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Abstract: This article assesses the feasibility of using shape information to detect and quantify the sub-
cortical and ventricular structural changes in mild cognitive impairment (MCI) and Alzheimer’s dis-
ease (AD) patients. We first demonstrate structural shape abnormalities in MCI and AD as compared
with healthy controls (HC). Exploring the development to AD, we then divide the MCI participants
into two subgroups based on longitudinal clinical information: (1) MCI patients who remained stable;
(2) MCI patients who converted to AD over time. We focus on seven structures (amygdala, hippocam-
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pus, thalamus, caudate, putamen, globus pallidus, and lateral ventricles) in 754 MR scans (210 HC, 369
MCI of which 151 converted to AD over time, and 175 AD). The hippocampus and amygdala were fur-
ther subsegmented based on high field 0.8 mm isotropic 7.0T scans for finer exploration. For MCI and
AD, prominent ventricular expansions were detected and we found that these patients had strongest
hippocampal atrophy occurring at CA1 and strongest amygdala atrophy at the basolateral complex.
Mild atrophy in basal ganglia structures was also detected in MCI and AD. Stronger atrophy in the
amygdala and hippocampus, and greater expansion in ventricles was observed in MCI converters, rel-
ative to those MCI who remained stable. Furthermore, we performed principal component analysis on
a linear shape space of each structure. A subsequent linear discriminant analysis on the principal com-
ponent values of hippocampus, amygdala, and ventricle leads to correct classification of 88% HC sub-
jects and 86% AD subjects. Hum Brain Mapp 35:3701–3725, 2014. VC 2014 Wiley Periodicals, Inc.

Key words: Alzheimer’s disease; mild cognitive impairment; subcortical structures; lateral ventricles;
high field; subsegmentations; shape abnormality; large deformation diffeomorphic metric mapping

r r

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative brain
disorder characterized by a progressive dementia that
increases in incidence with increasing age [McKhann et al.,
1984]. AD has been reported to be of an average preva-
lence, about 50%, among patients with dementia [Ferri
et al., 2005]. Mild cognitive impairment (MCI) is a syn-
drome regarded as a risk state for dementia [Gauthier
et al., 2006] and is associated with an increased risk of pro-
gression to probable AD [Morris et al., 2001]. Even though
more than half of individuals with MCI deteriorate to
dementia within 5 years [Gauthier et al., 2006], consider-
able heterogeneity exists among MCI patients: some
remain stable for a long time, others revert to normal cog-
nitive status, and still others develop dementia other than
AD [Larrieu et al., 2002]. The ability to identify an MCI
patient’s risk of developing AD is crucial for clinical
decision-making. Thus, more substantial exploration of
subtypes of MCI is needed to facilitate the predictive prog-
nosis of which MCI individuals are likely to deteriorate to
AD. Methods of detecting MCI that represents prodromal
AD would aid clinical practice by allowing attention to be
focused on those with the highest risk of conversion.

Structural neuroimaging measures have been widely used
to differentiate healthy controls (HC) from subjects with
dementia of Alzheimer type because these measures are sen-
sitive to the degeneration that occurs in MCI and AD [Ram-
ani et al., 2006]. Detecting structural changes in the pre-
dementia state would enable early treatment before the
development of significant functional impairment or neuro-
nal damage. Volumetric assessment, comparing the volumes
of various brain structures across subjects from the three dif-
ferent groups, is the most popular and direct way. Research-
ers in prior studies have focused primarily on medial
temporal regions, demonstrating atrophy of hippocampus
and entorhinal cortex in individuals with MCI or AD com-
pared to those measured in controls [Atiya et al., 2003; Bell-
McGinty et al., 2002; Dickerson et al., 2001; Frisoni and Car-

oli, 2007; Jack et al., 1999; Killiany et al., 2002] and ventricle
enlargement in both MCI and AD [Chetelat and Baron, 2003;
McKhann et al., 1984; Ridha et al., 2008]. Volumes of other
subcortical nuclei such as amygdala, putamen, caudate, and
thalamus have also been reported to be affected in MCI and
AD [Convit et al., 2000; de Jong et al., 2008; Madsen et al.,
2010; Visser et al., 1999; Whitehouse et al., 1982]. In addition
to the magnitude and pattern of structural changes, increase
in the rate of these changes with disease progression has also
been widely studied in MCI and AD [Barnes et al., 2009; Hen-
neman et al., 2009; Holland et al., 2011; Jack et al., 2009;
McDonald et al., 2009; Sluimer et al., 2009].

