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Abstract

Essays on Stochastic Bargaining and Label Informativeness

by

Zhao Ning

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor J. Miguel Villas-Boas, Chair

Many firms rely on salespersons to communicate with prospective customers. Such
person-to-person interaction allows for two-way discovery of product fit and flexibility on
price, which are particularly important for business-to-business transactions. In the first
chapter, I model the sales process as a game in which a buyer and a seller discover their
match sequentially while bargaining for price. The match between the product’s attributes
and the buyer’s needs is revealed gradually over time. The seller can make price offers with-
out commitment, and the buyer decides whether to accept or wait. Players incur flow costs
and can leave at any moment. The discovery process creates a hold-up problem for the buyer
that causes him to leave too early and results in inefficient no-trades. This can be alleviated
by the use of a list price that puts an upper bound on the seller’s offers. A lower list price
encourages the buyer to stay while reducing the seller’s bargaining power. But in equilib-
rium the players always reach agreement at a discounted price. The model thus provides a
novel rationale for the pattern of “list price - discount” observed in sales. I examine whether
the seller should commit to a fixed price or allow bargaining. When the seller’s flow cost is
high relative to the buyer’s, both players are willing to participate in discovery if and only
if bargaining is allowed. In such a case, bargaining leads to a Pareto improvement, which
explains the prevalent use of bargaining in sales. If the buyer has private information on
his outside option, the model predicts that, counter-intuitively, the buyer with a higher net
value for the product pays a lower price. The chapter expands the bargaining literature by
adding a discovery process that introduces a hold-up problem as well as making the product
value stochastic.

The second chapter examines how counter-offers affects the hold-up problem in stochastic
bargaining. Firms increasingly rely on collaboration for the development and marketing of
products. The expected surplus from such collaboration can change stochastically over time
due to evolving market conditions or the arrival of new information. For collaboration to
happen, both firms have to agree to collaborate as well as agree on how the profit is to be split.
In such cases, at what point do firms form the alliance and how do they agree on the profit
split? To answer these questions, I study a model of bilateral bargaining with a surplus that
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follows a Brownian motion. One firm can make repeated-offers to the other, and they switch
roles after some time to allow for counteroffers. The frequency of counteroffers determines
relative bargaining power, and the model captures different bargaining procedures by varying
this frequency. The chapter shows that, when there is no outside option, firms collaborate
after efficient delay. If there is a relevant outside option, the outcome is inefficient due to
the existence of a hold-up problem faced by the weaker party. Firms form the alliance too
early, taking the outside options too early, and the ex-ante probability of alliance becomes
sub-optimal. Increasing the frequency of counteroffers improves social efficiency by balancing
bargaining power and reducing the severity of hold-up. Furthermore, bargaining with more
frequent counteroffers can lead to Pareto improvements; the proposer benefits, too, because
the increased efficiency outweighs losses in bargaining power. The essay makes a step in
understanding the effect of bargaining procedures on collaborative outcome, and shows how
collaborators should (not) bargain.

The third chapter studies the effect of product labelling on consumer behavior empiri-
cally. Cigarettes are sold in different strengths, commonly categorized as regular, light, or
ultralight. In 2009, Congress passed Tobacco Control Act (TCA) which banned tobacco com-
panies from communicating product strengths to consumers on any marketing or packaging
materials. Cigarette companies continue to sell products of different strengths by using less
informative color codes, i.e., relabeling Marlboro Light to Marlboro Gold or Camel Light to
Camel Blue. Brands do not use the exact same color codes, creating room for confusion. This
chapter investigates the effect of such change in label informativeness on consumer choice.
Using a panel of smokers from 2007 to 2012, I find a sharp decline in price sensitivity after
Tobacco Control Act was passed. The finding is robust in choice models that account for
preference heterogeneity, state dependence, price endogeneity, and consideration sets. This
result suggests that consumers perceive products as more differentiated when strength labels
change to color codes. This essay provides new evidence on the linkage between product
labeling and choice behavior.
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Chapter 1

How to Make an Offer? A Stochastic
Model of the Sales Process

1.1 Introduction

Sales force is an important part of the economy. The U.S. economy spends $10 billion per
year on sales force (Zoltner et al. 2008). Selling through sales force is the main channel for
many firms, especially those that serve other businesses. B2B firms rely on salespersons to
provide product information, learn about prospective customers’ needs, and persuade them
to buy. Typical sales activities include discovery calls, sales pitch, demonstration, proposal,
etc. These interactions between the buyer and the seller before a transaction is generally
referred to as the sales process. Mantrala et al. (2010) put the sales process at the core of
their framework for sales force modelling. They state that “the firm’s decisions surrounding
the selling process...are critical and impact response functions, operations, and, ultimately,
strategies.” Albeit its importance, the sales process has been an understudied topic. The
details of the sales process differs greatly by industry, and can span multiple months to more
than a year for enterprise buyers or complex products. In this paper, I model the sales
process as a combination of two-sided information acquisition and bargaining, and study the
strategic interactions between the buyer and the seller during the process. The model focuses
on two key functions that person-to-person selling provides: (1) to discover the match/fit
between the buyer and the seller when the market is heterogeneous; and (2) to determine
the transaction price through bargaining.

Figure 1.1: Framework of Sales Process

In many industries, the value from trade can be relationship-specific due to a high degree
of heterogeneity on both sides of the market. In industries such as enterprise software,
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industrial equipment, and professional services, sellers can differ widely in the products
and services that they offer, and customers can have significant differences in the solutions
they need (see, e.g., Stevens 2016 for a description of the market for data vendors). Prior
to communicating with the seller, a buyer may not know how well the product or service
addresses his business needs. The buyer can acquire information through the sales process
to guide his purchasing decision. On the other hand, buyers have heterogeneous demand
for attributes, so the seller does not know how well the product matches the buyer’s needs
and thus is unsure how much the potential buyer is willing to pay for it. In practice, many
B2B firms have an explicit ”discovery” step in their sales processes, in which the salesperson
inquires about the buyer’s situations and needs.1 Industry studies find that a well-executed
discovery plan plays an important role in successful sales (See, e.g., Zarges 2017 and Merkel
2017). The information about the buyer’s needs helps the seller to fine-tune her selling
strategy, such as whether to continue pursuing a buyer or what price to quote. For example,
firms often delegate some pricing power to the salespersons, because the salespersons know
more about a client’s willingness-to-pay than the firm does through their communications
with the client (See Mantrala et al. 2010 and Coughlan and Joseph 2011 for surveys on the
literature of price delegation). The sales process allows the two parties to find out how well
the product matches the customer’s needs, which determines their total surplus from trading
with each other. This view is also consistent with earlier work on the role of personal selling
(Wernerfelt 1994a) as well as writings from practitioners (see, e.g., Nick 2017 and Mehring
2017).

Another important part of sales is bargaining. A survey of sales forces by Krafft (1999)
found that 72% of sampled companies allow their salespersons to adjust price offers. The
number rose to 88% for industrial-goods companies in the survey. In B2B markets, the
standard practice is for the two parties to negotiate for a discount off of some list price
(Mewborn et al. 2014, PwC 2013, Mukerjee 2009 p.464). Managing the list price is considered
important for B2B firms even though price can be negotiated (Mewborn et al. 2014), and
85% of B2B respondents in a Bain survey believe that their pricing could improve (Kermisch
and Burns 2018). Providing the buyer a discount has become the norm in many B2B markets
and often represent a company’s largest marketing investment (Caprio 2015, Wang 2016, and
Schurmann et al. 2015). Some sellers do not publish their list prices publicly. In such a
case, studies by CRM firms Hubspot (2016) and Gong (2016) show that most buyers want
to discuss price in the very first sales call, forcing the seller to reveal their list price before
the sales process moves on.

The common use of list price in bargaining situations brings forth many questions. For
example, what roles does the list price play if most to all buyers negotiate the price? How
does the choice of list price affects the sales outcome? What is the optimal choice of list
price, given it is not the actual transaction price? And how does the seller makes price offers
during the sales process? In this paper, I view the list price differently from a first offer.

1See, for example, Hubspot’s sales process in Skok (2012) and Talview’s sales process in Jose (2017) with
more details. Both companies offer Software-as-a-Service to other businesses.
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The list price serves as an upper bound on price offers during bargaining, so that players
can only negotiate on discounts.2

This paper views the discovery and the bargaining processes as dynamic, interdependent,
and simultaneous. Information on product fit arrives gradually and bargaining involves
sequential offers. The revelation of product match affects bargaining strategy and vice
versa. For example, intuitively, finding out that the product is a good fit is good news for
the buyer. But once the seller sees that the buyer really values the product, the seller may
charge a higher price (by giving a smaller discount). This reduces the buyer’s incentive
to discover the product fit with the seller in the first place if such activity is costly. This
presents a hold-up problem, as the expectation of the future bargaining outcome affects the
players’ current choice of “investment” (whether to continue or leave). Another important
point is that there are no natural “stages” that separate discovery and bargaining. The
seller can make offers at any moment during the process. This observation motivates one
to view discovery and bargaining as happening simultaneously, and allow the length of the
sales process to be endogenous.

I study a game in which a buyer and a seller discover their product match sequentially
while simultaneously bargaining for price. I solve the optimal selling and buying strategies in
continuous time. The model provides novel insights on the role of list price and price discount
in negotiations. The paper also looks at the firm’s choice between allowing bargaining versus
committing to a fixed price. These analyses provide implications on issues such as optimal
list pricing and delegation of pricing authority. On the theoretical side, the paper expands
the existing bargaining literature by adding a simultaneous discovery/matching process.
This process causes product value to be stochastic, and introduces a hold-up problem to the
stochastic bargaining framework.

Specifically, a buyer and a seller trade over a product that can be seen as a sum of at-
tributes. The match between the product’s attributes and the buyer’s preferences is revealed
to each other over time. The seller can publish a list price before the sales process that acts
as a price ceiling. At each moment, players discover their match on more attributes, the
seller can make price offer without future commitment, and the buyer decides whether to
take that offer. Continuing the process is costly and players can choose to quit. The seller’s
cost can come from the salesperson’s salary and product demonstration cost, while the buyer
incurs cost from processing information or opportunity cost when dedicating employees to
talk to the salesperson.

I show that the list price acts as an instrument to reduce the buyer’s concern for hold-
up. The seller uses the list price to balance the buyer’s incentive to engage and the seller’s
bargaining power. If the seller sets the list price too high, then the buyer leaves immediately.
Even if the product match will be revealed to be good, the buyer does not expect to get any
surplus ex-ante because the seller can charge a high price once the good match is revealed. In

2Intentionally selling above the list price can be considered false advertising in countries including U.S.,
U.K., and Canada. B2B firms are exposed to false advertising regulations, even for promotional statements
not made to the general public (Miller 2011).
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order to encourage the buyer to continue gathering information for a sufficiently long time,
the seller needs to set a low enough list price to limit the impact of such hold-up. On the
other side, a lower list price decreases the seller’s bargaining power by increasing the buyer’s
continuation value. The optimal list price thus has to balance these two effects. Surprisingly,
I find that the parties always trade below the list price, regardless of what the list price is.3

The reason is that it is not efficient for the seller to wait until the buyer is willing to pay
the original list price. Instead, the seller prefers to make the sale earlier by offering a price
discount.

This finding provides a rational explanation for the “list price - discount” pattern that is
observed in sales negotiations, which has been largely ignored in the bargaining literature.
There lacks sufficient explanations for why firms want to self-restrain their offers during
bargaining by establishing a list price. For example, if one allows the seller to set a list price
in the repeated-offers model of Fudenberg et. al. (1985), then the list price is optimal as long
as it is higher than the valuation of the highest type. Providing the seller with the ability
to set a list price does not affect the equilibrium outcome. Thus, “list price” and “discount”
are meaningless terms in such models.

Who should leave the sales process if the product fit is revealed to be poor? Surprisingly, it
is always the buyer who leaves; otherwise the seller should set a higher list price. Raising the
list price has two effects: it discourages buyer engagement and improves surplus extraction.
If the seller quits before the buyer does, discouraging the buyer is costless. Thus, raising the
list price is strictly beneficial to the seller in such a case.

Should the seller commit to a fixed price or be open to bargaining? I find that bargaining
leads to a lower final price and a higher ex-ante probability of trade than under a fixed price.
Bargaining always benefits the seller and increases overall welfare, but its effect on the buyer’s
utility depends on the ratio of the players’ costs. When the seller’s cost is high relative to
the buyer’s, bargaining is necessary for both players to participate in the sales process.4 The
flexibility from allowing players to bargain improves overall efficiency by saving time and
cost and by increasing the ex-ante success rate. In this case, bargaining is welfare-enhancing
for both the buyer and the seller.

The model extends to the case in which the buyer has private information on his outside
option. The seller only knows the distribution of the buyer’s net valuation at each moment.
This model is similar to a repeated-offers bargaining model with one-sided incomplete infor-
mation (such as Fudenberg et al. 1985) but with a stochastic product value resulting from
the sequential discovery of product match. In equilibrium, trade is delayed and the seller can
separate different types of buyers, even though the seller can change price offers arbitrarily
fast. A counter-intuitive finding is that the buyer with a higher valuation for the product
pays a lower price. This is due to a combination of the efficiency gain from selling early
and the high type buyer’s information rent. Extensions to Bayesian learning, finite horizon,
heterogeneous attributes, and time discounting are also examined.

3This is before considering consumer heterogeneity in costs.
4A player “participates” if he/she does not leave at t = 0.
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Literature Review

The paper is related to the literature on sequential information acquisition. The papers
that are closest in modelling include Roberts and Weitzman (1981), Moscarini and Smith
(2001), Branco et al. (2012), and Ke et al. (2016). Similar to these studies, I use a
Brownian motion to capture the effect of gradual arrival of product information on product
value. Whereas previous papers focus on single-agent decision-making, this paper features
two-sided learning and allows players to bargain. The addition of two-sided learning and
bargaining turns the problem into a dynamic game, which greatly increases the complexity.
Kruse and Strack (2015, 2017) look at a problem in which a principal tries to influence an
agent’s stopping decision through a transfer. The price discount in this paper can be seen as
a transfer, but unlike the principal in Kruse and Strack (2015, 2017), the seller in this paper
cannot commit to future transfers.

Other papers have studied bargaining with stochastic payoffs. Merlo and Wilson (1995)
present a general framework of stochastic bargaining games with complete information in
discrete time. Daley and Green (2017) look at a repeated-offers bargaining game with asym-
metric information and gradual signals. One party knows the true quality of the product,
and the other party receives noisy signals of the quality over time. In contrast, this pa-
per features two-sided learning which creates the hold-up problem. Ortner (2017) solves a
bargaining model where the seller’s marginal cost changes over time. Fuchs and Skrzypacz
(2010) look at bargaining with a stochastic arrival of events that can end the game. Ishii
et al. (2018) studies wage bargaining with both sequential learning and stochastic arrival of
competitor.

The idea that setting a list price can reduce the buyer’s hold-up problem relates to the
consumer search literature, which shows that sellers can use published price to encourage
search. Wernerfelt (1994b) shows that, when product quality is uncertain and requires
search/inspection, then the seller wants to inform the buyer about the price before search.
Similarly, to encourage visits, multi-product retailers want to advertise the prices of some
products to put a bound on the total price of a basket (Lal and Matutes 1994). This paper
expands the concept further by allowing players to bargain after the list price is posted.
Other papers have discussed the use of list price in other contexts. Xu and Duke (2017)
show that the list price can be used to convince uninformed buyers of their types when the
seller has superior information. Yavas and Yang (1995) and Haurin et al. (2010) discuss the
signalling role of list price in the real estate market. Huang (2016) investigates why some
car dealers commit to posted prices while others allow haggling. Shin (2005) shows that
non-committal list prices can signal true prices when the sales process is costly.

Conceptually, the paper also relates earlier works that study the role of sales in providing
information to consumers, such as Wernerfelt (1994a) and Bhardwaj et al. (2008). Shin
(2007) studies a firm’s decision to provide pre-sales service that reveals the match between
a customer and the product, when competitor can free-ride on such service. This paper also
studies a firm’s decision to delegate pricing authority, but using a different approach from
the principal-agent models of Lal (1986), Bhardwaj (2001), and Joseph (2001).
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The paper is organized as follows. Section 2 presents the model. Section 1.3 solves the
baseline case with a costless seller, and discusses the core intuitions. Section 1.4 extends to
the case in which selling is costly, and shows the necessity of bargaining when selling cost
is high. Section 1.5 gives the buyer private information on his outside option and discusses
the results. Section 1.6 presents other extensions. Section 1.7 offers concluding remarks.

1.2 The Model

I first give an intuitive description of the discovery and the bargaining processes in
discrete-time terms. Then I present the continuous-time model, which can be seen as the
limit of the discrete-time game. In Section (1.10), I study the discrete-time game directly,
and shows that the continuous-time solution presented in the paper represents the unique
limit of discrete-time equilibrium outcomes.

Description of the Model

Consider two players, a Buyer (b) and a Seller (s). Throughout the paper, Buyer is
referred to as “he” and Seller is referred to as “she”. Seller owns a product that can be sold
to Buyer. In each period, the two players first engage in discovery, then bargain over price,
and lastly decide whether they want to continue or leave the sales process.

Figure 1.2: Illustration of the Game

Discovery as Matching The product is a combination of attributes with equal size.
With equal chance5, each attribute can either match with Buyer’s need for that attribute,

5The model can accommodate other ex-ante probability of match. Using other probabilities increase the
analytic complexity without providing additional insights.
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which provides value zt = +σ
√
dt, or does not match with Buyer’s need, which gives value

−σ
√
dt, where dt is the length of the each period (or size of each attribute). So E[zt] = 0

and V ar[zt] = σ2dt. Each period, players simultaneously discover whether they match on
an attribute and observe zt. The expected value of the product after observing t attributes
then can be written as xt = x0 +

∑t
0 zs, where x0 is the expected value of the product prior

to the game. As the length of each period (or size of each attribute) approaches 0, the game
approaches continuous time.

As the mass of total attributes approach infinity, the product value xt becomes a sta-
tionary process. I examine this limiting case in the main model, and allow for finite mass of
attributes and heterogeneous attribute size in the extensions. In the stationary case, Buyer’s
expected value for the product, xt, can be represented as a Brownian motion.

Discovery as Learning Alternatively, instead of matching on attributes, one can think
of the discovery as a learning process. The product provides a true value of x∗t to Buyer,
which can change over time with a random walk of variance σ2, due to Buyer’s evolving
preferences. Seller and Buyer do not know the true value x∗t , and can only learn through
sequential signals acquired during the sales process. They have a common normal prior with
mean x̂0 and variance ρ0. Each period, they receive a signal of x∗t with a normal error of
variance η2, and updates the posterior mean x̂t and variance ρ̂t using Bayes’ rule.

As the length of each period goes to 0, the signal St accumulates as dSt = x∗tdt+ ηdWt,
where Wt is a Wiener process. By the Kalman-Bucy filter (See Ruymgaart and Soong 1988,
Ch.4), the posterior mean x̂t follows dx̂t = (ρ̂t/η)dBt for some Wiener process Bt, and
posterior variance follows dρ̂t

dt
= −ρ̂2

t/η
2 + σ2. If ρ̂0 = ση, then ρ̂t = ρ̂0 for all t and x̂t is

a stationary process, otherwise ρ̂t approaches ση asymptotically over time. I examine the
stationary case in the main model, and look at the non-stationary case as an extension.

Bargaining Before the game starts, Seller can set a list price P , which is a commitment
that Buyer can always buy the product at this price.6 Then each period, after discovery,
Seller can choose to offer a discounted price Pt with no guarantee on future offers. Buyer
decides whether to accept the offer. The game ends if Buyer accepts. Notice that Seller
cannot effectively offer any price above P . Also, if Seller does not make an offer, it is
equivalent to making an offer at P , since P is always available. So there is a standing offer
at each period, bounded above by P .

Quitting The players incur flow costs each period. Players can choose to quit at the
end of each period if the offer is not accepted. If either party quits, the game ends and the
players receive their outside options.

Figure 1.3 presents a sample evolution of the product value in continuous time in the
stationary baseline. Number of attributes discovered, t, is on the horizontal axis, and the
expected product value, x, is on the vertical axis. The middle horizontal line represents the
list price P . Assume that Seller never makes a price offer, so the price stays at P . The
game becomes Buyer’s single agent optimization problem as he decides when to buy. In the
beginning, Buyer optimally chooses to wait and find out more about the product. Waiting

6We denote P =∞ if Seller does not set a list price.
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Figure 1.3: Sample Path without Bargaining

is optimal even beyond the list price because the option value of buying a well-matched
product later is greater than the utility he gets if he buys when xt reaches exactly P (which
is 0). Buyer chooses to buy when product value reaches the threshold on the top of the
graph.

With bargaining, however, Seller might prefer to close the sale earlier at a discounted
price. Trading earlier saves time and cost, while also eliminating the possibility of subse-
quently discovering a bad match that breaks down the negotiation. This point is shown in
Figure 1.4.

Figure 1.4: Sample Path with Bargaining

Solving the equilibrium (defined below) in Figure 1.4 can be difficult. Because Seller
cannot commit to future prices, Buyer’s stopping decision has to depend on Seller’s entire
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pricing strategy Pt in all states of the world. Conversely, Seller’s optimal price offers depend
on what Buyer is willing to pay in all states of the world. The game has an infinite horizon
so we cannot use backward induction. An equilibrium then should be the solution to a two-
sided optimal stopping problem. Buyer’s strategy gives him the optimal stopping time given
what Seller is willing to offer, and Seller’s offering strategy gives her the optimal stopping
time given what Buyer is willing to accept.

Formal Model

The game is in continuous time with an infinite horizon. There are two players: a Buyer
(b) and a Seller (s). Product value xt is observable to both players and follows a Brownian
motion dxt = σdWt, with initial position x0. Let (Σ, F , P) be the probability space that
supports the Wiener process Wt, and F = (Ft)t∈[0,∞) be the filtration process generated by
Wt satisfying the usual assumptions. As described in Section 2.1, this is the continuous-time
version of a product with an infinite number of small, independent attributes, which players
learn over time.

Before the game starts, Seller publishes a list price P . This is a commitment that Buyer
can always buy the product at P . Effectively, this puts an upper bound on the price that
Seller can offer to Buyer. At all times t ≥ 0, players take actions in the following order:

1. Seller makes price offer bounded above by the list price P .

2. Buyer chooses whether to buy given Seller’s offer.

3. (If Buyer does not accept) Buyer and Seller simultaneously choose whether to quit or
continue.

Notation Let Pt denote Seller’s offer at time t, at be an indicator function for whether
Buyer accepts the offer at time t, qs,t be an indicator function for whether Seller quits
at time t, and qb,t indicates whether Buyer quits at time t. A history is denoted by ht ≡
({xr}r≤t, {Pr}r<t), which records the realizations of product value x up to time t and the past
price offers.7 A strategy profile θ(ht) = (P (ht), a(ht, Pt), qs(ht), qb(ht)) maps each history to
Seller’s price offer, Pt = P (ht), Buyer’s acceptance decision given a price offer, at = a(ht, Pt),
and each player’s quitting decision, qi,t = qi(ht).

Utility The game ends if players trade or if either player quits. Let τθ = inf{t | at +∑
i qi,t > 0} denote the stopping time of the game given a strategy θ. Buyer (Seller) incurs

flow cost cb (cs) during the game. Players are risk neutral and perfectly patient.8 If Buyer

7In order for a history to be an decision node, all past offers must be rejected and neither player has
quit. Thus in any subgame, we know that ar = 0 and qi,r = 0 for all r < t. So I drop them from the notation
of a history. Strategies cannot depend on past acceptance and quitting decisions for the same reason.

8In Section 1.6, I show that using time discounting instead of flow costs does not affect results qual-
itatively, as long as outside options are positive so that the players have an incentive to quit. Though
time discounting is more conventional in the bargaining literature, the paper uses flow cost to illustrate the
“investment effort” in the hold-up problem more directly.
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and Seller agree to trade at time τ , Buyer receives utility xτ − Pτ and Seller receives Pτ .
If either player quits at time τ , then players get outside options of πb and πs, respectively.
Thus Seller’s utility at time t from a strategy θ is defined as:

ut = Eτθ
[
− cs(τθ − t) + Pτθ1{aτθ = 1}+ πs1{aτθ = 0 &

∑
i

qi,t > 0}
]

And Buyer’s utility at time t from a strategy θ is defined as:

vt = Eτθ
[
− cb(τθ − t) + (Xτθ − Pτθ)1{aτθ = 1}+ πb1{aτθ = 0 &

∑
i

qi,t > 0}
]

Equilibrium I look for Stationary Subgame-Perfect Equilibrium with pure strategy,
henceforth referred to as “equilibrium”.9 Players’ equilibrium strategies depend on state x
but not on time t. I focus on stationary behavior because product value x evolves as a sta-
tionary process and time is payoff-irrelevant conditional on x. Seller’s actions in equilibrium
can be characterized by her price offering in each state P (x|P ) : R 7→ [0, P ], and her quitting
decision qs(x|P ) : R 7→ {0, 1}. Buyer’s actions can be characterized by his buying decision
a(x, P |P ) : R × R+ 7→ {0, 1}, and his quitting decision qb(x|P ) : R 7→ {0, 1}. Since every-
thing depends on the list price P , which is fixed throughout the game, I will drop P from
notations moving forward. I treat the list price as an exogenous parameter, and solve the
equilibrium for any arbitrary list price, then let Seller choose the list price that maximizes
her ex-ante utility from bargaining.

An equilibrium of this game can be viewed as the solution to a two-sided optimal stopping
problem. Buyer decides when to stop given Seller’s strategy, and vice versa.

Buyer’s Problem Given Seller’s strategy, Buyer has to decide between three actions
at each product value x. Buyer can accept Seller’s offer P (x), which gives utility x− P (x);
he can reject the offer and quit the game, which gives utility πb; or he can reject the offer
and continue the process. This is an optimal stopping problem with stopping value Wb =
max{x − P (x), πb}, subjects to states in which Seller leaves. Buyer chooses the strategy
that maximizes his expected payoff, supτ E[−cb ∗ τ + Wb(xτ )]. If Seller deviates on price,
then Buyer accepts iff xt − Pt is higher than her expected utility from playing equilibrium
strategies in the future.

Seller’s Problem If Seller makes an offer that Buyer accepts, Seller should make the
highest offer that Buyer is willing to accept. Otherwise, Seller can profitably deviate by
charging a slightly higher price. Thus in equilibrium, if a(x, P (x)) = 1, then we should
have P (x) = sup{P |a(x, P ) = 1}. Given this, Seller also decides between three actions at
each moment. Seller can make the highest offer acceptable to Buyer, which gives utility

9As shown by Simon and Stinchcombe (1989), a strategy profile may not produce a well-fined outcome
in continuous time. The utility defined above exists if and only if τθ is a measurable function from Σ to
R+. Thus when considering profitable deviations, only strategies that produce a measurable stopping time
is allowed. In Section (1.10), I construct an alternative equilibrium concept without restricting the strategy
space.
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P (x) = sup{P |a(x, P ) = 1}; she can quit the sales process, which gives utility of πs; or
she can continue (by making an unacceptable offer and do not quit). This is an optimal
stopping problem with stopping value Ws = max{sup{P |a(x, P ) = 1, πs} subject to states
in which Buyer leaves. Seller chooses the strategy that maximizes her expected payoff,
supτ E[−cs ∗ τ +Ws(xτ )].

Outcome An equilibrium outcome can be described by a quadruple (A,Q,U(x), V (x)),
where A = {x|a(x, P (x)) = 1} is the set of states such that players reach agreement, Q =
{x|qs(x) + qb(x) > 0} is the set of states such that some player quits, U(x) is Seller’s
equilibrium value function, and V (x) is Buyer’s equilibrium value function.

For states in which players trade, Seller receives U(x) = P (x) and Buyer receives V (x) =
x − P (x). For states in which no agreement is reached and a player quits, U(x) = πs and
V (x) = πb. For a state x such that players choose to continue negotiating, we can write
recursively:

U(x, t) = −csdt+ e−rsdtEU(x+ dx, t+ dt)

V (x, t) = −cbdt+ e−rbdtEV (x+ dx, t+ dt)
(1.1)

Under stationarity, and by taking Taylor expansion and applying Ito’s Lemma on EU and
EV terms, these expressions can be reduced to the following equations:

rsU(x) = −cs +
σ2

2
U ′′(x)

rbV (x) = −cb +
σ2

2
V ′′(x)

(1.2)

Given rs = rb = 0, the solutions to the equations must be of the form:

U(x) =
cs
σ2

(x− P )2 + As(x− P ) +Bs

V (x) =
cb
σ2

(x− P )2 + Ab(x− P ) +Bb

(1.3)

for some coefficients As, Bs, Ab, Bb. These coefficients can be identified later by applying
appropriate boundary conditions.

In this model, the product value xt is assumed to be observable by both players. Seller
observes Buyer’s preference for each attribute and Buyer observes each attribute accurately.
In real negotiations, potential buyers may hide their preferences in order to barter for a lower
price.10 In Section 1.5, I extend the model by giving Buyer private information on his outside
option, and discuss what happens in such an environment. Also, in realistic settings, players
may learn about the value with private noises. Buyer may not observe the product attributes
perfectly, and Seller may not observe Buyer’s needs perfectly. However, bargaining models

10We can motivate the truthful revelation in a simple model. Suppose that Buyer can choose whether to
reveal his preference for each attribute. Buyer always chooses to reveal if he does not like the attribute. Then
Seller can infer Buyer’s preference when he does not reveal. Thus Buyer’s preference becomes unravelled.
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with two-sided private information are generally difficult, more so with stochastic arrival
of information. Past works on similar topics, such as Daley and Green (2017), focused on
one-sided learning in which only one player updates his belief about the value. I argue that
it is important to understand what happens if both parties learn. This paper explores the
special case in which information is symmetric, and illustrates the existence of a hold-up
effect that helps us to understand the “list price - discount” pattern in sales. Such effect
is absent if only one party learns. Future works can examine what happens if signals are
private.

1.3 Costless Seller

In this section, I first assume that selling activity is costless (cs = 0) and that Seller never
quits on the equilibrium path. This reduces the complexity of the problem. I study the case
with cs > 0 in Section 4.

If Buyer and Seller reach agreement when product value is x, they split a total surplus of
size x. Seller receives the price offer P (x), and Buyer receives the rest of the surplus, x−P (x).
Alternatively, one can think of Buyer as receiving his equilibrium utility V (x), which should
be equal to his continuation value, otherwise Seller should raise the offer. Thus the highest
price that Seller can charge at x in equilibrium corresponds to the lowest continuation value
that Buyer can get at x. In other words, if Seller wants to trade now, she prefers a strategy
that makes continuing the game as undesirable an option as possible for Buyer.

Because the product is always available at the list price P , Buyer cannot be worse off
than if Seller never give a discount below P . Thus, solving for Buyer’s value function facing
a fixed price of P provides a lower bound on Buyer’s continuation value in the bargaining
game. Because Seller never quits, this is Buyer’s single-agent optimal stopping problem with
stopping utility of max{0, x − P}. Each moment, Buyer decides between buying at P ,
continuing, or quitting. Such problems have been studied for investment under uncertainty
(eg., Dixit 1993), R&D funding (Roberts and Weitzman 1981), experimentation (Moscarini
and Smith 2001), and consumer search (e.g., Branco et al. 2012).

