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All-optical complex field imaging using diffractive
processors
Jingxi Li 1,2,3, Yuhang Li1,2,3, Tianyi Gan1,3, Che-Yung Shen1,2,3, Mona Jarrahi 1,3 and Aydogan Ozcan 1,2,3✉

Abstract
Complex field imaging, which captures both the amplitude and phase information of input optical fields or objects,
can offer rich structural insights into samples, such as their absorption and refractive index distributions. However,
conventional image sensors are intensity-based and inherently lack the capability to directly measure the phase
distribution of a field. This limitation can be overcome using interferometric or holographic methods, often
supplemented by iterative phase retrieval algorithms, leading to a considerable increase in hardware complexity and
computational demand. Here, we present a complex field imager design that enables snapshot imaging of both the
amplitude and quantitative phase information of input fields using an intensity-based sensor array without any digital
processing. Our design utilizes successive deep learning-optimized diffractive surfaces that are structured to
collectively modulate the input complex field, forming two independent imaging channels that perform amplitude-to-
amplitude and phase-to-intensity transformations between the input and output planes within a compact optical
design, axially spanning ~100 wavelengths. The intensity distributions of the output fields at these two channels on
the sensor plane directly correspond to the amplitude and quantitative phase profiles of the input complex field,
eliminating the need for any digital image reconstruction algorithms. We experimentally validated the efficacy of our
complex field diffractive imager designs through 3D-printed prototypes operating at the terahertz spectrum, with the
output amplitude and phase channel images closely aligning with our numerical simulations. We envision that this
complex field imager will have various applications in security, biomedical imaging, sensing and material science,
among others.

Introduction
Optical imaging can characterize diverse properties of

light, including amplitude, phase, wavelength, and polar-
ization, which provides abundant information about
samples, such as their morphology and composition.
However, conventional image sensors and focal plane
arrays, based on e.g., Complementary Metal-Oxide-
Semiconductor (CMOS) or Charge-Coupled Device
(CCD) technologies, are inherently constrained to
detecting only the intensity of the optical field impinging
on their active area. Measuring the phase information of a
complex field presents challenges, which require indirect

encoding through interferometric or holographic detec-
tion systems1–3. Some of the traditional examples of phase
imaging techniques include Zernike phase contrast
microscopy and interferometric microscopy. Remarkedly,
interferometry-based techniques4–6 exhibit very high
accuracy in phase measurements (exceeding 1/100 of a
wavelength) and allow one to directly obtain wavefront
aberrations at very large apertures; however, the relative
complexity of decoding interferograms and the sensitivity
of the measurement equipment to vibrations hinder their
wide applications. Subsequent developments in quantita-
tive phase imaging (QPI) have enabled high-precision
characterization of phase information; advances such as
the Fourier phase microscopy7, Hilbert phase microscopy8

and digital holographic microscopy9–15 have also
emerged, making QPI a potent label-free optical mea-
surement technique. Nevertheless, these QPI methods
often necessitate relatively bulky experimental setups and
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rely on iterative algorithms based on multiple measure-
ments to digitally reconstruct the desired phase infor-
mation, leading to slow imaging speeds. In parallel, Shack-
Hartmann sensors16,17 can provide phase information by
analyzing wavefront distortions inferred from the dis-
placement of light spots created by a perforated mask.
This approach, while eliminating the need for a reference
wavefront or field, faces challenges in detection resolution
due to its discrete measurement nature and still demands
data processing for precise phase or wavefront recon-
structions. In addition to these, there are other methods
that decompose the wavefront into discrete elements,
such as Zernike polynomials, offering a direct path to
understanding aberrations in wavefronts exhibiting small
phase variations18–21. However, these approaches are less
suitable for investigating phase objects with complex
structures and high spatial frequencies, underscoring a
limitation in their broad applicability.
Recently, fueled by the advances made in deep learning,

the application of deep neural networks has been adopted
for accurate and rapid reconstruction of phase informa-
tion in complex fields through a single feed-forward
operation22–29. While these deep learning-based approa-
ches offer considerable benefits, they typically demand
intensive computational resources for network inference,
requiring the use of graphics processing units (GPUs).
Simultaneously, the progress in micro- and nano-
fabrication technologies has facilitated the development
of metasurfaces30–38 and thin-film optical compo-
nents39,40 for QPI applications. However, the functionality
of these devices still relies on indirect encoding processes
that generate intensity variations on the sensor plane,
such as diffused speckles30 or polarized interference pat-
terns38. These existing solutions, therefore, necessitate
digital computation for image reconstruction and, in
certain cases, also require the incorporation of additional
hardware along the optical path, such as polarizers and
polarization cameras.
In this work, we demonstrate the design of a complex

field imager that can directly capture the amplitude and
phase distributions of an incoming field using an
intensity-only image sensor array. As shown in Fig. 1a,
this complex field imager is composed of a series of
spatially engineered diffractive surfaces (layers), which are
jointly optimized using supervised deep learning algo-
rithms to successively perform the modulation of
incoming complex fields. This diffractive architecture,
known as a diffractive optical neural network, has pre-
viously been explored for all-optical information proces-
sing covering various applications, including all-optical
image classification41,42, space-to-spectrum encoding42,43,
logic operations44–46, optical phase conjugation47, among
others48–60. Within the architecture of our diffractive
complex field imager, the diffractive surfaces are trained

to simultaneously perform two tasks: (1) an amplitude-to-
amplitude (A→A) transformation and (2) a phase-to-
intensity (P→ I) transformation. Here, the first task
involves mapping the amplitude of the incoming complex
field to a specific output field of view (FOV) that is solely
dedicated to amplitude imaging, independent of the input
wave’s phase profile. The second task, on the other hand,
aims to approximate a nonlinear transformation by con-
verting the phase of the incoming wave into an intensity
pattern at another output FOV, exclusively used for
quantitative phase imaging, QPI. Therefore, by placing
complex objects or feeding complex fields into the input
FOV of the diffractive complex field imager and mea-
suring the intensity distributions at its output FOVs, the
amplitude and phase information of the input complex
objects/fields can be directly obtained within a single
intensity-only image recording step, eliminating the
necessity for any form of image reconstruction algo-
rithms. In addition to this spatially multiplexed design of
the diffractive complex field imager, termed design I (Fig.
1a), we also explored additional complex field imager
designs by incorporating wavelength multiplexing. As
illustrated in Fig. 1b, c, these wavelength multiplexed
designs, termed designs II and III, operate by detecting
the output amplitude and phase signals at two distinct
wavelengths (λ1 and λ2, respectively). The difference
between designs II and III is that design II utilizes a shared
FOV for both the amplitude and phase channel outputs,
while design III maintains two spatially separated FOVs,
each dedicated to either the output amplitude or phase
images.
After completing the training of these different designs,