One potential limitation of the volume-based analysis is
that the change of the volume size of a single structure does
not provide detailed information about the specific subre-
gions showing atrophy or expansion. Evaluating the volume
size of a structure makes it difficult to identify the specific
regions in the structure that are most affected by the disease.
Moreover, for a single structure, it is plausible that a part of it
is undergoing atrophy while another part is expanding,
which makes the overall volume size unaffected. In this case,
simply evaluating whether there is volume change in the
structure cannot indicate whether this structure is affected.

To identify the magnitude and the pattern of structural
changes in an individual at an early stage or a very mild
level AD, new tools that enable the detection of subtle
changes in neuroanatomy have been sought. Brain warp-
ing techniques such as large deformation diffeomorphic
metric mapping (LDDMM) have been reported to charac-
terize region-specific variations in numerous neurodege-
nerative disease studies in terms of either volume or shape
analysis [Csernansky et al., 1998, 2000, 2002, 2005; Qiu
et al., 2007, 2008, 2009; Wang et al., 2003, 2006, 2007;
Younes et al., in press]. To date, most studies have been
focused on specific regions such as hippocampus or lateral
ventricle [Apostolova et al., 2006; Csernansky et al., 2005;
Ferrarini et al., 2006; Wang et al., 2006]. However, the
change of a single structure may not necessarily be specific
to MCI or AD [van de Pol et al., 2006]. Incorporating
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structural information of other subcortical nuclei could aid
in identifying the atrophy patterns that are specific to

dementia of Alzheimer type. Additionally, an analysis of

multiple structures would help in understanding the

spreading patterns of the disease in the brain.
So far, the majority of neuroimaging experiments are

performed on images acquired from 1.5T or 3.0T magnetic
resonance imaging (MRI) scanners. Due to the coarse
image resolution of typical structural MRI scans, either the
hippocampus or the amygdala is usually regarded as a
single entity even though they consist of multiple distinct,
interacting subregions. It has been shown that the distinct
subregions of hippocampus are affected differently in AD
[Fukutani et al., 1995; Small et al., 2000; West et al., 2004].
It would be of great potential value in studying the func-
tion of the hippocampus and the amygdala if we could
compare HC and MCI as well as AD respectively on each
subregion of the two structures. It would also be impor-
tant in understanding the disease pattern within a single
structure. Recent advances in MRI data acquisition tech-
nology make it possible to acquire images with higher
resolution and signal-to-noise ratio, which allows for the
exploration of more fine-scaled features of the hippocam-
pus and the amygdala. However, most existing public
datasets do not have images obtained from the high field
MRI technology, which is a fundamental bottleneck in
studies based on those datasets. LDDMM is capable of
transferring the subregion features from a predelineated
structural image, acquired from high field scanners, to
other structural images with more coarse resolution. In
this way, the shape differences among the three groups
could be analyzed more finely based on each subregion of
the hippocampus and the amygdala.

In this article, we characterize shape abnormalities of seven
subcortical and ventricular structures (the lateral ventricular
system, memory related amygdala-hippocampal circuit, tha-
lamic and basal ganglia circuits which receive projections
from the amygdala and hippocampus) as well as the subre-
gions of the hippocampus and the amygdala in subjects with
MCI or AD within the framework of LDDMM [Miller et al.,
2002]. One goal of this study is to quantitatively assess
whether the surface (a two-dimensional manifold) contour-
ing a single structure, i.e. the shape, differs as a function of
disease severity in prodromal and mild AD and whether it
could provide accurate prognostic information in patients
with AD. Specifically, the shape differences among the three
groups—HC, MCI, and AD are investigated. The MCI popu-
lations, at the baseline, are stratified into three subgroups
according to the longitudinal clinical information: (1) MCI
patients who reverted to normal status; (2) MCI patients who
remained stable; (3) MCI patients who deteriorated to AD.
The shapes, at the baseline, of these three MCI subtypes are
being studied here to determine whether differences exist,
and in future studies we will investigate their ability to pre-
dict decline. We are particularly interested in characterizing
the atrophy patterns in the hippocampus and the amygdala
more finely by integration of high-field imaging techniques.