Buyer’s optimal solution is to buy when the product value reaches a threshold, denoted
here as x, and quit when the product value reaches a lower threshold, denoted here as x.

Let V (x) denote the Buyer’s value function facing a fixed price of P . Closed-form solutions
of the thresholds and the value function are presented in Section (1.8).

Buyer’s equilibrium payoff in the bargaining game is thus bounded below by V (x), but
since Seller cannot credibly commit not to price below P in the future, it is not obvious
whether this lower bound is binding. Lemma 1 states that there indeed exists an equilibrium
where Buyer’s continuation value is V (x), and all equilibrium in which Buyer receives V (x)
must yield the same outcome. In this equilibrium outcome, Buyer is as if he is facing a fixed
price of P . He accepts the offer if the price makes him indifferent between continuing or
stopping, and rejects the offer if the price is higher.



CHAPTER 1. HOW TO MAKE AN OFFER? A STOCHASTIC MODEL OF THE
SALES PROCESS 13

Lemma 1. There exists an unique equilibrium outcome in which V (x) = V (x). In this
outcome, there exist thresholds x ≤ x and x = x such that

• If x ≥ x, then Seller offers P (x) = x− V (x), and Buyer accepts.

• If x < x, then Seller offers P (x) > x− V (x), and Buyer rejects.

• If x ≤ x, then Buyer quits.

Even though Seller cannot commit to future prices, she can still enforce Buyer’s continu-
ation value to be V (x). Consider the following strategy: Seller offers price P (x) = x− V (x)
if she wants to trade, and offers P (x) > x − V (x) if she does not want to trade. If Seller
follows this strategy, Buyer never receives more than V (x) utility. Buyer’s optimal response
then is to comply with Seller. Buyer buys if P (x) = x−V (x), which is the price that makes
Buyer indifferent between buying now, or continuing with a continuation value of V (x). If
P (x) > x−V (x), Buyer rejects because he gets less utility than he gets from continuing, since
continuation value must be at least V (x). Thus by following this pricing strategy, Seller can
control when they trade. Intuitively, at every moment in time, Seller is choosing between two
options. She can continue the sales process, or she can close the sale right now by offering a
discount. If Seller chooses to close the sale, she offers a discounted price of P (x) = x−V (x).
This transforms the game into Seller’s optimal stopping problem. Solving Seller’s optimal
stopping problem also solves the equilibrium, since Buyer’s optimal action is to comply with
Seller’s stopping decision. The questions become when Seller should make the final offer,
and what offer Seller should make. Note that Seller can only control the stopping decision
for states between thresholds x and x, which are Buyer’s stopping thresholds facing a fixed

price of P . At x, Buyer quits and ends the game. At x, Buyer buys the product even if it

is priced at the list price P , so Seller cannot delay trade beyond these points.
Figure 1.5 illustrates Seller’s problem graphically. Product value x is on the horizontal

axis, and shifts as the games continues. Buyer’s expected value from continuing the sales
process given product value x, V (x) = V (x), is shown on top half of the graph. The curve
on the bottom graph shows the highest offer that Buyer is willing to accept given that the
current expected product value is x, which is P (x) = x − V (x). At each moment, the
Seller decides between two choices: close the sale and captures P (x), or wait and hope to
charge a higher price in the future. Seller’s value function U(x) is the straight line on the
bottom chart (U(x) is straight due to zero flow cost). Seller’s value hits πs at x when Buyer
quits, and Seller gets P (x) = x − V (x) when they trade at x. To maximize U(x), the
agreement threshold x must make U(x) and stopping value P (x) tangent. Otherwise, Seller
can profitably deviate by making the offer earlier or later.

Why do we care about the equilibrium outcome in which Buyer receives V (x)? In Sec-
tion (1.10), I show that V (x) is the unique limit of Buyer’s equilibrium payoffs. If one solves
the discrete-time game described in Section 2.1, excluding trivial equilibria with simultane-
ous quitting, then Buyer’s equilibrium value functions must converge to V (x) as the game
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Figure 1.5: Equilibrium Thresholds and Value Functions

approaches continuous time. As a result, the equilibrium outcome with V (x) = V (x) repre-
sents the continuous-time limit of the discrete-time equilibrium outcomes. For this reason,
the equilibrium outcome with V (x) becomes our natural outcome of interest.

Proposition 1 provides the closed-form solution for this outcome on equilibrium path,
under any arbitrary list price P . First, I simplify the notation by normalizing outside
options into x and P .11

Definition 1. Define xn = x− πb− πs, xn,0 = x0− πb− πs, Pn = P − πs, and P n = P − πs.

Proposition 1 (Costless Seller). Buyer and Seller trade at xn = P n + σ2

cb

[√
1
4
− P n

cb
σ2 − 1

4

]
at price Pn(xn) = σ2

cb

[√
1
4
− P n

cb
σ2 − 2

(
1
4
− P n

cb
σ2

)]
, Buyer quits at xn = P n − 1

4
σ2

cb
, and

players continue for xn < xn < xn. The size of the price discount is strictly positive.

Proposition 1 shows that the list price plays a crucial role in facilitating discovery, and
there exists an optimal list price for Seller. A higher list price discourages Buyer from
discovering but allows Seller to extract a bigger share of the pie. Figure 1.6a illustrates this
point.

As P increases, x = P − 1
4
σ2

cb
increases, which means that Buyer leaves the sales process

earlier when he receives unfavorable information about product match. In the extreme

11The notation xn represents the net surplus from trade, and the notation Pn captures Seller’s net gain
from trade. This normalization gets rid of outside options but does not affect value functions. It’s easy to
check that V (x|P , πb) = V (xn|Pn, 0). One can solve the equilibrium outcome using xn and Pn, then back
out the original solution. The rest of the section will simply work with xn and Pn.
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Figure 1.6: The Roles of List Price and Discount

(a) (b)

case where list price is too high, Buyer leaves immediately, because the expected gain from
trade is not enough to justify the cost of staying in the sales process. This is conceptually
similar to the hold-up problem in Wernerfelt (1994b). It is costly for Buyer to find out
about product match (or quality), and Seller can hold Buyer up by charging a price equal
to the product value after Buyer incur the cost. This gives Buyer negative utility ex-ante,
and as a result, Buyer chooses to not spend any effort in the first place. Thus in order to
encourage Buyer to participate, Seller has to impose a low enough list price to raise the
option value of discovery for Buyer. If the product fit is bad, Buyer does not have to buy
the product, but if the product fit is good, Buyer is guaranteed to pay no more than the
list price. On the downside, a lower list price restricts Seller’s ability to bargain. Buyer’s
higher continuation value means that Seller has to offer lower price in order to close the sale,
because P (x) = x − V (x, P ) decreases as P increases. The list price can be viewed as an
instrument that balances Buyer’s incentives to engage and Seller’s bargaining power, and
the optimal choice must balance these two effects.

The second finding is that the final trading price is always lower than the list price,
regardless of what the list price is. Thus, Proposition 1 predicts that the sale must come at
a discount.12

Figure 1.6b illustrates why it is never optimal for Seller to sell at the list price. If Seller
never offers a price discount, Buyer will continue to learn about the product until product
value reaches x = P + σ2

4cb
(the vertical threshold on the right). As Buyer gets close to this

threshold, Buyer’s value function V (x) becomes increasingly tangent to x− P . As a result,

12In reality, some customers may buy at the list price. Note that the model so far only allows for a single
type of buyer. If there are different types of buyers with different costs and starting positions, then some
buyers could buy at the list price in equilibrium.
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P (x) becomes increasingly tangent to P . So, Buyer is willing to accept offers with discounts
that approach 0. Seller can close the deal earlier by sacrificing very little on price. Closing
the sale earlier is beneficial because it increases the ex-ante success rate and saves cost (in
this case, only Buyer’s cost is saved, but Seller can extract Buyer’s savings through price).
The amount of discount required to close the sale increases at a faster rate as product value
decreases, so it is not optimal to close the deal too early. In other words, having some
discovery of product match is valuable to Seller, because discovery can increase total surplus
by resolving uncertainty. Seller can charge a higher price if the product match is revealed
to be good. The optimal timing and size of the price offer in Proposition 1 balances the
risk of losing the sale with the potential of selling at a higher price. Proposition 2 solves the
optimal list price.

Proposition 2. (Optimal List Price and Outcome at t = 0)

• For intermediate values of xn,0 (−1
4
σ2

cb
< xn,0 <

1
16
σ2

cb
), the optimal list price is 1

3
xn,0 −

1
18
σ2

cb

√
1− 12xn,0

cb
σ2 + 7

36
σ2

cb
, and the game continues beyond t = 0.

• For higher xn,0, any list price above xn,0+ σ2

4cb
is optimal. Parties trade at price Pn = xn,0

at t = 0.

• For lower xn,0, any non-negative list price is optimal. Buyer quits at t = 0.

Proof. Given Proposition 1, maximizing Seller’s ex-ante utility over P yields the results.

Proposition 2 shows that the discovery/bargaining only takes place if the initial surplus
from trade, xn,0 = x0−πb−πs, is not too big or too small. If the initial surplus is big enough

(xn,0 ≥ 1
16
σ2

cb
), then Seller does not want Buyer to learn anything about the product. Seller

publishes a list price high enough to deter Buyer from discovering, and offers a monopoly
spot price that takes all existing surplus. On the other hand, if the initial surplus is too low
(xn,0 ≤ −1

4
σ2

cb
), matching is socially inefficient. Buyer will leave the game even if the list

price is set to 0.13

Given that some firms allow salespersons to bargain with customers while others do not
(Kraft 1994), it is important to understand the effect of allowing players to bargain. When
coming to the market, should Seller commit to a fixed price or should she allow price to be
negotiated downward? The following corollary compares the equilibrium outcome under the
optimal list price to the outcome if Seller commits to a fixed price P .

Corollary 3 (Comparison to Fixed Price for Costless Seller). The optimal list price under
bargaining is higher than the optimal fixed price. The final price under bargaining is lower
than the optimal fixed price. Expected length of the game is shorter under bargaining. Ex-ante
social welfare is higher but Buyer’s utility is lower.

13Since only Buyer has cost, Buyer’s action is socially optimal when the list price is 0.
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Proof. Let T denote the total length of the game. Buyer’s ex-ante utility must satisfy
V (xn,0) =

xn,0−xn
xn−xn

(xn − P (xn)) − cbE[T ], where
xn,0−xn
xn−xn

is the ex-ante probability that play-

ers reach agreement. Expected length of the sales process is thus calculated as E[T ] =
1
cb

[xn,0−xn
xn−xn

(xn − P (xn))− V (xn,0)
]
. The comparisons are straightforward.

Figures 1.4 simulate two sample paths and illustrate the value of bargaining to the Seller.
Trade happens at time τ , with price P (xτ ) slightly below the list price. However, this small
discount significantly decreases Buyer’s buying threshold from P+ σ2

4cb
to x. The dotted paths

in Figure 2.2 simulates what happens if Seller commits to the list price. Buyer continues to
discover the match for a period of time. If the subsequent match is good, then Seller’s ability
to bargain significantly decreases the length of the process. The cost savings are captured
by Seller through price and increases her ex-ante utility. If players subsequently discover
that the product match is bad, then the game ends without a trade. Thus the lower trading
threshold from bargaining increases the ex-ante success rate. Note that the graph does not
show the full price path. There are infinite price paths leading up to time τ that produce
the same equilibrium outcome. Price strategies before time τ only need to be high enough
so that Buyer does not want to buy. Keeping the price at the list price before time τ , for
example, would work.

Corollary 4. (Comparative Statics w.r.t cb, πs, πb)
For −1

4
σ2

cb
< xn,0 <

1
16
σ2

cb
:

• Optimal list price and final price decrease in Buyer’s cost, cb; increase in Seller’s
outside option, πs; and decrease in Buyer’s outside option, πb.

• Size of price discount decreases in Buyer’s cost, cb, and outside options, πs and πb.

• Ex-ante probability of trade is unaffected by Buyer’s cost, cb, and decreases in outside
options, πs and πb.

• Expected length of the game decreases in Buyer’s cost, cb, and has inverse U-shape in
outside options, πs and πb.

Interestingly, the expected length of the game is non-monotonic in outside options. Intu-
itively, one would expect that worse outside options make players more interested in matching
with each other. However, as outside options become increasingly poor, surplus from trade
gets higher (after normalization). As a result, Seller is more inclined to close the deal early.
Thus the length of the sales process is short for both very good and very bad outside options.

Another finding is that the ex-ante probability of trade is unaffected by Buyer’s cost. For
a given list price, the probability of trade decreases in cb. However, a higher cost for Buyer
makes the hold-up problem more severe, which then pushes Seller to set a lower list price.
In equilibrium, these two effects negate each other. Note that this is not true if bargaining
is not allowed. If players cannot bargain, one can show that the ex-ante probability of trade
is monotonically decreasing in Buyer’s cost, even if Seller set the price optimally.
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Furthermore, when Buyer’s cost of continuing the sales process increases, the price dis-
count he receives actually decreases. The reason is that with a higher cost for Buyer, Seller
has to set a lower list price. Buyer still receives a lower final price even though the size of
the discount is smaller.

1.4 Costly Selling

In this section, selling is costly so that Seller may want to quit before Buyer does. Fol-
lowing notation from the last section, let x = sup{x|

∑
i qi(x) > 0} denote the threshold

where the “earliest” quitting happens. We can normalize outside options to πb = πs = 0
WLOG as in Definition 1.

When both players can choose to quit, we have trivial equilibria in which both players
quit simultaneously. If the opponent quits now, then a player is indifferent between quitting
and not quitting, so quitting is weakly optimal. As a result, quitting at any state x can be
supported in an equilibrium, by having both players quit simultaneously.14 To avoid this
triviality, I restrict attention to equilibrium outcomes that satisfy the following condition.

Condition 1. Either U(x) = U ′(x) = 0 or V (x) = V ′(x) = 0.

The condition implies that the quitting decision is optimal for at least one of the player,
even if the other player never quits. In a single agent optimal stopping problem, the quit-
ting threshold must satisfy the value-matching condition, ui(x) = 0, and smooth-pasting
condition, u′i(x) = 0. The value-matching condition ensures that the player does not quit
if continuation value is positive, and the smooth-pasting condition ensures that the timing
of quitting is optimal (Dixit 1993, pg.34-37). This condition is satisfied for Buyer’s quitting
threshold in Section 2, for example. In Section (1.10), I show that if one requires the players
to quit if and only if quitting is strictly preferred, then the limit of discrete-time equilib-
rium outcomes satisfies Condition 1. Thus Condition 1 eliminates the simultaneous quitting
triviality.

It is unclear which player quits first in equilibrium.15 Intuitively, the player with a higher
flow cost is more likely to quit earlier. However, Proposition 5 below shows that this is not
the case. If Seller chooses the list price optimally, then Buyer always quits before Seller does.

As in Section (1.3), I first derive the lower bound on Buyer’s equilibrium value function.
One can solve for Buyer’s value function facing a fixed price of P , subject to a game-ending
state at x. This gives a lower bound on the Buyer’s equilibrium value function if the quitting

14Due to the nature of continuous time, a strategy profile can achieve the effect of simultaneous quitting
without having players quitting at the same x. For example, suppose Seller quits in a set B except a single
point x′. Then on x′, Buyer cannot extend the game whether he quits or not. The game ends immediately
even if Buyer does not quit, making him indifferent between quitting at x′ or not. This example illustrates
that it it not sufficient to simply restricting players to not quit at the same x.

15That is, whether x is the optimal quitting threshold for Buyer or for Seller. If x is optimal for Buyer
(Seller), then we must have V (x) = V ′(x) = 0 (U(x) = U ′(x) = 0), due to the discussion above.
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threshold is x. Denote this lower bound as V (x, x). The closed-form solution for this lower
bound is in Section (1.9).

Then one can construct equilibrium strategies that give such payoff to Buyer and satisfy
Condition 1. As before, this lower bound payoff is the limit of Buyer’s equilibrium payoff in
the discrete-time game, so this is the outcome of interest in this paper.

Lemma 2. There exists an unique equilibrium outcome in which V (x) = V (x, x) and satisfies
Condition 1.

Proposition 5. If Seller quits earlier than Buyer does, i.e., sup{x|qs(x) = 1} > sup{x|qb(x) =
1}, then the list price P is sub-optimal (too low) for the equilibrium outcome in Lemma 2.

Figure 1.7 provides a sketch of the proof. If Seller quits first at x, then increasing list
price by ∆P = x + 1

4
σ2

cb
− P is strictly better for the Seller. This implies that the original

list price was sub-optimal. Setting list price to P + ∆P leads to a new stopping problem for
Seller with the same quitting threshold but a higher stopping payoff in every state. Thus,
Seller’s ex-ante utility must be strictly higher under the new list price. Note that this new
list price P + ∆P is not the optimal list price. The optimal list price must be even higher.

Figure 1.7: Raising List Price If Seller Quits First

The intuition of Proposition 5 can be found in Figure 1.6b. Suppose under a list price
Seller quits first. Consider the effect of raising the list price. As Figure 1.6b shows, increasing
the list price has both positive and negative effects for Seller. The positive effect is that a
higher list price lowers Buyer’s continuation value, which increases the surplus that Seller can
extract in every state. The negative effect is that Buyer’s lower continuation value pushes
him to quit earlier. However, if Seller is quitting earlier than Buyer does anyway, then
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pushing Buyer to quit earlier has no effect. Thus, raising the list price is strictly beneficial
to the Seller. The original list price must be sub-optimal.

Proposition 5 implies that, to find the outcome under optimal list price, one can solve
the equilibrium outcome by assuming that x = xb = P − 1

4
σ2

cb
, then maximizing U(x0) over

P , and finally verifying that indeed xb(P
∗
) ≥ xs(P

∗
).

For tractability, I restrict attention to the case of x0 = 0 for the next Proposition.

Proposition 6 (Costly Selling with x0 = 0). Let k = cs
cb

. The optimal list price is P =

σ2

cb
(1

4
− 27+10k−6

√
9+10k+k2

16k2
). Buyer and Seller trade at x = P + σ2

cb

[
3−

√
9+k
1+k

4k
− 1

4

]
at price

P (x) = P − σ2

cb

(
3−

√
9+k
1+k

4k
− 1

2

)2

. Buyer quits at x = P − 1
4
σ2

cb
.

If Seller has the option to commit to selling at a fixed price, should Seller commit or be
open to bargaining? Corollary 7 shows that bargaining is necessary for discovery to take
place when Seller’s cost is high relative to Buyer’s. If the ratio of cs to cb exceeds a certain
threshold, and if price is fixed, one of the players must quit immediately at t = 0, regardless
of the level of the price. Thus there does not exist a fixed price such that both are willing to
“sit down” at time 0. However, this problem is avoided if bargaining is allowed. The length
of the sales process and the ex-ante chance of a trade are always positive under bargaining.
The ability to bargain lowers both player’s expected costs by giving Seller the flexibility to
close the sale early. This flexibility is particularly beneficial when Seller’s flow cost is high.

Suppose Seller charges a fixed price, when Seller’ cost is very high, Seller needs to charge
a high price to make up for her expected cost of selling. But a higher price pushes Buyer
to wait longer before buying, which makes the process even more costly for Seller, who in
turn has to charge an even higher price. If Seller charges too high a price, Buyer quits
immediately. Thus, there does not exist any fixed price such that both players are willing
to participate in the sales process beyond t = 0. If Seller is open to bargaining, however,
then Seller can reduce her cost of selling by offering a discount to close the sale earlier. This
flexibility allows Seller to post a lower list price initially. Also, Seller always benefits from
Buyer engaging in the sales process for at least some positive amount of time. If the product
match is good in that “period”, Seller can close the sale at a positive price. If the product
match is bad, Buyer will quit and Seller gets 0. Thus the option value of discovery is always
positive at time 0, regardless of Seller’s cost. This effect guarantees that Seller does not
charge a list price too high. When Seller’s cost is low, Buyer prefers to face a fixed price over
bargaining, but when the ratio k = cs

cb
exceeds a certain threshold, both Buyer and Seller

gain from bargaining.

Corollary 7 (Importance of Bargaining). If k(= cs
cb

) ≥ x0
4cb
σ2 + 1, then the game ends at

t = 0 if price is fixed, but ends at t > 0 with positive ex-ante probability of trade if price can
be bargained. Seller’s ex-ante utility is higher under bargaining for all k. Buyer’s ex-ante
utility is higher under bargaining if k > k, for some k ≤ x0

4cb
σ2 + 1.
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This result helps to explain the prevalence of bargaining in many B2B industries. Firms
have to incur significant cost in employing and training salespersons, and salespersons often
spend a significant amount of resources on each client. Corollary 7 shows that, if this cost is
high relative to the customer’s cost of participating in the sales process, then the firm must
be open to bargaining. Otherwise, trade cannot take place.

In practice, a firm can choose whether to allow bargaining by choosing whether to delegate
the pricing authority to its salespersons. This question has been studied under principal-
agent models. See, e.g., Lal (1986), Bhardwaj (2001), and Joseph (2001). The principal-agent
models used in these papers highlight the disadvantage of delegating pricing authority when
selling cost is high. Salespersons have the incentive to give customers too much discount so
they can shirk on selling efforts. This problem is intensified when the selling efforts are more
costly. On the other hand, the information acquisition approach of this paper emphasizes
the advantage of delegating pricing authority when selling cost is high. Using a survey of
270 companies from different industries, Hansen et al. (2008) find that firms that need more
calls to close a sale are more likely to delegate pricing authority to salespersons. Corollary
7 provides one explanation for this empirical observation.

Corollary 8 (Comparative Statics w.r.t cs and cb for x0 = 0).

• Optimal list price decreases in Buyer’s cost, cb, and increases in Seller’s cost, cs.

• Final price decreases in both players’ costs, cb and cs.

• Size of price discount decreases in Buyer’s cost, cb, and increases in Seller’s cost, cs.

• Expected length of the game decreases in both player’s costs, cb and cs.

Interestingly, a higher cs leads to a higher P but a lower P (x). This means that, when
Seller’s cost increases, she posts a higher list price, but gives a bigger discount and sells
at a lower price than before. The lower final price helps to reduce the length of the game
and saves cost. Note that, if Seller is not able to give a discount (as under a fixed price),
Seller would want to charge a higher price when cost increases. This eventually leads to the
no-discovery result from Corollary 7.

1.5 Private Outside Option

The previous sections assume that Buyer’s expected value for the product, xt, is fully
observable to Seller. In many settings, though, the buyer may have private information re-
garding his willingness-to-pay. In particular, even if the seller observes the buyer’s preference
for each attribute, the seller may not know what the buyer’s outside option is. This section
expands the model to incorporate this scenario.

There are two types of Buyer with different outside options: a (H)igh type and a (L)ow
type. The type is Buyer’s private information. L type is the Buyer with a better outside
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option, and H type is the Buyer with a worse outside option. For the same attributes and
preferences, the buyer with a better outside option has a lower willingness-to-pay. Seller
learns Buyer’s preference for each attribute during the sales process, but she is uncertain
about Buyer’s willingness-to-pay for the product due to Buyer’s private information. This
gives rise to information asymmetry. If we normalize Buyer’s outside option into his product
value, then at each moment, Seller is facing a distribution of Buyers with different levels
of net product value. Seller observes how this distribution shifts over time, but does not
observe where Buyer falls within this distribution.

Formally, let i ∈ {H,L} denote Buyer’s type. Nature draws H type with probability
λ and L type with probability 1 − λ. Define ε as the different in outside options between
the two types. Let xH and XL denote the H type and L type’s product values net of their
respective outside options. Denote x = 1

2
(xH + xL) as the common state variable. Then we

can write xH = x + ε
2

and xL = x − ε
2
. Both H type and L type incur flow cost cb > 0.

Seller is assumed to have no cost and never quits. Positive selling cost does not impact the
outcome qualitatively.

I look for Stationary Sequential Equilibrium with pure strategies. Equilibrium utilities
and strategies now depend on two state variables, product value x and Seller’s belief µ, where
µ ∈ [0, 1] denote Seller’s belief that Buyer is type H. The players’ equilibrium strategies are
represented by P (x, µ), ai(x, µ, P ), and qi(µ). Type i’s value function is Vi(x, µ). Note that
with pure strategies, Seller’s belief µ can only take 3 values: 0, 1, or λ. Denote µL for the
belief that Buyer is L type, µH for the belief that Buyer is H type, and µHL for the belief
that the Buyer can be either. Note that if µ = µL or µ = µH , then there is no private
information. This happens on the path of a separating equilibrium. I assume that Seller
does not update her belief off the equilibrium path.

Similar to earlier sections, I first look for the lower bound on Buyer’s equilibrium utility.
Let V i(x, µ) denote the lower bound on type i’s equilibrium value function in state x and
under belief µ. If only one type of Buyer remains (µ = µH or µ = µL), then the lower bound
is the same as in Section 3. If Buyer receives this lower bound when only one type remains,
then one can show that L type must have the same lower bound even when both types are
still in the game. The proof is roughly structured as follows. First, Lemma 3 in Section (1.8)
proves that, if Buyer receives the lower bound from Section 3 when µ = µH or µ = µL, then
H type must buy (weakly) before L type in any equilibrium, because H type suffers from
revealing his type. If L type is about to accept the offer, H type is always better off taking L
type’s offer. If H type waits, he becomes the only remaining type, and receives the Buyer’s
payoff from Section 3, which is strictly inferior to taking L type’s offer. Second, Lemma 4
in Section (1.8) shows that, if H type buys earlier than L type, then L type’s utility has
the same lower bound regardless of µ. Since H type will not wait beyond L type’s offer,
Seller cannot use P as a threat to H type. Seller’s offer to the L type then implies a new
lower bound on H type’s value function. H type cannot be worse than if Seller never offers
a discount until Seller makes an offer for the L type. This gives both types of Buyer’s lower
bounds when µ = µHL. The closed-form solutions for V i(x, µ) is presented in Section (1.8).

Seller then faces the new optimal stopping problem regarding when to sell to H type and
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at what price. Proposition 9 describes the equilibrium outcome in which each type of Buyer
receives the lower bound of his equilibrium value functions. We only need to solve for the
case of P < x0 − ε

2
+ σ2

4cb
, otherwise the types unravel immediately.16

Proposition 9 (For P < x0 − ε
2

+ σ2

4cb
). There exists an unique equilibrium outcome in

which Vi(x, µ) = V i(x, µ). Buyer with type i ∈ {H,L} quits at xi = P − 1
4
σ2

cb
, and buys at

xi = P + σ2

cb

[√
1
4
− P cb

σ2 − 1
4

]
. H type buys earlier and pays less than L type.

Figure (1.8) presents a sample equilibrium path. H type buys earlier, and pays a lower
price. Trading price increases from time τH to τL. The right panel on Figure (1.9) shows
xH and xL separately. Both types of Buyer buy when their net product value reach x. H
type reaches the threshold earlier, because his worse outside option translates to a higher
net value from buying the product.

Figure 1.8: Sample Path with Private Types

Surprisingly, having a private outside option does not affect Buyer’s buying and quitting
thresholds in the equilibrium. Both types of Buyers buy and quit at the same thresholds on
their respective net product values, and these thresholds are the same as Buyer’s thresholds
without private information. The finding that H type pays less than L type runs counter to
many existing bargaining models, in which the seller makes declining offers to screen through
buyers’ reservation prices, so types that buy earlier pay higher prices.

16By Lemma 4, L type should act the same way as in Proposition 1. Thus, when P ≥ x0 − ε
2 + σ2

4cb
, L

type buys immediately if x0 − ε
2 > 0 or quits immediately if x0 − ε

2 ≤ 0. By Lemma 3, H type should buy
immediately if L type buys immediately. If L type quits immediately and H type stays, then there is only a
single type of Buyer remaining, which is again solved in Proposition 1. So we do not need to solve for the

case of P ≥ x0 − ε
2 + σ2

4cb
.
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Figure 1.9: Private Types with Normalized Outside Option

Why does L type not take H type’s offer, if waiting is costly and price is rising? The
reason is that, when Seller makes an offer to H type, L type’s net product value is less by ε,
and this difference makes L type strictly prefer to wait and discover more. On the flip side,
Seller has to offer H type a lower price because H type has the option to pretend to be L type.
H type can wait until xL reaches the buying threshold, and then pay the same price as L type.
However, Seller prefers to close the sale with H type earlier, which saves cost as well as locking
in the surplus. Intuitively, if Buyer already comes into the negotiation with a good intention
to buy, then the subsequent discovery is less valuable, and closing the sale earlier is more
efficient. But in order for H type Buyer to voluntarily reveal his type, Seller needs to make
a more generous offer. This is analogous to the problem of product line design with different
types of buyers. H type buyer can take L type’s contract, but the seller may not want H type
to do so. This creates a binding incentive compatibility constraint that forces the seller to
concede more utility to H type. In this game, Seller wants Buyers to self-sort into processes of
different lengths: a shorter process for H type and a longer process for L type. The price cut
for H type is needed to satisfy the incentive compatibility constraint so that H type does not
undertake L type’s process. The price difference represents H type’s information rent. The
size of this rent is P (x+ ε

2
, µL)−P (x− ε

2
, µHL) = V (x)− cb

σ2 (x− ε
2
−P )2−αH(x− ε

2
−P )−βH ,

where αH and βH are in equations (1.21) in Section (1.8).
This model with private types can be seen as an extension to repeated-offers bargaining

models with one-sided incomplete information, such as Fudenberg et al. (1985). The novelty
here is that, with the additional discovery of product match, the product value follows
a public diffusion process. Fudenberg et al.(1985) show that, if Seller can change price
arbitrarily fast, then all types buy immediately at a price equal to the value of the lowest
type. If players incur flow cost, the bargaining game is akin to an one-shot monopoly pricing,
because no Buyer will wait beyond t = 0. In either case, trade is immediate, and Seller cannot
separate different types. With the stochastic value (and the existence of list price), now trade
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happens with delay, and Seller can separate Buyers of different types. Buyer with the higher
ex-ante value are offered a lower price due to information rent.

One feature of this model is that the relationship between length of the sale process and
trading price is probabilistic and price can increase over time. This does not mean, however,
that empirically one should expect to observe prices to rise with the length of negotiation.
Many factors ignored in this model can cause a downward trend in price. For example, if
Seller can commit to each price offer for a short period of time and if players have time
discounting, then Seller can use declining price to screen different types. This is common
in the repeated-offers bargaining literature. Section 1.6 shows a few extensions in which
price can decrease over time - for example, if the product has a finite mass of attributes, or
if players observe signals of the true match value. However, the core intuition should still
remain. The fact that H type has a worse outside option makes the product more appealing
ex-ante and decreases the value of information acquisition. This encourages Seller to trade
with him earlier, which puts downward pressure on H type’s price in order for the offer to
be incentive compatible.

