected revenue generated by oil extraction.
The insights from this analysis can be used as a tool for making managerial decisions.

Motivated by our interviewees, we presented a stylized model for suppliers’ decision
making, where we consider sequencing decisions on a single processor, here representing
a supplier, in an online setting where no data about the future incoming opportunities is
available. With the goal of minimizing total weighted (modified) earliness and tardiness
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cost, we introduce a new policy, the list-based delayed shortest processing time policy, and
we develop lower and upper bounds on its performance for several related problems. In the
theoretical aspect, we closed the optimality gap that previously exists in the literature for
several variants of single machine online scheduling problems in the presence of due dates
by proving that our proposed policy is an optimal online algorithm for these variants.

Finally, we presented a novel formulation and algorithm to address the NP-hard problem
of dividing a work space into distinct zones in order to level workloads by zone across process
steps and for all zone, and made it possible to find the optimal solution rapidly for practical
problem sizes. We described current practices related to dividing construction work areas
into smaller ones and contrasted these with the zoning determined using our approach.

While we believe we have significantly advanced the state-of-the-art in those areas con-
sidered in this dissertation, our work has limitations. We do not consider uncertainty in
deliveries as we assumed that the suppliers deliver materials on time. We focused on average
outcomes without considering risk measures. Many of our solution approaches are NP-hard
in the strong sense, which is not an issue for the projects with 30-60 activities as we lever-
aged the immense amount of technology that is developed for solving specific problems, but
clearly is not scalable to projects with many more activities.

These observations suggest a variety of questions that can be addressed in future research.
How can we integrate suppliers into a comprehensive model, and optimize a project over the
entire supply chain rather than considering one stakeholder at a time? How does varying
the level of granularity for activity definition impact a project? Note that for a project, for
example, we can define drilling a well as a single activity, or many smaller activities. How
can we develop more scalable approaches that address the needs of mega-projects and that
can be applied to projects with many more activities (projects with a significantly more
detailed level of granularity)? How can we incorporate risk into our models. These are a few
of the many related questions that we hope to address in future research.
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Appendix A

Interviews

Below, we summarize responses to our interview questions. Note that this is not intended
to be a verbatim transcription of interview responses. Rather, we present sense of typical
or particularly interesting responses to our questions. We divide these into three categories.
The first relates to the efficiency and reliability of the tools that are used to manage projects,
the second focuses on the impact of those tools and the resulting decisions on suppliers, and
the last concerns the ways decision get made.

A.1 Balancing Efficiency and Reliability

Question: What tools and techniques do you utilize for analyzing the impacts of delay on
overall project performance?

Answers: Companies commonly use scheduling tools (e.g. Primavera, MS Project) and
develop estimating, productivity, and economic models using these tools to enable them to
quantify the impact of delays, and that prior to sanctioning a project, most businesses (owner
and contractor) will also have prepared schedule and cost models, cash flow curves, and
detailed staffing plans. Some interviewees mentioned that project planning and scheduling
techniques came from the Project Planning and Estimating department (or the equivalent),
and that the contracting and procurement schedule is developed based on that schedule.

Question: How reliable are those tools and techniques? Can you describe projects where
these tools and techniques have improved project reliability?

Answers: We meets 50% of our project schedules, however, my own view is that the
schedules that are met are not world class and tend to be longer than the competition.

This suggests that although companies set their targets according to a baseline derived
from past experience, they fail to meet those targets 50% of the time. Another interviewee
told us:

In my experience, the tools themselves are generally reliable. My confidence in their out-
put increases with the skills and experience of the planners, estimators and project managers
who develop and utilize the tools.
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This suggests that interviewees do not believe that tools are a cause of delays, although
there doesn’t seem to be evidence to support this point.

Question: Do you consider the cost of project acceleration as well as the cost of delay?
Answer: Yes. Both have a significant impact on revenue and project profitability. While

we can try to accelerate projects, we focus on avoiding delay. We work to frame the project
comprehensively (it isn’t clear to us precisely what this means) and use standard designs and
standard equipment packages to minimize delays in engineering and construction. In the oil
and gas industry, there is a strong correlation in the slip to achieving “first oil” to the slip
in completing engineering. The average slippage is 6 months and 25% of industry projects
slip more than 10 months which directly impacts NPV.

