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ABSTRACT 

Two different kinds of semiclassical approximations are used 

to evaluate a previously obtained quantum mechanical transition 

state theory rate expression. No assumptions, however, such as 

separability of the Hamiltonian, vibrationally adiabatic motion 

along a reaction coordinate, etc., are incorporated. Application 

is made to the collinear H + H2 reaction, and agreement with accurate 

' quantum scattering calculations is found to be reasonably good. The 

results indicate that transition state theory--provided no assumptions 

of separability are included--is probably as accurate quantum me-

chanically as it has been found to be classically for describing the 

threshold of chemical reactions with an activation barrier. 
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I. INTRODUCTION. 

'-· A. 
0 ""2 

The accurate description of the threshola region of a chemical 

reaction with an activation barrier is one of the few important 

features of chemical reaction dynamics that can not be adequately 

described by the usual classical trajectory methods. Because of 

the importance of this region for determining the thermal rate 

constant, however, this is a serious shortcoming of a completely 

classical description. The complex-valued classical trajectory 

•1 
approach of classical S-matrix theory has shown that it can de-

scribe this tunneling region well, but it is often a difficult 

calculation to carry out and one desires simpler models which are 

accurate. 

There have been several recent studies which indicate that the 

2 "fundamental assumption" of transition state theory--i.e., the 

identifica.tion of all flux through a specially 'chosen surface in 

coordinate space as reactive flux--is quite accurate for energies 

in the threshold region. 
. 3 

Pechukas and McLafferty, for example, 

haveshown that within the realm of classical mechanics transition 

state theory is exact for sufficiently low energy; for collinear 

system they have also found a simple geometrical criterion to 

determine a lower limit to this energy below which transition 

state theory is exact. Also, Chapman, Garrett, and Miller4 have 

compared the microcanonical version of classical transition state 

theory with a microcanonical classical trajectory calculation for 

the collinear and for the three-dimensional H +·H
2 

reaction. In 
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the three-dimensional case, for example, they find that transition 

state theory is in essentially exact agreement with the trajectory 
' 

results.for energies up to about 0.3 eV above the height of the 

activation barrier, and even at the relatively high energy of 1 eV 

above the barrier height it is only 10% larger thari the exact 

trajectory result. This means that in a strictly classical world 

transition state theory would give the rate constant for this reaction 

essentially exactly for temperatures up to thousands of degrees. 

5 6 Work by Marcus and by Morokuma and Karplus has also indicated 

that classical transition state theory is a good approximation 

to classical dynamics for collision energies not too far above 

the barrier height. 

As noted above, however, quantum effects are important in 

the threshold region, so that a quantum mechanical version of 

transition state theory is required. Previous quantum mechanical 

7 8 versions of transition state theory, ' however, incorporate other 

approximations--e.g., separability of the Hamiltonian about the 

saddle point of the potential surface, vibrationally adiabatic 

motion along a reaction coordinate, etc.,--in addition to the 

"fundamental assumption" itself. It is our hypothesis that these 

additional dynamical approximations are the reason that transition 

state theory has given poor ~greement with accurate quantum scatter

ing calculations; 9 i.e., we believe that the fundamental assumption 

of transition state theory is itself accurate--as in the classical 

examples described above--but that it must be implemented quantum 

mechanically and without introducing any dynamical approximations, 

such as separability. 
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Such a theory has recently been formulated,
10 

i.e., a fully 

quantum me~hanical theory which invokes the fundamental assumption 

of tr~nsition state theory but makes no other dynamical approximations. 

By introducing a semiclassical approximation for the Boltzmann 

operator,
11 

the semiclassical limit of this quantum mechanical 

transition state theory has also been derived. 12 This "semiclassical 

12 transition state theory" leads to a very interesting and physically 

intuitive picture of the tunneling dynamics which characterizes the 

threshold region: The tunneling takes place along a periodic classi-

cal trajectory on the upside-down potential surface, and the stability 

parameters13 which characterize the periodic orbit appear in the theory 

as the generalization of the normal mode frequencies of the "activated 

complex". It is important that although this model invokes a semi-

classical approximation to the· quantum transition state rate 

expression obtained in reference 10 , no approximations such as 

separability, or vibrational adiabaticity, are introduced. 

This paper presents the first numerical results of this semi-

classical limit of quantum transition state theory, here for the 

simplest possible example, the collinear H + H
2 

reaction. The 

agreement with quantum scattering calculations is reasonably 

good, and one sees, for example, how the tunneling "cuts the corner" 

increasingly as the energy is decreased. Section II summarizes the 

semiclassical limit of quantum transition state theory, and the 

results of the calculations are presented in Section IV. 