1.6 Other Extensions

Finite Mass of Attributes

The baselin model assumes that players match on an infinite mass of attributes during
the discovery process. This assumption allows one to study stationary equilibria, as players
never exhaust the information that they can learn. In reality, a product may have only a
limited number of features, or consumers may care about only a finite subset of a product’s
features. As a result, players exhaust all the information they can learn from the other party
if the game continues long enough.

In this section, I extend the model from Section 3 to incorporate such a case. Suppose
that the product has a finite mass of attributes, T . Players can only discover their product
match up to time T . The product value xt follows a Brownian motion between time 0
and time T . Markov Perfect Equilibria under a finite mass of attributes can no longer be
stationary. Players’ strategies and value functions now depend on both state x and time t.
Equilibrium value functions satisfy the following partial differential equations:

Vxx =
2

σ2
(cb − Vt)

Uxx =
2

σ2
(cb − Ut)

(1.4)

where Vxx and Uxx are second-order derivatives w.r.t x and Vt and Ut are first-order deriva-
tives w.r.t t. These are the same as Equations (1.2), except that Vt and Ut are no longer 0
due to the non-stationarity of the problem.

The analysis is similar to Section 1.3. One first solves for the lower bound on Buyer’s
equilibrium value function, V (x, t|P ), by solving for Buyer’s optimal stopping problem facing
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a fixed price of P . Buyer’s stopping thresholds, x(t) and x(t), now change with time t. The

optimal x(t) and x(t) must satisfy the value-matching and smooth-pasting conditions:{
V (x(t), t) = x(t)− P and V (x(t), t) = 0

Vx(x(t), t) = 1 and Vx(x(t), t) = 0
(1.5)

The solution to these boundary conditions can be solved numerically. By the same reasoning
as in Lemma 1, one can construct an equilibrium where Buyer gets this lower bound as
his utility, V (x, t) = V (x, t). At each moment, Seller decides whether to stop by offering
P (x, t) = xt − V (x, t) to Buyer, or to continue the game. Buyer cannot do better than
complying with Seller’s strategy, so he buys when Seller offers P (x, t) = xt − V (x, t). Trade
happens when product value reaches Seller’s stopping threshold x(t), and Buyer quits when
product value reaches x(t) = x(t). Seller’s choice of trading threshold x(t) must satisfy:{

U(x(t), t) = x(t)− V (x(t), t)

Ux(x(t), t) = 1− V x(x(t), t)
(1.6)

These two conditions pin down the equilibrium trading threshold x(t) as well as the equilib-
rium price P (x(t)). Figure 10 presents the solution for the case of T = 1, cb = 0.25, σ2 = 1,
x0 = 0, at a list price of 0.5.

Figure 1.10: Finite Mass of Attributes

One can show that both the trading threshold and trading price decline over time towards
0, and Buyer’s quitting threshold increases over time towards 0. Also, players never wait
until they exhaust all attributes. Because Buyer makes his quitting decision as if he is facing
a fixed price, his quitting threshold must approach P as time approaches T . Thus, the
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quitting threshold crosses x = 0 strictly before time T . Suppose the quitting threshold is
above 0, and the product value x is between 0 and the quitting threshold; then, instead
of letting Buyer quit, Seller wants to sell to him at the price of P (x, t) = x. Seller must
also want to sell to all types above x, because the stopping value x − V (x, t) is concave in
x and U(x, t) is convex in x. Because this argument holds for all positive x, Seller must
immediately sell if x > 0, and Buyer quits immediately for x ≤ 0. Thus, the game must end
before Buyer’s quitting threshold crosses 0, which happens strictly before players exhaust all
attributes at time T .

Signals on True Product Value

Instead of matching on attribute, an alternative way to model the discovery process is to
have players observe signals on the true value of the product and update their beliefs using
Bayes’ rule. In Section 2.1, I describe how the model can be interpreted as a stationary
case of learning from sequential signals. In this section, I explore a non-stationary case. In
particular, I study the case in which the true value of the product does not change over time,
so that players always get “closer and closer” to the truth by receiving more signals.

Suppose that, before the negotiation begins, Buyer and Seller have a common prior on
the true value x∗ that follows a normal distribution with mean ν and variance e2. Each
moment during the game, players observe a common signal that equals true value plus a
normal error term that is independent across time. Players update their beliefs about the
product value as bargaining continues.

Specifically, let St denote the cumulative signal up to time t. The signal is assumed to
follow the process dSt = x∗dt+ ηdW . An incremental signal of size dt is thus the true value
x∗dt plus a normal error with variance η2dt. Bayesian updating on the normal prior implies
that the expected value of the product after observing t signals, xt, can be written as

xt =
ν/e2 + St/η

2

1/e2 + t/η2
(1.7)

The change in expected product value xt can be decomposed as

dxt =
x∗ − xt

η2(1/e2 + t/η2)
dt+

1

η(1/e2 + t/η2)
dW (1.8)

The expected change in the expected product value, conditional on observing St, E[dxt|St],
must be 0, because E[x∗|St] = xt by definition of xt. The variance of the change in expected
product value with dt signals is σ2

t dt = 1
η2(1/e2+t/η2)2

dt. Thus, the process xt can be described
as a Brownian motion with a variance that decreases with time t.

The rest of the analysis is carried out similarly to earlier sections. Equilibrium value
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functions satisfy the following partial differential equations:

Vxx =
2

σ2
t

(cb − Vt)

Uxx =
2

σ2
t

(cb − Ut)
(1.9)

One first solves for Buyer’s optimal stopping problem facing a fixed price of P . This gives
the lower bound on Buyer’s equilibrium value function, V (x, t|P ), and Buyer’s quitting
threshold x(t). One can then construct an equilibrium where Buyer gets V (x, t) = V (x, t) as
his utility. At each moment, Seller decides whether to stop and receive P (x, t) = xt−V (x, t),
or to continue. Buyer optimally chooses to comply with Seller’s strategy. Trade happens
when product value reaches Seller’s stopping threshold x(t), and Buyer quits when product
value reaches x(t) = x(t). Solving Seller’s optimal stopping problem gives the equilibrium
outcome. Figure 1.10 illustrate the case of cb = 0.25, ν = 0, e2 = 1, η2 = 1, at a list price of
0.5.

Figure 1.11: Bayesian Updating

Similar to the previous extension to finite attributes, one can show that both the trad-
ing threshold and trading price decline towards 0, and Buyer’s quitting threshold increases
towards 0. Furthermore, there exists a time by which the players must trade or quit, even
though the game does not impose an explicit deadline. This implicit deadline happens when
Buyer’s quitting threshold hits 0. Because Buyer makes his quitting decision as if he is facing
a fixed price, his quitting threshold must approach P over time. Thus, the quitting threshold
must reach 0 in finite length. Similar to the finite attributes case, when the quitting thresh-
old is above 0, Seller immediately sells to Buyer for all x > 0, and Buyer quits immediately
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for all x ≤ 0. Thus, the game must end by the time Buyer’s quitting threshold hits 0, which
is finite.

Declining Importance of Attributes

In the baseline model, all attributes are assumed to be equally important. In reality, some
attributes may be more important for a product’s value, and the two parties can match on
these attributes first. As players discover, later attributes have less impact on the expected
value of the product. This differs from the base model because the discovery process is now
represented by dxt = σtdWt, where σt decreases in t. Note that this is closely related to the
Bayesian updating extension above, where σ2

t dt = 1
η2(1/e2+t/η2)2

dt. Once σt is given, the rest
of the analysis can be carried out in the same way. In the equilibrium, both the trading
threshold and trading price decline over time and Buyer’s quitting threshold increases over
time. The game must end before Buyer’s quitting threshold hits 0, which happens in finite
time.

Time Discounting

The previous sections assume that players incur flow costs and do no have time discount-
ing. The existence of flow costs creates the hold-up problem, because Buyer quits if he does
not expect his payoff from future bargaining to compensate for his costly discovery effort
today. Alternatively, players can have time discounting instead of flow costs. In this section,
I show that the modelling choice between flow cost and time discounting does not affect the
main results of the paper, as long as players have positive outside options so that they have
incentives to quit.

Let r denote the common discount rate for both players. For non-terminating states, the
players’ value functions must satisfy the ODE’s in Equation (1.2), and with cs = cb = 0, the
solutions to these ODE’s are of the form:

V (x) = Abe

√
2r
σ2
x

+Bbe
−
√

2r
σ2
x

U(x) = Ase

√
2r
σ2
x

+Bse
−
√

2r
σ2
x

(1.10)

for some constants Ab, As, Bb, and Bs.
For simplicity, assume that πb > 0 and πs = 0. This mimics the baseline model in Section

1.3, where only Buyer has an incentive to quit. Given a list price P , one can calculate the
lower bound on Buyer’s utility, V (x|P ), by solving for Buyer’s optimal stopping problem
facing a fixed price of P . The value-matching and smooth-pasting boundary conditions are:Abe

√
2r
σ2
x

+Bbe
−
√

2r
σ2
x

= πb and Abe

√
2r
σ2
x −Bbe

−
√

2r
σ2
x

= 0

Abe

√
2r
σ2
x

+Bbe
−
√

2r
σ2
x

= x− P and Abe

√
2r
σ2
x −Bbe

−
√

2r
σ2
x

=
√

σ2

2r

(1.11)
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Solving this system of equations, one can find that

V (x|P ) =
1

2
(

√
σ2

2r
+ πb2+

√
σ2

2r
)e

√
2r
σ2

(x−P−
√
σ2

2r
+πb2)

+
1

2
(

√
σ2

2r
+ πb2−

√
σ2

2r
)e
−
√

2r
σ2

(x−P−
√
σ2

2r
+πb2)

(1.12)

Buyer’s buying threshold is x = P +
√

σ2

2r
+ πb2, and Buyer’s quitting threshold is x =

P +
√

σ2

2r
+ πb2 −

√
σ2

2r
log(

√
σ2

2rπb2
+
√

σ2

2rπb2
+ 1).

The equilibrium with V (x) = V (x) can be constructed as before. Seller offers prices
P (x) = x − V (x) in states where Seller wants to trade, and offers higher prices in other
states. The problem transforms into Seller’s optimal stopping problem with stopping value
P (x) = x − V (x), subject to Buyer’s quitting threshold x = x. The solution of Seller’s
stopping problem is also an equilibrium outcome, because Buyer’s optimal strategy is to
comply with Seller’s trading threshold. Buyer receives V (x) in this equilibrium.

The qualitative results are the same as with flow costs. One can see that x increases
with P , and P (x) decreases with P , thus the optimal list price reduces Buyer’s hold-up
concern at the cost of Seller’s bargaining power. Also, the derivative of P (x) approaches 0
as x approaches x, which implies that Seller’s optimal stopping point must be lower than x.
Thus, players always trade at a price below the list price, regardless of the level of the list
price.

If Seller’s outside option, πs, is also positive, then Seller may choose to quit when the
state is bad enough. One can again prove that, on the equilibrium path, Buyer must quit
before Seller does. The intuition is the same as in Section 4. If Seller’s quitting threshold
is higher than Buyer’s, then the hold-up problem is not binding; thus, raising the list price
increases Seller’s stopping payoff x − V (x) for all x. This is strictly beneficial to Seller.
Furthermore, if Seller commits to a fixed price, then when πs

πb
is above a certain threshold,

the game must end at T = 0. If Seller allows bargaining, then the players must stay and
discover beyond t = 0. Thus, bargaining is necessary for “conversation” when selling is more
costly than buying; here the cost comes from delaying the realization of the outside option.

The results for private outside options can also be replicated. One can show that H type
must buy before L type does, following the logic of Lemma 3. Then L type must receive
the same payoff as in the full information game, per Lemma 4. If x reaches L type’s buying
threshold, then H type takes L type’s offer, and if x reaches L type’s quitting threshold, then
L type quits and H type is revealed. These boundaries pin down H type’s equilibrium value
function, and Seller chooses the optimal time and price for the H type. Seller offers H type
a lower price than she offers to L type in order to incentivize H type to buy earlier.

1.7 Conclusion

This paper presents the sales process as a combination of two-sided information acqui-
sition and price bargaining. A seller and a buyer discovers the match between the prod-
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uct’s attributes and the buyer’s needs sequentially while the seller can make repeated offers
bounded above by a self-imposed list price.

The combination of two-sided discovery with bargaining creates a hold-up problem, and
the paper illustrates the role of the list price in solving this hold-up problem. Because the
seller makes the offers, the buyer may be concerned that his future gain from bargaining
cannot compensate for his discovery effort today. As a result, the buyer does not participate
in the sales process without a list price or if the list price is too high. A lower list price
incentivizes the buyer to stay but reduces the seller’s bargaining power. The optimal list
price balances these two effects. However, the final price is always below the list price. The
seller can encourage the buyer to trade earlier by offering a spot discount, and some level of
discount is always optimal regardless of the list price. This model provides a rationalization
for the common “list price - discount” pattern that one observes in sales negotiations, which
is novel in the literature.

Should the seller commit to a fixed price or be open to bargaining? The model shows
that allowing bargaining is always beneficial to the seller, but can hurt the buyer if the
buyer’s cost is high. When the seller’s flow cost is relatively high, bargaining is necessary for
both players to participate in the discovery process. This result highlights the importance
of allowing salespersons and customers to bargain, especially in B2B industries where selling
activities can be resource-intensive.

The model features information asymmetry when the buyer has private information on
his outside option. The stochastic nature of the product value and the existence of list
price enable the seller to separate different types of buyers, even though the seller has no
commitment power on each offer. Surprisingly, the buyer with a higher net valuation from
the product (or a lower outside option) pays a lower price due to information rent and the
seller’s incentive to trade earlier. The discovery process thus benefits higher types by putting
downward pressure on the prices they receive.

This paper is limited in several ways. First, the model assumes that only the seller can
make price offers. Future research can look at what happens if counter-offers are allowed.
Second, the model only includes one potential buyer with one potential seller. Competition
on either side of the market can impact the outcome. The model also ignores many aspects
of a real-world sales process, such as prospecting and service delivery. Last but not least, the
model assumes that all communication to be honest. The seller truthfully reveals product
information, and the buyer truthfully reveals his preference for attributes. This is done to
avoid the complexity of modelling two-sided learning with private signals. Future research
can consider what happens if discovery is asymmetric, or if players can choose what messages
to send.
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1.8 Lower Bound on Buyer’s Value Function

Costless Seller

Let V (x) denote the Buyer’s value function facing a fixed price of P . Let x denote the
Buyer’s buying threshold, and let x denote the Buyer’s quitting threshold. By Equation

(1.3), Buyer’s value function must be of the form V (x) = cb
σ2 (x − P )2 + α(x − P ) + β for

some coefficients α and β. The function has to satisfy the following boundary conditions:{
V (x) = x− P and V (x) = πb

V ′(x) = 1 and V ′(x) = 0
(1.13)

The first two conditions ensure that the value function must match the stopping value
when Buyer buys or quits. The last two conditions, often referred to as “smooth-pasting”
conditions, ensure that the stopping time is optimal. See Dixit (1993, pg.34-37) for more
details.

Solving this system of equations shows that Buyer buys at

x = P +
σ2

4cb
+ πb (1.14)

and quits at

x = P − σ2

4cb
− πb (1.15)

Buyer’s value function is

V (x|P , πb) =


πb, x− πb ≤ P − σ2

4cb
cb
σ2 (x− πb − P )2 + 1

2
(x− πb − P ) + σ2

16cb
+ πb, x− πb ∈

(
P − σ2

4cb
, P + σ2

4cb

)
x− P , x− πb ≥ P + σ2

4cb

(1.16)

Costly Seller

Since P is the upper bound on price, Buyer cannot be worse off than if price is fixed at
P forever. However, the quitting threshold is not necessarily Buyer’s choice any more, since
Seller now has cost and may choose to quit. We can calculate the lower bound on Buyer’s
value function for a given list price P and a given quitting threshold x = sup{x|

∑
i qi(x) >

0}.
We claim that for any x, there must exist x′ < x such that some player quits at x′.

Suppose not, then players’ utilities must approach −∞ as x → −∞, and players should
quit, a contradiction. Thus x = sup{x|

∑
i qi(x) > 0} exists.

First consider what happens for x ≤ x. We have V (x) = max{x − P , 0}. If no offer is
accepted at x ∈ Q, then game ends immediately and Buyer receives 0 (since outside option is
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normalized to 0). Then by subgame-perfection, Seller offers price equal to min{x, P}. Then
the lower bound on V (x) for x ≤ x is max{x − P , 0}, because the state cannot jump to
above x without crossing x.

Next we consider what happens for x > x. Treating x as an exogenous stopping point,
let V (x, x|P , ) denote the lower bound. By Ito’s Lemma, V (x, x|P ) = −cb + σ2

2
d
dx2
V (x, x|P ),

which implies V (x, x|P ) = cb
σ2 (x − P )2 + α(x − P ) + β for some α and β. Let x denote

the point at which Buyer chooses to buy if price is fixed at P . Then we have following
value-matching and smooth-pasting conditions.:

cb
σ2 (x− P )2 + α(x− P ) + β = x− P
2cb
σ2 (x− P ) + α = 1
cb
σ2 (x− P )2 + α(x− P ) + β = 0

(1.17)

Solving these 3 conditions and combining with the fact that V (x) = 0 ∀x ≤ x, we get:

V (x, x|P ) =


0, x ≤ x
cb
σ2 (x+ η − P )2 + 1

2
(x+ η − P ) + σ2

16cb
, x ∈

(
x, x
)

x− P , x ≥ x

(1.18)

where η = 1
4
σ2

cb
− (x− P )−

√
−σ2

cb
(x− P ) and x = P + 1 +

√
1− (x− P )2 − σ2

cb
(x− P ).

Note that the Costless Seller lower bound in equation (1.16) is a special case of this by
adding the condition V ′(x) = 0. If x is Buyer’s optimal quitting threshold, then η = 0 and
his value function does not depend on Seller’s cost. Buyer’s quitting threshold xb is smaller
than P , so V (x, x) = 0 for x ≤ x. If Seller quits first, then Buyer’s value function is shifted
down and left from a positive η.

Private Outside Option

Let V i(x, µ) denote type i’s lower bound in state x with Seller’s belief µ.
First, if µ = µH or µ = µL, then Buyer’s type is revealed. Only one type of Buyer

remains and the problem is identical to the costless seller model in Section 3. Thus the
lower bound is the same as in equation (1.16). Thus we must have V i(x, µi) = V (xi) from
equation (1.16).

It remains to solve for V i(x, µHL). The following two Lemmas prove that, if type L
receives V (xL) in equilibrium when his type is reveled, then H type must buy (weakly)
earlier than L type when the type has not been revealed, and the existence of H type does
not change L type’s lower bound.

Lemma 3. In any equilibrium such that VL(x, µL) = V (xL) from equation (1.16), H type
must buy (weakly) earlier than L type. That is, if aL(x, µHL, P (x, µHL)) = 1, then aH(x, µHL, P (x, µHL)) =
1.
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Proof. Suppose µ = µHL so that both types are still in the game. Since L type cannot
be worse than if price is fixed at P , we must have VL(x, µHL) ≥ V (xL), where V is from
Equation (1.16). If L type buys at state x, then we must have P (x, µHL) ≤ xL − V (xL).
If H types also buy at x, he gets utility of at least xH − (xL − V (xL)) = V (xL) + ε. If H
type does not buy at x, then he will be the only type remaining after L type buys, and will
get continuation value VH(x, µH) = V (xH) = V (xL + ε). It is straightforward to show that
V (xL) + ε ≥ V (xL + ε), hence H type must buy no later than L type does.

Lemma 4. In any equilibrium, if VL(x, µL) = V (xL) from equation (1.16), then there exists
an equilibrium outcome in which VL(x, µHL) = V (xL). If VL(x, µHL) = V (xL), then L type

quits at xL = xL = P − σ2

4cb
, and buys at xL = xL = P + σ2

cb

[√
1
4
− P cb

σ2 − 1
4

]
at price

PL = P (xL = xL) = σ2

cb

[√
1
4
− P cb

σ2 − 2
(

1
4
− P cb

σ2

)]
.

Proof. First we see that, if µ = L, the game is the same as in Section 1.3. Thus, L type buys

at xL ≥ P + σ2

cb

[√
1
4
− P cb

σ2 − 1
4

]
and quits at xL ≤ P − 1

4
σ2

cb
. Denote these two thresholds xo

and xo, respectively.
Now for µ = µHL, by Lemma 3, H type must buy weakly earlier than L type in equilib-

rium. Suppose that it is strictly earlier (xH < xL+ε), then we have a separating equilibrium.
After H type buys, L type buys immediately if xL ≥ xo. Thus H type must buy strictly
before xH reaches xo + ε, otherwise there cannot be separation. As a result, on equilibrium
path, L type buys at xL = xo without uncertainty on types. The existence of H type does
not affect L type’s equilibrium payoff. Thus VL(x, µHL) = VL(x, µL) = V (xL) as in Lemma
1, and he buys at xL = xo and quits at xL = xo as in Proposition 1.

Suppose instead we have a pooling equilibrium where H and L types buy together (xH =
xL+ε). If Seller cannot separate the two types, then it is as if she’s only dealing with L type.
Using arguments in Lemma 1, Seller can charge up to P (x, µ) = P (xL + ε

2
, µ) = xL− V (xL)

at the point of trade. In equilibrium, Seller charges this price if she wants to trade and
above this price if she does not want to trade. L type behaves as if there’s no high type.
Then we must have xL = xo; otherwise Seller can profitably deviate by charging P (x, µ) =
P (xL + ε

2
, µ) = xL − V (xL) for xL ≥ xo and charging P (x, µ) > P (xL + ε

2
, µ) = xL − V (xL)

for xL < xo.
If P ≥ x0 − ε

2
+ σ2

4cb
, then xL|t=0 < xL; thus L type wants to quit immediately. For

P < x0 − ε
2

+ σ2

4cb
, we have shown above that L type behaves the same as in Proposition 1.

Thus the existence of H type does not affect L type’s equilibrium utility or strategy.

By Lemma 3 and Lemma 4, L type buys and quits at same thresholds as in the case
with just a single type. The existence of H type does not affect L type’s lower bound value
function, nor does it affect L type’s equilibrium strategies if he receives this lower bound.
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Thus we must have:

V L(x, µHL) = V L(x, µL) = V (x− ε

2
)

= V (xL)

=
cb
σ2

(xL − P )2 +
1

2
(xL − P ) +

σ2

16cb
, xL ∈

(
P − σ2

4cb
, P +

σ2

4cb

)
(1.19)

The lower bound on H type’s value function when µ = µHL must be higher than V (x)
from equations (1.16). Seller cannot “threaten” to never make discount, because H type
rationally expects Seller to make L type an offer when xL reaches xL.

When x drops to xL + ε
2
, L type quits and H type is revealed with product value xH .

When x increases to xL + ε
2
, L type buys, and by Lemma 3, H type buys too. When L quits

at xL = xL, H’s utility becomes V (xL + ε). When L buys, H’s utility becomes V (xL) + ε.
These two conditions bound H type’s value function from below. By Taylor’s expansion and
Ito’s Lemma, we have

VH(x, µHL) = VH(xH−
ε

2
, µHL) =

cb
σ2

(xH−
ε

2
−P )2+αH(xH−

ε

2
−P )+βH ∀xH ∈ [xL+ε, xL+ε]

(1.20)
The two conditions translate to:{

cb
σ2 ( ε

2
− σ2

4cb
)2 + αH( ε

2
− σ2

4cb
) + βH = cb

σ2 (ε− σ2

4cb
)2 + 1

2
(ε− σ2

4cb
) + σ2

16cb
cb
σ2 (xL + ε

2
− P )2 + αH(xL + ε

2
− P ) + βH = cb

σ2 (xL − P )2 + 1
2
(xL − P ) + σ2

16cb
+ ε

(1.21)
Solving these two equations produces αH , βH , and consequently VH(x, µHL). The solution

is:

αH =
1

2
+

ε
2
− cb

σ2 ε
2 − ε

√
1
4
− P cb

σ2

σ2

cb

√
1
4
− P cb

σ2

βH =
3cb
4σ2

ε2 +
σ2

16cb
−

ε
2
− cb

σ2 ε
2 − ε

√
1
4
− P cb

σ2

σ2

cb

√
1
4
− P cb

σ2

(
ε

2
− σ2

4cb
)

(1.22)
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1.9 Proofs

Section 3

Proof of Lemma 1
First we assume the existence of an equilibrium with V (x) = V (x), and show that if

V (x) = V (x), then there’s an unique outcome and it has the stated properties.
Suppose V (x) = V (x). Because V (x) = V (x), Buyer’s quitting strategies must also be

the same as if price is fixed at P . So Buyer quits for all x < x = x. Given the continuation
value, Buyer buys at x if and only if P (x) ≤ x − V (x), otherwise Buyer strictly prefers to
wait. So the maximum price that Seller can extract is x − V (x). This transforms Seller’s
problem into an optimal stopping problem. Seller can stop and receive a payoff of x− V (x),
or continue. If Seller wants to continue, she must charge P (x) > x− V (x).

The solution to Seller’s stopping problem is a threshold x, such that Seller stops for all
x > x. Suppose there exists x̃ > x such that a(x, P (x)) = 0 for an open neighborhood
around x̃. Let xleft = sup{x|x ∈ A & x < x̃}, and xright = inf{x|x ∈ A & x > x̃}. Because
there’s no trade between xleft and xright, U(x̃n) is on a convex function connecting U(xleft)
and U(xright). But Buyer is willing to accept P (x) = x− V (x) which is a concave function
connecting U(xleft) and U(xright), so we must have U(x̃) < x̃ − V (x̃, P (x̃)). Thus Seller
should stop at x̃. If there’s no open neighborhood around x̃, then when xt = x̃, the games
stops at τ = 0 and pays utility of 0 by definition of utilities in Section 2. Thus Seller should
stop at x̃, a contradiction. The threshold must be lower than x, because for x > x, Seller
cannot charge price higher than x− V (x), since x− V (x) = P , which is an upper bound on
price.

Next we prove that the strategy we propose above is indeed an equilibrium.
Let A = [x,∞]. If P (x) = x − V (x) for x ∈ A, and P (x) > x − V (x) for x /∈ A, then

Buyer receives V (x) = V (x) for x ∈ A. But this implies that V (x) = V (x) for all x, because
V (x) and V share the same diffusion process with the same flow cost. Buyer’s continuation
value is then V (x) for all x. Given the continuation value, Buyer’s optimal strategy is to
buy at x if and only if P (x) ≤ x− V (x). Seller does not have a profitable deviation either,
since A is the solution to the optimal stopping problem with stopping payoff of x− V (x).

Proof of Proposition 1
Take any P n ≤ xn,0 + 1

4
σ2

cb
. Given Lemma 1, Buyer has the same utility as if she’s facing

a fixed price at P . So we know that V (x) = V (x) from equation (1.16) in Section (1.8).
Since Seller controls when to trade, the trading threshold xn must solve the optimal

stopping problem with stopping value x−V (xn, P n). By Taylor expansion and Ito’s Lemma,
Seller’s value function satisfies rU(xn) = −cs + σ2

2
U ′′(xn). Having r = 0 and cs = 0 imply

a linear value function for the Seller U(xn) = αs(xn − P n) + βs. We have three boundary
conditions. The first two conditions match values at quitting and trading points. The third
condition is a first-order “smooth-pasting” condition ensuring the stopping time is optimal
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(Dixit 1993). 
αs

(
− 1

4
σ2

cb

)
+ βs = 0

αs(xn − P n) + βs = xn − cb
σ2 (xn − P n)2 − 1

2
(xn − P n)− σ2

16cb

αs = 1− 2cb
σ2 (xn − P n) + 1/2

(1.23)

Solving the system of equations, we get the trading threshold

xn = P n +
σ2

cb

[√1

4
− P n

cb
σ2
− 1

4

]
and trading price

Pn(xn) = xn − V (xn, P n) =
σ2

cb

[√1

4
− P n

cb
σ2
− 2
(1

4
− P n

cb
σ2

)]
The optimal list price is found by

argmax
Pn

U(0) = argmax
Pn

αb(−P n) + βb = argmax
Pn

(1

4

σ2

cb
− P n

)(
1− 2

√
1

4
− P n

cb
σ2

)
If P > 1

4
σ2

cb
, then xn = P − 1

4
σ2

cb
> 0. At xn, Seller would offer P (xn) = xn and Buyer

buys. The only difference now is that Seller receives utility of xn instead of 0 at Buyer’s
quitting threshold. We can re-solve the above system of equations by swapping out the first
condition of Equations (1.23) with

αb

(
− 1

4

σ2

cb

)
+ βb = P n −

1

4

σ2

cb
(1.24)

and we get xn = xn = P n− 1
4
σ2

cb
. Thus players trade immediately for xn ≥ xn. Furthermore,

for 0 < xn ≤ xn, Seller would offer Pn(xn) = xn and Buyer accepts, otherwise Buyer would
quit. For xn ≤ 0, Buyer quits immediately. Thus the game must end immediately for all
xn ∈ R.

Section 4

Proof of Lemma 2 In A.2 we have shown that V (x + η, P )− η is the lower bound on
V (x).

Suppose V (x) = V ′(x) = 0, then the case is identical to the case of a costless seller. So
we can use the proof directly from Lemma 1. The lower bound V (x) is from equations (1.16).
Buyer quits at x = P − 1

4
σ2

cb
. Seller solves an optimal stopping problem with stopping value

x− v(x) and an exogenous stopping point at x, which yields some unique stopping point x.
Player trade for x ≥ x.
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Suppose U(x) = U ′(x) = 0 and V ′(x) 6= 0, first we see that in this case, we must have
x > P − 1

4
σ2

cb
, otherwise, V (x, x) < 0 for x < P − 1

4
σ2

cb
, and Buyer would quit at P − 1

4
σ2

cb
,

a contradiction. An equilibrium outcome should be Seller’s optimal stopping problem, with
stopping payoff of x− V (x, x).

Let x denote the point where Buyer would buy if price is fixed at P , and let x denote the
point where trade happens in equilibrium. From earlier analysis, we know that Buyer’s value
function is in the form of V (x) = cb

σ2 (x − P )2 + αb(x − P ) + βb and Seller’s value function

is in the form of U(x) = cs
σ2 (x − P )2 + αs(x − P ) + βs. Then x, x, and x must satisfy the

following seven value-matching and smooth-pasting boundary conditions - the first 3 for the
Buyer and the last 4 for the Seller:

cb
σ2 (x− P )2 + αb(x− P ) + βb = x− P
2 cb
σ2 (x− P ) + αb = 1
cb
σ2 (x− P )2 + αb(x− P ) + βb = 0
cs
σ2 (x− P )2 + αs(x− P ) + βs = 0

2 cs
σ2 (x− P ) + αs = 0
cs
σ2 (x− P )2 + αs(x− P ) + βs = x− V (x)

2 cs
σ2 (x− P ) + αs = 1− d

dx
V (x)

(1.25)

Solving for x, x, αb, βb, αs, and βs then generates the equilibrium outcome.
Lastly, we show that the game cannot simultaneously have an equilibrium outcome with

V ′(x) = 0 and an outcome with U ′(x) = 0 and V ′(x) 6= 0. Using the last six conditions
from the system of equations above we can derive x = − cb

cs
P . One can then compare this

threshold to the quitting threshold for V ′(x) = 0, which is x = P − 1
4
σ2

cb
. Only the higher of

the two thresholds can be supported in an equilibrium. If the earliest quitting happens at
the lower threshold, then in the region between the two thresholds, one of the player must
have a negative continuation value. Such player can profitably deviate by quitting at those
states.