we blindly tested the performance and generalization
capabilities of our trained diffractive complex field ima-
ger models. We quantified their imaging errors using
thousands of examples of input complex fields, each
composed of independent information channels encoded
in the amplitude and phase of the input field. The results
demonstrated that our diffractive models could success-
fully generalize to new, unseen complex test fields,
including those with structural features distinctly differ-
ent from the training objects. Through numerical simu-
lations, we further analyzed the spatial resolution and
sensitivity of both the amplitude and phase channels of
our diffractive complex field imagers. These analyses
revealed that our designs could resolve amplitude fea-
tures with a linewidth of ≥1.5λm and phase features with a
linewidth of ≥3λm, where λm represents the mean wave-
length. Furthermore, our studies showed that by inte-
grating an additional diffraction efficiency-related loss
term into the training function, one could achieve dif-
fractive imager models with enhanced output power
efficiencies with minimal compromise in imaging
performance.
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Apart from these numerical analyses, we also conducted
an experimental proof-of-concept demonstration of our
diffractive complex field imagers using the terahertz part
of the spectrum by fabricating the resulting diffractive
layers using 3D printing. For our experiments, we con-
structed test objects (never seen during the training) with
spatially structured amplitude or phase distributions
through 3D printing and surface coating techniques. Our
experimental results successfully reconstructed the

amplitude and phase images of the test objects, closely
matching our numerical simulations and the ground
truth, validating the effectiveness of our diffractive com-
plex field imager designs. While our experimental
demonstrations were conducted in the terahertz spec-
trum, our designs are scalable and can be adapted to other
spectral bands by scaling their dimensions proportional to
the wavelength of operation. The compact size of our
diffractive designs, with an axial span of ~100 × λm,
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Fig. 1 Schematics for different designs of our diffractive complex field imager. a Illustration showing a spatially multiplexed design for the
diffractive complex field imager (design I), which performs imaging of the amplitude and phase distributions of the input complex object
simultaneously by channeling the output amplitude and phase images onto two spatially separate FOVs at the output plane, i.e., the amplitude and
phase FOVs (or FOVAmp and FOVPhase). b Illustration for an alternative design of the diffractive complex field imager using wavelength multiplexing
(design II), wherein the output amplitude and phase profiles are directly measured using a common output FOV but at different wavelengths, i.e., λ1
and λ2, respectively. c, Illustration for design III of the diffractive complex field imager, wherein the output amplitude and phase images are measured
using two spatially separate FOVs (FOVAmp and FOVPhase) and also at different wavelengths (λ1 and λ2, respectively)
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facilitates easy integration into existing optical imaging
systems and focal plane arrays that operate at different
parts of the electromagnetic spectrum, including the
visible spectrum. For operation within the visible band,
our design can be physically implemented through various
nano- and microfabrication techniques, such as two-
photon polymerization-based nanolithography50,61. Fur-
thermore, this complex field imager design also does not
include any components that are sensitive to the polar-
ization of light, maintaining its amplitude and phase
imaging function regardless of the input polarization
distribution of the input field. Given all these advantages,
including the small footprint, speed of all-optical com-
putation and low-power operation, we believe that this
all-optical complex field imaging approach will find broad
applications in e.g., defense/security, biomedical imaging,
sensing and material science.

Results
Designs of diffractive complex field imagers
Figure 1a illustrates a spatially multiplexed design of our

diffractive complex field imager, termed the design I. This
diffractive imager is composed of 5 diffractive layers (i.e.,
L1, L2, …, L5), where each of these layers is spatially coded
with 200 × 200 diffractive features, with a lateral dimen-
sion of approximately half of the illumination wavelength,
i.e., ~λ/2. These diffractive layers are positioned in a
cascaded manner along the optical axis, resulting in a total
axial length of 150λ for the entire design. A complex input
object, iðx; yÞ ¼ Aðx; yÞejϕðx;yÞ, illuminated at λ is placed at
the input plane in front of the diffractive layers. This
complex object field exhibits an amplitude distribution
Aðx; yÞ that has a value range of [ADC, 1], along with a
phase distribution ϕðx; yÞ ranging within [0, απ]. Here,
ADC denotes the minimum amplitude value of the input
complex field, and α is the phase contrast parameter of
the input complex field. Without loss of generality, we
selected default values of ADC and α as 0.2 and 1,
respectively, for our numerical demonstrations. Note that
it’s essential to work with ADC ≠ 0 since otherwise the
phase would become undefined. After the input complex
fields are collectively modulated by these diffractive layers
L1-L5, the resulting optical fields o λð Þ at the output plane
are measured by the detectors within two spatially sepa-
rated output FOVs, i.e., FOVPhase and FOVAmp, which
produce intensity distributions oPhase λð Þj j2 and oAmp λð Þ�� ��2
that correspond to the phase and amplitude patterns of
each input complex field, respectively. In addition, we also
defined a reference signal region R at the periphery of the
FOVPhase, wherein the average measured intensity across
R is used as the reference signal RðλÞ for normalizing the
quantitative phase signal oPhase λð Þj j2. This normalization
process is essential to ensure that the detected phase
information is independent of the input light intensity

fluctuations, yielding a quantitative phase image
OPhase λð Þ ¼ oPhase λð Þj j2

R λð Þ , regardless of the diffracted output
power. Overall, the objective of our training process is to
have the phase image channel output approximate the
ground truth phase distribution of the input complex
field, i.e., OPhase λð ÞϕðλÞ, demonstrating an effective phase-
to-intensity (P→ I) transformation. Concurrently, the
training of the diffractive layers also aims to have the
diffractive output image in the amplitude channel, i.e.,
oAmp λð Þ�� ��, proportionally match the ground truth ampli-
tude distribution of the input complex field after sub-
tracting the amplitude DC component ADC, i.e.,
oAmp λð Þ�� �� / ðA λð Þ � ADCÞ, thereby achieving a successful
amplitude-to-amplitude (A→A) transformation per-
formed by the diffractive processor. Note that phase-to-
intensity transformation is inherently a nonlinear func-
tion58. In the phase imaging channel of our diffractive
complex-field imager, the amplitude-squared operation as
part of the intensity measurement at the sensor plane
represents the only occurrence of nonlinearity within the
processing pipeline.
In addition to the spatially multiplexed design I

described above, we also created an alternative complex
field imager design named design II by incorporating
wavelength multiplexing to construct the amplitude and
phase imaging channels. As illustrated in Fig. 1b, this
approach utilizes a dual-color scheme, where the ampli-
tude and phase of the input images are captured sepa-
rately at two distinct wavelengths, with λ1 dedicated to the
phase imaging channel and λ2 dedicated to the amplitude
imaging channel. As an empirical parameter, without loss
of generality, we selected λ2 = λ1 × 1.28 and λ1 + λ2 = 2λ
for our numerical diffractive designs. With this wave-
length multiplexing strategy in design II, the amplitude
and phase imaging FOVs can be combined into a single
FOV – as opposed to 2 spatially separated FOVs as
employed by design I shown in Fig. 1a. Consequently, the
output amplitude and phase images, i.e., oAmp λ2ð Þ�� �� and
OPhase λ1ð Þ, can be recorded by the same group of sensor
pixels.
As illustrated in Fig. 1c, we also developed an additional