Section III describes another kind of semiclassical approach 

to evaluating the quantum rate expression, this based on a semiclassical 
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approximation for the quantum mechanical phase space distribution 

function. The results of calculations based on this model are 

also presented in Section IV, and they too are in good· agreement 

with accurate scattering calculations. It is important that this 

approach is relatively simple to implement, so that it may be a' 

practical procedure for treating reactive systems in three-

dimensions. 
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II. SUMMARY OF PERIODIC ORBIT THEORY. 

The rate constant for a collinear A + BC reaction given by 

co 

~+a(T) Qa(T)-l (2nh)-j( dE N{E) (2.1) 

where E is a total energy and Q (T) is the partition function per a 

unit volume (actually per unit length for a collinear system) 

for noninteracting reactants. N(E) is the "cunmiulative reaction 

probability" that was designated P(E) in reference 12; we have made 

this change in notation in order to conform more closely with 

previous work of other researchers. Eq. (2.1) is no approximation 

in itself, and to see how the semiclassical "periodic orbit" result 

of reference 12 relates to other theories, it is illustrative to 

review the form taken by N(E) in various quantum mechanical and 

classical approximations. 

The dynamically exact quantum mechanical rate constant, for 

example, corresponds to Eq. (2.1) with_N(E) given in terms of 

reactive S-matrix elements which come from a quantum scattering 

calculation: 

(2.2) 

where na and nb denote the quantum state of the reactant and product 

molecules, BC and AB, :r;espectively. Dynamically exact classical 

mechanics corresponds to Eq. (2.1) with N(E) given by 

··\ 
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NCL(E) 2nft -F o(E-H) 6 [f (q)] . = h /dp /dq 

1 laf I 1 + (-l)M 
X - - • P/m 2(M + 1) 2 a~ -

(~,£) = (qi,pi), i = 1,2, .•• , F (2. 3) 

where F is the number of degrees of freedom (F = 2 in the collinear 

case), f(q) is the function of coordinates which defines the surface 

in configuration space, f(q) = 0, which divides reactants and products, -
and M is the number of time a trajectory which begins with initial 

conditions ~,q)on the dividing surface recrosses this surface as time 

is run forward to+ co and backward to- 00 • NCL(E) is independent of 

the particular choice of the dividing surface. 

Classical transition state theory corresponds to Eq. (2.1) with 

N(E) given by Eq. (2.3) with the assumption M = 0, i.e., the assumption 

that there are no trajectories which recross the dividing surface; 2 ' 3 

this result,of course, is not invariant to the choice of the dividing 

surface. Thus, 

= 2nft h-F [dp [dq o(E-H) o[f(q)J !1~-~1 
- 2 aq m 

(2 .4) 

If the coordinate qF measures distance normal to the dividing surface, 

then 

and it is not hard to show that Eq. (2.4) then becomes 
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= (2.5) 

where h(x) is the step-function 

h(x) = 1, x > 0 

0, X < 0 

and the F-1 dimensional phase space average is over all degrees 

of freedom other than q ; H is the Hamiltonian for the remaining 
F F-1 

F-1 degrees of' fyeedom with the potential energy surface evaluated 

at qF = 0. For the collinear case, Eq. (2.5) reads 

2 
pu 
-- V(u 0)] 
2m . ' 

where u is the coordinate along the dividing surface (actually 

a dividing line in the collinear case) and V(u,s) is the total 

potential energy function; s is the coordinate perpendicular to 

the dividing surface. (See Figure 1 of reference 10.) It is 

clear from Eqs. (2.5) and (2.6) that NCL TST(E)' is the classical 

(2.6) 

approximation to the number of quantum states for the system with 

F-1 degrees of freedom which have energy less than or equal to E. 

The conventional quantum mechanical version of transition 

state theory
7 

is meaningful only if the potential is assumed to 

be separable; 

V(u,s) = , (2. 7) 
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v
1

(u) is a potential well, and v2 (s) a potential barrier. If 

Ptun(Et) is the one dimensional tunneling probability for the 

s degree of freedom with translational energy Etand if {En}. 

n = 0, ••• are the vibrational eigenvalues for the potential 

well v
1

, then N(E) is given in the separable limit of quantum 

mechanical transition state theory by 

NSep QM TST (E) =L P (E - E ) 
tun n 

n=O 

Although the vibrationally adiabatic model8 does not assume 

separability in precisely the same form as Eq. (2.7), it leads 

to a function N(E) of the same form as Eq. (2.8). 