Proof of Proposition 5
We prove by showing that, if Seller quits earlier than Buyer, then there’s a higher P

such that the equilibrium outcome in Lemma 2 generates a higher ex-ante utility for Seller.
Suppose in equilibrium, x = max{xb, xs} = xs > xb. Given Lemma 1 and Proposition 1, we
know that P < x+ 1

4
σ2

cb
; otherwise Buyer’s quitting threshold must be higher than x, which

is a contradiction. We will show that increasing P to x+ 1
4
σ2

cb
is strictly better for the Seller

ex-ante.
As an interim step, we note that, if xs > xb, then xs decreases as P increases. Since xs >

xb, we can safely assume xb = −∞, since shifting Buyer’s quitting threshold downward has
no impact on the equilibrium payoff. In the proof of Lemma 2, we showed that xs = − cb

cs
P ,

Thus xs = x decreases as P increases.

Now we prove that increasing P to x+ 1
4
σ2

cb
is strictly better for the Seller ex-ante. Fixing

an x in equilibrium, we can think of Seller as facing an optimal stopping problem regarding
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when to sell, with a lower boundary at x. Her utility from stopping is P (x) = x − V (x) =
x − V (x + η, P ) + η. Now suppose the list price is increased from P to P + ∆P , where
∆P = x + 1

4
σ2

cb
− P . Seller’s quitting threshold is decreased as argued above, and Buyer’s

quitting threshold increases to P + ∆P − 1
4
σ2

cb
= x, so the lower boundary of the game,

x = max{xb, xs}, is unchanged. With the new list price P + ∆P , η becomes 0, and Seller’s
payoff from trading is x−V (x, P + ∆P ), which is strictly higher than her selling price under
P : x− V (x+ η, P ) + η, for all x > x. Thus Seller is facing the same lower boundary under
the two list prices, and a stopping utility under P + ∆P that strictly dominates P . Thus
regardless of where she wants to trade, Seller’s ex-ante utility is strictly higher under P+∆P
than under P . Thus P is sub-optimal.

Proof of Proposition 6 From Proposition 5, we know that Buyer quits first in equilib-
rium. Thus given P , Buyer’s value function must be

V (x) = V (x) =
cb
σ2

(x− P )2 +
1

2
(x− P ) +

σ2

16cb

and Buyer’s quitting threshold is x = P − σ2

4cb
.

Because cs > 0, by U ′′(x) = 2cs
σ2 , we know that U(x) = cs

σ2 (x− P )2 + As(x− P ) + Bs for
some coefficients As and Bs. At x, we must have (1) U(x) = 0. Since x is Seller’s optimal
stopping points, x must satisfy: (2) U(x) = P (x) = x − V (x), and (3) U ′(x) = 1 − V ′(x).
From these three conditions, we can solve x, As, and Bs by solving the following system of
equations:

cs
σ2 (− σ2

4cb
)2 + As(− σ2

4cb
) +Bs = 0

cs
σ2 (x− P )2 + As(x− P ) +Bs = x− cb

σ2 (x− P )2 − 1
2
(x− P )− σ2

16cb

2 cs
σ2 (x− P ) + As = 1− 2cb

σ2 (x− P )− 1
2

(1.26)

From which we get 
x = P − σ2

4cb
+ σ2

cb

1√
1+k

√
1
4
− r

As = 2+k
2
− 2
√

1 + k
√

1
4
− P cb

σ2

Bs = (1
4

+ k
16

)σ
2

cb
−
√

1+k
2

σ2

cb

√
1
4
− P cb

σ2 .

(1.27)

Plugging As and Bs into U(x0), and letting r = P cb
σ2 , we get

U(x0) = kr2(
σ2

cb
)2 − (1 +

k

2
− 2
√

1 + k

√
1

4
− r)r(σ

2

cb
)2 + (

1

4
+

3k

16
)
σ2

cb
−
√

1 + k

2

σ2

cb

√
1

4
− r

+ k
σ2

cb
x0

2 − 2krx0 + (1 +
k

2
)x0 − 2x0

√
1 + k

√
1

4
− r.

Maximize U(0) with respect to r to get the optimal r∗ and P
∗

= r∗ σ
2

cb
. For x0 = 0, we

get r∗ = 1
4
− 27+10k−6

√
9+10k+k2

16k2
. Plugging P into x = P − σ2

4cb
+ σ2

cb

1√
1+k

√
1
4
− r produces x.
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Plugging P into P (x) = x− V (x) produces P (x). It’s easy to check that limx→x+ U
′(x) > 0

and U(x) > 0 ∀x > x, which confirms that Seller does not want to quit before Buyer does.
Proof of Corollary 7 and 8
To make the comparison, we need to first solve for the equilibrium under a fixed price.

Let P ∗ be the optimal fixed price. We solve separately for the cases of (1) Buyer quits first
and (2) Seller quits first.

Suppose Buyer quits first. We know that Buyer’s value function is V (x) = cb
σ2 (x−P ∗)2 +

1
2
(x − P ∗) + σ2

16cb
, and Seller’s value function is U(x) = cs

σ2 (x − P ∗)2 + As(x − P ∗) + Bs for
some coefficients As and Bs. Let x and x denote Buyer’s buying and quitting thresholds,
respectively. Since both buying and quitting are Buyer’s decision, we get x = P ∗ + σ2

4cb
and

x = P ∗ − σ2

4cb
from Section 3. Solving U(x) = P ∗ and U(x) = 0 simultaneously give us

As = P ∗ 2cb
σ2 and Bs = −k σ2

16cb
+ 1

2
P ∗. Thus

U(x0) =
kcb
σ2

(x0 − P ∗)2 + P ∗
2cb
σ2

(x0 − P ∗) +−k σ2

16cb
+

1

2
P ∗ (1.28)

Taking derivative with respect to P ∗ and setting to zero, we get P ∗ = 1
2−k

σ2

4cb
+ 1−k

2−kx0.

To make sure x < x0, we need k < x0
4cb
σ2 + 1, otherwise Buyer quits immediately.

Now suppose Seller quits first. Since now quitting is Seller’s decision, we do not know
coefficients Ab and Bb in Buyer’s value function V (x) = cb

σ2 (x−P ∗)2 +Ab(x−P ∗) +Bb. We
still have U(x) = cs

σ2 (x−P ∗)2 +As(x−P ∗) +Bs. To solve Ab, Bb, As, Bs, x, and x, we solve
the following system of equations:

U(x) = P ∗ and U(x) = 0

V (x) = x− P ∗ and V (x) = 0

U ′(x) = 0 and V ′(x) = 1

(1.29)

This gives x = (1 − 1
k
)P ∗, and U(x0) = kcb

σ2 (x0 − P ∗)2 + 2cb
σ2 P

∗(x0 − P ∗) + kcb
σ2

(
P ∗

k

)2
.

Then maximize U(x0) with respect to P ∗. If k ≤ x0
4cb
σ2 + 1, then d

dP
U > 0 for all P .

This implies Seller will raise the price till Buyer quits first, i.e., P ∗ − σ2

4cb
≥ (1 − 1

k
)P ∗. If

k > x0
4cb
σ2 + 1, we get P ∗ = k

k−1
x0 = x. Thus Seller quits immediately. Thus there does not

exist an equilibrium with positive length such that Seller quits strictly before Buyer. For
k < x0

4cb
σ2 + 1, the length fo the game is positive and Buyer quits first. For k >= x0

4cb
σ2 + 1,

one player stops immediately regardless of the price.
Now we can compare the equilibrium outcome under bargaining to the outcome under

a fixed price. Particularly, for x0 = 0, we can compare P = σ2

cb

[
1
4
− 27+10k−6

√
9+10k+k2

16k2

]
with

P ∗ = 1
2−k

σ∗

4cb
. There exists a k < 1 such that P > P ∗ for k < k and P < P ∗ for k > k. I did

not find a closed-form solution for k.

Section 5

Proof of Proposition 9
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If µ = µL or µ = µH , then we have proved the result in Lemma 1 and Proposition 1.
From Lemma 3 and Lemma 4, we also know the equilibrium outcome if Buyer is L type

and belief is µHL. The outcome is exactly the same is in Proposition 1. L type quits at xL
and buys at xH .

So the only case we need to prove is when Buyer is H type and Seller’s belief is µ = µHL.
As before, Seller does not need to offer H type more utility than the lower bound of H type’s
continuation value. When L quits at xL = xL, H’s utility becomes V (xL + ε). When L
buys, H’s utility becomes V (xL) + ε. These two conditions bound H type’s value function
from below. Given H type’s lower bound V H(x, µHL), It’s easy to check that V H(x, µHL) >
V L(x+ε, µHL) for xL+ ε

2
< x < xL+ ε

2
. Thus H type has a higher utility than L type in every

state, even after compensating L type for the difference in outside options, ε. It’s also easy
to check that V H(x, µHL)− ε < V L(x+ ε, µHL) for xL + ε

2
< x < xL + ε

2
; thus L type would

not buy when Seller makes an offer to the H type, P (x, µHL) = xH − V H(x, µHL). Now,
given VH(x, µHL) = V H(x, µHL), Seller receives P (x, µHL) = xH − VH(x, µHL) if she trades
with H type. Seller’s decision of when to trade with H type must solve the following optimal
stopping problem, with two value matching boundary conditions and one smooth-pasting
boundary condition:

αs(xH − ε
2
) + βs = −(xH − ε

2
− P )2 + (1− αH)(xH − ε

2
− P ) + P − βH

αs = −2(xH − ε
2
− P ) + (1− αH)

αs(
ε
2
− σ2

4cb
) + βs = (1− 2

√
1
4
− P cb

σ2 )ε

(1.30)

where αH and βH are solutions to equations 1.21. Using the system of 6 equations, we can
derive the follwoing condition

(xH − P −
σ2

4cb
)2 + P − σ2

4cb
= 0

which implies that

xH = xL = P +
σ2

cb

[√1

4
− P cb

σ2
− 1

4

]
Note that even though they buy at the same threshold, H type arrives at the threshold earlier
than L type does, since xH = xL + ε at all times. Also, this common threshold is the same
trading threshold as in Proposition 1, when there is only a single type.

When L type quits, H type’s value function becomes V (xL + ε) > 0, thus H type does
not quit as long as L is present. After L quits, H has the same quitting threshold as in
Proposition 1. So

xi = x = P − 1

4

σ2

cb

At their respective times of trade, L type pays price

PL = P (x+
ε

2
, µL) = x− VL(x+

ε

2
)
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and H type pays price

PH = P (x− ε

2
, µHL) = x− VH(x− ε

2
)

Thus PL − PH = VH(x − ε
2
) − VL(x + ε

2
). Since we showed above that VH(x) > VL(x + ε),

this proves that PL > PH .

1.10 Discrete-time Analog

In this section, I present the discrete-time analog of the continuous-time model. I show
that the equilibrium outcomes presented in paper represent the limit of discrete-time equi-
librium outcomes. Specifically, because the equilibrium outcomes presented in the paper is
identified through Buyer’s value function, we want to prove that, as the period length in the
discrete-time game approaches 0, Buyer’s equilibrium value function must approach V (x)
from equation (1.16) or V (x, x) from equation (1.18) and satisfies Condition 1.

I first formally state the discrete-time game, then introduce a refinement that eliminates
trivial equilibria in which players quit simultaneously, then prove the uniqueness of the limit
as the game approaches continuous time.

The discrete-time game follows the model described in Section 2.1. Let G(∆t) denote
the game with period length of ∆t. Players act at time t ∈ {0,∆t, 2∆t, · · ·}. There are
two players, a Seller (s) and a Buyer (b). Product value is denoted as x, with x = x0 at
time t = 0. The state variable xt evolves as a Markov chain, with xt+∆t = xt + σ

√
∆t with

probability 1
2

and xt+∆t = xt−σ
√

∆t with probability 1
2
. Let X(∆t) = {x0+ασ

√
∆t | α ∈ N}

denote the grid on x spanned by σ
√

∆t from x0. We must have xt ∈ X(∆t) ∀t. State xt is
observable to both players.

Before the game starts,a list price P ∈ R++ is chosen. Then at t ≥ 0:

1. Seller chooses price Pt subject to Pt ≤ P .

2. Buyer chooses whether to buy with at ∈ {0, 1}.

3. If at = 0, then both players choose whether to quit with qi,t ∈ {0, 1}. If no player quits,
then Buyer incurs cost and the game moves to time t+ ∆t. If either player quits, the
game ends and players receive their outside options.

I look for stationary SPE with pure strategy, henceforth referred as equilibrium. Given
a list price, Seller’s equilibrium strategy is characterized by (P (x), qs(x)), with price offer
P (x) : R 7→ [0, P ] and quitting decision qs(x) : R 7→ {0, 1}. Buyer’s equilibrium strategy
is characterized by (a(x, P ), qb(x)), with buying decision a(x, P ) : R2 7→ {0, 1} and quit-
ting decision qb(x) : R 7→ {0, 1}. Since everything depends on list price P , which is fixed
throughout the game, I do not include P from notations.

Buyer incurs continuation cost of cb ∗∆t and Seller incurs continuation cost cs ∗∆t at the
end of each period if a(xt) = 0 and qs(xt) = qb(xt) = 0. If a(xt) = 1, Buyer receives utility
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xt − Pt and Seller receives Pt. If either player quits, the game ends and players get outside
options of πb and πs, which is normalized to 0 (see Definition 1 in Section 3).

Given a strategy profile φ, let u(x, φ) denote the seller’s expected utility in state x, and
v(x, φ) denote buyer’s expected utility in state x. Let V1(x) denote Buyer’s value function in
equilibrium, and U1(x) denote Seller’s equilibrium value function. Let V2(x) denote Buyer’s
expected value from continuing to the next period. That is, V2(x) represents Buyer’s expected
utility of rejecting the trade and if both players choose not to quit this period.

We can write V2(x) recursively as:

V2(x) = −cb∆t+
1

2
V1(x+ σ

√
∆t) +

1

2
V1(x− σ

√
∆t) (1.31)

When players trade, Seller must offer the highest price that Buyer is willing to accept.
If players quit at x, then Seller can charge P (x) = max{x, P}. If players don’t quit at x,
and if V2(x) ≥ 0, Seller can charge up to x−V2(x). If players don’t quit at x and V2(x) < 0,
Seller can charge up to x. Also Seller cannot charge above the list price. This implies:

V1(x) =


max{0, x− P} ∀x s.t. q(x) = 1

max{0, V2(x)} ∀x ≤ P s.t. q(x) = 0

max{V2(x), x− P} ∀x > P s.t. q(x) = 0

(1.32)

Before we proceed, note that there is an infinite number of trivial equilibria in which
players quit simultaneously. If the opponent is quitting in a given state, then the player is
indifferent between quitting and not quitting, thus quitting is always optimal. By the same
reasoning, the opponent’s quitting decision is optimal too. As a result, we can construct
equilibria with arbitrary quitting rules, as long as both players quit at the same time. These
equilibria exist due to the simultaneity of players’ quitting decisions, and do not offer any
insight. One extreme example is that qb(x) = qs(x) = 1 ∀x, P (x) = max{0, min{x, P} },
and a(x, P , P ) = I{x ≥ 0} constitutes an equilibrium. In this equilibrium, players always
quit no matter what the state x is; Seller charges a price equal to the value of the product
(bounded between 0 and P ); Buyer buys immediately if product value is positive because he’s
indifferent between buying and quitting. In this equilibrium, the game ends immediately, no
matter what the initial position is.

To remove these simultaneous quitting equilibria, I introduce the following refinement,
which is equivalent to applying trembling hand only to players’ quitting strategies.

Refinement. Player quits if and only if quitting is strictly preferred.

Under this refinement, players cannot quit simultaneously. If the opponent quits, then
the player is indifferent and will choose to stay. This refinement is not restrictive. Suppose
in an equilibrium, Seller quits for x ≤ xs and Buyer quits for x ≤ xb. Now keep P , P (·), and
a(·) as before, and see whether xs − ε and xb constitute a equilibrium, and whether xb − ε
and xs constitute a equilibrium. If neither is an equilibrium, that means that players quit
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only because the other player is quitting. If either perturbation on xs or on xb constitutes
an equilibrium, then the new equilibrium has the same equilibrium outcome as before, and
the payoffs are not affected by the restriction that xs 6= xb.

Now we are ready to prove the following result. Let V∆t denote an index family of
Buyer’s equilibrium value functions for the index ∆t. Let U∆t denote an index family of
Seller’s equilibrium value functions for the index ∆t. Let q(x) = max{qb(x), qs(x)} and
x = sup{x|q(s) = 1}. Let U(x) = lim∆t→0 U∆t and V (x) = lim∆t→0 V∆t denote the limit of
value functions as the game approaches continuous time.

Theorem 5. As ∆t → 0, V∆t → V (x, x) from equation (1.18). Condition 1 is satisfied in
the limit.

Step 1. There exists an x such that a(x) = 1 and P (x) = P iff x ≥ x.

Here we claim that there exists a threshold such that, when x is above the threshold,
Seller charges P and Buyer buys immediately.

First we see that, if P (x) = P and a(x) = 1, then x ≥ P . If x ≥ P , then V1(x) =
max{V2(x), x− P} if q(x) = 0 and V1(x) = x− P if q(x) = 1. Seller must charge P (x) = P

if V2(x) < x− P . Let P̃ (x) denote the highest price that Buyer is willing to pay at x > P .

Buyer buys at P if and only if P̃ = P .
Now we prove that P̃ must be non-decreasing for x > P . Suppose P̃ decreases for

some x < P . Then there exists x′ > P such that P̃ (x′ − σ
√

∆t) > P̃ (x′). This implies

that P̃ (x′) < P , so players do not quit at x. Then P̃ (x′) = x′ − V2(x′) = 1
2
(wideP̃ (x′ −

σ
√

∆t) + P̃ (x′+ σ
√

∆t) + cb∆t. By rearranging the terms, we get: P̃ (x′+ σ
√

∆t)− P̃ (x′) =

P̃ (x′) − P̃ (x′ − σ
√

∆t) − 2cb∆t < 0. Thus P̃ (x′ + σ
√

∆t) < P̃ (x′) − cb∆t. By induction,

P̃ → −∞ as x→∞. When P̃ < 0, there cannot be trade since Seller can’t charge a negative
price. Players must not quit if P̃ < P . Thus neither trading or quitting can occur after x
passes some threshold. However, this implies that players’ value functions must approach
−∞, so players should quit, which is a contradiction.

Given that P̃ must be non-decreasing, we need to show that P̃ must reach P at some
point. Suppose P̃ (x) never reaches P . Previously we showed that if x > P and P̃ (x) < P ,

then P̃ (x+σ
√

∆t)− P̃ (x) = P̃ (x)− P̃ (x−σ
√

∆t)−2cb∆t < 0. Because P̃ is non-decreasing,

P̃ (x)− P̃ (x− σ
√

∆t)− 2cb∆t > 0, thus P̃ (x)− P̃ (x− σ
√

∆t) > 2cb∆t for all x > P . Then

P̃ must reach P for some large x. This concludes the proof. We can find x by taking the
min{x | P̃ = P}.

Step 2. For ∆t small enough, there exists an x < P such that q(x) = 1 iff x ≤ x.

There exists a threshold x such that, players quit if and only if the current state is below
the threshold. First, we can see that Buyer must quit for some states that are low enough.
When x is negative, there cannot be trade, and players pay costs to continue the game. As
x approaches −∞, continuation value also goes −∞ and so players must quit.
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Next, for x ≤ P , we can show that if q(x) = 1, then q(x− σ
√

∆t) = 1. If q(x) = 1, then
we must have V1(x) = 0. Suppose that qb(x− σ

√
∆t) = 0; this implies that

V2(x− σ
√

∆t) = −cb∆t+
1

2
V1(x) +

1

2
V1(x− 2σ

√
∆t) ≥ 0 (1.33)

which means that V1(x − 2σ
√

∆t) > V2(x − σ
√

∆t ≥ 0. By induction, we have V1(x′) > 0
for all x′ < x− 2σ

√
∆t. Thus players never quits for x′ < x, which is a contradiction.

Lastly, I show that, for ∆t small enough, we must have q(x) = 0 if x > P . Suppose
not, then we have some x′ > P such that q(x′) = 1. Then we must have P (x′) = P and
a(x′) = 1, which implies that x′ ≥ x. Then the continuation value for Buyer V2(x′) =
−cb∆t+ 1

2
V1(x′−σ

√
∆t)+ 1

2
V1(x′+σ

√
∆t) ≥ −cb∆t+ 1

2
(x′+σ

√
∆t−P ) > −cb∆t+ 1

2
σ
√

∆t,
which is strictly positive for ∆t small enough, so Buyer does not quit. Seller’s continuation
value U2(x′) = −cs∆t+ 1

2
U1(x′− σ

√
∆t) + 1

2
U1(x′+ σ

√
∆t) ≥ −cs∆t+ 1

2
P , which is strictly

positive for ∆t small enough, so Seller does not quit. Thus q(x′) = 0, a contradiction. This
concludes the proof.

Step 3. Let {V∆t(x) : X(∆t) 7→ R}∆t be an index family of Buyer’s value functions. Then
V∆t(x)→ V (x) as ∆t→ 0.

Given the existence of x and x, we can now specify V1(x) in three cases:

V1(x) =


0, ∀x ≤ x

−cb∆t+ 1
2
V1(x+ σ

√
∆t) + 1

2
V1(x− σ

√
∆t), ∀x < x < x

x− P , ∀x ≥ x

(1.34)

Rearranging the terms for x < x < x, we get

2c

σ2
=

V1(x+σ
√

∆t)−V1(x)

σ
√

∆t
+ V1(x)−V1(x−σ

√
∆t)

σ
√

∆t

σ
√

∆t
for x < x < x

Also, at x, we must have:

V1(x) ≥ −cb∆t+
1

2
V1(x+ σ

√
∆t) +

1

2
V1(x− σ

√
∆t)

which rearranges to:
V1(x)− V1(x− σ

√
∆t)

σ
√

∆t
≥ 1− 2c

σ

√
∆t (1.35)

Let V (x) denote the limit of V1(x)→ V (x) as ∆t→ 0. In the limit, the above 5 conditions
converge to: 

V (x) = 0 ∀x ≤ x

V ′′(x) = 2c
σ2 for x < x < x

V (x) = x− P ∀x ≥ x

V ′−(x) ≥ 1
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Fixing an x, one can solve for V (x) using the above 4 conditions. The solution is:

V (x|P ) =


0, x ≤ x
cb
σ2 (x+ η − P )2 + 1

2
(x+ η − P ) + σ2

16cb
, x ∈

(
x, x
)

x− P , x ≥ x

(1.36)

where η = 1
4
σ2

cb
− (x − P ) −

√
−σ2

cb
(x− P ) and x = P + 1 +

√
1− (x− P )2 − σ2

cb
(x− P ).

This is V (x, x) from equation (1.18) for x < P .

Step 4. Either U(x) = U ′(x) = 0, or V (x) = V ′(x) = 0.

Our refinement implies that only one player can quit at a given state. So either qb(x) = 1
or qs(x) = 1.

Suppose qb(x) = 1. That means the continuation value must be less than the outside
option for Buyer:

0 ≤ −cb∆t+
1

2
V1(x− σ

√
∆t) +

1

2
V1(x+ σ

√
∆t)

Thus V1(x+σ
√

∆t)−V1(x−σ
√

∆t)

σ
√

∆t
≤ cb
√

∆t.

Similarly, suppose qs(x) = 1. That means the continuation value must be less than the
outside option for Seller:

0 ≤ −cs∆t+
1

2
U1(x− σ

√
∆t) +

1

2
U1(x+ σ

√
∆t)

Thus U1(x+σ
√

∆t)−U1(x−σ
√

∆t)

σ
√

∆t
≤ cs
√

∆t.
So for any ∆t, we must have:

min
{V1(x+ σ

√
∆t)− V1(x− σ

√
∆t)

σ
√

∆t
−cb
√

∆t,
U1(x+ σ

√
∆t)− U1(x− σ

√
∆t)

σ
√

∆t
−cs
√

∆t
}
≤ 0

Thus in the limit as ∆t→ 0, we have min{U ′(x), V ′(x)} ≤ 0.
Suppose V ′(x) ≤ 0. Since we know V (x) = 0, and equilibrium value function cannot be

negative, then V ′(x) = 0. Suppose U ′(x) ≤ 0. If x > 0, then U(x) = x for x ≤ x because
Buyer is wiling to accept price up to x. This implies U ′−(x) = 1, a contradiction. Thus
x ≤ 0, so we must have U(x) = 0.

This concludes the proof. In the limit, either U(x) = U ′(x) = 0 or V (x) = V ′(x) = 0
must hold.
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1.11 Alternative Equilibrium Concept

Standard equilibrium notions such as subgame-perfection may not work well in continuous-
time games. A strategy profile can produce no well-defined outcome in continuous time, or
produce equilibrium outcomes that do not correspond to anything in the discrete-time game,
because SPE does not impose the same restrictions on strategies in continuous time as in
discrete time. See Simon and Stinchcombe (1989) for more discussions. In the main text
of the paper, I constrain players to strategies such that the resulting stopping time τθ is a
measurable function. One undesirable feature from doing so is that each player’s available
deviation strategies now depend on the opponent’s strategy. In this section, I describe an
alternative equilibrium concept of the game without such joint restriction on the strategy
space. I first describe each component of the equilibrium concept, before formally defining
it at the end.

Stationarity I focus on stationary behavior with pure strategies. Players’ equilibrium
strategies depend on state x but not on time t. Seller’s actions in equilibrium can be
characterized by the list price P ∈ R+ ∪ +∞, her price offering in each state P (x, P ) :
R × R+ 7→ (−∞, P ), and her quitting decision qs(x, P ) : R × R+ 7→ {0, 1}, where qs = 1
means quitting. Buyer’s actions can be characterized by his buying decision a(x, P, P ) :
R2×R+ 7→ {0, 1} where a = 1 means accepting the offer, and his quitting decision qb(x, P ) :
R × R+ 7→ {0, 1}. Since everything depends on the list price P , which is fixed throughout
the game, I will drop P from notations going forward. We will treat the list price as an
exogenous parameter, and solve the equilibrium for any arbitrary list price, then let Seller
chooses the list price that maximizes her ex-ante utility from bargaining under such list price.

Buyer’s Problem Given Seller’s strategy, Buyer has to decide between three actions
for each product value x. Buyer can accept Seller’s offer P (x), which gives utility x− P (x);
he can reject the offer and quit the game, which gives utility πb; or he can reject the offer
and continue to wait. This is an optimal stopping problem, with stopping value Wb =
max{x − P (x), πb}, subjects to states in which Seller leaves. Buyer chooses the strategy
that maximizes his expected payoff, supτ E[−c ∗ τ + Wb(xτ )], where τ is the stopping time.
Buyer’s equilibrium strategy a(x, p) and qb(x) has to be a solution to this problem.

Highest Acceptable Offer If Seller makes an offer that Buyer accepts, Seller should
make the highest offer that Buyer is willing to accept. Otherwise, Seller can profitably
deviate by charging a slightly higher price. Thus in equilibrium, if a(x, P (x)) = 1, then we
should have P (x) = sup{P |a(x, P ) = 1}.

Seller’s Problem Given this, Seller also decides between three actions at each moment.
Seller can make a sale, which gives utility P (x) = sup{P |a(x, P ) = 1}; she can quit the game,
which gives utility of πs; or she can continue to wait (by making an unacceptable and do not
quit). This is an optimal stopping problem, with stopping value Ws = max{sup{P |a(x, P ) =
1, πs}, subject to states in which Buyer leaves. Buyer chooses the strategy that maximizes his
expected payoff, supτ E[−c ∗ τ +Wb(xτ )], where τ is the stopping time. Seller’s equilibrium
strategy P , P (x), and qb(x) has to be a solution to this problem.

Outcome Given a strategy profile described above, the games ends at time τ = inf{t | a(xt, P (xt) =
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1 or qs(x) + qb(x) > 0}, which is the earliest time by which an offer is accepted or one of
the players quits. Given a starting value x0, the equilibrium outcome can be described by
a quadruple {A,Q,U(x), V (x)}, where A = {x|a(x, P (x)) = 1} is the set of states such
that players reach agreement, Q = {x|qs(x) + qb(x) > 1} is the set of states such that some
player quits, U(x) is Seller’s equilibrium value function, and V (x) is Buyer’s equilibrium
value function.

For states in which players trade, then Seller receives U(x) = P (x) and Buyer receives
V (x) = x−P (x). For states in which no agreement is reached and a player quits, U(x) = πs
and V (x) = πb. For state x such that players choose to continue negotiating, we can write
recursively:

U(x, t) = −csdt+ e−rsdtEU(x+ dx, t+ dt)

V (x, t) = −cbdt+ e−rbdtEV (x+ dx, t+ dt)
(1.37)

Under stationarity, and by taking Taylor expansion and applying Ito’s Lemma on EU and
EV terms, these expressions can be reduced to the following equations:

rsU(x) = −cs +
σ2

2
U ′′(x)

rbV (x) = −cb +
σ2

2
V ′′(x)

(1.38)

Given rs = rb = 0, the solutions to the equations must be of the form:

U(x) =
cs
σ2

(x− P )2 + As(x− P ) +Bs

V (x) =
cb
σ2

(x− P )2 + Ab(x− P ) +Bb

(1.39)

for some coefficients As, Bs, Ab, Bb. These coefficients can be identified later by applying
appropriate boundary conditions.

Definition 2. A strategy profile is an equilibrium if it can be describe by {P (x), qs(x),
a(x, P ), qb(x)} such that:

1. (Buyer’s Problem) Given {P (x), qs(x)}, {a(x, P ), qb(x)} solves supτ E[−c∗τ+Wb(xτ )].

2. (Highest Acceptable Price) P (x) = sup{P |a(x, P ) = 1} if a(x, P (x)) = 1.

3. (Seller’s Problem) Given {a(x, P ), qb(x)}, {P (x), qs(x)} solves supτ E[−c∗τ+Ws(xτ )].

4. (Trivial Multiplicity) A and Q are closed. 17

17The game can have trivial equilibrium outcomes that differ only on sets of measure 0 with no relevance
to payoffs. I restrict A and Q to be closed sets to rule out this type of multiplicity. See Ortner 2017 for a
similar restriction.
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Chapter 2

Bargaining Between Collaborators of
a Stochastic Project

2.1 Introduction

Firms increasingly rely on collaboration for development and marketing of products and
services (Sivadas and Dwyer 2000). Each year, more than 2,000 alliances are formed, and this
number has continued to rise rapidly (Steinhilber 2013). Such alliances can be formed for a
variety of purposes, ranging from joint product development, to co-marketing campaigns, to
global distribution partnerships. Such collaborations allow firms to combine complementary
resources (dAspremont and Jacquemin 1988), access technology and markets for new business
opportunities (Hamel 1991), and achieve economies of scale (Gomes-Casseres 1997). While
past papers (e.g., Bucklin and Sengupta 1993) have studied firm behaviorand determinants
of success after firms enter into alliances, this paper is interested in firms’ strategies before
they form an alliance. The paper asks the following questions: when do firms form alliances
and how do they split the profits if (1) the profitability of the project evolves stochastically
and (2) firms have to reach an agreement through bargaining.