complex field imager design, referred to as design III,
which integrates both space and wavelength multiplexing
strategies in constructing the amplitude and phase ima-
ging channels. Specifically, design III incorporates two
FOVs that are spatially separated at the output plane
(similar to design I) for amplitude and phase imaging, also
utilizing two different wavelength channels (akin to design
II) to encode the output amplitude/phase images
separately.
Following these design configurations (I, II and III)

depicted above, we performed their numerical modeling
and conducted the training of our diffractive imager
models. For this training, we constructed an image
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dataset comprising 55,000 images of EMNIST hand-
written English capital letters, and within each training
epoch, we randomly grouped these images in pairs – one
representing the amplitude image and another repre-
senting the phase image – thereby forming 27,500
training input complex fields. The phase contrast para-
meter αtr used for constructing these training input
complex fields was set as 1. We utilized deep learning-
based optimization with stochastic gradient descent to
optimize the thickness values of the diffractive features
on the diffractive layers. This training was targeted at
minimizing a custom-designed loss function defined by
the mean squared error (MSE) between the diffractive
imager output amplitude and phase images with respect
to their corresponding ground truth. More information
about the structural parameters of the diffractive com-
plex field imagers, the specific loss functions employed,

and additional aspects of the training methodology can
be found in the Methods section.

Numerical results and quantitative performance analysis of
diffractive complex field imagers
After the training phase, the resulting diffractive layers of

our complex field imager models following designs I, II and
III are visualized in Supplementary Figs. S1a, S2a and Fig.
2a, respectively, showing their thickness value distribu-
tions. To evaluate and quantitatively compare the complex
field imaging performances of these diffractive processors,
we first conducted blind testing by selecting 10,000 test
images from the EMNIST handwritten letter dataset that
were never used in the training set and randomly grouped
them in pairs to synthesize 5000 complex test objects. To
compare the structural fidelity of the resulting output
amplitude and phase images (i.e., oAmp λð Þ�� �� and OPhase)
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Fig. 2 Blind testing results of the diffractive complex field imager using design III. a Thickness profile of the trained layers of the diffractive
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datasets, respectively, demonstrating external generalization to image datasets with different structural distributions
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produced by our diffractive complex field imager models,
we quantified the peak signal-to-noise ratio (PSNR)
metrics between these diffractive output images and their
corresponding ground truth (i.e., A and ϕ). Our results
revealed that, for the diffractive imager model using design
I that performs space-multiplexed complex field imaging,
the amplitude and phase imaging channels provided PSNR
values of 16.47 ± 0.96 and 14.90 ± 1.60, respectively,
demonstrating a decent imaging performance. Addition-
ally, for the diffractive imager models using designs II (and
III), these performance metrics became 16.46 ± 1.02 and
14.98 ± 1.51 (17.04 ± 1.06 and 15.06 ± 1.63), respectively.
Therefore, design III demonstrated a notable performance
advantage over the other two models in both phase and
amplitude imaging channels when both the space and
wavelength multiplexing strategies were used. Apart from
these quantitative results, we also presented exemplary
diffractive output images for the three models of designs I,
II and III in Supplementary Figs. S1b, S2b and Fig. 2b,
respectively. These visualization results clearly show that
our diffractive output images in both amplitude and phase
channels present structural similarity to their input ground
truth, even though these input complex fields were never
seen by our diffractive models before. These analyses
demonstrate the internal generalization of our diffractive
complex field imagers, indicating their capability to process
new complex fields that have similar statistical distribu-
tions to the training dataset.
We also conducted blind testing of these diffractive

complex field imager designs by synthesizing input fields
from other datasets where the complex images exhibit
distinctly different morphological features compared to
the training complex field images. For this purpose, we
selected the MNIST handwritten digits62 and the Quick-
Draw image63 datasets, and for each dataset, we synthe-
sized 5000 input complex fields to test our diffractive
models blindly. When using the MNIST-based complex
field images, the amplitude and phase PSNR values of our
diffractive complex field imager models using designs I, II
and III were quantified as (16.59 ± 0.71, 15.42 ± 1.28),
(16.40 ± 0.68, 15.53 ± 1.25) and (17.05 ± 0.78, 15.59 ± 1.32),
respectively. The corresponding diffractive output images
for these results are also exemplified in Supplementary
Figs. S1c, S2c and Fig. 2c. When testing using input
complex fields synthesized from the QuickDraw images,
these PSNR values revealed (14.42 ± 0.94, 13.34 ± 1.10),
(14.17 ± 1.01, 13.54 ± 1.61) and (14.72 ± 0.97, 13.46 ± 1.13),
with exemplary diffractive output images visualized in
Supplementary Figs. S1d, S2d and Fig. 2d, respectively.
Once again, these PSNR values, along with the visualiza-
tion results of the output patterns, demonstrate that all
our diffractive models (following designs I, II and III)
achieved successful reconstructions of the amplitude and
phase channel information of the input complex fields,

wherein the design III model presented slightly improved
performance over the other two designs. Importantly,
these analyses demonstrate the external generalization
capabilities of our diffractive imagers, positioning them as
general-purpose complex field imagers that can handle
input complex field distributions markedly distinct from
those encountered during their training stage.
Next, we quantified the complex field imaging perfor-

mance of our diffractive models as a function of the phase
contrast and spatial resolution of the incoming complex
fields. For this analysis, we selected various grating pat-
terns to form our test images, which have different line-
widths and are oriented in either horizontal or vertical
directions. We first considered using these grating pat-
terns encoded within either the phase or the amplitude
channels of the input complex fields, forming phase-only
or amplitude-only grating test objects. To be more spe-
cific, the phase-only input fields were set to have a uni-
form distribution within their amplitude channel, while
the amplitude-only input fields were set to have their
phase channel values set as zero/constant. For both kinds
of gratings, we selected their linewidths as 1.5λm or 3λm to
generate the grating patterns, and tested the spatial
resolution for the amplitude and phase imaging channels
using our diffractive models; here λm = λ for the design I
model and λm = (λ1 + λ2)/2 for the designs II and III. For
phase-only gratings with linewidths of 3λm, we also used
different phase contrast parameters αtest 2 {0.25, 0.5, 1} to
form grating patterns with different phase contrast so that
we can evaluate the sensitivity of phase imaging by our
diffractive complex field processors. To better quantify
the performance of our diffractive complex field imagers
for these test grating patterns, we used a grating image
contrast (Q) as our evaluation metric, defined as:

Q ¼ Imax � Imin

Imax þ Imin
ð1Þ

The results of using these amplitude- or phase-only
grating patterns as input fields to our diffractive models
using designs I, II and III are provided in Supplementary
Figs. S3a, b, S4a, b and Fig. 3a, b, respectively. Through
visual inspection and quantification of grating image
contrast Q values, our diffractive imager models were
found to resolve most of the amplitude-only grating
objects of different linewidths and orientations, with
quantified Q values consistently above 0.17. The only
exception is that the diffractive model using design II fell
short in resolving the horizontal grating patterns with 1.5
λm linewidth, achieving Q < 0.1. For the phase-only grat-
ing inputs, all three diffractive models succeeded in
resolving the gratings with αtest 2 {0.5, 1} and linewidths
of 3λm, presenting Q values consistently over 0.19.
However, when using the phase-only grating inputs with
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αtest ¼ 0.25 and linewidths of 3λm or those with αtest ¼ 1
and linewidths of 1.5λm, all of our diffractive models
struggle to provide consistently clear grating images,
exhibiting relatively poor Q values of ≤0.1. These findings
reveal that our diffractive imager models exhibit similar
performance in imaging resolution and phase sensitivity,
providing an amplitude imaging resolution of >1.5λm for
amplitude-only objects and a phase imaging resolution of
≥3λm for phase-only objects with αtest ≥ 0.5. We also cal-
culated the average Q values for different diffractive
models using these amplitude- or phase-only grating
inputs; the design III model emerges as the most com-
petitive one, presenting average Q values of 0.418 and
0.181 for the amplitude and phase channels, respectively.
The suboptimal performance of the design II model, we
believe, can primarily be attributed to its utilization of the
same output FOV for both the phase and amplitude image
formation. This strategy results in the overlap of the dif-
fractive features to serve the two imaging channels,
thereby not fully utilizing the degrees of freedom provided
by the diffractive layers. This is also corroborated by the
visualization of the diffractive layer designs shown in
Supplementary Fig. S2a: compared to designs I and III, the
areas with significant modulation patterns in the design II
layers are significantly smaller and more concentrated in
the central region, indicating a less efficient utilization of
the diffractive degrees of freedom available for optimiza-
tion, consequently limiting its imaging performance.
In addition to the analyses of spatial resolution and

phase sensitivity, we also utilized amplitude- and phase-
only grating images to investigate the crosstalk between
the amplitude and phase imaging channels of our dif-
fractive complex field imagers. Since the amplitude-only
grating inputs have constant/zero phase distributions, the
ground truth of their corresponding diffractive output
images in the phase channel should have zero intensities,
where the residual represents the crosstalk coming from
the amplitude channel. Similarly, for the phase-only
grating inputs that have a uniform amplitude distribu-
tion (ADC), their diffractive output images in the ampli-
tude channel should reveal no intensity distributions, with
the residual representing the crosstalk coming from the

phase channel. As shown by the diffractive output images
in Supplementary Figs. S3a, b, S4a, b and Fig. 3a, b, we
observe some crosstalk components in the amplitude and
phase channel imaging results. To provide a quantitative
evaluation of this crosstalk, we used the signal-to-
crosstalk ratio (SCR) metric, defined as:

SCRPhase ¼
P

OPhase!PhaseP
OAmp!Phase

ð2Þ

SCRAmp ¼
P

oAmp!Amp

�� ��2P
oPhase!Amp

�� ��2 ð3Þ

where OPhase!Phase and OAmp!Phase denote the resulting
output phase image when encoding the same grating
pattern within the phase and amplitude channels of the
input complex field, respectively; the first term represents
the true signal, and the latter represents the crosstalk term
in Eq. (2). Similarly, oAmp!Amp

�� �� and oPhase!Amp

�� �� denote
the resulting output amplitude image when encoding the
same grating pattern within the amplitude and phase
channels of the input complex field, respectively. Σ denotes
the intensity summation operation across all the pixels.
Following these definitions, we quantified the SCRPhase and
SCRAmp values for all the grating imaging outputs in
Supplementary Figs. S3a, b, S4a, b and Fig. 3a, b. These SCR
analyses reveal that, for all the diffractive imager models, the
grating inputs with 1.5λm linewidth and αtest ¼ 1 present a
~30% lower SCRAmp and a ~53% lower SCRPhase when
compared to their counterparts with 3λm linewidth,
revealing that imaging of finer, higher-resolution patterns
is more susceptible to crosstalk. Furthermore, we found that
an increase in the input phase contrast (αtestÞ leads to more
crosstalk in the output amplitude channel, which results in
a lower SCRAmp value; for example, from >3.5 for αtest ¼
0.25 down to 2.5-3 for αtest ¼ 1. Additionally, we calculated
the average SCRPhase and SCRAmp values across these
grating images for different diffractive imager models; for
the diffractive models using designs I, II and III, the average
SCRAmp values are 2.805, 3.178 and 3.155, respectively, and
the average SCRPhase values are 2.331, 2.262 and 2.252,
respectively.

(see figure on previous page)
Fig. 3 Performance analysis of the diffractive complex field imager model shown in Fig. 2. a Imaging results using phase-only gratings as input
fields. The binary phase grating patterns encoded within the phase channel of the input objects are shown and compared with the resulting output
amplitude and phase images produced by our diffractive imager (i.e., oAmp λð Þ�� �� and OPhase). For each diffractive output image, the grating image
contrast Q and SCR values were quantified and shown in red and blue numbers, respectively. b Same as in a, except that the amplitude-only gratings
are used as input fields. c Imaging results using complex grating objects as input fields. These grating test objects include ones with the same grating
patterns encoded in both the amplitude and phase channels (top), as well as ones where horizontal and vertical gratings are orthogonally placed,
with one encoded in the phase channel of the input field and the other encoded in the amplitude channel (bottom)
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These analyses were performed based on amplitude and
phase-only grating objects. Beyond that, we also used
complex-valued gratings to further inspect the imaging
performance of our diffractive models. Specifically, we
created complex test fields that have the same grating
patterns encoded in both the amplitude and phase
channels. The results reported in the top row of the
Supplementary Figs. S3c, S4c and Fig. 3c revealed that all
our diffractive imager models are capable of distinctly
resolving complex gratings with 3λm linewidth, while
being largely able to resolve those with 1.5λm linewidth,
albeit with occasional failure. We further created complex
fields by orthogonally placing horizontal and vertical
gratings, with one of these gratings encoded in the phase
channel of the input field and the other encoded in the
amplitude channel. As evidenced by the bottom row of
Supplementary Figs. S3c, S4c and Fig. 3c, our diffractive
models could successfully reconstruct the amplitude and
phase patterns of the input complex fields with a grating
linewidth of 3λm.