Therefore, we refine our study of the atrophy patterns in
these two structures to include the CA1, subiculum, and the
part consisting of CA2, CA3, and dentate gyrus (three hippo-
campal subregions), as well as the basolateral, basomedial,
centromedial, and lateral nucleus (four subregions of the
amygdala) based on two 0.8 mm isotropic 7T MRI scans.
Analyzing the shape changes on each subregion of the hippo-
campus and the amygdala may help understand how the dis-
ease spreads within a single structure and identify which
part in these structures is most affected by the disease.

In this setting of LDDMM, a deformation is computed as
the end point of an energy-minimizing path (a geodesic)
through the group of diffeomorphisms. Given a fixed tem-
plate, the anatomical variability in the targets is encoded by
the geodesics from the template to each target. The funda-
mental “conservation of momentum” property of these geo-
desics [Miller et al., 2006] allows for representing the entire
flow of a geodesic by the initial momentum configuration.
Since the geodesic flow at any point is completely deter-
mined by the momentum at the origin, this means that, once
a template is fixed, the space of initial momenta becomes an
appropriate linear vector space [Vaillant et al., 2004] for
studying shape. Anatomical differences among different tar-
get groups can, therefore, be studied by applying linear sta-
tistical analysis such as principal component analysis (PCA)
to the initial momentum vectors, which was successfully
demonstrated in [Helm et al., 2006; Vaillant et al., 2004;
Wang et al., 2007]. PCA followed by linear discriminant
analysis (LDA) on the initial momentum may be able to pro-
vide a shape-associated biomarker to discriminate between
different clinical groups.

We present results from investigations of: (1) anatomical
abnormalities in MCI and AD compared with HC in all the
seven structures; (2) anatomical abnormalities in MCI and
AD specific to each subregion of the hippocampus and the
amygdala; (3) shape differences in the three subtypes of
MCI in all the seven structures; (4) shape differences in the
subregions of the hippocampus and the amygdala among
the three MCI subgroups. Finally, we present linear statis-
tics with discrimination on the initial momentum. The dis-
criminating ability of each structure based on its shape
information is compared. By combining the shape informa-
tion of different structures, we identify the optimal LDA
classifier we could build, based on this information, to dif-
ferentiate AD and HC subjects. To estimate the correct clas-
sification rate of the optimal LDA classifier, we adopt a two-
level leave-one-out cross validation procedure.

METHODS

Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.ucla.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and
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Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public–private part-
nership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). Determination
of sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to develop
new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Cali-
fornia, San Francisco. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institu-
tions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada.
The initial goal of ADNI was to recruit 800 adults, ages 55
to 90, to participate in the research, approximately 200
cognitively normal older individuals to be followed for 3
years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years. For
up-to-date information, see www.adni-info.org.

Participants

In this study, we included data from 210 HC subjects,
369 subjects with MCI, and 175 subjects with AD. Within
the MCI group, 369 subjects were further divided into
three groups: MCI-HC—those who reverted to normal
cognitive status (13 subjects); MCI-MCI—those who
remained stable (205 subjects); and MCI-AD—those who
converted to AD (151 subjects), according to the clinical
information of the population after a follow-up of one
year. Since the MCI-HC group is very small, we exclude it
from our analysis. We term the MCI-MCI group as MCI-
stable. Group clinical and demographic data are presented
in Table I. Briefly, subjects are 55 to 92 years old, and are
not depressed. The control subjects have Mini-Mental
State Examination (MMSE) scores of 25 to 30 and a clinical
dementia rating (CDR) of 0. The subjects with MCI have
MMSE scores of 23 to 30, a CDR of 0.5, preserved ability
to perform daily living activities, and absence of dementia.