The expected surplus generated from a collaboration project can evolve over time due to
changing market conditions, arrival of information, or matching between prospective collabo-
rators. For example, in 2017, Amazon explored a partnership with DISH Networks to create
their own wireless networks. A proprietary wireless network became attractive to Amazon
at that time because more Americans had shifted to mobile Internet and smart appliances
(Fung 2017). The shift in consumer preferences opened up business opportunities that would
not have been profitable in earlier years. The appeal of a project can also evolve with the
arrival of new information. For example, companies often conduct multiple rounds of market
research or trials before committing to a major decision. The data collected from research
updates a firm’s belief about the attractiveness of a market. In 2016, after the successes of
many smaller scale collaborations, Red Bull and GoPro entered into a global content part-
nership. When asked about the partnership, the CEO of GoPro described the two brands as
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“extremely compatible and collaborative”, and stated that “the feedback [GoPro gets] from
[Red Bull] is phenomenal.” (Beer 2016). The lapse of time also reveals whether a project
is successful. For example, after failing to reach an agreement in their previous negotiation,
Starbucks breached its exclusive contract with Kraft in order to enter the coffee pods market
in 2010. The contract dispute lasted three years, during which time Starbucks enjoyed great
success in the pods market. The settlement resulted in Starbucks paying $2.75 million to
Kraft, which would have been different had the market performed differently (Shonk 2018).
The expected gains from collaboration can also change as partners discover how well they
match with each other. In 2014, Apple and IBM formed a partnership to create enterprise
apps, but their conversation started a couple years prior. The two firms dedicated teams to
work with each other and find complementarities before finally establishing the partnership
(Cook and Rometty, 2014). Last but not least, a common tactic in negotiation is to work
with the opponent in finding new ”win-win” solutions (see, e.g., Bazerman et al. 1985 and
De Dreu et al. 2000). Such efforts have uncertain impacts on the total surplus to be bar-
gained. Sovereign debt restructuring is another common example in which the total surplus
changes stochastically over time.

If a project’s expected return evolves stochastically, then the timing of implementation
becomes endogenous. If the project only requires a single firm to implement, the previous
literature has shown that the firm will want to delay implementing it until the expected
surplus reaches a certain threshold (see, e.g., Dixit 1993). However, the decision is not so
clear if an alliance between two firms is required to implement it. In many alliances, one can
argue that neither firm has pricing power over the other. Prospective partners must both
agree to implement the project and agree on how to split the profit, in order for the alliance
to be formed. This naturally leads to a bargaining situation. Whether two firms form an
alliance, and when they form it, can be studied as the outcome of a sequential bargaining
game.

If two firms can collaborate to implement a project with a stochastically evolving return,
when do they reach an agreement to collaborate? How do they agree to split the profit from
the alliance? Is the outcome efficient? How does bargaining power (as determined by the
bargaining procedure) affect their decisions to form the alliance? To answer these questions,
I present a model of bilateral bargaining with a stochastic surplus. At each moment, one
firm is the proposer and the other firm is the responder. If the proposer wants to form an
alliance at that time, it can propose an offer to the responder without future commitment.
The responder then decides whether to accept the offer, wait, or quit and take the outside
option. Firms switch their roles as proposer and responder upon the arrival of a Poisson
process, so the previous responder becomes the new proposer and can make counteroffers.1

A common feature of sequential bargaining games is that the bargaining power is deter-
mined by who gets to make the offer and when. In this paper, bargaining power is governed
by the arrival rate of the switching between the proposer and the responder. I refer to this

1This model of bargaining can also be thought of as an alternating-offers model, with no commitment
between when an offer is made and when the next counter-offer arrives.
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arrival rate as the frequency of counteroffers. If counteroffers are more frequent, the two par-
ties are more balanced in their power. If counteroffers arrive less frequently, the bargaining
power favors the current proposer more because the responder has to wait longer before it
can make offers.

One concern in modelling bargaining as a sequential game is that the outcome of the game
is determined by the choice of the extensive form, but real negotiations could be undertaken in
a variety of ways. This paper relaxes this concern by examining how the outcome varies with
the frequency of counteroffers, which has the effect of varying the procedures by which firms
bargain. As the frequency becomes infinitely low, the game approaches the repeated-offers
paradigms of Fudenberg et al. (1985) and Gul et al. (1986), where one firm makes all the
offers. As the frequency becomes infinitely high, the game approaches the continuous-time
limit of the alternating-offers game by Rubinstein (1982). Intermediate levels of frequency
capture a class of symmetric bargaining procedures between the two extremes.

The core result of this paper is that one bargaining procedure can be “better” than
another in fostering collaboration. Changing the bargaining procedure (by changing the
frequency of counteroffers) can be mutually beneficial by improving the ex-ante chance of
alliance and making the timing of such collaboration more efficient. Particularly, bargaining
with a higher frequency of counteroffers can Pareto dominate lower frequencies, suggesting
that both parties and any social planner may prefer more balanced bargaining power. Bucklin
and Sengupta (1993) find that reducing power imbalances between partners can improve the
effectiveness of a co-marketing alliance. This paper extends their conclusion by suggesting
that reducing power imbalances may also improve the efficiency of the formation of such
alliances in the first place.

The model produces a unique equilibrium outcome under symmetric and stationary
strategies. When the outside option is non-positive, the quitting decision becomes irrelevant
and the alliance must be formed at some point. Firms delay agreement until it is socially
efficient to implement the project. Upon agreement, the responder receives a larger share
of the surplus than the share it receives under a constant surplus scenario. The stochastic
nature of the project thus increases the responder’s bargaining power due to the responder’s
ability unilaterally delay collaboration.

When the outside option is strictly positive, quitting becomes a relevant option. The
responder quits when the project surplus drops to a sufficiently low point. In that case, the
formation of alliance is no longer efficient. The ex-ante probability of alliance is sub-optimal.
Firms implement the project too early and negotiation breaks down too early compared to
the socially optimal levels. Such inefficiency is a result of a hold-up problem faced by the
responder. Waiting can be seen as a relationship-specific investment. The cost of waiting is
the discounted value lost in not taking the outside option. The return on that investment
is determined by future bargaining. Thus, the responder, who has less bargaining power,
under-invests and quits too early. In order to avoid the higher chance of breakdown, firms
then implement the project “prematurely”. This hold-up problem is mitigated by having
more frequent counteroffers. A higher frequency of counteroffers balances bargaining power,
which leads to agreement and quitting decisions that are more socially efficient. Increasing
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the frequency of counteroffers not only redistributes but also expands total welfare.
The proposer benefits from a more balanced bargaining procedure if the expansion of

total welfare dominates the redistribution of welfare. Particularly, when the initial size of
the surplus is not too big or too small, a low frequency of counteroffers can be Pareto
dominated by a high frequency of counteroffers. This phenomenon does not happen if the
return from collaboration is constant or if quitting is irrelevant. Those cases do not exhibit
the hold-up problem, so varying the frequency of counteroffers does not affect total utility,
only the split of that utility.

The paper is organized as follows. After literature review, Section 2 present the model.
Section 3 presents the equilibrium outcome and its efficiency when quitting is irrelevant.
Section 4 solves the case with quitting and discusses the effect of counteroffers and bargaining
power on social and Pareto efficiency. Section 5 concludes the paper.

Literature Review

Much of the marketing and management literature on alliances has focused on invest-
ment decisions and their effectiveness after firms form an alliance. Amaldoss et al. (2000),
Amaldoss and Staelin (2010), Bhaskaran and Krishnan (2009), and Amaldoss and Rapaport
(2005) study factors that affect resource-commitment decisions in an alliance, and explore
structural solutions that mitigate free-riding problems among partners in an alliance. See
also, Harrigan (1988) and Bucklin and Sengupta (1993). In comparison, less focus has been
placed on factors that lead to the formation of alliances. Robertson and Gatignon (1998)
study factors that predict whether firms join technological alliances. Cai and Raju (2016)
study market entry as an alliance. They show that market size and market competitive-
ness can determine when entry as an alliance is more profitable than entering independently.
This paper studies the investment decisions before firms form an alliance and how bargaining
procedure affects the probability and timing of the alliance. A conceptually related paper
is Frankel (1998), in which players can exert effort to expand the size of the “pie”, but
sometimes under-invest due to the hold-up problem.

This paper features bargaining with a stochastic payoff and a stochastic proposing order.
Merlo and Wilson (1995, 1998) present a discrete-time model with a stochastic pie and
prove the uniqueness of a stationary payoff when there is no outside option. Cripps (1997)
allows the pie to follow a geometric Brownian motion. Furusawa and Wen (2003) study
the case of stochastic disagreement payoffs and allow the proposer to delay proposing. In
Hanazono and Watanabe (2016), firms receive private signals on an i.i.d stochastic pie.
Another stream of literature expands the alternating-offers model of Rubinstein (1982) to
allow for a random order of proposers determined by a homogeneous Markov process, see e.g.,
Binmore (1987), Muthoo (1999), and Houba (2008). In Yildiz (2004) and Simsek and Yildiz
(2016), players have uncommon priors on the recognition process and update their beliefs
over time. Daley and Green (2018), Ishii et al. (2018), and Ning (2018) study stochastic
bargaining in continuous time but do not allow for counteroffers. In Ortner (2019), the right
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to propose is stochastic, but the total surplus is fixed. In contrast, this paper allows for both
stochastic surplus and a random order of proposing.

The paper is also related to optimal stopping problems with stochastic payoffs. Earlier
works have examined the cases of R&D funding (e.g., Roberts and Weitzman 1981), options
(e.g., Dixit and Pindyck 1994), and consumer search (e.g., Branco et al. 2010). But these
papers only feature a single decision-maker. Wilson (2001), Compte and Jehiel (2010), Cho
and Matsui (2013), and Kamada and Muto (2015) consider multi-agent search problems in
which unanimous agreement is required to stop. They show that the limiting case of the
search model relates to the Nash bargaining solution, but do not allow explicit bargaining
between the players. In this paper, stopping requires an agreement between the two firms,
but they are allowed to make offers to facilitate such agreement.

2.2 The Model

The game is in continuous time with an infinite horizon. Two risk-neutral firms, i and j,
can form an alliance to collaborate on a project. They bargain over whether to collaborate
and how to split the returns from the alliance.

Stochastic Surplus

The expected surplus generated from the collaboration project, xt, is observable to both
firms and is assumed to follow a Brownian motion dxt = σdWt with volatility σ ≥ 0 and
initial position x0, where Wt is a Wiener process. Below I present micro motivations for a
stochastic surplus in which a Brownian motion can be derived as a limiting case.

A hypothetical firm is considering whether to enter a new market. To operate in the new
market, the firm has to collaborate with a partner. The alliance may be needed to co-develop
the product, engage in co-marketing campaign, or provide distribution and localized service.

Evolving Consumer Preference The potential profit from the alliance depends on con-
sumer preference in the market, which evolves over time. For example, consider a Hotelling
line of length l. A mass of consumers is located at zt ∈ [0, l] at time t, and zt takes a random
walk with reflecting boundaries at 0 and l. There exists a competitive fringe at location 0
with price normalized to 0, and the alliance can enter at location l. If the collaborators enter
at time t, the highest price they can charge to make a sale is pt = 2zt− l, which is a random
walk with reflecting boundaries at l and −l. As l → ∞, the price approaches a Brownian
motion.

Arrival of Information Suppose that the new product provides a value of vt to con-
sumers, where vt follows a random walk with variance σ2. However, the firm does not observe
the true value of vt, but can obtain signals by conducting market research. Firms have a
normal prior with mean v̂0 and variance ρ̂0. At each moment, the two firms receive a signal
of vt with a normal error of variance η2, and updates the posterior mean v̂t and variance ρ̂t
using Bayes’ rule. The signal St accumulates as dSt = vtdt + ηdWt, where Wt is a Wiener
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process. By the Kalman-Bucy filter (see Ruymgaart and Soong 1988, ch.4), the posterior
mean v̂t follows dv̂t = (ρ̂t/η)dBt for some Wiener process Bt, and posterior variance follows
dρ̂t
dt

= −ρ̂2
t/η

2 + σ2. The posterior variance ρ̂t approaches ση asymptotically over time. If
ρ̂0 = ση, then v̂t is a Brownian motion with variance σ2η2.2

Matching The success of the alliance depends on how well the hypothetical firm matches
with its partner. The two companies discover their match over time as they build relationship
and explore the potential alliance. There is a mass of attributes important for the success
of the project. The end product provides more value to consumers if the two collaborators
match on more attributes. With equal chance, the collaborators match on a particular
attribute, which delivers zt = +σ

√
dt value to consumers, or do not match, delievering

−σ
√
dt instead, where dt is the size of each attribute, so that we have E[zt] = 0 and V ar[zt] =

σ2dt. The expected value of the product after observing t attributes can be written as
xt = x0 +

∑t
0 zs, where x0 is the prior. As the mass of total attributes approaches infinity

and dt approaches 0, the expected product value xt becomes a Brownian motion.

Bargaining

Firms cannot write contingency contracts on when they will collaborate and how they
will split the profit from the alliance. Instead, at the moment of its formation, both firms
must agree to implement the project and agree on how they will split the surplus. The split
and the timing of agreement is determined by sequential bargaining.

Extensive Form The order of movement at time t is determined by a recognition process
ft. We call firm i the Proposer at time t if ft = i and the Responder at time t if ft 6= i.
At each moment, the Proposer can propose a split of xt and the Responder decides whether
to accept the proposal if presented. The roles are switched upon the arrival of a Poisson
process with rate λ.3 If there is no switching in a time interval, then the roles remain
the same and the same Proposer can make repeated offers. Thus, λ captures the speed at
which counteroffers arrive, and N(t) captures the number of times that offers have been
countered. Let (Σ, F , P) be the probability space that supports the Wiener process Wt and
the Poisson counting process Nt, and F = (Ft)t∈[0,∞) be the filtration process satisfying the
usual assumptions.

The game is played as follows. At time t, the surplus xt and the identity of the Proposer
ft are realized. Upon the realization, the Proposer can choose to proposes a split st ∈ R2

+

such that s1 + s2 = xt (so no waste is allowed). Let pt denote the amount offered to the
Responder, and denote pt = −∞ if the Proposer does not make an offer, since making an

2Note that one can model with fixed consumer preference as well. Suppose consumers values the product
at either vh or vl, and firms receive signals of the true state and update their belief π̂t that the state is
vh. Then one can show that the log-likelihood of the posterior, log( π̂t

1−π̂t
), follows a Brownian motion. The

surplus from forming the alliance at time t is π̂t(vh − vl).
3Assuming WLOG that f0 = 1, then ft = f0 + N(t) mod 2, where {N(t), t ≥ 0} is a Poisson counting

process with rate λ.
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unacceptable offer is equivalent to not making one.4 Given an offer pt, the Responder chooses
whether to accept or reject. If the offer is accepted, firms implement the project and split
the surplus as agreed. If the offer is rejected, the Responder chooses whether to continue or
to quit. If the Responder chooses to quit, the game ends and both firms receive their outside
options. The game continues with new realizations of xt and ft until an offer is accepted or
a firm quits. Figure 1 illustrates the game graphically.

Figure 2.1: Illustration of the Game

Utility Firms are symmetric with discount rate r. Upon reaching an agreement, the
Proposer receives utility of xt− pt and the Responder receives utility of pt. If the Responder
quits, then each firm receive its outside option, ω.

Let at be an indicator function for whether the Responder agrees to the Proposer’s offer
at time t, and qt be an indicator function for whether Responder quits at time t. Then the
game ends at τ = inf{t|at = 1 or qt = 1}. If firms reach agreement at time τ , i.e., aτ = 1,
then the expected utility of firm i at time t is defined as:

ui,t = e−r(τ−t)[

Proposer utility at τ︷ ︸︸ ︷
1{fτ = i}(xτ − pτ ) +

Responder utility at τ︷ ︸︸ ︷
1{fτ 6= i}pτ ]

If negotiation breaks down at time τ , i.e., aτ = 0 and qτ = 1, then the expected utility of
firm i at time t is:

ui,t = e−r(τ−t)ω

4Note that the Proposer may not make an offer if it does not want to form the alliance at time t.
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Firms receive zero utility if they neither reach an agreement nor quit, i.e., τ = ∞ or
max(aτ , qτ ) = 0. I refer to the outside option, ω, as irrelevant if ω ≤ 0, since it can never be
taken in equilibrium. I refer to the outside option as relevant if ω is strictly positive.

Equilibrium Because the firms are symmetric and the stochastic processes are station-
ary, the paper focuses on symmetric and stationary MPE, henceforth referred to as equilib-
rium. Equilibrium strategies depend on the current size of the surplus and the bargaining
role of each firm, but not on time or identity of the firms. Thus, a strategy profile is an
equilibrium if it satisfies subgame-perfection5 and can be described by:

1. A proposing strategy pt = p(xt) : R 7→ R for the Proposer at time t.

2. An agreement strategy at = a(xt, pt) : R2 7→ {0, 1} for the Responder at time t.

3. A quitting strategy qt = q(xt) : R 7→ {0, 1} for the Responder at time t.

Outcome An equilibrium outcome can be described by {U(x), V (x), A,Q}, where U(x)
is the value function of the Proposer in state x, V (x) is the value function of the Responder
in state x, A = {x | a(x, p(x)) = 1} is the set of states in which firms reach agreement, and
Q = {x | q(x) = 1} is the set of states in which the negotiation breaks down.6

If xt ∈ A, then the Proposer offers the Responder p(xt) and the Responder accepts, so
U(xt) = 1 − p(xt) and V (xt) = p(xt). If xt ∈ Q, then the Responder quits, so U(xt) =
V (xt) = ω. If xt is in neither A or Q, then the game continues. In this case, one can show
that the value functions must satisfy:

(r + λ)U(x) =
σ2

2
U ′′(x) + λV (x)

(r + λ)V (x) =
σ2

2
V ′′(x) + λU(x)

(2.1)

or

(U + V )(x) =
σ2

2r
(U + V )′′(x)

(U − V )(x) =
σ2

2r + 4λ
(U − V )′′(x)

(2.2)

The function (U + V )(x) is the sum of both firms’ expected utilities in state x and captures
social value. Through (U + V )(x) one can examine whether an outcome is socially efficient.

5In continuous-time games, a strategy profile may not produce a well-defined outcome. See Simon and
Stinchcombe (1989). When checking for profitable deviations, only strategy profiles such that the stopping
time τ is a measurable function from Σ to R+ is considered.

6By the definition of utility, firms receive payoffs of 0 if they neither reach agreement nor quit at τ .
This effectively restrict A and Q to be closed sets. Without the restriction to closed sets, one can create
alternative equilibrium outcomes with agreement region A \Z1 and quitting region Q \Z2, where Z1 and Z2

are sets of measure 0. See Ortner (2019) for a similar restriction.
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The function (U−V )(x) is the difference in the utilities and captures the advantage of being
the Proposer. The full derivation of these equations is found in Section (2.6).

In equilibrium, the sum of the firms’ value functions have to exceed the current surplus
size. Intuitively, if the sum of their utilities by following their equilibrium strategies is less
than what is available right now, then they can profitably deviate by splitting the current
surplus or taking their respective outside options.

Lemma 6. In equilibrium, (U + V )(x) ≥ x for all x ∈ R.

Only the Responder is allowed to quit in this game. I argue that this is innocuous.
Intuitively, the Responder has a weaker position in the negotiation and thus a stronger
incentive to quit. In Section 3 and 4, I show that the Proposer always has a (weakly) higher
continuation value in equilibrium. Thus, the Proposer never wants to quit if the Responder
stays in the game, so any equilibrium of this game must also be an equilibrium if the Proposer
is allowed to quit. Allowing the Proposer to quit adds trivial equilibria in which firms quit
at the same time.7 Only allowing the Responder to quit eliminates this trivial multiplicity.

Frequency of Counteroffers and Bargaining Power

The arrival rate λ captures the frequency by which offers are countered. When the
Poisson event arrives, the previous Responder becomes the new Proposer and can make
counteroffers. The firms remain in their new roles until the next Poisson event arrives.
Varying the parameter λ is analogous to varying the extensive-form by which the firms
bargain. A game with a higher λ features more frequent counteroffers. If λ → ∞, the
game approaches the continuous-time limit of the alternating-offers paradigm of Rubinstein
(1982). On the other hand, as λ → 0, all offers are made by the Proposer at t = 0 (in
probability). Thus the game approaches the repeated-offers paradigm of Fudenberg et al.
(1985) and Gul et al. (1986) (but without asymmetric information).

As in other sequential bargaining games, bargaining power between two symmetric agents
is determined by who has the ability to propose; hence, in this game, the choice of λ. This
point can be illustrated by examining the static case. Assume σ = 0 so that the surplus
generated from the project is fixed. Also assume x0 > ω = 0, so the outside option is
irrelevant. The game with a static surplus has a unique equilibrium outcome. Plugging
σ = 0 into equations (2.1) shows that the expected utility for the Responder if it rejects
the first offer is λ

r+λ
U(x0). Thus, the Responder accepts if and only if p(x0) ≥ λ

r+λ
U(x0).

So the Proposer offers p0 = λ
r+λ

U(x0). This implies that the Proposer gets r+λ
r+2λ

x0, and the

7If the quitting decisions are made simultaneously, quitting is always (weakly) optimal if the opponent
is quitting at the same time. So, quitting at any state can be supported in an equilibrium. Sequential order
does not eliminate this problem. For example, take any random threshold x < ω, and let both firms quit
for all x < x. Then there’s no profitable deviation in these states regardless the order of quitting. Because
the state evolves continuously, the second mover is indifferent because the opponent will quit in the ”next
instant” regardless. The state xt cannot jump out of the quitting region. Thus any choice of x < ω can be
supported in an equilibrium in this fashion.
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Responder gets λ
r+2λ

x0. As λ decreases, the Proposer gets a larger share of the pie. Less
frequent counteroffers translates to higher bargaining power for the Proposer. Conversely,
as λ increases towards infinity, allowing more frequent counteroffers, the Proposer loses its
advantage and the profit split approaches being even. It is worth noting that this equilibrium
is analogous to the symmetric equilibrium from Rubinstein (1982). Particularly, if we define
δ = λ

r+λ
, then the Proposer’s share is 1

1+δ
and the Responder’s share is δ

1+δ
. This equivalence

no longer holds when the size of the surplus is stochastic as in Section 3 and 4.
To model bargaining sequentially, one faces the problem of choosing the “right” game.

Fudenberg et al. (1985) point out two issues: “[f]irst, because the results depend on the
extensive form, one needs to argue that the chosen specification is [. . . ] a good approximation
to the extensive forms actually played. Second, even if one particular extensive form were
used in almost all bargaining, the analysis is incomplete because it has not [. . . ] begun to
address the questions of why that extensive form is used.” This view is echoed by Sutton
(1986). This paper makes an attempt to address these two issues. First, by varying the
frequency of counteroffers, λ, one can examine how the equilibrium outcome is affected
by the choice of bargaining procedures within a class. Second, it provides a meaningful
comparison between different procedures. Section 4 shows that, when the outside option is
relevant, the bargaining outcome under a higher λ can dominate the bargaining outcome
under a lower λ in both social and Pareto efficiency. In such cases, both firms and any social
planner should prefer to bargain with more frequent counteroffers. This finding helps to
explain why a particular bargaining procedure is (not) used.

2.3 Irrelevant Outside Options

This section studies the case where quitting is not a feasible action. Assume that the
outside option is irrelevant, or ω ≤ 0. Then firms must remain in the game until they reach
an agreement, because the expected utility from continuing is always better than the outside
option. The quitting decision thus can be ignored in the analysis. The two firms will form
alliance with certainty, but what is unknown is the timing of their collaboration and the
split they agree to.

Socially Efficient Outcome

As a benchmark, I first show what the socially efficient outcome is. It is socially optimal
to delay the project when the surplus is small, because of the option value of waiting for
a higher surplus in the future. This is an optimal stopping problem with a discount rate
r (see, e.g., Dixit 1993). The optimal decision features a threshold xs. The social planner
implements the project if the surplus is equal or above the threshold, and waits otherwise.

One can show that the socially efficient threshold is xs =
√

σ2

2r
and the value function of

the social planner is Ws(x) =
√

σ2

2r
e

√
2r
σ2

(x−xs) =
√

σ2

2r
e

√
2r
σ2
x−1

. See Section (2.6) for details.
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Equilibrium Outcome

The following Lemma shows that in equilibrium, firms reach agreement once the surplus
exceeds some threshold. First, it is easy to see that firms must reach an agreement at some
point, because the utility from bargaining indefinitely is 0. If they reach an agreement at
some state xl, one can show that they must also reach agreement for any state xh > xl.
Conditional on implementing the project at state xl, the socially optimal decision for state
xh is to implement the project immediately. Thus, xh is both an upper bound (because it is
socially optimal) and a lower bound (per Lemma 1) on the sum of the firms’ value functions
at xh. Intuitively, if firms are willing to implement the project at xl, then at least one of
the firms must also want to implement the project at xh. Because firms can transfer utility
through bargaining, the firm that wants to implement the project can offer the other firm
enough so that an agreement is reached immediately.

Lemma 7. In equilibrium, ∃ x ≥ 0 such that firms reach an agreement if xt is in A = [x,∞).

Given an agreement threshold x, firms form the alliance once the surplus reaches that
threshold. To characterize an equilibrium outcome, one only needs to solve for the agreement
threshold, x, and the value functions for the Proposer, U(x), and for the Responder, V (x).

Proposition 1 shows that the agreement threshold in equilibrium must be equal to the
socially efficient threshold. Thus, the sum of firms’ equilibrium value functions must also
equal to the social planner’s value function. The intuition is that, if the outcome is inefficient,
then the two firms can “coordinate” a profitable deviation. If the agreement threshold is
not socially optimal, then there exist a different threshold that improves total welfare, so
at least one firm must benefit from such deviation. Bargaining then allows that firm to
transfer some of the efficiency gain to the other firm, so that both firms can benefit. The
only agreement threshold that firms cannot mutually benefit from deviating is the socially
optimal one. Thus the alliance is formed as a social planner would: the Responder rejects
the Proposer’s offer when the return of the project is smaller than xs, and accepts the offer
when the return is larger.

Knowing the agreement threshold, one can find proposal rules that implements such
threshold. Both firms have to be willing to stop at the socially efficient threshold, and at
least one firm does not want to stop below it. The proposal rule is unique in the agreement
region, which implies that the equilibrium outcome is unique.8 Section 2.3 has shown that,
if the surplus xt is constant over time, then the Responder receives λ

r+2λ
xτ upon agreement.

I refer to this as the static share for the Responder.

Proposition 10 (Irrelevant Outside Option with ω ≤ 0). There exists a unique equilibrium

outcome. The agreement threshold is x = xs =
√

σ2

2r
. The Proposer has a higher expected

utility than the Responder for all x. Upon agreement, the Responder receives strictly more
than λ

r+2λ
xτ , the static share.

8The proposal rule can be different for the non-agreement region, but such multiplicity in strategy do
not affect the equilibrium outcome. If an offer is rejected, the size of that offer becomes irrelevant.
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Proposition 1 says that, when two firms do not have any option other than forming an
alliance, their timing of collaboration will be efficient. They wait until the project looks
sufficiently profitable before implementing it. The bargaining protocol only determines how
the return from the alliance is split. This social efficiency of bargaining with a stochastic
pie has been shown by Merlo and Wilson (1995, 1998). Proposition 1 can be seen as a
continuous-time analogy to their results.

Figure 2.2 depicts the value functions and the trading threshold graphically. The Pro-
poser’s value function is always strictly above the Responder’s, illustrating the advantage
of being the Proposer. Closed-form solutions of the value functions U(x) and V (x) are
presented in Section (2.6).

Figure 2.2: Equilibrium Outcome

Another result from Proposition 1 is that, when the alliance is formed, the Responder
gets a bigger share of the surplus than it would receive if the return of the project were static.
Thus, the stochastic nature of the project reduces the Proposer’s advantage. In Figure 2.2,
the two dotted lines represent the static shares that firms would receive. In equilibrium, the
Responder’s utility strictly above the static share in all states. Also, the equilibrium split
approaches the static split as x→∞.

The evolving surplus provides more bargaining power to the Responder because the
Responder has the power to unilaterally delay the project. Because the Responder gets a
smaller share of the surplus from collaborating, it incurs less cost from delaying and so has
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a higher incentive to wait. To see this, suppose that the only available split is their static
share, which is r+λ

r+2λ
xt for the Proposer and λ

r+2λ
xt for the Responder. Firms then decide

individually at each moment, whether they agree to form the alliance. One can show that
the Responder must have a higher agreement threshold. Since both firms have to agree, the
Responder effectively controls when the agreement is reached. The Proposer thus has to
offer more than the static share to encourage the Responder to agree earlier.

Figure 2.3: Responder Delay Agreement Under Static Share

Figure 2.3 illustrates this example. The threshold x is the equilibrium threshold under
bargaining, and the threshold xr is the Responder’s stopping threshold if it can only get
r+λ
r+2λ

xt. For states between x and xr, the sum of firms’ value functions U(xt) + V (xt) is
smaller than xt. Thus firms can mutually benefit by collaborating immediately with a bigger
share offered to the Responder.

Note that the agreement threshold in equilibrium does not depend on λ. The choice of λ
does not affect total welfare but only how it is distributed. One can easily verify that U(x)
decreases with λ and V (x) increases with λ for all x0. A lower frequency of counteroffers
benefits the (current) Proposer, and a higher frequency makes the bargaining power more
balanced, as expected. As λ→∞, each firm receives half of the social value. As λ→ 0, the
Proposer receives the entire profit from the alliance.

Corollary 11 (Comparative Statics w.r.t λ). The equilibrium outcome is socially efficient
for all λ. The Proposer’s ex-ante utility strictly increases with λ, and the Responder’s ex-ante
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utility strictly decreases with λ.

2.4 Relevant Outside Options and the Hold-Up

Problem

Suppose now that the outside option is relevant, or ω > 0. The two firms do not have
to form an alliance with each other. In this case, the outcome is no longer socially efficient.
More importantly, the level of efficiency is determined by the frequency of counteroffers, λ.
A higher λ makes firms act more patiently and leads to a more efficient timing of the alliance.
Furthermore, the equilibrium outcome under a higher λ can Pareto dominate the outcome
under a lower λ, suggesting that there can be mutual gain by allowing for more counteroffers
(and, hence, more balanced bargaining power).