Impact of input phase contrast on the performance of
diffractive complex field imagers
In the analyses conducted so far, all the input fields fed

into our diffractive model maintained a consistent phase
contrast with an α value of 1, i.e., ϕ 2 ½0;π�, regardless of
the training and testing phases. Next, we investigated
the impact of greater input phase contrast on the per-
formance of diffractive complex field imagers. For this
analysis, we utilized the same diffractive design III
model shown in Fig. 2 and tested its imaging perfor-
mance using the same set of complex test objects used
in Fig. 2b, but with an increased object phase contrast,
αtest, chosen within a range between 1 and 1.999 (i.e., ϕ
∈ [0, 2π)). The corresponding results are shown as the
blue curve in Fig. 4a, illustrating a degradation in the
imaging performance of the diffractive model as αtest
increases. This degradation is relatively minor in the
PSNR results for the amplitude channel but more pro-
nounced for the phase channel. Specifically, as αtest
increases from 1 to 1.5, the average amplitude PSNR
value slightly drops from 17.04 to 15.82, while the phase
PSNR falls from 15.06 to 11.96. When αtest approaches 2,
the average amplitude and phase PSNR values further
decrease to 15.34 and 9.87, respectively. The visual
examples in Fig. 4b and Supplementary Fig. S5a, which
correspond to the cases of αtest = 1.5 and 1.25, respec-
tively, reveal that the amplitude channel of the dif-
fractive model can consistently resolve the amplitude
patterns of the objects, which were never encountered
during the training phase. However, in the phase
channel, despite the patterns being distinguishable and
very well matching the ground truth, their intensities
were lower than the correct level, leading to incorrect

quantitative phase values and, thus, a drop in the phase
PSNR values.
To address this limitation, we explored training two

additional diffractive models using higher phase contrast
values αtr of 1.25 and 1.5, respectively. The quantitative
evaluation results for these models are presented in Fig. 4a
as orange and green curves, respectively. The findings
indicate that, compared to the original model trained with
αtr = 1, the diffractive model employing αtr = 1.5 exhibits
a significantly enhanced imaging performance in the
phase channel for αtest > 1.25. For instance, at αtest = 1.5,
the phase PSNR improved from 11.96 to 14.42, while the
amplitude PSNR remained almost identical across various
αtest values. A similar improvement was also observed
with the other diffractive model trained using αtr = 1.25.
These findings are further confirmed by the exemplary
visualization results shown in Fig. 4c and Supplementary
Fig. S5b; the quantitative phase signals in the phase
channel of these new diffractive models markedly ame-
liorate the issues encountered by the original model.
Nonetheless, it is also noted that these new models
exhibited some minor disadvantages; for example, the
diffractive model trained using αtr = 1.5 demonstrated
slightly inferior phase PSNR results at αtest < 1.25 com-
pared to the original model. This suggests a propensity of
our diffractive imager models to achieve better imaging
performance on complex test objects with phase dynamic
ranges akin to those encountered during the training.
It is also important to note that the current design of

our diffractive complex field imager is specifically tailored
for imaging thin complex objects. For such thin objects,
their phase variations are relatively slower. In contrast,
substantially thicker objects can exhibit rapidly varying
phase distributions, leading to phase wrapping issues.
These complexities would pose a challenge for the dif-
fractive network-based complex field imager to perform
effective processing and image formation. To potentially
address this challenge, incorporating a wavelength-
multiplexing strategy (similar to that used in certain
QPI methods) into the diffractive imager framework could
be a potential path forward. Such an approach, which is
left as future work, may involve leveraging the diffractive
network for all-optical processing across multiple wave-
length channels, followed by minimal digital post-
processing to accurately reconstruct quantitative phase
signals from wrapped phase information acquired at dif-
ferent wavelengths.

Output power efficiency of diffractive complex field
imagers
To quantify the output diffraction efficiencies of our

complex field imagers, we utilized 5000 test complex
fields created from the EMNIST image dataset, and cal-
culated the average diffraction efficiencies of our
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diffractive complex field imager models. By integrating an
additional loss term into our training loss function to
balance the complex field imaging performance along
with the output diffraction efficiency, we demonstrated
the feasibility of increased power efficiency for all three
designs (I, II and III), with minimal compromise in the
output image quality. The added loss term, denoted as
LEff , is specifically designed to control and improve the
output diffraction power efficiency, with its definition

given by:

LEff ¼ LEff ; Phase þ LEff ;Amp ð4Þ

LEff ; Phase ¼
ηth � ηPhase; if ηPhase<ηth

0; if ηPhase � ηth

�
ð5Þ
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Fig. 4 Analysis of the impact of input phase contrast on the imaging performance of diffractive complex field imagers. a Blind testing
amplitude and phase PSNR values of diffractive complex imager models trained using complex objects constructed with different values of training
phase contrast parameter αtr , reported as a function of the phase contrast parameter used in testing (αtestÞ. b Exemplary output amplitude and phase
images created by the diffractive complex field imager model shown in Fig. 2, which was trained using αtr = 1, but tested here using αtest = 1.5.
c Same as b, except that the diffractive complex field imager model was trained using αtr = 1.5
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LEff ;Amp ¼
ηth � ηAmp; if ηAmp<ηth
0; if ηAmp � ηth

(
ð6Þ

where ηPhase and ηAmp denote the output diffraction
power efficiency within FOVPhase and FOVAmp, respec-
tively, with their detailed definition provided in the
Methods section. ηth refers to the target diffraction
efficiency threshold for η. By minimizing the loss function
that incorporates the LEff term, we trained 6 diffractive
imager models for each design (I, II and III). For each of
these models, we set ηth at distinct levels: 0.1%, 0.2%, 0.4%,
0.8%, 1.6% and 3.2%, and trained the respective model to
satisfy the specified ηth. Note that all these new diffractive
complex field imager models maintain the same physical
architecture as the designs illustrated in Fig. 1, and they
were trained using the same EMNIST-based complex
image dataset. A performance comparison for these
models is provided in Fig. 5, where their amplitude and
phase average PSNR values were calculated across the test
set and shown as a function of their average diffraction
efficiency values. Taking the architecture of design III as
an example, one of our complex field imager designs

achieved an output power efficiency of ~0.2% in both
amplitude and phase channels, resulting in average PSNR
values of 14.72 ± 1.47 and 16.64 ± 1.03 for the two
corresponding channels, respectively. An additional
model, optimized with a heightened emphasis on the
output power efficiency, demonstrated the capability of
performing complex field imaging with >0.8% diffraction
efficiency in both the phase and amplitude channels, while
achieving average amplitude and phase PSNR values of
13.51 ± 1.32 and 16.74 ± 1.05, respectively. A similar trend
was also observed for the other models using designs I
and II, where a significant increase in the output
diffraction efficiency could be achieved with a modest
trade-off in the output image quality. Moreover, a
comparative assessment of the three different designs
under various output diffraction efficiencies reaffirms the
overall performance advantage of design III: it presents
remarkable advantages over design I in phase imaging
while outperforming design II in amplitude imaging.
Overall, Fig. 4 serves as a “designer rule plot”, which offers
guidance in selecting suitable diffractive complex field
imager models by balancing the phase/amplitude imaging
fidelity with output power efficiency according to specific
application requirements.