The more general quantum mechanical transition state theory 

derived in reference 10 corresponds to Eq. (2.1) with N(E) given 

by 

(2.8) 

(2.9) 

which one recognizes as the obvious quantum mechanical version of 

Eq. (2.4). The semiclassical limit
12 

of this expression involves 

a periodic trajectory on the upside-down potential surface. If 

8(E) is the classical action integral (in units of h) along this 

periodic trajectory with energy E and u(E) the stability parameter 

which characterizes it (it is an unstable periodic trajectory), then 

the semiclassical limit of Eq. (2.9) is 

NSC TST(E) 1 + exp[28(E) + (n + f> u(E)] 
1 

(2.10) 
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The period of the periodic trajectory is related to the action 

integral by 

' = - 2h e (E) 

and it is useful to define the frequency w(E) by 

w(E) = 

Eq. (2.10) then reads 
( 

NSC TST(E) ~ 1 
• (2.11) 

1 + exp[26(E)- 26'(E) hw(E)(n + f>l 
n=O 

If the potential function is separable, as in Eq. (2.7), then the 

action integral 6(E) is the ordinary one dimensional barrier penetra-

tion integral for the potential barrier v2 (s), and w--which is not 

a function of energy in this case--is the harmonic frequency for the 

potential well v
1

(u). 

Eq. (2.11), however, actually gives poor agreement with the exact 

quantum mechanical NQM(E) of Eq. (2.2), and this. can be understood in 

the following way. For a separable potential function [Eq. (2.7)] 

Eq. (2.8) is the correct result for quantum mechanical transition state 

theory. The one dimensional WKB approximation for the tunneling 

probability is14 

ptun(Et) 
1 

= 
1 + exp[26(Et)] (2.12) 
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where 8(Et) is the barrier penetration integral for the potential 

barrier v2 (s) with translational energy Et. With this semiclassical 

approximation for the one dimensional tunneling probability and with 

a harmonic approximation to the energy le~els of the potential well 

Eq. (2.8) becomes 

~~ 
n=O 

1 

1 + exp[28(E 1 
(n + z-)hw] 

This is seen to be identical to Eq. (2.11) if one makes the 

approximation 

1 
8(E- (n + z->hw) 

' 1. 
8(E) - 8 (E)hw (n + z) 

i.e., if one keeps only the lowest order term irian expansion 

in powers of h. The approximation in Eq. (2.15) is certainly 

consistent with the semiclassicai nature of the theory, but for 

very quantum-like systems, such as H + H2, the frequency w is 

large enough to make Eq. (2.15) a poor approximation. 

(2.13) 

(2.14) 

(2.15) 

The idea for correcting Eq. (2.11), therefore, is to identify 

the exponent as the first two terms of .a Taylor series expansion 

in powers of h and then to "unexpand" it. One thus defines the 

energy En so that 
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· e (E > 
n 

' 1 8(E)- 8 (E) hw(E) (n+z) 

to lowest order in h, and this leads to the choice 

E = 
n 

i.e., E is the root of this equation (which is easily solved 
n 

by successive substitution). The interpretation is that E is 
n 

(2.16) 

the translational energy for motion along the "reaction coordinate"--

i.e., the periodic path--if the transverse degree of freedom is 

in vibrational quantum state n. The modified expression for 

semiclassical transition state theory becomes 

NSC TST(E) 
1 

exp[28(E )] 
n 

withE determined for a given value of E by Eq. (2.16). 
n 

In the separable limit the frequency w(E) becomes energy 

independent, and Eqs. (2.16) and (2.17) give Eq. (2.14); the 

only approximation in this case is the WKB approximation for 

(2 .17) 

one dimensional 'tunneling, and one knows this to be quite adequate. 

The interest in the semiclassical version of transition state 

theory, however, is for the nonseparable case,·. and Section IV 

gives numerical results for the ·comparison of Eqs. (2 .16) and 

(2.17) with the exact quantum result for N(E), Eq. (2.2). 



. 
'· '' 

\ .. ... •.: (,·· ... 

-12-

~- .. ., .. ' 

III. A SEMICLASSICAL PHASE SPACE DISTRIBUTION. 

The quantum mechanical rate expression of transition 

state theory obtained in reference 10 was shown to be equivalent 

to the completely classical expression if the classical distribu

tion function, h-F e-SH(p,~). is replaced by the Wigner distribution 

function, W(p.~): 

10 That is, the rate constant ofquantum transition state theory 

is 

k (T) = Q (T)-1 Jdp Jdq W(p,q) o[f(q)] .!.
2 

j2f • .£j 
-o+a a - - - - a~ m 

f(q) = 0 defining the "dividing surface" in the usual way. 