Socially Efficient Outcome

A social planner with discount rate r and outside option 2ω chooses at each moment
whether to implement the project, wait, or take the outside option. The social planner
implements the project if the surplus exceeds the threshold xs, and takes the outside option
if the surplus falls below the threshold xs. Solving the social planner’s optimal stopping
problem shows that the socially efficient thresholds are

xs =

√
σ2

2r
+ 4ω2 and xs = xs −

√
σ2

2r
log
(√σ2

2r
+
√

σ2

2r
+ 4ω2

2ω

)
The social value function for continuation states xs < x < xs is:

Ws(x) =
1

2

(
xs +

√
σ2

2r

)
e

√
2r
σ2

(x−xs) +
1

2

(
xs −

√
σ2

2r

)
e
−
√

2r
σ2

(x−xs) (2.3)

See Section (2.6) for more details.

Equilibrium Outcome

Similarly, there exists an agreement threshold x. Firms form alliance immediately if the
surplus is larger than the threshold. The agreement threshold cannot be higher than the
socially efficient threshold xs, otherwise there exists a mutually beneficial offer between xs
and x. Also, the threshold has be higher than the sum of outside options for the alliance to
be profitable.

Lemma 8. In equilibrium, ∃ an agreement threshold x such that xs ≥ x ≥ 2ω. The alliance
is formed if xt ∈ A = [x,∞).
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Because quitting is an option now, to characterize an equilibrium outcome we have to
specify the states in which the Responder quits. The following result says those states can
be described by a quitting threshold x. The negotiation breaks down when the surplus drops
below that a threshold. The quitting threshold has to be higher than the socially efficient
threshold xs.

Lemma 9. In equilibrium, ∃ a quitting threshold x such that x ≥ xs. The Responder quits
if xt ∈ Q = (−∞, x].

An equilibrium outcome can be described by the thresholds, x and x, and the value
functions, U(x) and V (x). When quitting is not an option, firms form alliance with certainty
and their timing of collaboration is efficient, as shown in Proposition 1. This is no longer
true when the outside option becomes relevant. In equilibrium, firms form alliance too early,
negotiation breaks down too early, and the ex-ante probability of alliance is sub-optimal.
Proposition 3 described the unique equilibrium outcome and how x, x, and the ex-ante
probability of alliance changes with λ.

Proposition 12 (Relevant Outside Option with ω > 0).

1. There exists a unique equilibrium outcome with agreement threshold x < xs and quitting
threshold x > xs. The Proposer has a higher expected utility than the Responder for
all x > x.

2. Let λ = 4r2ω2+
√

16r4ω4+8σ2r3ω2

2σ2 :

(a) If λ ≤ λ, then x ≥ x = 2ω. Firms form alliance or take outside options at t = 0.

(b) If λ > λ, then x > x. Negotiation continues for xt ∈ (x, x). The agreement
threshold x strictly increases in λ and the quitting threshold x strictly decreases in
λ.

(c) There exists a cutoff x̃(λ) such that the ex-ante probability of alliance increases in
λ for x0 < x̃(λ) and decreases in λ for x0 > x̃(λ).

The closed-form expression of firms’ value functions can be found in Section (2.6). Figure
2.4 graphically depicts the unique equilibrium outcome, and compares it to the socially
efficient outcome. Figure 4(a) shows the case of λ ≤ λ. In this case, x ≥ x, so that all x falls
into either the agreement region or the quitting region. The alliance is formed immediately
if x0 ≥ 2ω, and broken off otherwise. Figure 4(b) shows the case of λ > λ. Firms continue to
wait if xt ∈ (x, x), but still stop too early compared to the socially efficient thresholds. Both
x and x move towards the socially efficient thresholds as λ increases. The ex-ante probability
of alliance can either increase or decrease in λ depending on the initial position, x0.

The Responder quits too early due to a hold-up problem resulting from its lack of bar-
gaining power. When deciding between quitting and waiting, the Responder has to weigh its
cost and benefit from continuing. The Responder’s cost of continuation is the discounting of
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Figure 2.4: Equilibrium Outcome with Relevant Outside Option

(a) λ ≤ λ (b) λ > λ

its outside option, and its benefit of continuation is the potential of forming an alliance with
high surplus. However, its benefit from the alliance is determined through bargaining, and
its current lack of bargaining power means an expected disadvantage in future bargaining. If
we view the decision of continuing as a relationship-specific investment, then the Responder
under-invests because it incurs half of the social cost but captures less than half of the social
gain. Given that the Responder quits earlier, the Proposer wants to implement the project
earlier to avoid the higher risk of breakdown. Note that a lower agreement threshold is
efficient conditional on having a higher quitting threshold, so the inefficiency comes from the
early quitting decision.

The severity of the hold-up problem depends on the bargaining power between the two
firms. One can show that, if the only split allowed is an even split, and both firms only decide
whether to accept that split, wait, or quit, then the outcome must be socially efficient. The
uneven split from bargaining causes the weaker party, the Responder, to “under-invest” in
the relationship and act too impatiently. Thus, a higher frequency of counteroffers, which
balances the bargaining power, improves social efficiency. As λ approaches ∞, the collabo-
ration outcome approaches the socially efficient outcome.

Corollary 13 (Effect of λ on Social Efficiency). Ex-ante welfare U(x0)+V (x0) increases in λ.
As λ →∞, the agreement and quitting thresholds approach the socially efficient thresholds,
and the utility of each firm approaches one-half of the socially efficient total welfare.

Increasing the frequency of counteroffers does two things. It redistributes total welfare
between the two firms, as in other sequential bargaining games. But in this case it also
expands the total welfare. This fact implies that a higher frequency of counteroffers may
not necessarily be detrimental to the Proposer. With less bargaining power, the Proposer
gets a smaller share of the pie, but the total size of the pie becomes larger. If the increased
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efficiency outweighs the loss of bargaining power for the Proposer, then both firms prefer
to bargain under the higher λ. Proposition 5 outlines the conditions under which λ affects
Pareto efficiency.

For simpler language, we say that λ1 is Pareto Dominated by λ2 if the equilibrium outcome
under frequency λ1 is Pareto dominated by the equilibrium outcome under frequency λ2.

Proposition 14 (Effect of λ on Pareto efficiency).

1. For an intermediate range of x0, there exists λ̃ such that any λ ≤ λ̃ is Pareto dominated
by some λ′ > λ̃.

2. For all λ, there exists a range of x0 such that λ is Pareto dominated by some λ′ > λ.

3. If x0 < xs or x0 > xs, then no λ is Pareto dominated.

Proposition 5(1) states that there is an intermediate range of initial values such that
all low λ are Pareto dominated. Both firms benefit from more frequent counteroffers if the
frequency of counter-offers is below some threshold. The Proposer benefits from a loss of
bargaining power because a more efficient timing of collaboration outweighs the negative
effect of giving up a bigger share to its opponent. Proposition 5(2) states that no choice of λ
is immune to Pareto improvement. Regardless of the level of λ, there is always some initial
value such that firms can mutually benefit from an even higher frequency of counteroffers.
Proposition 5(3) states that, if the surplus of the project at the beginning of the negotiation
is too low (x0 < xs) or too high (x0 > xs), then the frequency of counteroffers does not
affect Pareto efficiency. In these cases, the outcome is socially optimal regardless of λ, per
Corollary 4. So total welfare is not impacted by λ, only the distribution of it.

Figure 2.5(a) to 5(d) trace the ex-ante utilities of the two firms as functions of λ for
different initial surplus x0. In figure 2.5(a) and 2.5(b) with low (but still higher than xs)

initial surplus, all λ smaller than some λ̃ are Pareto dominated, and all λ ≥ λ̃ are on the
Pareto frontier. In figure 2.5(c) with a higher initial surplus, some middle levels of λ are
dominated, but both high and low λ’s are on the frontier. In Figure 2.5(d), the initial surplus
is above x so that all choices of λ are efficient, since the alliance is formed immediately.

Under what procedures, then, should firms bargain? Or alternatively, if we observe firms
bargaining in a certain way, why was such a procedure selected? Past literature has been
mostly silent on these questions. If the bargaining procedure only affects the distribution of
welfare, then it is unclear why one procedure would be “better” than another. Proposition
5 shows that, when the surplus is stochastic and there are outside options, the choice of
bargaining procedure impacts the total welfare as well as the distribution of such welfare.
Under certain conditions, bargaining with more counteroffers can benefit both firms by
improving the efficiency of their collaboration.
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Figure 2.5: Ex-ante Utilities as Functions of λ for Various Initial Values

2.5 Conclusion

In this paper, two firms can form an alliance to collaborate on a project with a stochas-
tically evolving return. They bargain over whether to form the alliance and how to split
the surplus from collaboration. The paper investigates the effect of bargaining procedure
and bargaining power on the timing and efficiency of alliance formation. Two symmetric
firms with time discounting and outside options bargain over a surplus that follows a ran-
dom walk. One firm makes repeated-offers to its opponent, and they switch roles following
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a Poisson process to allow for counteroffers. The frequency of counteroffers controls their
relative bargaining power, as a lower frequency favors the current proposer. The paper
presents the unique symmetric and stationary equilibrium outcome. When the outside op-
tion is non-positive, the project is implemented with a socially efficient delay, and the final
split of the surplus is more balanced than under a static surplus. However, when the outside
option is strictly positive, the outcome is no longer socially efficient. The alliance is formed
too early and negotiation breaks down too early compared to what is socially optimal. The
inefficiency is caused by a hold-up problem faced by the weaker party. A higher frequency
of counteroffers evens out the bargaining power and reduces the severity of the hold-up
problem. The increase in social efficiency can outweigh the loss of bargaining power for the
stronger party. As a result, bargaining with more frequent counteroffers (and, hence, a more
balanced procedure) can produce a Pareto improvement.

This paper provides theoretical insights on how bargaining procedure affects collaboration
outcomes, and how potential collaborators should or should not bargain. However, this
paper remains agnostic about how the bargaining procedure is selected. I assume that a
frequency of counteroffers is exogenously set. Future research might explore what happens
if the selection is done endogenously by the parties in negotiation, or what happens if the
bargaining procedure is asymmetric.
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2.6 Derivation of Value Functions

If x ∈ A, then the Proposer offers the Responder p(x) and the Responder accepts immedi-
ately, so U(x) = 1− p(x) and V (x) = p(x). If x ∈ Q, then the Responder quits immediately,
so U(x) = V (x) = ω. If x ∈ R\ (A∪Q), then the Responder rejects the offer but continues
to wait. In this case, the value functions can be written recursively as:

U(x) = e−rdt E[1{ft+dt = ft}U(x+ dx) + 1{ft+dt 6= ft}V (x+ dx)] + o(dt)

V (x) = e−rdt E[1{ft+dt = ft}V (x+ dx) + 1{ft+dt 6= ft}U(x+ dx)] + o(dt)
(2.4)

Since ft = 1 + N(t) mod 2, where N(t) follows a Poisson counting process, the probability
that the counter-offer event arrives once in dt is λdt + o(dt), and the probability that it
arrives more than once is of o(dt). Applying Ito’s Lemma to E[V (x+ dx)] and E[U(x+ dx)],
one can get:

U(x) = e−rdt
{

(1− λdt)
[
U(x) +

σ2

2
U ′′(x)

]
+ λdt

[
V (x) +

σ2

2
V ′′(x)

]}
+ o(dt)

= (1− rdt)
{

(1− λdt)
[
U(x) +

σ2

2
U ′′(x)

]
+ λdt

[
V (x) +

σ2

2
V ′′(x)

]}
+ o(dt)

V (x) = e−rdt
{

(1− λdt)
[
V (x) +

σ2

2
V ′′(x)

]
+ λdt

[
U(x) +

σ2

2
U ′′(x)

]}
+ o(dt)

= (1− rdt)
{

(1− λdt)
[
V (x) +

σ2

2
V ′′(x)

]
+ λdt

[
U(x) +

σ2

2
U ′′(x)

]}
+ o(dt)

(2.5)

which after simplification and taking dt→ 0 becomes:

(r + λ)U(x) =
σ2

2
U ′′(x) + λV (x)

(r + λ)V (x) =
σ2

2
V ′′(x) + λU(x)

(2.6)

Adding and subtracting the two equations produces:

(U + V )(x) =
σ2

2r
(U + V )′′(x)

(U − V )(x) =
σ2

2r + 4λ
(U − V )′′(x)

(2.7)

The solution to these two differential equations is of the form:

(U + V )(x) = α+e

√
2r
σ2
x

+ β+e
−
√

2r
σ2
x

(U − V )(x) = α−e

√
2r+4λ

σ2
x

+ β−e
−
√

2r+4λ

σ2
x

(2.8)

for some coefficients α+, α−, β+, and β−.



CHAPTER 2. BARGAINING BETWEEN COLLABORATORS OF A STOCHASTIC
PROJECT 69

Irrelevant Outside Option

Socially Efficient Outcome The social value function, denoted as Ws(x), for x ≤ xs
is of the form:

Ws(x) = C1e

√
2r
σ2
x

+ C2e
−
√

2r
σ2
x

(2.9)

We must have C2 = 0, because the value function has to approach 0 as x→ −∞.
The threshold xs has to satisfy Ws(xs) = xs and W ′

s(xs) = dx
dx

= 1. The second condition
is referred to as smooth-pasting and guarantees the optimal timing of the stoppage (See,
e.g., Dixit 1993). Solving these two conditions gives the socially efficient threshold

xs =

√
σ2

2r

and the social value function

Ws(x) =

√
σ2

2r
e

√
2r
σ2

(x−xs) =

√
σ2

2r
e

√
2r
σ2
x−1

.
Equilibrium Outcome Given an agreement threshold x, firms implement the project

immediately when the surplus reaches that threshold. Thus for x ≥ x, the sum of their value
function equals to the surplus. Also, the Responder must be indifferent between accepting
the offer and rejecting the offer in equilibrium, as the Proposer must not offer anything more
than necessary. The Responder’s value function from rejecting the offer is characterized in
equation (2.6). These imply that the firms’ value functions for x ≥ x must satisfy:

U(x) + V (x) = x

(r + λ)V (x) =
σ2

2
V ′′(x) + λU(x)

(2.10)

Combining the two, one gets:

V (x) =
λ

r + 2λ
x+

σ2

2r + 4λ
V ′′(x)

which has solution in the form:

V (x) =
λ

r + 2λ
x+ γ1e

√
2r+4λ

σ2
x

+ γ2e
−
√

2r+4λ

σ2
x ∀x ≥ x (2.11)

for some coefficients γ1 and γ2. The Responder can never get more than the full surplus
or agree to accept a negative amount, so 0 < V (x) ≤ x ∀x; thus γ1 = 0, otherwise this is

violated for x large enough. So V (x) = λ
r+2λ

x+ γ2e
−
√

2r+4λ

σ2
x

for some γ2.
For states below the threshold, the Responder rejects the offer and the project is delayed.

Firms’ value functions must follow the recursive formulations in equations (2.8). Note that
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(U + V )(x) captures the social value function, and (U − V )(x) captures the advantage of
being the Proposer. As x → −∞, the social value must approaches zero, which implies
β+ = 0. Similarly, as social value approaches zero, the difference between the two firms has
to approach zero, which implies β− = 0. Thus we have a simpler version:

(U + V )(x) = α+e

√
2r
σ2
x ∀x < x

(U − V )(x) = α−e

√
2r+4λ

σ2
x ∀x < x

(2.12)

Following the proof of Proposition 1, we get α+ =
√

σ2

2r
e
−
√

2r
σ2

(xs) =
√

σ2

2r
e−1, α− =(

1
2
− λ

r+2λ

)(√
σ2

2r
+
√

σ2

2r+4λ

)
e−
√

2r+4λ
2r , and γ2 = 1

2

(
1
2
− λ

r+2λ

)(√
σ2

2r
−
√

σ2

2r+4λ

)
e
√

2r+4λ
2r . This

pins down the closed-form solutions of the equilibrium value functions:

U(x) =


1
2

(
e

√
2r
σ2

(x−x)
+
(

1
2
− λ

r+2λ

)(√
σ2

2r
+
√

σ2

2r+4λ

)
e

√
2r+4λ

σ2
(x−x)

)
∀x <

√
σ2

2r

r+λ
r+2λ

x− 1
2

(
1
2
− λ

r+2λ

)(√
σ2

2r
−
√

σ2

2r+4λ

)
e

√
2r+4λ

σ2
(x−x) ∀x ≥

√
σ2

2r

(2.13)

V (x) =


1
2

(
e

√
2r
σ2

(x−x) −
(

1
2
− λ

r+2λ

)(√
σ2

2r
+
√

σ2

2r+4λ

)
e

√
2r+4λ

σ2
(x−x)

)
∀x <

√
σ2

2r

λ
r+2λ

x+ 1
2

(
1
2
− λ

r+2λ

)(√
σ2

2r
−
√

σ2

2r+4λ

)
e

√
2r+4λ

σ2
(x−x) ∀x ≥

√
σ2

2r

(2.14)

where x =
√

σ2

2r
.

Relevant Outside Option

Socially Efficient Outcome A social planner with discount rate r and outside option
2ω choose at each moment whether to implement the project, wait, or take the outside
option. The social planner implements the project if the surplus reaches above the threshold
xs, but takes the outside option if the surplus reaches below the threshold xs. The social
planner’s value function has the same form as equations (2.9):

Ws(x) = γ1e

√
2r
σ2
x

+ γ2e
−
√

2r
σ2
x

The social efficient thresholds have to satisfy:{
Ws(x) = x Ws(x) = 2ω

W ′
s(x) = 1 W ′

s(x) = 0
(2.15)

where the first two are value-matching conditions and the last two are smooth-pasting con-
ditions. Together they imply that the socially efficient thresholds have to be

xs =

√
σ2

2r
+ 4ω2 and xs = xs −

√
σ2

2r
log
(√σ2

2r
+
√

σ2

2r
+ 4ω2

2ω

)
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The social value function for continuation states xs < x < xs is:

Ws(x) =
1

2

(
xs +

√
σ2

2r

)
e

√
2r
σ2

(x−xs) +
1

2

(
xs −

√
σ2

2r

)
e
−
√

2r
σ2

(x−xs) (2.16)

Equilibrium Outcome An equilibrium outcome can be described by x, x, U(x) and
V (x). Given an agreement threshold x, firm implement the project immediately when the
surplus reaches that threshold. Thus for x ≥ x, the sum of their value function equals to the
surplus. Also, the Responder must be indifferent between accepting the offer and rejecting
the offer in equilibrium, as the Proposer must not offer anything more than necessary. The
Responder’s value function from rejecting the offer is characterized in equation (2.6). These
imply that the firms’ value functions for x ≥ x must satisfy:

U(x) + V (x) = x

(r + λ)V (x) =
σ2

2
V ′′(x) + λU(x)

(2.17)

Combining the two, one gets:

V (x) =
λ

r + 2λ
x+ γ1e

√
2r+4λ

σ2
x

+ γ2e
−
√

2r+4λ

σ2
x ∀x ≥ x (2.18)

for some coefficients γ1 and γ2. The Responder can never get more than the full surplus or
agree to accept negative amount, so 0 < V (x) ≤ x ∀x; thus γ1 = 0, otherwise this is violated

for x large enough. So V (x) = λ
r+2λ

x+ γ2e
−
√

2r+4λ

σ2
x

for some γ2.
In the case of x ≥ x, γ2 can be solved using the conditions V (x) = ω and V ′(x) = 0. See

proof of Proposition 3 for details. The Responder’s utility is

V (x) =
λ

r + 2λ
x+

λ

r + 2λ

√
σ2

2r + 4λ
e

√
2r+4λ

σ2
(x−x)

for x ≥ x and V (x) = ω for x < x

The Proposer’s utility is

U(x) = x− V (x) for x ≥ 2ω, and U(x) = ω for x ≤ 2ω

In the case of x < x. There is a region of waiting between x and x. For x < x < x, the
value functions follow equations (2.8):

(U + V )(x) = α+e

√
2r
σ2
x

+ β+e
−
√

2r
σ2
x

(U − V )(x) = α−e

√
2r+4λ

σ2
x

+ β−e
−
√

2r+4λ

σ2
x

(2.19)

For x < x, the Responder quits and both firms receive U(x) = V (x) = ω.
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So the closed-form expressions of equilibrium value functions are:

U(x) =


r+λ
r+2λ

x− γ2e
−
√

2r+4λ

σ2
x

for x ≥ x

1
2
α+e

√
2r
σ2
x

+ 1
2
β+e

−
√

2r
σ2
x

+ 1
2
α−e

√
2r+4λ

σ2
x

+ 1
2
β−e

−
√

2r+4λ

σ2
x

for x < x < x

ω for x ≤ x

(2.20)

and

V (x) =


λ

r+2λ
x+ γ2e

−
√

2r+4λ

σ2
x

for x ≥ x

1
2
α+e

√
2r
σ2
x

+ 1
2
β+e

−
√

2r
σ2
x − 1

2
α−e

√
2r+4λ

σ2
x − 1

2
β−e

−
√

2r+4λ

σ2
x

for x < x < x

ω for x ≤ x

(2.21)

with coefficients

α+ = 1
2
(x+

√
σ2

2r
)e
−
√

2r
σ2
x

β+ = 1
2
(x−

√
σ2

2r
)e

√
2r
σ2
x

α− = 1
2

r
r+2λ

(x+
√

σ2

2r+4λ
)e
−
√

2r+4λ

σ2
x

β− = −1
2

r
r+2λ

(x+
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
(2x−x)

γ2 = 1
4

r
r+2λ

(x+
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
(2x−x)

+ 1
4

r
r+2λ

(x−
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
x

(2.22)

from equations (2.23) in the proof of Proposition 3, and x is the solution to the implicit
function.

F (x, λ) =

√
r

r + 2λ

(
x+

√
σ2

2r + 4λ

)(2ω +
√

4ω2 + σ2

2r
− x2

x+
√

σ2

2r

)√ r+2λ
r −

√
4ω2 +

σ2

2r
− x2 = 0
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2.7 Proofs

Proof of Lemma 1 We must have U(x) + V (x) ≥ x ∀x, otherwise the equilibrium does
not satisfy sub-game perfection. If the sum of their expected utilities are smaller than the
current cake size, then there must be a profitable deviation. To see that, assume there is a
state x such that U(x) + V (x) < x, then the Responder must accept all offers p ≥ V (x).
Then the Proposer can propose a p = V (x), and receives immediate payment of x − V (x).
Thus U(x) + V (x) = x, a contradiction.

Proof of Lemma 2 First, one can show that there must ∃x s.t. a(x, p(x)) = 1 in
intervals (m,∞) for all m. Thus firms must reach agreement in some state, and must also
reach agreement again for some larger cake size. Suppose they never reach agreement, then
U(x) + V (x) = 0 < x for x > 0, a contradiction to Lemma 1. Suppose there exists a
highest cake size such that firms reach agreement, denote that state as m. Firms do not
reach agreement for all x > m. Since firms do not quit, then their value functions must be
decreasing as x increases beyond m. Thus for x > m, we have U(x)+V (x) < U(m)+V (m) =
m < x, again a contradiction to Lemma 1.

Now define x = inf{x | a(x, p(x)) = 1}. By definition, we establish that a(x, p(x)) = 0
∀x < x.

Second, one can show that, if a(x, p(x′)) = 1 and a(x, p(x′′)) = 1 for some x′ < x′′,
then @ a open set Z ⊂ (x′, x′′) s.t. a(x, p(x)) = 0 ∀x ∈ Z. This means that, firms cannot
disagree on an open set between two agreement states. Suppose not, then take xl = sup{x <
Z | a(x, p(x)) = 1} as the first state smaller than Z in which firms trade, and take xr =
inf{x > Z | a(x, p(x)) = 1} to be the first state bigger than Z in which firms trade. Then
for any x ∈ Z, firms delay until the state reaches xl or xr. The probability of reaching xl
first is xr−x

xr−xl
. Thus without time discounting (r = 0), the sum of firms value functions must

be U(x) + V (x) = xr−x
xr−xl

[U(xl) + V (xl)] + x−xl
xr−xl

[U(xr) + V (xr)] = xr−x
xr−xl

xl + x−xl
xr−xl

xr = x. If

r > 0, then we must have U(x) + V (x) < x, a contradiction to Lemma 1.
By the utility definition, A = {x| a(x, p(x)) = 1} is a closed set. Thus A must be [x,∞).
Proof of Proposition 1 We know that (U + V )(x) = x as firms split a cake of size x.

To prove x = xs in equilibrium, we only need to show that (U + V )′(x) = 1 hold, because
xx is the unique value that satisfies both conditions.

First, we know that limx→x+(U + V )′(x) = 1, because (U + V )(x) = x for x ≥ x. If
limx→x−(U + V )′(x) > 1, then ∃x < x such that (U + V )(x) < x. Then there’s a profitable
deviation at that state, a contradiction to Lemma 1. If limx→x−(U + V )′(x) < 1, then we
must have either limx→x− U

′(x) < limx→x+ U
′(x) or limx→x− V

′(x) < limx→x+ . In either
case, the firm with the convex kink at x can profitably deviate by delaying agreement for an
infinitesimal dt. This follows from standard proof of the smooth-pasting condition in optimal
stopping problem (see Dixit 1993 for details). This implies that limx→x−(U + V )′(x) = 1,

and thus (U + V )′(x) = 1. Combining with (U + V )(x) = x, we prove that x = xs =
√

σ2

2r
.

Knowing the threshold, now we need to solve for how the cake is split. An accepted offer
p(x) must equal to V (x), thus we want to solve for V (x) for x ≥ x. Given limx→x−(U +
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V )′(x) = limx→x+(U + V )′(x) and that neither firm’s value function can have a convex kink
at x, we can conclude that: {

limx→x+ V (x) = limx→x− V (x)

limx→x+ V
′(x) = limx→x− V

′(x)

Plugging in equations (2.11), (2.12), and α+ =
√

σ2

2r
e−1, we get:

1
2

(√
σ2

2r
e−1e

√
2r
σ2
x
)
− α−

2
e

√
2r+4λ

σ2
x

= λ
r+2λ

x+ γ2e
−
√

2r+4λ

σ2
x

1
2
−
√

2r+4λ
σ2

α−
2
e

√
2r+4λ

σ2
x

= λ
r+2λ
−
√

2r+4λ
σ2 γ2e

−
√

2r+4λ

σ2
x

Solving the system of equations gives:α− =
(

1
2
− λ

r+2λ

)(√
σ2

2r
+
√

σ2

2r+4λ

)
e−
√

2r+4λ
2r

γ2 = 1
2

(
1
2
− λ

r+2λ

)(√
σ2

2r
−
√

σ2

2r+4λ

)
e
√

2r+4λ
2r

Plugging in coefficients α+, α−, and γ2 into equations (2.11) and (2.12) gives value func-

tions U(x) and V (x). Particularly, for x ≥ x, V (x) = λ
r+2λ

x + 1
2

(
1
2
− λ

r+2λ

)(√
σ2

2r
−√

σ2

2r+4λ

)
e
√

2r+4λ
2r

(x−x), which shows that the Responder receives strictly more than λ
r+2λ

x.

Also α− =
(

1
2
− λ

r+2λ

)(√
σ2

2r
+
√

σ2

2r+4λ

)
e−
√

2r+4λ
2r > 0, so (U − V )(x) = α−e

√
2r+4λ

σ2 must

also be positive, which concludes the proof.
Proof of Corollary 2 Because x = xs, the equilibrium outcome must be socially effi-

cient. Taking derivatives of U(x) and V (x) from equations (2.13) and (2.14) with respect

to λ proves the rest. Particularly, for x < x, the terms
(

1
2
− λ

r+2λ

)
,
(√

σ2

2r
+
√

σ2

2r+4λ

)
, and

e

√
2r+4λ

σ2
(x−x)

all decrease in λ, thus dU(x)
dλ

< 0 and dV (x)
dλ

> 0.
Proof of Lemma 3 The proof is similar to the proof of Lemma 2.
First, one can show that there must ∃x s.t. a(x, p(x)) = 1 in intervals (m,∞) for all

m. Thus firms must reach agreement in some state, and must also reach agreement again
for some larger state. Suppose they never reach agreement, then U(x) + V (x) = 0 < x
for x > 0, a contradiction to Lemma 1. Suppose there exists a highest cake size such that
firms reach agreement, denote that state as m. Firms do not reach agreement for all x > m.
Then their value functions must be decreasing as x increases beyond m. Then we have
U(x) + V (x) ≤ m < x for some x > m, again a contradiction to Lemma 1.

Now define x = inf{x | a(x, p(x)) = 1}. By definition, we establish that a(x, p(x)) = 0
∀x < x.

Second, one can show that, if a(x, p(x′)) = 1 and a(x, p(x′′)) = 1 for some x′ < x′′,
then @ a open set Z ⊂ (x′, x′′) s.t. a(x, p(x)) = 0 ∀x ∈ Z. This means that, firms cannot
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disagree on an open set between two agreement states. Suppose not, then take xl = sup{x <
Z | a(x, p(x)) = 1} as the first state smaller than Z in which firms trade, and take xr =
inf{x > Z | a(x, p(x)) = 1} to be the first state bigger than Z in which firms trade. Because
firms trade at xl, we must have xl ≥ 2ω. Then Z > 2ω. The Responder must not quit in
any state in Z. Otherwise, the Proposer can offer ω to the Responder at that state and the
Responder accepts, a contradiction to the assumption that firms do not trade in Z. Then
for any x ∈ Z, firms delay until the state reaches xl or xr. The probability of reaching xl
first is xr−x

xr−xl
. Thus without time discounting (r = 0), the sum of firms value functions must

be

U(x) +V (x) =
xr − x
xr − xl

[U(xl) +V (xl)] +
x− xl
xr − xl

[U(xr) +V (xr)] =
xr − x
xr − xl

xl +
x− xl
xr − xl

xr = x

If r > 0, then we must have U(x) + V (x) < x, a contradiction to Lemma 1.
By the utility definition, A = {x| a(x, p(x)) = 1} is a closed set. Thus A must be [x,∞).
Next we need to prove that x ≤ xs. Suppose instead x > xs, then for x ∈ (xs, x), we

have U(x) + V (x) ≥ x by Lemma 1. Also, the total payoff in equilibrium cannot exceed the
socially efficient payoff, which is x for x > xs. Thus we must have U(x) + V (x) = x for
x ∈ (xs, x). However, given the form of U(x) and V (x) in equations (2.8), no parameters
can satisfy U(x) + V (x) = x in an open interval, a contradiction.

Proof of Lemma 4 First, one can show that there must ∃x s.t. q(x) = 1 in intervals
(−∞,m) for all m. Thus the Responder must quit in some state, and must also quit too
for some even lower state. Suppose the Responder never quits, then V (x) approaches 0 as
x → −∞. Then the Responder can profitably deviate by quitting. Suppose there exists a
lowest state such that the Responder quits. Denote that state as m, so the Responder does
not quit for all x < m. Then again V (x) approaches 0 as x→ −∞, for which the Responder
can deviate by quitting.

Now define x = sup{x | q(x) = 1}. By definition, we establish that q(x) = 0 ∀x > x.
Second, one can show that, if q(x′) = 1 and q(x′′) = 1 for some x′ < x′′, then @ a

open set Z ⊂ (x′, x′′) s.t. q(x) = 0 ∀x ∈ Z. This means that, the Responder cannot
choose to continue on any open set between two quitting states. Suppose not, then take
xl = sup{x < Z | q(x) = 1} as the first state smaller than Z in which the Responder quits,
and take xr = inf{x > Z | q(x) = 1} to be the first state bigger than Z in which the
Responder quits. The Responder gets utility of ω at xl and xr. If an agreement is reached
in this interval, then the Proposer must make an offer such that the Repsonder is indifferent
between agreeing or not. Thus for xl < x < xr, the Responder must gets utility smaller than
ω due to discounting. The Responder can profitably deviate by quitting in this interval.