Experimental validation of diffractive complex field
imagers
We performed experimental validation of our diffractive

complex field imagers using the terahertz part of the
spectrum, specifically employing the design II configura-
tion as illustrated in Fig. 1b; we used λ1 = 0.75 mm and λ2
= 0.8 mm for the phase and amplitude imaging channels,
respectively. We used three diffractive layers for our
experimental design, each layer containing 120 × 120
learnable diffractive features with a lateral size of ~0.516
λm (dictated by the resolution of our 3D printer). The
axial spacing between any two adjacent layers (including
the diffractive layers and the input/output planes) was
chosen as ~25.8λm (20 mm), resulting in a total axial
length of ~103.2λm for the entire design. As a proof of
concept, we designed two experimental models that use
different input phase contrast parameters, αexp ¼ 1 and
0.5. These experimental models were trained using a
dataset composed of phase-only and amplitude-only
objects, which feature randomly generated spatial pat-
terns with binary phase values of {0, αexpπ} or amplitude
values of {0, 1}. In these proof of concept experiments, we
did not employ input objects with spatial distributions in
both the amplitude and phase channels due to the fabri-
cation challenges of such objects; however, the amplitude-
only or phase-only objects used here still share a single
common input FOV and are processed by the same dif-
fractive imager. Therefore, this experimental demonstra-
tion serves as an effective proof of our all-optical complex
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Fig. 5 The trade-off between the complex field imaging
performance and the output diffraction efficiency of diffractive
complex field imagers. The PSNR on the y-axis reflects the mean
value computed over the entire 5000 complex test objects derived
from the EMNIST dataset. The data points with black borders
correspond to the diffractive imager models trained exclusively using
the structural fidelity loss function while disregarding diffraction
efficiency, i.e., the ones shown in Supplementary Figs. S1a, S2a and
Fig. 2a. The other data points originate from models trained with a
diffraction efficiency-related penalty term, as defined in Eq. (12). These
models were trained using varying target diffraction efficiency
thresholds (ηth), specifically set at 0.1%, 0.2%, 0.4%, 0.8%, 1.6% and
3.2% corresponding to the data points from left to right on the plot,
demonstrating the trade-off between the imaging performance and
the output diffraction efficiency
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field imaging framework, which has never been demon-
strated before in prior works.
After the training, the resulting layer thickness profiles

of the diffractive models with αexp = 1 and 0.5 are visua-
lized in Fig. 6a, d, respectively. These diffractive layers
were fabricated using 3D printing, with their corre-
sponding photographs showcased in Fig. 6b, e. Addi-
tionally, we constructed phase-only or amplitude-only test
objects, which were never seen by the trained diffractive
models. The phase-only test objects were fabricated by 3D
printing layers with spatially varying height profiles
representing the phase distributions, and the amplitude-
only objects were created by padding aluminum foils onto
3D-printed flat layers to delineate the amplitude patterns.
In our proof-of-concept experiments, these objects were
designed to have 5 × 5 pixels, each featuring a size of
4.8 mm (~6.19λm). As shown in Fig. 7b, the printed dif-
fractive layers and input complex objects were assembled
using a custom 3D-printed holder to ensure that their
relative positions follow our numerical design. In our
experiments, we employed a THz source operating at λ1
= 0.75 mm and λ2 = 0.8 mm, and used a detector to

measure the intensity distribution at the output plane,
yielding the output amplitude and phase images. The
photograph and schematic of our experimental setup are
provided in Fig. 7a and c, respectively. Further details
related to the experiment are provided in the Methods
section.
The experimental results for these two models are shown

in Fig. 6c, f, where the output amplitude and phase images
present a good agreement with their numerically simulated
counterparts, also aligning well with the input ground
truth images. These experimental results demonstrate the
feasibility of our 3D fabricated diffractive complex field
imager to accurately image the amplitude and phase dis-
tributions of the input objects; these results also represent
the first demonstration of all-optical complex field imaging
achieved through a single diffractive processor.

Discussion
The numerical analyses and experimental validation

presented in our work showcased a compact complex field
imager design through deep learning-based optimization of
diffractive surfaces. We explored three variants of this
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design strategy, with comparative analyses indicating that
the design employing spatial and wavelength multiplexing
(design III) achieves the best balance between the complex
field imaging performance and diffraction efficiency, albeit
with a minor increase in hardware complexity. Leveraging
the all-optical information processing capabilities of multi-
ple spatially engineered diffractive layers, diffractive com-
plex field imagers reconstruct the amplitude and phase
distributions of the input complex field in a complete end-
to-end manner, without any digital image recovery algo-
rithm, setting it apart from other designs in the existing
literature for similar applications. This capability enables
direct recording of the amplitude and phase information in
a single snapshot using an intensity-only sensor array,
which obviates the need for additional computational pro-
cessing in the back-end, thereby significantly enhancing the
frame rate and reducing the latency of the imaging process.

Furthermore, our diffractive imager designs feature a
remarkably compact form factor, with dimensions of ~100λ
in both the axial and lateral directions, offering a substantial
volumetric advantage. In contrast, conventional methods
based on interferometry and holography often involve
relatively bulky optical components and necessitate multi-
ple measurements, leading to optical and mechanical con-
figurations that require a large physical footprint. While
some of the recent single-shot complex amplitude imaging
efforts using metasurfaces have aimed for greater com-
pactness, they typically require metalenses with large lateral
sizes of >1000λ32,37,38. Moreover, achieving a similar FOV
(covering several tens of wavelengths) as in our work would
require imaging path lengths of thousands of wavelengths.
In our previous research, we developed diffractive pro-

cessor designs tailored for imaging either amplitude dis-
tributions of amplitude-only objects51 or phase distributions
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of phase-only objects53,59,60. However, these designs would
become ineffective for imaging complex objects with inde-
pendent and non-uniform distributions in the amplitude
and phase channels. In this work, we have overcome this
limitation by training our diffractive imager designs using
complex objects with random combinations of amplitude
and phase patterns, thus allowing a single imager device to
effectively generalize to complex optical fields with various
distributions in the amplitude and phase channels.
The diffractive complex field imager designs that we

presented also exhibit certain limitations. Our results
revealed residual errors in their targeted operations, parti-
cularly manifesting as crosstalk coming from the amplitude
channel into the phase channel. This suggests that the
actual phase-to-intensity transformation represented by our
diffractive imager, while effective, is an approximation with
errors that are dependent on the object amplitude dis-
tribution. The mitigation approach for this limitation might
involve further enhancement of the information processing
capacity of our diffractive imagers, which can be achieved
through employing a larger number of diffractive layers
(forming a deeper diffractive architecture), thus increasing
the overall number of diffractive features/neurons that are
efficiently utilized64. Additionally, we believe another per-
formance improvement strategy could be to increase the
lateral distance between the two output FOVs dedicated to
the phase and amplitude channels, thereby allowing the
trainable diffractive features to better specialize for the
individual tasks of phase/amplitude imaging; this approach,
however, would increase the size of the output FOV of the
focal plane array and also demand larger diffractive layers.
Moreover, in our experimental results, we observed the