Question: Does excessive storing, staging, and moving increase the likelihood of defective
or unsuitable components? By how much? What does this practice cost? What is the impact
of this on project performance?

Answer: Suppliers will deliver materials and equipment to staging areas as defined in
the contract or purchase order. The storage and handling are often haphazard (i.e., store as
delivered - not as required). This can cause excessive movement and increase the likelihood
of damaged, defective or unsuitable materials and equipment (components). However, we
do not track this data yet. This amount is considered to be negligible on multi-billion dollar
projects, but it certainly impacts the project team and contractors.

Question: What are the costs and other potential problems and negative impacts of
mandating that parts and materials are all delivered far ahead of when they are needed, or
even before the project starts?

Answer: This results in large laydown yards, expensive handling, and double handling
plus large leftover surplus after project completion. Storage of complex equipment also
requires sophisticated storage facilities. In some projects where this has not been done well,
it has required the suppliers to come to the site for rework.

Question:What extra steps are necessary to preserve parts and components during long
storage? What do these steps cost?

Answer: Depending on the type of parts and components this can vary, for instance:

• Electrical measurement and instrumentation, process instrumentation, select CAO
(computer assisted operations) and similar sensitive parts and equipment must be
stored in air-conditioned and sealed rooms or mini-warehouses to avoid corrosion and
irreparable damage.

• Rotating equipment (i.e., compressors, turbines, pumps, motors, etc.) must not sit
idle and requires workers to turn the shafts to avoid flat spots on the crankshafts or
windings.

• Specialty valves and piping must have protective covers on the open flanges, pin and
box ends etc. to prevent corrosion, rodents or insects, etc. from getting inside – these
covers can deteriorate over time.
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• Some rotating equipment may need to be run periodically to ensure that it will operate
when required and some may require lubricant changes depending on the temperature
variation it may go through while in temporary storage.

• These items must be cataloged and have a preventative maintenance schedule defined
and executed with trained workers.

• Segregating materials based on chemical composition (e.g., carbon steel from stainless
steel, specialty alloys, duplex, chrome, etc.).

These steps would typically cost 1-2 full-time equivalent technicians in addition to the
material handlers (depending on the number and complexity of equipment types).

Question: How does this impact financial measures? Quality? Rework?
Answer: This impacts financial metrics by adding costs for the staging and preservation

as well as potential repair costs for damaged materials and equipment.
Rework due to construction defects can be extremely costly, and the cost increases ex-

ponentially depending on where and when these defects are remedied. For example, weld
failures are often discovered during the weld x-ray or hydro-testing phase. If they are reme-
died on the ground the cost is rework, if they are remedied after installation on the deck
300’ in the air at quay-side the cost triples and if they are remedied offshore the cost triple
again. This has significant impact on the financial performance of the project, particularly
if the installation cannot be commissioned on time. Delay in starting up a facility will have
a significant negative impact on project NPV.

Question: Given that the goal is to ensure (with very high probability) that parts and
material availability do not delay work, is this practice [requiring delivery far ahead of time]
the best way to ensure this end result? Is it possible that current practices lead to more
delays than alternative practices? To put this another way, if we graph system costs versus
the likelihood that material and part availability lead to delays, one would assume that if
the system is run as efficiently as possible, the likelihood of delays increases with decreasing
system costs. Is it true that capital projects operate on or near this so-called “efficient
frontier”?

Answer: There is probably a smarter way to do it to really understand the economic
and the trade-off of the linear process versus maybe some overlap and flexibility.

Question: What are the costs and other potential problems associated with parts and
material delays? How much flexibility is there typically built into the system to absorb these
delays? Is the cost of delays more or less linear with the delay time, or is the relationship
more complex?

Answer: The cost of delay is not linear with the delay time – it can be exponentially
increasing if we have other contractors engaged. For example, if the hull and topsides are
scheduled for sail away and installation on a certain date, but it is delayed – and we have
contracted for a crane vessel or deep water construction vessel then the cost is committed
and their availability may also be constrained – so we may have to wait until it become
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available again (we experience stranded cost for the crane, contracting for the crane again,
lost revenue, etc.). The cost to perform work offshore is significantly higher than performing
the same work in the construction yard.