(3.1) 

(3.2) 

This Section describes another kind of semiclassical approximation 

for the rate constant which is obtained by introducing a semiclassical 

approximation for the quantum mechanical phase space distribution 

function. The distribution function we use is suggested by expressions 

which arose in considering the classical path approximation for the 

' 11 
Boltzmann operator. Thus the quantum partition function, which is 

given in terms of the distribution function by 

Q = (3. 3) 

is also given by 
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(3 .4) 

Using the classical path approximation for the matrix elements 

in Eq. (3.4) and changing variables of integration (see ref. 11 

for more details) gives the following semiclassical approximation 

for the partition functH•r; 

Q 

hB 

h-F }eofigO exp(- ~ J dT H(T)] 

0 

where H(T) = H(p(T), q(T)) is the value of the Hamiltonian at - -
"time" T, with q(T) and £(T) determined by the equations of 

motion 

' q (T) 

p (T) 

3H 
()p 

()H 

= p/m 

= = + av 
()q ()q 

(note the+ sign in Eq. (3.6b)) with initial conditions 

9 (0) = 

p(O) ~0 

Eq. (3.6) describes a classical trajectory in the time variable 

Ton the upside-down potential surface -V(q). 

(3.5) 

(3. 6a) 

(3.6b) 

(3. 7a) 

(3.7b) 
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Comparing Eqs. (3.3) and (3.5), the temptation is to 

identify the integrand of Eq. (3.5) as an approximation to 

the Wigner distribution function. Liouville's theorem, however, 

implies that 

d£o d~0 = dp(T) dq(T) 

for any T, so it follows simply that 

Q 

h8 _ T 
2 0 

exp[- ~ ~dT H(T)] 

-To 

., 

for any value of T0 , with {~(T), £(T)) still determined by Eq. 

(3.6) with the initial conditions in Eq. (3.7). Although Q is 

independent of the choice for TO in Eq. (3. 8), the. integrand-

the function of £o and ~O which one wishes to identify as the 

distribution function--is not. 

The choice for TO which seems most justified is the one 
' ' 

which is most symmetrical, 

= h8 
4 

(3. 8) 

(3. 9) 

one t.hen identifies the integrand of Eq. (3.8) as the semiclassical 

distribution function: 

h8 
4 

W(p0 ,~0 ) = h -F exp [- ~I dT H(T)] 

h8 - 4-

(3.10) 
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where the trajectory (£(T), g(T)) is determined by Eqs. (3.6)-

(3.7). This choice for TO is reinforced by the fact that for 

a one-dimensional parabolic barrier, 

V(x) 1 2 2 
= --m.ux 

2 

the one-dimensional tunneling coefficient r, 

r .av(ol ~x ~dp W(p,xl O(x) ~ IPI 

which one obtains with the distribution function in Eq. (3.10) 

is found to be 

r 1 1 = 2 hwt3/sin(2 hwS) 

which is the exact result for this case. hS The choice T 0 = 4 

is the only one which gives the correct tunneling coefficient, 

Eq. (3.13), for the parabolic barrier. One can also show that 

Eq. (3.10) gives the exact partition function for a harmonic 

oscillator, but any value of TO in Eq. (3.8) will do this. 

(3.11) 

(3.12) 

(3.13) 

One already knows that the distribution function of Eq. (3.10) 

11 gives partition functions quite well, and the only other feature 

that it must describe for the present application is tunneling. 

It was noted above that it gives the exact result for a one-dimensional 

parabolic barrier, but to get a more revealing measure of its accuracy 

in this regard we have considered tunneling through the one-dimensional 

Eckart barrier, 
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(3.14) 

16 This is a convenient test case since Johnston has tabulated . ; 

the exact value of r for the potential for a wide range of 

the two dimensionless parameters 

u 
h (3 ZV O 1/Z 

(-) 
a m 

(3 .!Sa) 

(3.15b) 

u is proportional to 1/T, T the temperature, and a is a measure 

of how quantum-like the system is (the smaller a, the more 

quantum-like). 

F . 1 h h . b h 16 1" 1gure s ows t e compar1son etween t e exact tunne 1ng 

factor r (solid line) and the result given by Eqs. (3.10) and 

(3.1Z) (broken line) as a function of u for two values of a. 