emergence of noise patterns within certain regions, which
did not exist in our numerical simulations. This discrepancy
can be attributed to potential misalignments and fabrication
imperfections in the diffractive layers that are assembled. A
mitigation strategy could be to perform “vaccination” of
these diffractive imager models, which involves modeling
these errors as random variables and incorporating them
into the physical forward model during the training pro-
cess42,50,65. This has been proven effective in providing
substantial resilience against misalignment errors for dif-
fractive processors, exhibiting a noticeably better match
between the numerical and experimental results42,50,65.
Leveraging its unique attributes, our presented complex

field imaging system can open up various practical appli-
cations across diverse fields. For biomedical applications, it
can be seamlessly integrated into endoscopic devices66 and
miniature microscopes67–69 to enable real-time, non-
invasive quantitative imaging of tissues and cells, which
might also be useful for, e.g., point-of-care diagnostics with
its compactness and efficiency. This might potentially pave
the way for their use in intraoperative imaging, providing
surgeons with critical, high-resolution insights during a

medical procedure70,71. For environmental monitoring, as
another example, the presented system may facilitate the
development of portable lab-on-a-chip sensors capable of
quickly identifying microorganisms and pollutants,
streamlining on-site quantitative analysis without delicate
and tedious sample preparation steps72–75. Furthermore,
the portability and compactness of these diffractive designs
can make them a valuable tool for rapid inspection of
materials in industrial settings76,77. Overall, this compact
and efficient complex field imager design could be used in
various settings, opening new avenues in scientific
research and expanding the measurement capabilities for
practical, real-world applications.

Materials and methods
Numerical forward model of a diffractive complex
field imager
In our numerical implementation, the transmissive

layers within the diffractive complex field imager were
modeled as thin dielectric optical modulation elements
with spatially varying thickness profiles. For the l th dif-
fractive layer, the complex-valued transmission coefficient
of its i th feature at a spatial location xi; yi; zlð Þ was defined
depending on the illumination wavelength (λ):

tl xi; yi; zl; λð Þ ¼ al xi; yi; zl; λð Þ exp jϕl xi; yi; zl; λð Þ� �
ð7Þ

where a xi; yi; zl; λð Þ and ϕ xi; yi; zl; λð Þ denote the ampli-
tude and phase coefficients, respectively. The free-space
propagation of complex fields between diffractive layers
was modeled through the Rayleigh–Sommerfeld diffrac-
tion equation41:

wl
i x; y; z; λð Þ ¼ z � zl

r2
1

2πr
þ 1
jλ

� �
exp

j2πr
λ

� �
ð8Þ

where wl
i x; y; z; λð Þ represents the complex field at the ith

diffractive feature of the lth layer at location x; y; zð Þ. r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2 þ ðz � zlÞ2

q
and j ¼ ffiffiffiffiffiffiffi�1

p
. Based on

Eq. (8), wl
i x; y; z; λð Þ can be viewed as a secondary wave

generated from the source at ðxi; yi; zlÞ. As a result, the
optical field modulated by the ith diffractive feature of the
lth layer (l ≥ 1, treating the input object plane as the 0th
layer), ulðxi; yi; zl; λÞ, can be written as:

ul xi; yi; zl; λð Þ ¼ tl xi; yi; zl; λð Þ �
X
k2N

ul�1 xk ; yk ; zl�1; λ
� �

�wl�1
i xk ; yk ; zl; λ
� � ð9Þ

where N denotes the number of diffractive features on the
(l− 1)th diffractive layer and z� represents the location of
the �th layer in the z direction parallel to the optical axis.
The amplitude and phase components of the complex
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transmittance of the i th feature of diffractive layer l, i.e.,
al xi; yi; zl; λð Þ and ϕl xi; yi; zl; λð Þ in Eq. (7), were defined as
a function of the material thickness over the region of that
diffractive feature, hli, as follows:

al xi; yi; zl; λð Þ ¼ exp � 2πκd λð Þhli
λ

 !
ð10Þ

ϕl xi; yi; zl; λð Þ ¼ nd λð Þ � nairð Þ 2πh
l
i

λ
ð11Þ

Here the parameters nd λð Þ and κd λð Þ represent the
refractive index and the extinction coefficient of the dif-
fractive layer material, respectively. These parameters cor-
respond to the real and imaginary parts of the complex-
valued refractive index, denoted as end λð Þ, such that end λð Þ ¼
nd λð Þ þ jκd λð Þ. We determined the values of end λð Þ and
κd λð Þ through experimental characterization of the dis-
persion properties of the diffractive layer materials, and
their values are visualized in Supplementary Fig. S6. The
trainable thickness values of the diffractive features hli were
limited within the range of [hmin, hmax], representing the
learnable parameters of our diffractive complex field ima-
gers. For training the diffractive imager models used for
numerical analyses, the values of hmin, hmax were selected as
0.2 and 1.2mm, respectively. For training the diffractive
imager models used for experimental validation, the values
of hmin, hmax were selected as 0.4 and 1.4mm, respectively.

Training loss functions and quantification metrics
The total loss function LTotal for the training of our

diffractive complex field imagers was defined as:

LTotal ¼ LPhase þ βAmpLAmp þ βEffLEff ð12Þ

Here, LPhase stands for the loss term for the quantitative
phase imaging function, and is defined as:

LPhase ¼ OPhase λð Þ � ϕj j2 ¼ oPhase λð Þj j2
R λð Þ � ϕ

�����
�����
2

ð13Þ

where RðλÞ is the reference signal measured within the
reference signal region R, which is a frame region
surrounding the FOVPhase with a width of one image pixel.
LAmp represents the loss term for the amplitude ima-

ging function, which is defined as:

LAmp ¼
oAmp λð Þ�� ��

E oAmp λð Þ�� ��2h i� A

E A2
	 


������
������
2

ð14Þ

where E �½ � represents the intensity averaging operation
across all the spatial pixels of the image.

The definition of LEff is provided in Eqs. (4)–(6). In Eqs.
(5) and (6), both ηPhase and ηAmp were defined using the
following Equation:

η ¼ Eoutput

Einput
ð15Þ

where Eoutput represents the total power of the optical
field calculated within the output FOV that is either
FOVPhase or FOVAmp, i.e., Eoutput ¼

P
ðx;yÞ2FOVoutput

uKþ1ðx; y; zKþ1; λÞj j2, and Einput represents the total power
of the complex field within the input FOV, i.e., Einput ¼P

ðx;yÞ2FOVinput
u0ðx; y; z0; λÞj j2.