Question: What likelihood of delay is acceptable? For instance, is a 1% chance of delay
acceptable for a 20% decrease in costs? Is this a tradeoff that the industry considers?

Answer: The industry focuses predominantly on safety first and some companies focus
on the quality second. Development teams have team members who manage delays via
expediting, rushed delivery (hot shot transportation), etc. and use contingency to cover the
cost impact. There is rarely an attempt to quantify (in advance) the tradeoff between lower
pricing and schedule – we typically set the delivery time and expect the contractor to simply
‘make it happen’. Delays are never acceptable but we understand that they will happen. We
try to work with our contractors to mitigate those delays, through adjusting the construction
sequence, installation sequence, etc. This is where having the right relationship with our
preferred contractors will help with mitigating schedule delays and potentially cost impacts.

A.2 Impact on Suppliers

Note that all of our interviewees are project managers and consultants. In the future, we
intend to interview suppliers to get a sense of their views on these issues.

Question: How are suppliers impacted by mandates that parts and materials be delivered
far in advance of when they are needed, and often before the project starts? How does this
impact quality of parts? The amount of required rework?

Answer: I do not see a frequent impact to the suppliers on the scheduled demanded
by us. Goods are usually delivered in the suppliers estimated delivery times. However very
frequently goods are delivered far ahead of the required use for construction to ensure the
construction activities are not held up in any way by late material or equipment. In general,
if suppliers have sufficient time to bid, plan and execute their work, the correlation between
their delivery date and the project start date shouldn’t be an issue. Suppliers will take into
consideration their overall workload, resources required to execute, etc. Problems arise when
there is either insufficient lead time or (and most commonly) when design changes require
reworking on something that’s already in the manufacturing cycle or complete.

Question: What challenges have suppliers communicated to you?
Answer: Suppliers have communicated that they experience problems with engineering

design changes, equipment specification changes, third party quality inspector preferences
and differences of opinion on requirements documents. They shared that would prefer clear
communication (straight talk) from the ultimate user (e.g., fabrication or construction con-
tractor) to eliminate confusion and rework. Now there is much more open conversation about
manufacturing schedules, long-lead ordering, workforce, impacts. And the suppliers say if
you want us to get better, if you want us to be able to have have what you need when you
needed, involve us early enough in your planning cycles so that we can respond and plan
practically.
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Question: How do engineering changes affect suppliers? How often do these happen?
Answer: Engineering changes (and changes in requirements) affect a variety of suppliers,

and this happens many times in a project. This can be the result of regulatory requirements,
operational learnings, functional acceptance testing results, etc. Suppliers often have to make
mid-course adjustments or corrections as a result of these changes. This can then manifest
itself in materials and equipment order changes to meet the changed requirements (often
delaying delivery or adding cost), specialty materials may have to be manufactured and then
fabricated, etc. Engineering changes occur a number of times per project and are frustrating
to the supplier. This is probably the biggest contributor to cost and schedule growth.

There are many reasons. You probably rebaseline the schedule a couple of times a year
but change on a project is inevitable. You’ll have design development or as you progress on
the engineering you have to make changes to the manufacturing or you find quality issues
with the equipment or you have a contractor who falls behind. There are a number of reasons
and things that introduce change on projects. So, you have to leave a reasonable amount of
flexibility to accommodate that risks.

Question: What do suppliers do to guard against changing delivery dates? How does
this impact their costs and the prices they charge?

Answer: Delivery dates are not frequently changed due to construction requirements
with the exception of some bulk materials. A more frequent change of delivery occurs due
to late changes by the client or EPC contractor and the cost can increase significantly, on
some equipment even greater than a 100% increase.

Two things: First, most suppliers expect changes to occur. To mitigate their exposure,
they will commonly include cost and schedule contingency in their quotes. For example, in
some deep-water offshore projects, 48 month lead times have been quoted for manufacturing
sub-sea trees where the manufacturing from raw materials to delivery takes 18 months with
no contingencies. Second, prudent suppliers will also address this in their contracts. They
will request contractual relief by their customer (e.g, cost, schedule and perhaps other terms
– Liquidated damage/ Bonus, warranty, etc). if the client modifies the agreed upon delivery
date for reasons not attributable to the supplier.