By the utility definition, Q = {x| q(x)) = 1} is a closed set. Thus Q must be of the form
[−∞, x).

Third, we need to prove that x ≥ xs from Section 4.1 and Section (2.6). Suppose instead
x < xs. For states x < x, the socially efficient outcome is quitting, and the equilibrium
outcome cannot have a higher payoff than the socially efficient payoff. Thus U(x) + V (x) ≤
2ω. Because the Responder does not quit in the region (x, xs), we must have V (x) ≥ ω
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in this region. This implies U(x) ≤ ω in (x, xs). By the form of U(x) and V (x) from
equations (2.2), they cannot be flat functions. Then there must exists some x′ > x such that
U(x′) < V (x′) and U ′(x′) < V ′(x′). This implies that (U −V )(x′) < 0 and (U −V )′(x′) < 0.

Again by equations (2.2), if (U − V )(x′) < 0 then (U − V )′′(x′) < 0, which implies that
(U − V )′(x) < 0 and (U − V )(x) < 0 for x < x < x. Thus we must have U ′−(x) < V ′−(x)
and U(x) < V (x). Because (U + V )(x) = x for x ≥ x, we must have (U + V )′−(x) ≤ 1,
otherwise there exists some x < x such that (U + V )(x) < x, a contradiction to Lemma 1.
Thus U ′−(x) < 1

2
.

Because U(x) < V (x), γ2 from equation (2.18) must be positive. Then by equations
(2.17) and (2.18), we have U ′+(x) > V ′+(x). Because (U + V )(x) = x for x ≥ x, we can
conclude that U ′+(x) > 1

2
.

Because U ′−(x) < 1
2

and U ′+(x) > 1
2
, there is a convex kink on U(x) at x. Then the

Proposer can profitably deviate by delaying the trade for a small dt. Thus we cannot have
x < xs in equilibrium, concluding the proof.

Proof of Proposition 3 We solve for the equilibrium outcome in two cases.
Case 1: x ≥ x:
In this case, the game always end immediately. So the firms must trade for x0 > 2ω. Thus

x = 2ω. On equilibrium path, firms trade immediately for x0 ≥ 2ω, and the Responder quit
immediately for x0 < 2ω. We know that V (x) = ω for x ≤ x is the Responder’s equilibrium
payoff when it quits. Then we have V ′−(x) = 0. In order for the quitting threshold to be
optimal, we need to have V ′+(x) = 0, otherwise the Responder can profitably deviate by
delaying quitting for time dt. Thus we have

V (x) = ω and V ′(x) = 0

The form of V (x) is given in equation (2.18) in Section (2.6). Plugging in equation (2.18)
with γ1 = 0, we get:  λ

r+2λ
x+ γ2e

−
√

2r+4λ

σ2
x

= ω

λ
r+2λ
−
√

2r+4λ
σ2 γ2e

−
√

2r+4λ

σ2
x

= 0

Solving the two equations, we find that the solution exists if and only if λ ≤ λ = 4r2ω2+
√

16r4ω4+8σ2r3ω2

2σ2 .
The solutions are: x = r+2λ

λ
ω −

√
σ2

2r+4λ

γ2 = λ
r+2λ

√
σ2

2r+4λ
e

√
2r+4λ

σ2
x

The Responder’s utility is V (x) = λ
r+2λ

x+ λ
r+2λ

√
σ2

2r+4λ
e

√
2r+4λ

σ2
(x−x)

for x ≥ x and V (x) = ω

for x < x. The Proposer’s utility is U(x) = x−V (x) for x ≥ x, U(x) = x−ω for 2ω < x < x,
and U(x) = ω for x ≤ 2ω.

Case 2: x < x:
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An equilibrium outcome has to satisfy the following four value-matching conditions:
(U + V )(x) = 2ω

(U − V )(x) = 0

(U + V )(x) = x

(U − V )(x) = x− 2V (x) = r
r+2λ

x− 2γ2e
−
√

2r+4λ

σ2
x

where V (x) comes from equation (2.18). An equilibrium outcome also has to satisfy the
following three conditions:

1. V ′(x) = 0 or (U + V )′(x) = (U − V )′(x) for optimality of the quitting threshold.

2. (U + V )′(x) = 1. We know that (U + V )′+(x) = 1 since (U + V )(x) = x for x > x.
If (U + V )′−(x) > 1, then one of the firm has a convex kink on his/her value function
at x, and can profitably deviate and delaying trade for dt. If (U + V )′−(x) < 1, then
(U + V )(x) < x for some x < x, a contradiction to Lemma 1.

3. (U−V )′−(x) = (U−V )′+(x). We know that (U+V )′−(x) = (U+V )′+(x) = 1. Also, there
cannot be convex kink for either U(x) or V (x) at x, otherwise a profitable deviation
exists. Thus U ′−(x) = U ′+(x) and V ′−(x) = V ′+(x).

Using the forms of (U+V )(x) and (U−V )(x) from equations (2.8) for the region x < x < x,
the above seven conditions constitute the following system of equations:

α+e

√
2r
σ2
x

= 2ω

α−e

√
2r+4λ

σ2
x

+ β−e
−
√

2r+4λ

σ2
x

= 0

α+e

√
2r
σ2
x

+ β+e
−
√

2r
σ2
x

= x

α−e

√
2r+4λ

σ2
x

+ β−e
−
√

2r+4λ

σ2
x

= r
r+2λ

x− 2γ2e
−
√

2r+4λ

σ2
x√

2r
σ2 (α+e

√
2r
σ2
x
) =

√
2r+4λ
σ2 (α−e

√
2r+4λ

σ2
x

+ β−e
−
√

2r+4λ

σ2
x
)

α+e

√
2r
σ2
x − β+e

−
√

2r
σ2
x

=
√

σ2

2r

α−e

√
2r+4λ

σ2
x − β−e−

√
2r+4λ

σ2
x

= r
r+2λ

√
σ2

2r+4λ
+ 2γ2e

−
√

2r+4λ

σ2
x

Solving the system of equations, we get the following implicit equation of x and λ:

F (x, λ) =

√
r

r + 2λ

(
x+

√
σ2

2r + 4λ

)(2ω +
√

4ω2 + σ2

2r
− x2

x+
√

σ2

2r

)√ r+2λ
r −

√
4ω2 +

σ2

2r
− x2 = 0

By Lemma 3, 2ω ≤ x ≤ xs. Here I use a Lemma that I prove at the end of this Section.
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Lemma 10. The equation F (x, λ) has a unique solution x(λ) in the range of 2ω ≤ x ≤
xs =

√
σ2

2r
+ 4ω2. The solution x(λ) is increasing in λ for λ ≥ λ, x(λ) = 2ω, and x→ xs as

λ→∞.

By Lemma 5, the equilibrium outcome is unique. If λ ≤ λ, then the equilibrium outcome
is in case 1. In equilibrium, x ≥ x, and the game ends immediately. If λ > λ, then the
equilibrium outcome is in case 2. There exists a unique x as a function of λ in the range of
(2ω, xs). We can solve the rest of the parameters as functions of λ and x. The solutions are:

α+ = 1
2
(x+

√
σ2

2r
)e
−
√

2r
σ2
x

β+ = 1
2
(x−

√
σ2

2r
)e

√
2r
σ2
x

x = x−
√

σ2

2r
log

2ω−
√

4ω2+σ2

2r
−x2

x−
√
σ2

2r

α− = 1
2

r
r+2λ

(x+
√

σ2

2r+4λ
)e
−
√

2r+4λ

σ2
x

β− = −1
2

r
r+2λ

(x+
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
(2x−x)

γ2 = 1
4

r
r+2λ

(x+
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
(2x−x)

+ 1
4

r
r+2λ

(x−
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
x

(2.23)

To prove Proposition 3(1): Note that case 1 only exists for λ ≤ λ, and case 2 only exists
for λ > λ. So for each λ, there is a unique equilibrium outcome. From Lemma 5 we get
dx
dλ
> 0 and x→ xs as λ→∞.
Next we need to prove that (U − V )(x) ≥ 0 for all x. Suppose λ ≤ λ. Then (U −

V )(x) = 0 for x ≤ 2ω, (U − V )(x) = x − 2ω for x ∈ (ω, x), and (U − V )(x) = r
r+2λ

x −
2λ
r+2λ

√
σ2

2r+4λ
e

√
2r+4λ

σ2
(x−x)

for x ≥ x. Then d(U−V )
dx

≥ 0, so U(x) ≥ V (x) for all x.

Suppose λ > λ. Then (U − V )(x) = 0 for x ≤ x. For x ∈ (x, x),

(U − V )(x) = α−e

√
2r+4λ

σ2
x

+ β−

√
2r + 4λ

σ2
x

=
1

2

r

r + 2λ
(x+

√
σ2

2r + 4λ
)e

√
2r+4λ

σ2
(x−x) − 1

2

r

r + 2λ
(x+

√
σ2

2r + 4λ
)e

√
2r+4λ

σ2
(2x−x−x)

=
1

2

r

r + 2λ
(x+

√
σ2

2r + 4λ
)
[
e

√
2r+4λ

σ2
(x−x) − e

√
2r+4λ

σ2
(2x−x−x)

]
≥ 0
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because x− x > 2x− x− x. For x ≥ x,

(U − V )(x) =
r

r + 2λ
x− 2γ2e

√
− 2r+4λ

σ2
x

=
r

r + 2λ
x− 1

2

r

r + 2λ
(x+

√
σ2

2r + 4λ
)e

√
2r+4λ

σ2
(2x−x−x) − 1

2

r

r + 2λ
(x−

√
σ2

2r + 4λ
)e

√
2r+4λ

σ2
(x−x)

≥ r

r + 2λ
x− 1

2

r

r + 2λ
(x+

√
σ2

2r + 4λ
)− 1

2

r

r + 2λ
(x−

√
σ2

2r + 4λ
)

= 0

Thus the Proposer has a weakly higher utility in all states x and for all λ.
For Proposition 3(2)(b): The only thing left to prove is that dx

dλ
< 0 for λ > λ. Be-

cause dx
dλ

> 0, we just need to prove dx
dx

< 0. From equations (2.23), we have: x =

x−
√

σ2

2r
log

2ω−
√

4ω2+σ2

2r
−x2

x−
√
σ2

2r

= x−
√

σ2

2r
log

x+

√
σ2

2r

2ω+

√
4ω2+σ2

2r
−x2

. Then taking derivative of x with

respect to x, we get:

dx

dx
=

x
(
2ω
√

4ω2 − x2 + σ2

2r
− x(

√
σ2

2r
+ x) + 4ω2

)
(
√

σ2

2r
+ x)

√
4ω2 − x2 + σ2

2r

(
2ω +

√
4ω2 − x2 + σ2

2r

)
Given that the denominator is strictly positive, the sign of dx

dx
depends on the sign of

2ω
√

4ω2 − x2 + σ2

2r
−x(

√
σ2

2r
+x)+4ω2 = 2ω

√
4ω2 − x2 + σ2

2r
−x
√

σ2

2r
+4ω2−x2. Given that

x > 2ω, we have
√

σ2

2r
>
√

4ω2 − x2 + σ2

2r
, thus 2ω

√
4ω2 − x2 + σ2

2r
− x
√

σ2

2r
+ 4ω2 − x2 < 0.

One can check that x = xs when x = xs. So x approaches xs as λ→∞.
For Proposition 3(2)(c), note that the ex-ante probability of alliance is only non-trivial

for x0 ∈ (x, x), so we only need to focus on this case. Because xt follows a Brownian motion,
the ex-ante probability of reaching x before x can be written as

µ =
x0 − x
x0x

. Then

dµ

dλ
=

(x− x)(−dx
dλ

)− (x0 − x)(dx
dλ
− dx

dλ
)

(x− x)2
=

(x− x0)(−dx
dλ

)− (x0 − x)dx
dλ

(x− x)2

Let x̃(λ) =
x(− dx

dλ
)+x dx

dλ
dx
dλ
− dx
dλ

)−(x0−x)
. Since dx

dλ
> 0 and −dx

dλ
> 0, then dµ

dλ
> 0 for x0 < x̃(λ) and dµ

dλ
< 0

for x0 > x̃(λ).
Proof of Corollary 4 If λ ≤ λ, then game ends immediately, so (U + V )(x) =

max{x0, 2ω}. Ex-ante welfare is not affected by λ.
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Suppose λ > λ. Plugging coefficients from equations (2.23) into (U+V )(x) from equations
(2.8), we get:

(U + V )(x) =
1

2
(x+

√
σ2

2r
)e

√
2r
σ2

(x−x)
+

1

2
(x−

√
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2r
)e

√
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for x < x < x. The derivative with respect to λ is:

d(U + V )(x)

dλ
=
d(U + V )(x)

dx
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dλ
=

1

2
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σ2
x(e

√
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(x−x) − e−
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(x−x)
)
dx

dλ

Because 1
2

√
2r
σ2x(e

√
2r
σ2

(x−x) − e−
√

2r
σ2

(x−x)
) > 0 and dx

dλ
> 0 from Lemma 5, we can conclude

that d(U+V )(x)
dλ

> 0. Thus if x0 ∈ (x, x), then the ex-ante welfare is strictly increasing in λ
for λ < λ. If x0 /∈ (x, x), then the game ends immediately and the ex-ante welfare is not
affected by λ.

As λ→∞, x→ xs by Lemma 5. As x→ xs, we have x = x−
√

σ2

2r
log

2ω−
√

4ω2+σ2

2r
−x2

x−
√
σ2

2r

→

xs = xs −
√

σ2

2r
log
(√

σ2

2r
+

√
σ2

2r
+4ω2

2ω

)
. Also (U + V )(x) → (U + V )s(x) from equation (2.16)

in Section (2.6). So the total welfare approaches the socially efficient welfare. Also, both

α− = 1
2

r
r+2λ

(x +
√

σ2

2r+4λ
)e
−
√

2r+4λ

σ2
x

and β− = −1
2

r
r+2λ

(x +
√

σ2

2r+4λ
)e

√
2r+4λ

σ2
(2x−x)

approach 0

as λ→∞, so (U − V )(x)→ 0. Thus (U + V )(x0) = (U + V )s(x0) and (U − V )(x0) = 0 in
the limit, so each firm approaches half of the socially efficient total welfare.

Proof of Proposition 5 First we prove Proposition 5(1). Let I = (xs, 2ω), and λ̃ = λ.
If λ ≤ λ, then x ≥ x by Proposition 3, so the game ends immediately. If x0 ∈ I, then the
Responder quits at time 0 and both firms get outside option of ω. Again by Proposition 3,
as λ → ∞, x → xs and (U + V )(x0) → (U + V )s(x0). So there exists a λ′ > λ such that
x(λ′) < x0 and (U + V )(x0) > 2ω, because (U + V )s(x0) > 2ω. So the total ex-ante welfare
is higher under λ′. The Responder can never be worse off than ω, and the Proposer has
weakly higher utility than the Responder. Thus λ′ Pareto dominates λ.

For Proposition 5(2): For any λ, x(λ) > xs. Take any x0 in the interval (xs, x). For such
x0, the ex-ante utilities for both firms under λ is ω. Then by Proposition 3, as λ → ∞,
x→ xs and (U + V )(x0)→ (U + V )s(x0). So there exists a λ′ > λ such that x(λ′) < x0 and
(U + V )(x0) > 2ω. This must be a Pareto improvement, similarly to the argument above.

For Proposition 5(3): If x0 < xs or x0 > xs, then it is socially optimal to stop immediately.
The equilibrium outcome is socially optimal regardless of λ, so total welfare does change. So
no λ can Pareto dominates another.



CHAPTER 2. BARGAINING BETWEEN COLLABORATORS OF A STOCHASTIC
PROJECT 81

Lemma 5

F (x, λ) =

√
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√
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has a unique solution x(λ) in the range of 2ω ≤ x ≤ xs =
√

σ2

2r
+ 4ω2. The solution x(λ) is

increasing in λ for λ ≥ λ, x(λ) = 2ω, and x→ xs as λ→∞.

Proof. First,
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√
4ω2+σ2

2r
−x2
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√
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2r

≤ 1 because x ≥ 2ω by Lemma 3. Thus ∂F
∂λ

< 0 because every

term decreases in λ.
By implicit function theorem, to prove ∂x

∂λ
> 0, we need to prove that ∂F

∂x
> 0 for

2ω ≤ x ≤ xs. We prove by the following steps. We show that ∂F
∂x

= M(x) ∗ E(x) for some
M and E. The term M(x) is always positive. The term E(x) is positive at x = 2ω, and
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> 0 for x > 2ω, thus concluding that ∂F
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(2.24)

At x = 2ω, E(x) =
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)
> 0. We can write E(x) as E = x√
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∗B−
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√
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(2.25)

with dB
dx
> 0. Then taking derivative of E with respect to x, we get:
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(2.26)

Then dE
dx

is positive because each of the terms is positive for x ∈ (2ω, xs). Because E(x =
2ω) > 0, this implies E(x) > 0 for all x ≥ 2ω. Thus dF

dx
= M ∗ E > 0 for x ∈ (2ω, xs).

Combining with the fact that dF
dλ
< 0, by implicit function theorem, there exists a function

x(λ) in that range and dx
dλ
> 0.
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Chapter 3

Label Informativeness and Price
Sensitivity in the Cigarettes Market

3.1 Introduction

1 Cigarette products differentiate in their strengths. Most cigarettes sold on the market
can be categorized as regular, light, or ultralight. Most of the brands offer all 3 strengths.
In 2009, Congress passed the Tobacco Control Act (henceforth referred to as “TCA”). The
bill bans tobacco companies from using strength descriptors on any marketing material or
packaging, effectively blocking any explicit communication of the strength of a product.
However, firms are still allowed to sell cigarettes of different strengths. Companies adapted
by changing product labels to less informative color codes. While the original goal of the law
is to reduce consumer misconception about health risks of “light” cigarettes, an unintended
consequence is that it obfuscates information on product attribute. This paper seeks to
address the effect of such change in label informativeness on consumer choice.

One area that cigarettes of different strengths differ is their ventilation level. A ventilated
cigarette mixes smoke with air as smokers inhale, reducing the amount of tar and nicotine
intake in each puff. Cigarettes with no or little ventilation are referred as “regular” and those
with more ventilation are referred to as “light/low/mild” or “ultra-light” depending on the
extant of ventilation. Exactly which category a product falls into is determined through
machine measurement defined by CDC (CDC Fact Sheets Low Yield Cigarettes). For years,
tobacco companies marketed these products as healthier substitutes to regular cigarettes,

1Researcher(s) own analyses calculated (or derived) based in part on data from The Nielsen Company
(US), LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing
Data Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen
data are those of the researcher(s) and do not reflect the views of Nielsen. Nielsen is not responsible for,
had no role in, and was not involved in analyzing and preparing the results reported herein. The conclusions
drawn from the Nielsen data are those of the researchers and do not reflect the views of Nielsen. Nielsen
is not responsible for, had no role in, and was not involved in analyzing and preparing the results reported
herein.
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and research confirmed that a large portion of consumers indeed believed light cigarettes to
be less harmful (Borland et al., 2008; Yong et al. 2011). However, medical research find
that smokers who switched from regular cigarettes to light cigarettes tend to compensate the
lower nicotine intake by smoking more frequently or inhaling deeper, and as a result, there
is no evidence that switching to light cigarettes actually reduce health risk (Scherer, 1999).

In 2009, congress passed Tobacco Control Act. Among other measures, it bans the usage
of strength descriptions such as “regular”, “light”, or “ultra-light” on any marketing or pack-
aging materials. However, the law does not actually prohibit tobacco companies from manu-
facturing and selling these cigarettes. Tobacco companies responded by re-labeling product
lines with color codes. For example, “Camel Light” was re-branded to “Camel Blue”, while
“Marlboro Light” became “Marlboro Gold”. Medical studies show that Tobacco Control Act
achieved very little success in its original goal of correcting consumers beliefs on the health
benefits of light cigarettes. But as a side effect, the law obfuscates product information,
as consumers are less able to identify product characteristics from its name and packaging.
This can prevent consumers from switching to less familiar brands due to additional costs
and risks, making consumers less responsive to price changes in competing brands. Given
that price discounts account for over 90% of marketing expenditure in cigarette industry, this
change could impact competitive nature of the industry and firms marketing strategy. This
paper seeks to answer the following questions. How do consumers shopping behaviors change
following the Tobacco Control Act? What is the most likely mechanism that caused such
change in behavior? Do tobacco companies change their pricing and promotion strategies as
a result of such change? Does the effect of obfuscation disappear over time?

Nielsen’s retailer scanner data and household panel data from 2007 to 2012 are used
to address these questions. Data shows an increase in cigarette price and an increase in
price dispersion among strengths after the law is passed and after the compliance deadline.
Overall consumption trends down for the time period, but the trend started well before
passing of TCA. I see no noticeable change in market shares or overall cigarette consumption
as a result of the law. This suggests that Tobacco Control Act had minimal impact in
discouraging smokers from smoking, resonating previous findings from medical researchers
on the health effect of TCA. However, I find a sharp reduction in cross-purchasing frequency
after implementation of descriptor ban. This that consumers were less willing to buy brands
outside of their most favorite choice after the label change.

To further explore the effect of TCA on brand choice, discrete-choice models are run for
the four year period from 2008-2011, which includes 1.5 years before passing of the law, 1
year from passing of the law to deadline of compliance, and 1.5 years after compliance. In
order to focus solely on the laws effect on brand choice, I exclude smokers who start or quit
during the time period. Firms could comply anytime from June 2009 to June 2010, and
the exact time that each firm complied is unknown. This prohibits one from conducting a
regression discontinuity study. Instead, relying on the size of Nielsens data, I take a less
parametric approach in estimating the effect of TCA. The data is divided by quarter, and
regressions are run separately for each quarter. Then I examine the time series of estimates
to see the effect of Tobacco Control Act.
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I find that the effect of price on consumer choice dropped significantly as Tobacco Control
Act went into effect, and remained low for the remaining time period. On face value, a
decrease in the size of price coefficient suggests that either consumers care less about money or
care more about the differences between products. Assuming that the underlying preference
for money did not change, the result implies that consumers perceive products to be more
differentiated after the labelling change. However, before such conclusion can be reached, I
consider four alternative mechanisms that could cause this change in behavior. An observed
decrease in price sensitivity can be due by an increase in preference heterogeneity, an increase
in inertia or switching cost, an increase in the level of price endogeneity, or a decrease in
the average size of consideration sets. These effects, if not specified in the choice model, can
bias the price coefficient in the observed direction. I find that the drop price sensitivity is
robust in models that account for these four factors.

This paper has three main contributions. First, it provides empirical evidence on how
product packaging or labelling affect consumers choice. The paper shows that, decreasing the
informativeness of product labels can increase the perceived level of differentiation among
products. Second, previous literature on obfuscation focus mostly of the obfuscation of
price information, while this paper study the effect of obfuscating product characteristics.
Finally, this paper provides policy implications by documenting the unintended consequence
of Tobacco Control Act on consumer behavior. Many countries are considering adopting a
similar ban on strength descriptors. Policy makers may want to its effect on consumer choice
when drafting regulations.

The remaining sections are organized as follows. After literature review, Section (3.2)
provides background on the industry and Tobacco Control Act. Section (3.3) describes the
data and presents descriptive evidence. Section (3.4) estimates choice models and examines
the effect of TCA on consumer behavior. Section (3.5) concludes the paper.

Literature Review

Coefficients in a discrete-choice model can be biased when the model is mis-specified.
Thus a change in price elasticity can be due to a change in the level of bias rather than
an actual change to consumer’s price sensitivity. Villas-Boas and Winer (1999) show that
endogeneity bias price coefficient towards zero. Chiang, Chib, and Narasimhan (1999) show
that both price and state dependence can be biased if we ignore consideration set effect.
Chintagunta, Kyriazidou, and Perktold (1998) shows that price coefficient can be biased if
one does not account for preference heterogeneity. Abramson et. al. (2000) use simulation
to test how each of the above mentioned source bias price coefficients, and find that respon-
siveness to price is underestimated if state dependence is ignored. This paper accounts for
the above factors.

This paper also relates to the literature on consideration set. Mehta, Rajiv, and Srini-
vasan (2003) structurally estimated consumer search cost and consideration set. However,
their methods suffer from curse of dimensionality when the number of alternative products
increases. Van Nierop, et. al. (2010) proposed a different model that reduced the dimension-
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ality of the problem, and used experimental data to confirm that consideration set can be
reliably estimated. They model consumer choice as a two-stage process. In the first stage,
consumers choose to consider a product if its consideration utility crosses a threshold. This
is conceptually similar to the reduced form model of Bronnenberg and VanHonacker (1996).
Abaluck and Adams (2018) show that consideration probabilities can be identified without
auxiliary data or exclusion of instruments from first or second stage. This paper follows
Abaluck and Adams (2018) in estimating consideration set.

Research on obfuscation and search cost has shown that firms can increase market power
when product information becomes harder to comprehend. Stahl (1989) shows that exis-
tence of search cost for some consumers lead to higher price, more promotions, and higher
profit for the firm. Wilson (2010) and Ellison and Wolitzky (2011) shows that under differ-
ent competitive structures, there can be equilibrium in which firms endogenously choose to
increase search cost for consumers. However, there are two major differences between our
paper and the papers above. Whereas prior literature focuses on obfuscation on price in-
formation, this paper analyzes the effect of obfuscation on product characteristics. Also the
source of obfuscation in this paper is regulation instead of endogenous decision. Ellison and
Ellison (2009) provide rare empirical evidence on effect of product information obfuscation.
They find that internet retailers sometimes do not display all product information, and such
obfuscation leads to lower aggregate price sensitivity.

An increases in differentiation can be either perceptual or informative. Ampuero and
Vila (2006) find that packaging color influence consumers’ perception of product positioning.
Wanke, Herrmann, and Schaffner (2006) find that consumers’ perceptions of hypothetical
hotels are influenced by the hotels’ names, even when they are informed that the hotels are
otherwise the same. The context of this paper also resembles informational differentiation of
experience goods. Products can appear more differentiated in the eyes of consumers “due to
consumers imperfect knowledge of the products quality or fit with their preferences.” (Tirole
1988) While a Marlboro Light user can easily transition to Marlboro Gold given its same
look, a substitute such as Camel Light becomes harder to recognize given its label change
to Camel Blue. This asymmetry in a consumer’s knowledge of brands can make consumers
less responsive to price promotions.

3.2 Industry Background and Tobacco Control Act

The cigarette industry in the U.S. is large but declining. Cigarette consumption has
declined steadily from over 600 billion units in early 1980s to 268 billion units in 2012. Most
cigarette brands sold in the U.S. are owned by one of five tobacco companies: Philip Morris
(a subsidiary of Altria), Reynolds, Lorillard, Commonwealth, and Vector. Among them,
Philip Morris and Reynolds together own nine of top 10 brands, which accounted for over
80% of market share in 2010. The two most popular brands today, Marlboro and Pall Mall,
are owned by Philip Morris and Reynolds respectively (FTC cigarette report 2012).
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Cigarettes are offered in different strengths, which can be roughly categorized as “reg-
ular”, “light”, or “ultralight”. These cigarettes taste different, with “regular” cigarettes
providing a stronger, fuller taste of tobacco. The formal definition of strength depends on
tar yield or ventilation level. CDC measures tar yield on standardized smoking machines,
and defines cigarettes with tar yield of more than 15mg as regular cigarettes, those with
tar yield between 6mg and 15mg as light cigarettes, and those with less than 6mg as ultra-
light (CDC Fact Sheet Low-Yield Cigarette). Light cigarettes are very popular. In 2011,
FDA estimated that light cigarettes account for 52% of market share (FTC Cigarette Report
2011).

Part of the appeal of light cigarettes is their perceived health benefits over regular
cigarettes. Research shows that consumers believe light cigarettes are healthier than regular
cigarettes (Scherer 1999, Shiffman et. al. 2001). However, clinical studies show no evidence
of health benefit when switching from regular to light cigarettes (National Cancer Insti-
tute 2001; Thun and Burns 2001). This disparity between clinical evidence and consumer
perception creates concern for public health as well as false advertising.

Other than brand and strength, price is the most important marketing mix variable that
influences smokers choices. Tauras, Peck, and Chaloupka (2006) find that price variation
including price promotion account for most of the change in market share change in the
cigarette industry. According to FTC Cigarette Report for 2012, price discounts paid to
retailers or wholesalers in order to lower price for consumers account for 85% of cigarette
industrys total marketing expenditures, and other price-related expenditures including pro-
motional allowances and coupons account for another 10% of the marketing expenditure. On
the other hand, advertising of cigarettes had been heavily regulated since 1970s. Advertising
on TV and radio is completely banned, and advertising on printed media is prohibited if
there are readers who are under the age of 21. The single largest category of advertising
expenditure in the 2000s is POS advertising, which only account for less than 2% of total
marketing expenditure. Additionally, previous research find the effect of POS advertising on
cigarette sales to be inconclusive (Baltagi and Levin 1986; Wakefield et al. 2002).

In 2009, Congress passed Family Smoking Prevention and Tobacco Control Act (hereafter
referred to as “Tobacco Control Act” or “TCA”) to further tighten regulation on market-
ing of tobacco products. Tobacco Control Act introduced a variety of new regulations on
tobacco marketing activities. It banned the sale of flavored cigarettes (except menthol),
banned sports and entertainment event sponsorship, and added restrictions on placement
of advertising in publications or in stores that are targeted at youth. Most notably, the
new law banned the use of terms such as “light”, “ultra-light”, “mild” or any other similar
descriptors on any marketing or packaging materials. Companies were mandated to remove
strength descriptors, with a deadline to comply of June 2010. However, the law did not
prohibit tobacco companies from manufacturing and selling these light cigarettes. Tobacco
companies responded to the new law by re-labeling their product lines with color codes.
For example, “Marlboro Light” is renamed as “Marlboro Gold”, and “Marlboro Regular” is
renamed as “Marlboro Red”. Given that these products were already packaged in different
color boxes before TCA, the change was mostly only on the product label. However, the color
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Figure 3.1: Color Schemes of Marlboro, Pall Mall, Winston, and Camel

scheme is not uniform across brands. This creates potential room for consumer confusion, as
the inconsistent labelling across firms can make product comparison more difficult. Figure
(3.1) shows the color schemes for four of the top brands at the time: Marlboro, Pall Mall,
Winston, and Camel. As the table shows, the color schemes overlap but still differ across the
four brands. Most brands kept their entire product line with minimal change to the actual
product, simply substituting strength descriptors with color codes on the packaging.2

FDA stated in Tobacco Control Act that the goal of banning strength descriptors is
to eliminate misconception about light cigarettes’ health benefits. On its website, FDA
explicitly expresses concerns that such incorrect belief prevents smokers from quitting and
attracts new smokers. Unfortunately, studies show that TCA is rather unsuccessful in its
mission. Medical researchers find that simply removing “light” descriptors from the labels
have little intended effect. Borland et al. (2008) and Yong et al. (2011) show that theres little
effect of banning light descriptors in correcting beliefs in U.S. as well as other countries that
implemented similar measures. Cohen et al. (2014) find that removing “light” descriptors did
not increase cessation rate, and most previous light smokers continue to buy light cigarettes
under new product labels. In Connolly and Albert (2013), participants report that it is easy
to recognize their usual brand, suggesting little effect of labelling change on the purchase of
their favorite brand. They also found that companies actively educate retailers and existing
consumers about the name change prior to effective date of the law. However, there is
evidence of consumer confusion. Bansal-Travers et al. (2011) found that smokers incorrectly
infer strengths from colors more than 30% of the time and the ability to correctly identify
color code by ventilation level differ by age and by brand. Specifically, subjects are more
able to identify Marlboro than an unfamiliar brand.