[£im r = 1 .in all cases.] The one-dimensional barrier for the 
u+O 

H + Hz reaction, for example, corresponds to a ~ 10-lZ, so that 

a = 4 is considerably more quantum-like than the H + Hz system, and 

a = ZO is more classical-like. These one-dimensional results 

are therefore quite encouraging and suggest that the distribution 

function in Eq. (3.10) is sufficiently accurate so far as the one-

dimensional aspect of tunneling is concerned. 

For the collinear H +Hz reaction Eq. (3.Z), with Eq. (3.10) 

for the distribution function, gives the rate constant as 

H(T)], (3.16) 
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where H(T) is evaluated along the classical trajectory that 

evolves on the upside-down potential surface with initial 

conditions 

s(O) = 0 

u(O) = u 

p (0) =. Ps s 

p (0) = pu u 

one integrates the equations of motion forward from T = 0 to 

T = hS 
4 ' and backward from T = 0 to T = hS . d - - ~n or er 4 ' to 

compute the exponent in the integrand of Eq. (3.16). The 

three dimensional :f,ntegral is evaluated numerically, and in 

higher dimensional systems one would probably resort to Monte 

Carlo integration methods. 

Finally, it should be noted that within this model it is 

a trivial matter to include the full classical ,dynamics of 

the reaction in real time, eliminating the need to make the 
I 

(3.17) 

"fundamental assumption" itself; this follows fronithe discussion 

in Section.V of ref. 10. For the collinear H + H2 reaction, 

for example, the necessary modification to Eq. (3.16) is simply 

to insert in the integrand the factor 

1 + (-l)M 
2(M + 1) 

where M is the number of times that the trajectory, with the 

initial conditions of Eq. (3.17), crosses the line s = 0 as real 

(3.18) 
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time is run forward to + oo and backward to - 00 • (Note that 

this trajectory is on the ordinary, right-side up potential 

surface.) This procedure essentially amounts to a Keck-type17 

classical trajectory calculation with the modification that 

the classical distribution function is replaced by the above 

semiclassical one. One thus carried out a classical trajectory 

calculation in real time to determine the "transmission 

coefficient", Eq. (3.18), and then with the same initial 

conditions carries out another trajectory calculation on 

the upside-down potential surface to determine the value of 

the semiclassical distribution function for the given initial 

point in phase space. The reader should recognize that a 

calculation such as this should be.quite practical even for 

three-dimensional A + BC collision systems. 
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IV. RESULTS. 

Consider first the results of the periodic orbit model 

described in Section II. Calculations were carried out 

for the collinear reaction, 

(4.1) 

18 
using the Truhlar-Kuppermann potential surface for H3 (a 

19 . 20 
Wall-Porter fit to the scaled Shavitt-Stevens-Minn-Karplus 

21 potential surface) and also for the Porter-Karplus potential 

surface. 

Figure 2 shows the periodic trajectory for two different 

energies E, one just below the barrier and one far below it. 

So long as E < V (the only region considered in this paper) sp . 

the trajectories are all real valued and relatively easy to 

find because of their high synunetry. There is only one such 

trajectory for a given energy. As E ~ V the trajectory becomes sp 

infinitesimally short in length and moves to the saddle point 

of the potential surface; for lower energies the periodic trajectory 

"cuts the corner" of the potential surface, the more so the lower 

the energy. 

Figures 3 and 4 show the action integral 8(E) and the 

stability parameter w(E) as a function of the total energy 

for the Truhlar-Kuppermann potential surface. One notes that 

.Hm 8(E) ::: 0 (4.2a) 
E~v 

sp 

R-im w(E) t 
::: w (4.2b) 

E~v 
sp 
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where wt is the synunetric stretch frequency at the saddle 

point, the quantity which appears in conventional transition 

state theory. It is tempting to suspect that the zero energy 

limit of w(E) might be wH , the vibrational frequency of the 
2 

isolated H
2 

molecule: 

tim 
E+O 

w(E) = ~ 
2 

Although this is clearly the trend seen in Figure 4, it does 

not appear to be quantitatively true. 