Question: Have you ever mapped the value stream between your firm and your suppliers?
What have you observed?

Answer: We have created value stream maps with a number of suppliers and discovered
a tremendous amount of waste, rework and non-value added work. We have been able to
identify and eliminate more than 60% of the cycle time and reduce rework from 9 to 10
times to less than 1 time. Motion and repetitive checking are often confused with value
added time. We have not reached critical mass, but this is a huge area for savings.

A.3 Decision-Making

Question: How do you or your firm divide a project into components or subprojects?
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Answer: It mostly depends on the company and the culture of that company, the
project, and its complexity. But it is not uncommon for a large mega-project to have several
different areas or components and to have a project director who is ultimately responsible
for the whole of the project and the area or subproject managers who are accountable for
sub-area within the project. Ultimately, there will be an integrated plan and schedule for
the whole project and the project director is accountable for that.

Question: Which decisions are made by managers overseeing the entire project, and
which are made by the managers of the subprojects?

Answer: Assuming the project is lump sum turnkey the EPC contractor is making the
decisions related to delivery dates and construction schedules with the EPC Project Manager
delegating to his team leads. I think your questions is getting at how well is their decision
making coordinated on the project. I think we have a wide range of experience on this, but
strive for strong coordination across the decision making to ensure no one manager is making
decisions which impact the schedule of others (not sure they do this as well as they would
like).

These divisions of responsibility should be clearly established before the project com-
mences and can vary depending on company culture and the project type and risk. The
project director has overall accountability for execution. If he/she directs a change that
impacts a sub-area, that subproject managers duty is to advise on the impact and the risk
and to determine the resources (manpower, cost, equipment, schedule) required to meet the
project manager’s direction.

The subproject or components managers make decisions based on their deliverables. The
overall project manager manages key stakeholders, partners, and contractors and makes
decisions for the white-space (i.e., between the subprojects or components) or for cross-
project issues (e.g., safety performance, costs tradeoffs, etc.)

Note that we were unable to get at the issue of what types of decisions need to be coordi-
nated across sub-projects.

Question: How do higher level managers overseeing the entire project communicate with
subprojects managers and how is feedback transferred?

Answer: We have a routine ‘operating rhythm’ for all projects, typically weekly for
progress with a seven-day look-a-head and monthly focusing on overall progress, reviewing
the risk register, and performing a 90-day look-a-head for progress against milestones. These
meetings occur in an Obeya room where each subproject or component leader participates
and is encouraged to highlight the gaps and what they need help with to ensure we meet
Safety, Quality, Delivery and Cost (SQDC) targets.

We have weekly meetings in an Obeya room where each component leader provides
updates on Safety, Quality, Delivery and Cost with a focus on hotspots that require help
from other teams and highlights. The Obeya room is refreshed with measures, photographs,
and visual controls to help the entire team assess project status and risks.

Question: What overall project management strategies are communicated to subproject
managers?
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Answer: We have something called work breakdown structures (WBS). You can divide
the project into different areas based on your WBS and then you look at your equipment
deliveries and your construction sequencing and you analyze which equipment needs to be
engineered or procured soonest based on the time requirements for manufacture and delivery
and sequencing of your construction. So, you need to get foundations in and major equipment
in. That’s all driven by WBS and the project manager would be an approver of that WBS.

Question: How procurement/supply chain decisions get made? How do the various levels
of project management affect those decisions?

Answer: Each project has a Construction and Planning (C&P) lead on the PM lead-
ership team who is heavily involved in working with the estimating and scheduling team to
ensure delivery dates match the required schedule. The C&P team will get pressure from
each of the sub-managers to ensure their material and equipment is delivered to the schedule
or earlier. Naturally C&P will negotiate with the suppliers on schedule but usually, the
relevant discipline manager is also present in those meetings.

This is heavily dependent on the company and project culture. My bias is to have a
project structure in which the procurement lead reports directly to the project manager
(most sophisticated firms do this). In addition, a good practice is to have a governance
model that includes two types of approval:procurement and financial. In this model, before
any commercial commitment can be made (eg. a supplier contract), the procurement man-
ager must first concur that it is commercially acceptable. Only someone with procurement
authority can do this. Once that happens, the individual with financial authority (i.e. the
project manager) is authorized to enter into the contractual arrangement. The further re-
moved supply chain is from the project leadership, the less likely this is to happen and the
weaker their voice will be in commercial matters. This could lead to bias in bidders lists and
award decisions and suboptimal management of the resulting contract.