The hyperparameters, βAmp and βEff , in Eq. (12) refer to
the weight coefficients associated with the amplitude ima-
ging and output diffraction efficiency penalty-related loss
terms, respectively. When training our diffractive imager
models shown in Fig. 2a, Supplementary Figs. S1a and S2a,
the values of βAmp and βEff were set as 3 and 0, respectively,
i.e., no diffraction efficiency-related penalty was applied for
these models. During the training of the diffractive imager
designs exhibiting different output diffraction efficiencies
for the analysis in Fig. 4, the values of βAmp and βEff were set
as 3 and 100, respectively. When training the experimental
designs shown in Fig. 6a, d, the values of βAmp and βEff were
set as 1 and 100, respectively, and ηth were selected as 4%.
For analyzing the imaging performance of our dif-

fractive complex field imagers, we used PSNR as our
evaluation metric. The definition of the PSNR value
between an image A and an image B is given by:

PSNR ¼ 20log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

P
x

P
y Aðx; yÞ � Bðx; yÞj j2

q
0B@

1CA
ð16Þ

where N is the total number of pixels within the image.
Another metric employed to quantify the performance of
our diffractive complex field imaging is the grating image
contrast (Q), and its definition has been provided in Eq.
(1). In Eq. (1), Imax is determined by taking the average
intensity of the grating images along the grating orienta-
tion and, finding the maximum intensity values within the
bar regions, and Imin is computed in a way similar to Imax

but by locating the minimum values.

Implementation details of diffractive complex field
imagers
For the diffractive imager models used for numerical

analyses in this manuscript, we used a minimum sampling
period of 0.3 mm for simulating the complex optical fields
(i.e., 0.375λm for λm = 0.8 mm). The lateral size of each
feature on the diffractive layers is also selected as 0.3 mm.
Both the input and output FOVs, including FOVPhase and
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FOVAmp, were set to 18mm× 18mm. These fields were
discretized into arrays of 15 × 15 pixels, with each pixel
measuring 1.2 mm (i.e., ~1.5λm).
For simulating the diffractive imager models used for

experimental validation, both the sampling period for the
optical fields and the lateral dimensions of the diffractive
features were set at 0.4 mm (i.e., ~0.516λm for λm
= 0.775 mm). The input and output FOVs in these models
were 24mm× 24mm (i.e., ~30.97λm × 30.97λm). These
fields were discretized into arrays of 5 × 5 pixels, with each
pixel measuring 4.8 mm (i.e., ~6.19λm).
For training our diffractive imager models, we randomly

extracted 55,000 handwritten English capital letter images
from the EMNIST Letters dataset to form our training set.
During the training stage, we also implemented an image
augmentation technique to enhance the generalization
capabilities of the diffractive models. This involves ran-
domly flipping the input images vertically and horizon-
tally. These flipping operations were set to be performed
with a probability of 50%. For testing our diffractive
models, we used a testing image dataset of 10,000 hand-
written English capital letter images, which were also
randomly extracted from the EMNIST Letters dataset
while ensuring no overlap with the training set. In addi-
tion, for preparing the blind test images used for evalu-
ating the external generalization capabilities of our
models, we used 10,000 handwritten digit images from the
MNIST testing dataset and 10,000 QuickDraw images
from the QuickDraw dataset63. Before being fed into our
diffractive models, all these training and testing images
further underwent a bilinear downsampling and normal-
ization process to match the corresponding dimensions
and value ranges of the input amplitude or phase images.
Our diffractive models presented in this paper were

implemented using Python and PyTorch. In the training
phase, each mini-batch was set to consist of 64 randomly
selected EMNIST handwritten letter images from the
EMNIST dataset78. Subsequently, these images were
randomly grouped in pairs to synthesize complex fields.
Within each training iteration, the loss value was calcu-
lated, and the resulting gradients were back-propagated
accordingly to update the thickness profiles of each dif-
fractive layer using the Adam optimizer79 with a learning
rate of 10−3. The entire training process lasted for 100
epochs, which took ~6 h to complete using a workstation
equipped with a GeForce RTX 3090 GPU.

Experimental terahertz set-up
For our proof-of-concept experiments, we fabricated

both the diffractive layers and the test objects using a 3D
printer (PR110, CADworks3D). The phase objects were
fabricated with spatially varying thickness profiles to
define their phase distributions. The amplitude objects
were printed to have a uniform thickness and then

manually coated with aluminum foil to define the light-
blocking areas, while the uncoated sections formed the
transmission areas, resulting in the creation of the desired
amplitude profiles for test objects. Additionally, we 3D-
printed a holder using the same 3D printer, which facili-
tated the assembly of the printed diffractive layers and
input objects to align with their relative positions as
specified in our numerical design. To more precisely
control the beam profile for the illumination of the
complex input objects, we 3D printed a square-shaped
aperture of 5 × 5mm and padded the area around it with
aluminum foil. The pinhole was positioned 120mm away
from the object plane in our experiments. This pinhole
serves as an input spatial filter to clean the beam origi-
nating from the source.
To test our fabricated diffractive complex field design,

we employed a THz continuous-wave scanning system,
with its schematic presented in Fig. 7c. To generate the
incident terahertz wave, we used a WR2.2 modular
amplifier/multiplier chain (AMC) followed by a compa-
tible diagonal horn antenna (Virginia Diode Inc.) as the
source. Each time, we transmitted a 10 dBm sinusoidal
signal at frequencies of 11.111 or 10.417 GHz (fRF1) to
the source, which was then multiplied 36 times to gen-
erate output radiation at continuous-wave (CW) radiation
at frequencies of 0.4 or 0.375 THz, respectively, corre-
sponding to the illumination wavelengths of 0.75 and
0.8 mm used for the phase and amplitude imaging tasks,
respectively. The AMC output was also modulated with a
1 kHz square wave for lock-in detection. We positioned
the source antenna to be very close to the 3D-printed
spatial pinhole filter, such that the illumination power
input to the system could be maximized. Next, using a
single-pixel detector with an aperture size of ~0.1 mm, we
scanned the resulting diffraction patterns at the output
plane of the diffractive complex field imager at a step size
of 0.8 mm. This detector was mounted on an XY posi-
tioning stage constructed from linear motorized stages
(Thorlabs NRT100) and aligned perpendicularly for pre-
cise control of the detector’s position. For illumination at
λ1 = 0.75 mm or λ2 = 0.8 mm, a 10-dBm sinusoidal signal
was also generated at 11.083 or 10.389 GHz (fRF2),
respectively, as a local oscillator and sent to the detector
to down-convert the output signal to 1 GHz. The result-
ing signal was then channeled into a low-noise amplifier
(Mini-Circuits ZRL-1150-LN+) with an 80 dBm gain,
followed by a bandpass filter at 1 GHz (±10MHz) (KL
Electronics 3C40-1000/T10-O/O), effectively mitigating
noise from undesired frequency bands. Subsequently, the
signal passed through a tunable attenuator (HP 8495B) for
linear calibration before being directed to a low-noise
power detector (Mini-Circuits ZX47-60). The
voltage output from the detector was measured using a
lock-in amplifier (Stanford Research SR830), which
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utilized a 1 kHz square wave as the reference signal. The
readings from the lock-in amplifier were then calibrated
into a linear scale. In our post-processing, we further
applied linear interpolation to each intensity field mea-
surement to align with the pixel size of the output FOV
used in the design phase. This process finally resulted in
the output measurement images presented in Fig. 6c, f.
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