The cummulative reaction probability for the two potential 

surfaces is shown in Figures 5 and 6. The solid lines are the 

·exact quantum mechanical values,
22 

Eq. (2.2), and the dashed 

(4.3) 

lines are the semiclassical transition state theory approximation 

given by Eq. (2.17). The agreement between the two is seen to be 

reasonably good. The accuracy of this semiclassical transition 

state theory is, in fact, almost as good as the results of classical 

1 
S-matrix theory. 

The results based on the semiclassical phase. space distribution 

of Section III are shown in Figures 7 and 8; the quantity shown is 

the rate constant for reaction (4.1) as a function of temperature on 

18 21 . . 
the Truhlar-Kuppermann and Porter-Karplus potent1al surfaces, 

respectively. For comparison the rate constant of conventional 

transition state theory, 

~a = 
-1 kT 

Qa h 

t -1 
[2 sinh ~~ B) ] (4.4) 

.. ! 
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where wt is the symmetric stretch frequency at the saddle point, 

is also shown (the lower solid line). No tunneling factor is 

9 included in Eq. (4.4) since Truhlar and Kuppermann find that 

the use of any of the variety of one-dimensional tunneling 

corrections tends to do more harm than good. One sees that this 

semiclassical approximation to quantum transition state theory 

has gone a long way toward correcting the deficiencies of conventional 

transition state theory. At 200°K, for example, conventional 
I 

transition state theory is about a factor of 30 and 70 too small, 

respectively, for the Truhlar-Kuppermann and Porter-Karplus 

pote.ntial surfaces, while this semiclassical approximation to 

quantum transition state theory is correspondingly a factor of 1.6 

and 2.3 too small. 

/ 
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V. CONCLUDING REMARKS. 

The results of both of the semiclassical approximations to 

the quantum transition state theory rate constant are in reasonably 

good agreement with the corresponding quantum scattering calculations. 

The indication is, therefore, that the "fundamental assumption" of 

transition state theory is valid in the threshold region of this 

reaction quantum mechanically, just as it has been seen to be 

. 4 
classically. It is not possible to say whether the remaining 

discrepancy is due to transition state theory itself or to the 

approximations used to evaluate the quantum expression. Other ways 

of evaluating the quantum rate expression are being explored, and 

it may be that they can help answer this question. 

. 12 
The semiclassical limit, summarized in Section II is the 

theoretically more appealing of the two approaches described in this 

paper. It is obtained from a well established prescription--the 

stationary phase approximation--and the resulting periodic trajectory 

and its stability parameters have interesting physical interpretations. 

The approach based on the semiclassical distribution function of Section 

III, however, is clearly the more practical of the two, and it seems to 

be no less accurate. It would certainly seem that calculations of this 

type are feasible for three-dimensional A +.BC reactive systems, and 

applications such as these are planned. 
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FIGURE CAPTIONS 

1. One dimensional tunneling coefficient for the Eckart 

barrier [Eq. (3.14)]; the dimensionless parameters 

a and u are defined by Eq. (3.15). The solid line is 

the exact quantum mechanical values given in reference 

16, an~ the broken line the result given by Eq. (3.12) 

with the semiclassical phase space disbribution function 

of Eq. (3.10). 

2. A perspective view of the upside-down H
3 

potential surface 

with the periodic trajectories corresponding to two different 

energies. The circle shows the position of the saddle point. 

3. The classical action integral (a generalized barrier 

penetration integral) along the periodic trajectory on 

the upside-down H3 potential surface, as a function of 

total energy E. V is the height of the saddle point. sp 

4. The stability frequency {defined following Eq. (2.10)) 

for the (unstable) periodic trajectory on the upside-down 

H3 potential surface, as a function of total energy E. 
, . 

The quantity plotted is the ratio of the stability frequency 

to the vibrational frequency of the free H2 molecule, wH . 
2 

5. The cummulative reaction probability N(E) as a function of 

. 1 
total energy E = E0 + 2 hwH , here for the collinear H + H2 

2 
reaction on the Truhlar-Kuppermann (reference 18) potential 

surface. The solid line is the exact quantUm mechanical 

result, Eq. (2.2), of reference 22, and the points connected 
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by the broken line are the values given by the semiclassical 

limit of quantum transition state theory, Eq. (2.17). 

6. Same as Figure 5 except with the Porter-Karplus (ref. 21) 

potential surface. 

7. Rate constant as a function of temperature for the collinear 

H + H2 reaction, here with the Truhlar-Kuppermann (ref. 18) 

potential surface. The upper line is the exact quantum result 

(ref. 9), the lower line the result of conventional transition 

state theory, Eq. (4.4), and the points the results given by 

the Eq. (3.16) which is based on use of the semiclassical phase 

space distribution function. 

8. Same as Figure 7 except with the Porter-Karplus (ref. 21) 

potential surface. 
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