The “Procurement Category Manager” works closely with the subproject or components
managers to define the strategy and to collaborate with the key suppliers to create a team
environment and clearly define expectations and performance metrics.

Question: How are procurement/supply chain delivery time due dates set? Who sets
them? How is the amount of float determined?

Answer: That depends on the type of equipment and how much confidence you have
in manufacturing. If you have a big offshore installation vessel you want to have a little bit
more float in your schedule to make sure you are not paying a lot of money for a vessel to
sit there and wait. It also depends on the weather. If you want to store a material in a very
unfriendly environment like snow, you may not want that material to sit out at the site for
a long time because you have to store and preserve it. So, there is lots of scenario planning
that has to go into the different type of projects, the different type of material, the different
contracting strategies, etc., to really determined how much float you build in your shipping
schedule. Generally, you want some float into your schedule. You want to build about 60
days of a float or to have your material be there 60 days prior to when they are needed.

Other interviewees gave slightly different answers us:
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We need to make sure the packages are available on site, so we have some float. Both
the operator paying for construction of the facility as well as construction company typically
want the material on site 30-60 days in advance. But it’s not very scientific; it is more of an
industry rule of thumb.

Every project based on the design of the project and based upon the economics merits of
the project, the organization, the project team, the supply chain team, together with PNL
will take a look at what’s needed to get the project completed. If there is equipment with
a long lead-time, it doesn’t necessary mean that it will be ordering 4 month or 6 months or
8 months early. It really depends on what’s needed and when and whether or not the team
believes the sufficient capacity the market to get what is needed in terms of equipment and
materials. In some cases, there will be a determination made to order certain equipment and
materials that are in the critical path or have the ability to affect the project schedule be on
site early. How far in advance really depends on the project’s need, the project’s requirement
and the supplier’s ability to get the material onsite when the teams need to.

Question: Do you calculate these floats using some sort of models?
Answer: In our scheduling tools, we have different calendars and scenarios. We don’t

really have models other than different calendars, and we don’t have simulation capability.
And then you need to understand what’s the volume of material you’re going to store. Does
it need to be held in a climate control warehouse? Does it need to be secure? Can you store
it in a less expensive open lay-down area? How much will it cost to store it? How much will
it cost to preserve it? What’s your consumption rate on the site? There are many variables
that you need to take into consideration.

This is based upon the project plan, the project schedule, the risk and contingency
associated with that project, and whether or not again specific item of equipment or materials
is or could be on the market during that time. In the company where I work, ultimately
the project manager makes the decisions to authorize if equipment or material needs to be
released early.

Question: Who decides on shipping times/lead times/etc. for subprojects? Who is
responsible for delay and cost overrun on subproject? Who balances this trade-off between
subprojects?

Answer: In our company, the “Procurement Category Manager” works closely with
the subproject leaders to define shipping times, lead times, delivery sequencing, quality
inspections etc. for each subproject.

The project director is accountable for the overall project including safety, quality, deliv-
ery and cost including any delays or cost overruns. The project director also balances this
trade-off between subprojects.

Question: If certain materials and parts are requested further in advanced than others,
what governs these decisions. Are the service levels, i.e., the ability to deliver within agreed
lead time, of each supplier being measured and incorporated into how far in advance it is
required? Or is it more so based on the criticality of the materials and parts?

Answer: Long lead time items are specified and AFE’d separately and must be approved
by executive leadership. These items (materials and equipment) are defined by the project
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team together with procurement. The decision drivers are the criticality of the materials
and equipment, the manufacturing lead time required to assure industry leading acceptable
quality.

Question: Does your scheduling software consider all of these cost and factors? How
do you link your schedules with all the cost analysis that you have in Excel? How do you
consider cost in your schedules?