There has been relatively few research on cigarette brand choices. Most smokers are
loyal and tend to purchase the same brand repeatedly. Cornelius et al. (2015) find that
between 2007 and 2011, 16% to 29% of surveyed smokers switch brand and 29% to 33% of

2Two other potential measures were being discussed but not implemented, including banning menthol
flavored cigarettes and adding graphic warning signs on cigarette packaging. No other major changes such
as M&A or regulation happened in the U.S. market between 2008-2012 (Bialous and Peeters 2012).
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Figure 3.2: Whether Brands Switched to Color Names

surveyed smokers switch products within the same brand. Dawes (2014) uses IRI panel data
and confirms that a large portion of smokers do not change their favorite brands overtime,
but even these “loyal” customers buy competing brands close to half of the time, suggesting
significant level of cross-purchasing.

One issue in studying the effect of TCA is that we do not know exactly when firms changed
their product labels. Firms were given a year to comply after TCA is passed, and the process
was likely not instant. Also, sources suggest that firms complied at different times. Philip
Morris marketing brochures suggests that PM did not adopt name changes for its brands
until 2010. On the other hand, Reynolds changed Pall Mall to color codes immediately in the
summer of 2009. State tax documents, which record a product’s registered name, provide
some qualitative evidence on when each brand adopted the new labels. I reviewed available
archived state tax documents and report the result for top 10 brands in Figure (3.2). The
table confirms that there is significant heterogeneity across brands.

3.3 Descriptive Evidence

Data

The data is provided by Nielsen. Both Retail Scanner Data and Consumer Panel Data
are used. The data covers observations from 2007 to 2012.

Retail Scanner Data (RMS) collects weekly pricing, volume and store merchandising
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conditions from around 35,000 grocery, drug, and other stores in the U.S. The identity of
the stores are hidden and replaced by an ID number. The data covers year 2006 and after.
The data is at UPC level, and encompass a wide variety of product categories, including
cigarettes. The scanner data is useful in detecting aggregate market response after removal
of strength descriptors from packaging.

Consumer Panel Data (CPD) follows a panel of approximately 60,000 U.S. households
who report their daily purchases. Panelists are spread out geographically and a projection
factor for each household is used to adjust the panel demographics to match general demo-
graphics. Panelists use in-home scanner to report what they buy and how much they pay
from each shopping trip. The store they shop at is also recorded if such store is a participant
in the scanner data. The panel data allows us to estimate effect of TCA on a granular, trip
level. This is the primary data source used for choice modelling in Section (3.4).

Both the scanner data and the panel data have their problems. A problem with the
scanner data is that it does not capture the majority of stores in which cigarettes are bought.
According to a Euromonitor study in 2012, 60% of cigarettes sales occur in convenience stores
such as 7-Eleven, private brick-and-mortar, and gas stations. Nielsens data only cover 2%
of total sales from the convenience store channel. However, cigarettes sales captured in the
scanner data should still provide abundant data points for our purpose as it captures over
half of sales from grocery and drug stores in the U.S. Although there can be selection bias
if consumer who buy at grocery and drug stores behave differently from consumer who buy
at other stores, I do not have evidence or convincing argument supporting this view. This
channel problem does not exist in the panel data since it captures all purchases regardless
of store. However, the panel data is recorded on the household level. I cannot distinguish
which member in the household buys the cigarette, nor can I know how many people in
the household are smokers. In the sample, 21% of households are single, 44% are double,
28% have 3-4 members, and 7% have 5 or more members. In Section 4 I show that single
households do not behave very differently from households with multiple members when
purchasing cigarettes.

Feature and display of tobacco products are highly restricted during the time period stud-
ied. This is confirmed in the data, as very few observations in the scanner data have either
feature or display. As a result, I ignore feature and display from my analyses. According to
FDA Cigarette Report, over 95% of point-of-sale marketing expenditures are in the form of
price discounts or related activities. Additionally, previous research find the effect of POS
advertising on cigarette sales to be inconclusive.(Cameron, 1998; Baltagi and Levin, 1986;
Wakefield et al., 2002)

The paper focuses on the time period between 2008 to 2011. I use purchase records in
2007 to generate loyalty measure, and use 2012 data to confirm that smokers did not quit
in 2011. This window provides one and a half years of observation before passing of TCA,
one year during the implementation, and one and a half years after the compliance deadline.
The data is recorded on UPC level with many UPCs for the same product. I consolidate
UPCs by strength and by brand. In this paper, a product is defined as a brand-strength
combination. Package size is normalized to 20 cigarette per pack. To further cut down
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Figure 3.3: Market Share of Top 10 Brands among Panelists

irrelevant product characteristics, I dropped unfiltered cigarettes and flavored cigarettes
from my data. Unfiltered cigarettes only represent about 2% of sales and should not have
any impact. Non-menthol flavored cigarettes have very little sales and are banned altogether
in September 2009. Menthol-flavored cigarettes account for slightly above 26% of sales in
2009 and 2010 and 27.5% in 2011. Since TCA affects all cigarettes packaging uniformly
regardless of flavor, dropping menthol-flavored cigarettes should have no effects. I later do
robustness check with menthol cigarettes included to confirm that.

Summary Statistics

Nielsen’s consumer panel data has around 60,000 households per year. Nielsen retains
about 80% of panelists from year to year. About 26,000 households remain in the panel
from 2007 to 2012. Between 6000 and 9000 households purchase cigarettes in a given year,
but that number declines steadily. Out of the 26,000 households who remained in the panel
in the six year period, 5700 households purchase cigarettes, and 1300 households purchase
cigarettes in every year from 2007 to 2012.

Brands and Strengths

There are over 100 brands in the market. Figure (3.3) shows market shares of top 10
brands from 2008-2011 estimated from the panel data. As the table shows, Marlboro alone
captures over half of cigarette sales, and 9 of top 10 brands are owned by two firms, Philip
Morris and R.J. Reynolds. Thus the industry is very concentrated, despite the large number
of brands.
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Figure 3.4: Number of Households with Cigarette Purchases by Week

Most brands offer cigarettes in different strength. Out of 124 brands In 2010, 77% offer
regular cigarettes, 68% offer light, 48% offer ultralight. 40% of these brands offer only one
strength, 26% offer two strengths, and 34% offer all three strengths. In particular, all top
10 brands except Misty offer all three strength in the time period. The number one product
in 2010 is Marlboro Light, followed by Marlboro Regular, Marlboro Ultralight, Pall Mall
Regular, and Camel Light.

Consumption by Panelists

Total cigarette consumption declines over the period, as more households quit smoking.
Figure (3.4) shows the number of households that purchase cigarettes in a given week, for
panelists who remain in the panel from 2008 to 2012. The first bar in the graph denotes the
date that TCA was passed, and the second bar denotes the date the compliance deadline.
As noted in Section (3.2), firms changed labels at different points of time during the one-
year window. The number goes from 1100 in early 2008 to 600 in 2012. The large drop in
early 2009 correspond to the biggest federal tax increase on cigarettes, which went into effect
roughly 2 months before TCA is passed. As a result of decrease in number of smokers, total
cigarette consumption by panelists decreases as well.

While the number of smokers decreases steadily, the consumption for the remaining
smokers remain relatively stable. Figure (3.5) shows the total number of packs of cigarettes
bought per week for 07-12 panelists versus 07-12 smokers, weighted by each households
projection factor provided by Nielsen, which account for the demographics difference between
the panel and general population. A household is defined as a smoker in year Y if it purchase
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Figure 3.5: Total Number of Packs by Week

cigarette in that year, and 07-12 smokers are those households that purchase cigarettes
every year in the sample period. Although consumption declines in this period, there is no
visible difference in the trend before and after the passing of Tobacco Control Act. Figure
(3.6) shows the number of cigarette trips per week for 07-12 panelists versus 07-12 smokers,
ignoring the quantity purchased. As one can see, for households who continue smoking,
their weekly cigarette consumption was relatively stable. Most of the decline in cigarette
consumption can be attributed to people who quit smoking. The above findings coincide with
earlier research that shows that TCA was ineffective in lowering consumption or increasing
cessation. In Section (3.4), to study brand choice behaviors, I focus only on household who
remain as smokers, to maintain a consistent composition of households over time.

Retail Market Share and Price

The Retail Scanner Data records about $4000 million and 800 million packs of cigarettes
sales per year in its participating stores. Average cigarette price increased and quantity
decreased in the time period, resulting in a flat trend in sales. There is seasonality in
cigarette sales, with peak in summer and trough in winter. An increase on federal cigarette
tax from $0.39 to $1.01 was put into effect in April 2009, causing prices of all brands to
elevate in late first quarter and early second quarter.

There is no recognizable pattern in market share movement from the implementation
of TCA in 2009 and 2010. Figure (3.7) shows the market shares of Marlboro, Pall Mall,
Winston, and Camel. There is no visible kink or jump between 2009 and 2010 that is
consistent across brands.
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Figure 3.6: Number of Cigarette Trips by Week

Figure 3.7: Weekly Market Share of Marlboro, Pall Mall, Winston, and Camel
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Figure 3.8: Weekly Prices of Marlboro, Pall Mall, Winston, and Camel

Price show interesting movements, besides the jump in early 2009 due to federal tax
increase. As shown in Figure (3.8) below, average cigarette price for all three strengths
jumped both at the passing of TCA in the summer 2009 and the compliance deadline in
the summer of 2010. Also, prices for different strengths start to diverge in late 2009 and
early 2010. Regular cigarette price remains flat while light and ultralight became more
expensive over the next two years. This divergence is graphed in Figure (3.9). The increase
in cigarette price can be partly attributed to seasonality. Cigarette price also increased in
the summer of 2011, but in a smaller amount and over a longer period of time. The evidence
is not conclusive, but a price increase around the passing and deadline of TCA compliance
may suggest that firms are less concerned about switching or cross-purchasing after strength
descriptors are removed. Also, divergence in prices among different strengths could be a
result of less substituting across strengths.

Cross-Purchasing

Monitoring brand switching for an individual is difficult. It is hard to identify when
consumers switch from one product to another, because consumers can alternate among
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Figure 3.9: Weekly Prices of Marlboro, Pall Mall, Winston, and Camel

multiple choices. Instead, I look at their cross-purchasing behavior. Cross-purchase hap-
pen when consumers buy outside of their favorite brands, possibly due to price promotion,
variety-seeking, or simply idiosyncratic taste shock. In the cigarettes market, switching of
favorite brand is infrequent. However, even loyal customers buy competing brands often
(Dawes 2014), creating a significant amount of cross-purchasing. If the removal of strength
descriptor affects consumers choice of brands or strengths, it should be able observable in
their cross-purchasing patterns.

First I confirm that cross-purchasing exists in the data. Figure (3.10) shows the distri-
bution of the number of brands each smoking household purchased in 2009. About 40%
of households bought more than one brands in 2009. The same pattern holds for single
households, proving that the distribution was not a result of having multiple smokers in
a household. For households that bought more than one brands, Figure (3.11) shows the
distribution of the share of purchase for a household’s favorite brand, for households that
purchased more than 1 brand. Again there exits a lot of heterogeneity. Many smokers
routinely buy multiple brands, even if they do not switch their favorite brand.

Figure (3.12) graphs average number of brands per household per week. The graphs only
include households who smoked continually from 2007 to 2012 and bought cigarettes in that
week. Note that this measures cross-purchasing at a very small window, mostly focused on
high frequency smokers. If a household buys two different brands in the same week, then the
number of brands is two. If a household buys brand A in one week, then buys brand B in
second week, then it is counted as only one brand in each week. Figure (3.13) shows average
number of brands per household per month. This gives a bigger window for capturing cross-
purchase and tells a similar story. Both graphs show a noticeable drop in cross-purchasing
after TCA was passed and put into effect.

Households also decreased the number of strengths they buy, indicating less shopping
across strengths as well. Figure (3.14) and (3.15) show weekly and monthly number of
strengths per household, for households who smoked continually from 2007 to 2012 and
bought cigarettes in that week. Again the number begins to decrease after the TCA is
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Figure 3.10: Number of Brands per Household

Figure 3.11: Favorite Brand’s Share of Purchase

passed, and continue to decline through 2012. The number does not rise back to pre-TCA
level in the two years following the implementation or the new regulation.

The evidence on cross-purchasing suggest that the removal of strength descriptors discour-
ages consumers from shopping less familiar brands and strengths. However, a few problems
remain to be addressed. First, the phenomenon of cross-purchasing does not capture more
general switching behaviors. Second, the movements of cross-purchases are confounded with
price movements at the same time. For example, in March and April of 2009, theres a spike
in both number of brands and number of strengths purchased. This was due to a large,
upcoming federal tax on cigarette sales. As brands increase their prices in anticipation of
tax increase, consumers are motivated to shop for cheaper, alternative brands. Given that
price is the most important marketing mix variable in the cigarettes market, it is important
to make sure that the observed change in consumer behavior is not simply a response to
supply-side changes.
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Figure 3.12: Weekly Average Number of Brands

Figure 3.13: Monthly Average Number of Brands
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Figure 3.14: Weekly Average Number of Strengths

Figure 3.15: Monthly Average Number of Strengths
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3.4 Effect on Price Sensitivity

In this section, I estimate discrete-choice models to detect change in consumer behavior
following Tobacco Control Act. As a first step, a simple logit model with only intercepts and
price is estimated. For household i, product j, and trip t, the utility of buying product j is:

Uijt = µj + βpijt + εijt (3.1)

where εijt is an i.i.d type I extreme value error term.
A product is defined as a combination of brand and strength. Size of the package is

normalized to a 20 cigarettes pack, and price is normalized to price per 20 cigarettes. I
include the top 7 brands by market share: Marlboro, Pall Mall, Winston, Camel, Basic,
Doral, Misty. These 7 brands account for 69% of purchases in the sample. With the exception
of Misty, each brand sells all three strengths, totaling up to 20 products.

I only include households who: (1) remained in Nielsens panel in each year from 2007
to 2012; (2) had at least 100 trips buying cigarettes (habitual smokers); and (3) purchased
cigarettes in 2007 and 2012. Condition (3) made sure that households in the estimation
sample did not start or quit smoking between 2008 and 2011. These three conditions ensure
that the sample consist of a stable population of habitual smokers throughout the sample
time period. From Figure (3.6) in Section (3.3), one can see that households who continued
to smoke did not show any sign of slowing down their consumption post Tobacco Control
Act. This is crucial because there is no outside option in the choice set. Due to the nature
of panel data, an observation exists only when a household buys cigarettes. Thus I do not
consider “not smoking” as a choice and solely focus on consumers choice among different
brands and strengths. It is then important to ensure that the sample consists of the same
composition of smokers who maintained their smoking frequencies over time.

The panel data only records the price of the chosen product of each trip. Prices and
availability of a household’s alternatives are approximated using Retail Scanner Data. If a
product has no recorded sale in retailer scanner data in a zip code in a given week, I assume
such product to be unavailable for consumers living in that zip code. This approximation
method is consistent with observed choices. Only 0.25% of trips in the sample end up
choosing products not available. Also, availability for the 7 brands included in the analysis
do not fluctuate much over time. Given availability, I approximate the prices that a household
see by using the average price of each alternative product in that week in the households
zip code. Some price variations across stores and days in a week are not captured. This
could bias price coefficient away from zero, if consumers are more likely to buy products that
are cheaper than the regional, weekly average. This should not affect our analysis though,
because we observe a movement of price coefficients towards zero and because the same
problem exist for the entire sample period.

As noted in Section (3.2), one issue in estimating the effect of TCA is that we do not know
exactly when firms changed their product labels. Instead, the model is estimated separately
for each quarter from 2008 to 2011, and the results are compared over time. Doing so gives
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Figure 3.16: Marginal Effect of Price on Choice Probability in Equation (3.1)

16 regressions for each specification. I also run regressions separately for each month as a
robustness check and confirm that results are similar.

Figure (3.16) shows the marginal effect of price on choice probability over time. As the
figure shows, consumers price sensitivity dropped after Tobacco Control Act was passed and
implemented. The marginal effect of price remained low for the remaining of the sample
period, showing now sign of learning. This observation confirms the descriptive evidence
that consumers are less likely to switch between products. Consumers respond less to price
movements after the strength descriptors are removed.

If the choice model is correctly specified, then the price coefficient represent how money
compensates for the difference in utility between protects. Assuming that consumers main-
tain the same underlying preference for money, then a smaller marginal effect of price implies
a larger difference in the utility between products. In another word, consumers perceive the
products to be more differentiated than before. The increase in differentiation could be per-
ceptual, as researchers have shown that both name and color affect consumers’ perception
of a product (Ampuero and Vila 2006; Plasschaert 1995; Wanke, Herrmann, and Schaffner
2006), or informative, as in Tirole (1988). However, the simple logit model in equation (3.1)
is likely mis-specified. Past research has shown that the price coefficient can be biased if the
model fails to account for a number of factors. The introduction of Tobacco Control Act
could have other effects that cause a change in the level of bias in the observed direction.
In particular, Villas-Boas and Winer (1999) show that endogeneity bias price coefficient to-
wards zero. Chintagunta, Kyriazidou, and Perktold (1998) shows that price coefficient can
be biased toward zero if one does not account for preference heterogeneity. Abramson et.
al. (2000) find that price responsiveness is underestimated if state dependence is ignored.
Chiang, Chib, and Narasimhan (1999) show that price coefficient is biased toward zero is
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consideration set is ignored. If Tobacco Control Act affects preference heterogeneity, price
endogeneity, or state dependence, then one could observe a shift in price coefficients even
though underlying preferences have not changed.

In the following sections, I test for the possibility that the change in price sensitivity was
due to additional bias. First, a choice model is specified to include preference heterogeneity,
state dependence, and price endogeneity. Then a two-stage model is used to to account for
change in the average size of consideration set. In both cases, consumers continued to be
less price-sensitive following the change of product labels. Even though in this setting, a
change in perceived differentiation cannot be directly identified, the results suggest that this
explanation is more credible than the alternatives discussed.

Accounting for Preference Heterogeneity, State Dependence, and
Price Endogeneity

The utility of household i from purchasing product j on trip t is defined as:

Uijt = µij + βpjt + θbrlbrijt(λ
br) + θstrlstrijt (λ

str) + εaijt + εbijt (3.2)

where εaijt is an error term with i.i.d type I extreme value. The second error term εbijt
represents market or brand variables that are not observed by the researcher by affect prices,
and is assumed to be normally distributed with mean zero and variance σ2

b .
The term lbrijt(λ

br) represents household i’s loyalty level towards product j’s brand, and
lstrijt (λ

str) represents household i’s loyalty level towards product j’s strength. The loyalty
levels are functions of the smoothing parameter λ’s, as in Guadagni and Little (1993):

lbrijt(λ
br) = λbrlbrij,t−1 + (1− λbr)ybrij,t−1 (3.3)

lstrijt (λ
str) = λstrlstrij,t−1 + (1− λstr)ystrij,t−1 (3.4)

where ybrij,t−1 is an indicator function equal to 1 if household i bought the brand of j on the
last trip, and ystrij,t−1 is an indicator function equal to 1 if household i bought the strength of
j on the last trip. The exponential smoothing parameters

Due to the high numbers of products included in the estimation, it is difficult to estimate
mixed logit model with an individual intercept for each product. Instead, I defined product
intercept as sum of brand intercept and strength intercept, similar to the treatment of Fader
and Hardie (1996). The product intercept µij becomes:

µij = µi,br(j) + µi,str(j)

where br(j) and str(j) represent the brand and strength of product j, respectively, with
µi,br(j) ∼ N(µbr(j), σbr(j)), and µi,str(j) ∼ N(µstr(j), σstr(j)). The mean and standard deviation
of brand and strength intercepts µbr(j), σbr(j), µstr(j), and σstr(j) will be estimated. For
simplicity, I assume no correlation in brand or strength coefficients across products. That
is, µi,br(j) ⊥ µi,br(k) and µi,str(j) ⊥ µi,str(k) for all j 6= k.
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Consumption tax on cigarettes account for a large share of the price and vary significantly
across states and cities and across time. The price of product j on household i’s trip t is
parametrically defined as a function of cigarettes tax and unobservable factor:

pijt = α0 + α1sit + ωijt (3.5)

The term sit denotes the cigarettes tax in the region where household i made their t’s trip.
The term ωijt is correlated to the error term εbijt in equation (3.2). This captures the idea that
firms set prices endogenously based on demand factors unobserved to the econometrician. I
assume that ωijt and εbijt are jointly normal and independent across j.

Estimation

The specification is estimated separately for each quarter from 2008 to 2011. Thus there
are 16 regressions for each specification. A household’s 2017 purchases are use to initilize
loyalty variables. If a household has less than 20 purchases in 2017, then the first 20 trips
are set aside to initialize loyalty variables. On a households first trip in 2017, I assume the
household has equal loyalties over all brands and strengths that add up to one. Then loyalty
variables for the remaining trips are calculated according to equation (3.3).

Brand and Strength dummies are normalized to the most frequent choice in each quarter.
Thus there are 6 brand dummies and 2 strength dummies to be estimated. All models are
estimated using maximum likelihood. The loyalty smoothing parameters enters the utility
function non-linearly, and thus poses difficulty in computation. I first estimate the smoothing
parameters using a fixed coefficient model following the method developed by Fader, Lattin
and Little (1992), which uses Taylor expansion to transform the model into a linear one, and
estimate recursively to retrieve maximum likelihood estimators. The estimated parameters
from fixed coefficient model are all close 85%. Then for simplicity, I fix smoothing parameters
at 85% for both brand and strength and for all periods in the random coefficient model. I
use alternative numbers ranging from 80% to 90% as robustness check and find results to be
stable.

I use control function approach to account for price endogeneity as in Petrin and Train
(2010). Given that ωijt and εbijt are jointly normal and independent across j, one can write:

E[εbijt|ωijt] = γωijt (3.6)

εbijt = γωijt + σηijt (3.7)

where ηijt is standard normal and σ captures the standard deviation of εbijt conditional on
ωijt. Substituting equation (3.7) into equation (3.2) gives us:

Uijt = µij + βpjt + θbrlbrijt(λ
br) + θstrlstrijt (λ

str) + γωijt + σηijt + εaijt (3.8)

The estimation has three steps for each quarter. First, I obtain a product’s average price
from each week for each zip code from the Retail Scanner Data. Then, the average price is
regressed on the sum of federal, state, and local tax to obtain the residual ω̂ijt. For the last
step, equation (3.8) is estimated as a mixed logit using ω̂ijt, with mixing over µij and ηijt.
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Figure 3.17: Marginal Effect of Price on Choice Probability in Equation (3.2)

Results and Robustness

The appendix shows the complete regression results for all 16 quarters in the sample.
Coefficients other than price show no visible shift in value after the new regulation. The
size of the price coefficient jumps to a different level with the passage of TCA. Figure ()
graphs the average marginal effect of price on choice probability over time. The effect of
TCA on price sensitivity is visible and significant. Note that there is a high magnitude
of price effect in 2019 Q2. This jump is the result of a large increase in federal cigarette
tax in that quarter. Consumers were more responsive to the price differences as firms raise
their prices in responses to the new tax. However, even if we exclude this data point, the
average marginal effect for the six quarters after the compliance deadline is still only 63%
of the marginal effect in the period before TCA was passed. This shows that the observed
change in choice behavior cannot be explained by changes in consumer heterogeneity, price
endogeneity, or state dependence.

For robustness, I ran variations of the model with only consumer heterogeneity, price
endogeneity, or state dependence, and all combinations of the three. I also run the model
with a longer time window from 2007 to 2012. Results show that marginal effects in 2007
were stable and similar to 2008 levels. This confirms that the change in price sensitivity
was not caused by the Great Recession. Additionally, I run a variation where all other
brands are combined by strengths into three additional choices: other regular, other light,
and other ultralight. The result is repeated in each case. Another specification includes an
interaction term of loyalty and price. As expected, consumers act less price-sensitive toward
products that they have a higher loyalty for. In another specification, I replace the G&L
loyalty variable with two variables (a static loyalty variable and last brand purchased) to
separate cross-sectional and longitudinal heterogeneity. This approach was previously used
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by Bucklin and Gupta (1992) and Bell and Lattin (2000). It intends to separate control for
state dependence and static brand preference. Lastly, I set a month instead of a quarter
as period to get “finer” estimates. The result resembles quarterly estimates, but with more
fluctuations from month to month.

Other coefficients in my estimates can also be biased. However, they should not affect our
finding. Keane (1997) and Heckman (1981) show that state dependence is upward biased if
we ignore heterogeneity. Chiang, Chib, and Narasimhan (1999) show that state dependence
is upward biased if we ignore consideration set. However, Abramson et al. (2000) shows
that state dependence should be robust against price endogeneity, preference heterogeneity,
and choice set effect. Use of loyalty model itself could contaminate price coefficient, if past
price and promotions are not counted. Though this is theoretically true, studies found such
effect to be small (Fader and Hardie 1996 and Abramson et al. 2000).

Consideration Set

In this section, I test if the change in price coefficient can be explained by a change
in the consideration set. Ignoring choice set effect can significantly downward bias price
coefficient (Chiang, Chib, and Narasimhan 1999; Abramson et al. 2000). The removal of
strengths information from product packaging and labelling can increase consumers search
cost. Besides search for price information, consumers now also needs to figure out which
colored products are comparable. Such mental burden can leads to a shrink in the size of
his/her consideration set.

Various papers have modeled consumer choice in two stages. In the first stage, a subset of
products form the consideration set based on their attributes. In the second stage, consumers
make choice only within the consideration set formed in the first stage. The treatment
of consideration sets in this paper closely follows Abaluck and Adams (2018) and Goeree
(2008). Other papers with a consideration stage followed by a choice stage include Andrews
and Srinivasan (1995), Mehta, Rajiv, and Srinivasan (2003), and van Nierop et al. (2010).

For ease of computing, the model does not allow random coefficients. That is, explicit
preference heterogeneity and price endogeneity are not included. Loyalty variables are still
included and should capture some of the preference heterogeneity. For household i on trip
t, the utility of buying product j in the second stage of the model is:

Uijt = µbr(j) + µstr(j) + β2pijt + θbrlbrijt(λ
br) + θstrlstrijt (λ

str) + εijt (3.9)

where εijt is i.i.d type I extreme value.
For the first stage, I consider two different specifications from Abaluck and Adams (2018).

In the alternative-specific consideration (ASC) model, the probability of each product being
in the consideration set is independent from other products. In the first stage, a product is
considered if

Vijt = αbr(j) + αstr(j) + β1pijt + θbrlbrijt(λ
br) + θstrlstrijt (λ

str) > ξijt (3.10)
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Figure 3.18: Marginal Effect of Price on Choice Probability for ASC

where ξijt is i.i.d type I extreme value. The probability for consumer i to consider product
j then is

φijt =
exp
(
αbr(j) + αstr(j) + β1pijt + θbrlbrijt(λ

br) + θstrlstrijt (λ
str)
)

1 + exp
(
αbr(j) + αstr(j) + β1pijt + θbrlbrijt(λ

br) + θstrlstrijt (λ
str)
)

In the default-specific consideration (DSC) model, a household either only considers the
default product, or considers all products. The default product for household i is defined as
the most frequently purchased product by that household in the past. Let j = 0 denote the
default product. The probability that a household only considers the default product is:

πit =
exp
(
αbr(0) + αstr(0) + β1pi0t + θbrlbri0t(λ

br) + θstrlstri0t (λ
str)
)

1 + exp
(
αbr(0) + αstr(0) + β1pi0t + θbrlbri0t(λ

br) + θstrlstri0t (λ
str)
)

And the probability that a household considers all products on trip t is thus:

1− πit = 1−
exp
(
αbr(0) + αstr(0) + β1pi0t + θbrlbri0t(λ

br) + θstrlstri0t (λ
str)
)

1 + exp
(
αbr(0) + αstr(0) + β1pi0t + θbrlbri0t(λ

br) + θstrlstri0t (λ
str)
)

The models are estimated using simulated maximum likelihood. The estimation is done
using the alogit STATA package described in Abaluck, Adams, and Caceres (2017).

Figure (3.18) and (3.19) show the unconditional marginal effect of price on choice prob-
ability in ASC and DSC models. The graphs tell a similar story as before. Consumers
became less price-sensitive after strength descriptors were removed. Change in the size of
consideration sets (plus loyalty) cannot explain this change in behavior.
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Figure 3.19: Marginal Effect of Price on Choice Probability for DSC

3.5 Conclusion

In 2009, Congress passed Tobacco Control Act, which bans tobacco companies from
communicating product strengths on any marketing or packaging materials. Since then,
tobacco companies rely on color codes to continue selling cigarettes of different strengths,
i.e., relabeling Marlboro Light to Marlboro Gold and Camel Light to Camel Blue. Different
brands do not use the exact same color schemes, further creating confusion. This paper
investigates the effect of such change in label informativeness on consumer choices.

Using Nielsen’s data, I find an increase in cigarette price and an increase in price disper-
sion between different strengths after TCA went into effect. No change in overall cigarette
consumption trend is observed, which resonates with previous findings that suggest Tobacco
Control Act had minimal impact on cessation. However, the data shows a reduction in
cross-purchasing after strength descriptors were banned. Consumers became less willing to
buy brands or strengths outside of their most frequent choice.

To further explore the effect of removing strength descriptors, I fit discrete-choice mod-
els to data from a panel of smokers from 2008 to 2011. Firms had a one-year window to
comply to the new regulation, and the specific timings of compliance are unknown and likely
differ across firms. To address this issue, I divide the data into 16 quarter, separately esti-
mate every model for each quarter, and track changes in behavior over time. The estimates
show a decrease of price sensitivity after Tobacco Control Act was passed and implemented.
The effect persisted in the 6 quarter after the compliance deadline, showing no sign of dy-
namic learning. The observed change in price sensitivity is robust to specifications that
account for preference heterogeneity, state dependence, price endogeneity, and limited at-
tention/consideration set. Thus it cannot be explained by changes to these four factors. One
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remaining explanation, assuming preference for money was stable, is that consumers per-
ceived products to be more differentiated after labels changed from strengths to color codes.
This paper provides evidence on the effect of product label informativeness on consumer
choice and documents an unintended effect brought by Tobacco Control Act.
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3.6 Estimation from Section 3.4
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