Answer: No, you have to build many cost models in Excel or something outside of
the scheduling software. You would have to estimate the cost and everything outside of
the scheduling software and make the decision. For example, it’s going to cost me so many
dollars per month, I can consume so much per week onsite and you have to do the calculation
and then build the float. The only thing that the scheduling software is really useful for is
time, and sequencing and scheduling. It’s not a costing tool. As far as I have ever been
experienced, you kind of have to do some work outside of the scheduling software like Excel
or a simulation modeling tool, and then use that data in the scheduling software.

Question: What is the reason your company does not use something closer to Just in
Time delivery (JIT)?

Answer: Because it never works. It’s a fallacy. Because there are always changes in
construction projects. The manufacturers usually are late. There are changes to the schedule.
There are changes to the sequencing of constructions in the field and if you rely on something
to be delivered just in time to install it most of the time it does not work out that way and it
costs you a lot of money to either pay the manufacturer to hold the material or to store and
preserve the material on-site. That’s why in the construction industry, they like to build up
work in progress (WIP) and have an inventory of materials prior to mobilizing the field to
make that the labor force can be utilized productively and efficiently.

I think in theory it could work. Unfortunately, what you have in this industry is less
transparency between the owner organization or the customer and the supplier organization
or contractor, because both are profit-driven enterprises. In order to have the the best
execution, you need to have full transparency. For example, companies in this industry do
not even share their drilling scheduling with their partner.

Question:Do you think that you have a problem with early delivery from suppliers? Have
you seen materials that are are on the site far sooner than the time they are needed?

Answer: Generally speaking, I would say no. There are some times when you have
equipment there long before you need it because of the aggressive schedule that we have in
the industry these days. I think that often times you don’t have the material on time, you
don’t have JIT delivery and that’s why you have to have so many work-arounds in the field
to accommodate construction based on the equipment that is available. So, I think it would
be helpful to have a more reasonable schedule where you have the time to do the engineering
and to do the equipment and to have more of it available to support the construction. From
what I see, often times we are waiting on materials, more often that having it there just
waiting for installation.

Question: What is the most uncertainty that you have (among supplier manufacturing,
shipping duration, construction or installation?
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Answer: The shipping is fairly consistent. There is not as much variation in the shipping
times. I would say the manufacturing time or the time required to do the installation on the
site depending upon if the construction productivity is good.

Question: Is it efficient that you ask delivering 30-60 days prior to ROS? Do you think
that procurement works efficiently when deciding float times?

Answer: Interviewees gave a variety of very different answers:
Not at all. We are working to change all that as a company. Ultimately, we want to do

be like the manufacturing world where delivery is JIT.
If we delay a project, that has far greater cost than sitting equipment for 30 days. To

be clear, our company plans and schedules as much material and equipment as it can get to
the site ahead of starting construction or any activity.

I do think that the systems are fairly efficient. There are complex models that are used
to develop and sanction projects. So, I don’t think that it’s inefficient. I am not sure that
there is a better way. I know that there are many criteria that go into the various stages
of developing and sanctioning projects at least on an operating site. I don’t think it is the
question is it efficient or not, for me it really goes to what are the trade-off between what
you need on site and when and whether the project or site prepared to accept the goods or
services or materials and if they can arrive at site and what kind of constraints do you put
on supply chain to make sure that will happen.

Question: Why do others think that current systems are working efficiently?
Answer: The traditional approach to contracting for big projects is EPC and all the

risk is on the contractor, which is absolutely not the most efficient way to do things. IPA
collects data on all capital projects including oil and gas. The majority of capital projects are
delivered with delay and over budget which shows they are not efficient. There is certainly a
huge opportunity. We are working on how to reduce the cycle time. We need to understand
how supply chain management, material handling, contracting, and so on contribute on that.



158

Appendix B

Details of Running the WoLZo
Algorithm

This Appendix B presents the details of using the WoLZo algorithm, including the run-times
and the number of iterations, for both Model R and Model L for every scenario while varying
Z from 1 to 15. In the following tables, alpha is selected to be 1.05.

We used the following notations:

Z: Number of zones
T (Z): Minimum possible takt (units of time per zone)
dT (Z)e: Smallest integer larger than T (Z)
iter: Number of iterations of the WoLZo algorithm
t: Run-time of the WoLZo algorithm (seconds)
D1: Phase duration when there is only 1 floor
D2: Phase duration when there are 2 floors
D5: Phase duration when there are 5 floors
D10: Phase duration when there are 10 floors
TG: Solution time when using Gurobi alone (bounded by 3,600 seconds)
gapG: Optimality gap provided by Gurobi ((upper bound - lower bound) / upper bound)

Table B.1: Results of WoLZo Computation for Model R, Scenario 1

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 0.0 284 355 568 923 0.0 0.00 %

Table B.2: Results of WoLZo Computation for Model L, Scenario 1

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 0.0 284 355 568 923 0.0 0.00 %
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Table B.3: Results of WoLZo Computation for Model R, Scenario 2

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 0.0 284 355 568 923 0.0 0.00%
2 40.7 41 4 0.0 205 287 533 943 0.0 0.00%
3 31.3 32 6 0.0 192 288 576 1056 0.0 0.00%
4 22.0 22 5 0.0 154 242 506 946 0.0 0.00%
5 20.8 21 9 0.0 168 273 588 1113 0.0 0.00%
6 20.8 21 12 0.0 189 315 693 1323 0.0 0.00%
7 20.8 21 15 0.0 210 357 798 1533 0.0 0.00%
8 20.8 21 18 0.0 231 399 903 1743 0.0 0.00%
9 20.8 21 21 0.0 252 441 1008 1953 0.0 0.00%

Table B.4: Results of WoLZo Computation for Model L, Scenario 2

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 0.3 284 355 568 923 0.3 0.00%
2 39.3 40 3 0.3 200 280 520 920 0.2 0.00%
3 27.7 28 4 0.3 168 252 504 924 0.3 0.00%
4 22.0 22 5 0.3 154 242 506 946 0.3 0.00%
5 20.8 21 9 0.3 168 273 588 1113 0.3 0.00%
6 20.8 21 12 0.3 189 315 693 1323 0.2 0.00%
7 20.8 21 15 0.4 210 357 798 1533 0.3 0.00%
8 20.8 21 18 0.4 231 399 903 1743 0.2 0.00%
9 20.8 21 21 0.4 252 441 1008 1953 0.2 0.00%
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Table B.5: Results of WoLZo Computation for Model R, Scenario 3

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 0.1 284 355 568 923 0.1 0.00%
2 40.7 41 4 0.2 205 287 533 943 0.2 0.00%
3 26.4 27 3 0.2 162 243 486 891 0.4 0.00%
4 20.9 21 4 0.2 147 231 483 903 0.6 0.00%
5 16.8 17 4 0.2 136 221 476 901 1.0 0.00%
6 15.2 16 6 0.3 144 240 528 1008 1.9 0.00%
7 13.7 14 7 0.5 140 238 532 1022 1.7 0.00%
8 11.2 12 6 0.3 132 228 516 996 1.8 0.00%
9 9.4 10 4 0.2 120 210 480 930 1.6 0.00%
10 8.3 9 4 0.3 117 207 477 927 1.9 0.00%
11 8.2 9 6 0.3 126 225 522 1017 1.7 0.00%
12 8.2 9 7 0.4 135 243 567 1107 1.8 0.00%
13 8.2 9 9 0.4 144 261 612 1197 1.8 0.00%
14 8.2 9 11 0.6 153 279 657 1287 0.8 0.00%
15 8.2 9 12 0.5 162 297 702 1377 1.6 0.00%

Table B.6: Results of WoLZo Computation for Model L, Scenario 3

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 22.1 284 355 568 923 28.8 0.00%
2 35.2 36 1 30.4 180 252 468 828 3594.4 0.00%
3 23.5 24 1 25.9 144 216 432 792 3600.0 100.00%
4 18.4 19 1 23.7 133 209 437 817 3600.0 100.00%
5 14.6 15 1 22.9 120 195 420 795 3600.0 inf
6 12.3 13 2 23.6 117 195 429 819 3600.0 99.20%
7 11.0 11 2 23.6 110 187 418 803 3600.0 100.00%
8 9.7 10 3 25.4 110 190 430 830 2683.8 0.00%
9 8.6 9 3 24.3 108 189 432 837 3600.0 inf
10 8.2 9 4 25.2 117 207 477 927 3600.0 inf
11 8.2 9 6 26.5 126 225 522 1017 3600.0 100.00%
12 8.2 9 7 28.2 135 243 567 1107 1528.0 100.00%
13 8.2 9 9 28.9 144 261 612 1197 3600.0 99.40%
14 8.2 9 11 31.6 153 279 657 1287 3183.0 0.00%
15 8.2 9 12 31.7 162 297 702 1377 2774.5 0.00%
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Table B.7: Results of WoLZo Computation for Model R, Scenario 4

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 0.5 284 355 568 923 0.5 0.00 %
2 35.9 36 1 0.6 180 252 468 828 0.8 0.00 %
3 25.7 26 2 0.6 156 234 468 858 5.2 0.00 %
4 18.4 19 1 0.6 133 209 437 817 9.5 0.00 %
5 15.2 16 2 1.1 128 208 448 848 19.2 0.00 %
6 13.0 13 3 0.8 117 195 429 819 34.0 0.00 %
7 12.1 13 4 2.2 130 221 494 949 26.1 0.00 %
8 10.9 11 5 1.9 121 209 473 913 35.6 0.00 %
9 9.4 10 4 1.5 120 210 480 930 33.0 0.00 %
10 8.3 9 4 1.6 117 207 477 927 36.9 0.00 %
11 8.0 8 5 1.4 112 200 464 904 35.5 0.00 %
12 7.5 8 6 1.6 120 216 504 984 28.9 0.00 %
13 7.2 8 6 1.6 128 232 544 1064 32.0 0.00 %
14 6.8 7 7 1.7 119 217 511 1001 38.4 0.00 %
15 6.6 7 7 1.6 126 231 546 1071 34.4 0.00 %

Table B.8: Results of WoLZo Computation for Model L, Scenario 4

Z T (Z) dT (Z)e iter t D1 D2 D5 D10 TG gapG

1 70.1 71 1 170.5 284 355 568 923 191.5 0.00 %
2 35.1 36 1 301.5 180 252 468 828 3600.0 100.00 %
3 23.5 24 1 236.1 144 216 432 792 3600.0 100.00 %
4 17.9 18 1 200.3 126 198 414 774 3600.0 100.00 %
5 14.3 15 1 195.5 120 195 420 795 3600.0 inf
6 12.1 13 1 185.1 117 195 429 819 3600.0 inf
7 10.5 11 1 175.0 110 187 418 803 3600.0 inf
8 9.3 10 2 215.7 110 190 430 830 3600.0 inf
9 8.2 9 1 173.9 108 189 432 837 3600.0 inf
10 7.5 8 2 188.7 104 184 424 824 3600.0 inf
11 7.1 8 3 200.2 112 200 464 904 3600.0 inf
12 6.5 7 3 196.1 105 189 441 861 3600.0 inf
13 6.1 7 3 188.8 112 203 476 931 3600.0 inf
14 6.0 6 3 193.1 102 186 438 858 3600.0 inf
15 5.4 6 3 194.6 108 198 468 918 3600.0 inf
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Appendix C

Optimal Partitions Suggested by
WoLZo Algorithm

Appendix C offers graphical representations of the numerical results (already shown in tab-
ular format in Appendix B) obtained using WoLZo for both Model R and Model L for every
scenario while varying Z from 1 to 15 and with alpha set at 1.05.

Shown on the left of each figure is the optimal partition selected by the WoLZo algorithm,
and on the right is the corresponding histogram that depicts the workloads by zone for each
trade in the process. In the histogram, different steps in different zones are shown along
the x-axis and the workload (units of time per zone) is represented along the y-axis. Note
that the various trades in the process are color-coded: Mechanical in navy blue, Framing in
turquoise, Electrical in orange, and Plumbing in purple. Note also that the different zones
are color-coded in the partition on the left, and that the same colors are used as backgrounds
in the histogram on the right to demarcate those zones.

C.1 Scenario One: 1 × 1 matrix (1 cell)

C.1.1 Model R
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C.1.2 Model L

C.2 Scenario Two: 3 × 3 matrix (9 cells)

C.2.1 Model R
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C.2.2 Model L
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C.3 Scenario Three: 6 × 9 matrix (54 cells)

C.3.1 Model R
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C.3.2 Model L
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C.4 Scenario Four: 6 × 18 matrix (108 cells)

C.4.1 Model R
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C.4.2 Model L
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