The subjects with AD have MMSE scores of 20 to 28 and a
CDR of 0.5 or 1.0 and meet the criteria for probable AD.

The subject groups did not differ significantly in age
(F 5 2.53, P 5 0.081). All groups differed on MMSE and
clinical dementia rating scale sum of boxes (CDR-SB) as
expected based on diagnostic criteria (all P < 0.001).

Image Protocol and Volumetric Segmentation

The volume segmentations of all the seven structures
were created from raw DICOM MR scans downloaded
from the public ADNI website (http://www.loni.u-
cla.edu/ADNI/Data/index.shtml). Locally, the raw MR
data were automatically corrected for spatial distortion
due to gradient nonlinearity [Jovicich et al., 2006] and B1
field inhomogeneity [Sled et al., 1998]. The two T1-
weighted images from each subject were rigid-body
aligned to each other and then averaged to improve
signal-to-noise ratio and resampled to isotropic 1 mm vox-
els. Volumetric segmentations for the hippocampus, amyg-
dala, caudate, putamen, globus pallidus, thalamus, and
lateral ventricle were created using FreeSurfer [Fischl
et al., 2002]. Based on the transformation of the full brain
mask into atlas space, total cranial vault value was esti-
mated from the atlas scaling factor [Buckner et al., 2004] to
control individual differences in head size.

The quality of the automated volumetric segmentations
has been reviewed. Failed subjects were excluded from the
analysis. Qualitative review was performed, with blinding

TABLE I. Demographic data

Parameter
HC Group
(n 5 210)

MCI
Group

(n 5 369)
AD Group
(n 5 175)

Subject age (yr) 76.25 6 5.01 75.03 6 7.32 75.28 6 7.49
No. male subjects 109 236 94
MMSE score 29.12 6 1.02 27.01 6 1.76 23.43 6 2.01
CDR-SB score 0.03 6 0.12 1.60 6 0.89 4.23 6 1.64

TABLE II. Average volume measurements (mm3) of the

original segmentations from Freesurfer and those

“filtered” from the LDDMM-based pipeline as well as

their mean differences

Original
segmentation

Filtered
segmentation

Mean volume
difference (%)

lvent 22,132 21,899 1.05
lthal 6,395 6,255 2.18
lcaud 3,362 2,981 11.34
lputa 4,648 4,456 4.14
lpall 1,631 1,517 6.98
lhipp 3,165 2,971 6.12
lamyg 1,299 1,212 6.72
rvent 20,360 20,887 2.56
rthal 6,214 6,033 2.92
rcaud 3,454 2,964 14.21
rputa 4,608 4,453 3.37
rpall 1,655 1,513 8.61
rhipp 3,312 3,093 6.60
ramyg 1,318 1,228 6.88

lvent: left lateral ventricle, ltha: left thalamus, lcaud: left caudate,
lputa: left putamen, lpall: left globus pallidus, lhipp: left hippo-
campus, lamyg: left amygdala, rvent: right lateral ventricle, rtha:
right thalamus, rcaud: right caudate, rputa: right putamen, rpall:
right globus pallidus, rhipp: right hippocampus, ramyg: right
amygdala.
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to the diagnostic status, by one of three technicians who
have been trained and supervised by an expert neuroana-
tomist with more than 10 years of experience, as described
in [Holland et al., 2009]. The technicians had a minimum
of 4 months of experience reviewing brain MR images
prior to their involvement in this project.

Images that suffered degradation due to motion arti-
facts, technical problems (change in scanner model or
change in RF coil during the time-series), or significant
clinical abnormalities (e.g., hemispheric infarction) were
excluded [Holland et al., 2009, 2012]. As a result, the num-
ber of scans was reduced by approximately 15%.

Surface Generation

In preparation for surface-based morphometric analysis,
all volumetric segmentations of the seven structures were
transformed into triangulated surfaces using a pipeline
built on the LDDMM-image algorithm. Qiu et al. [2010]
created a template set of the seven structures (left and
right), the Computational Functional Anatomy (CFA) sub-
cortical template [Qiu and Miller, 2008], from a separate
set of 41 manually labeled volumes. In this CFA subcorti-
cal template set, each structure has its three-dimensional
binary volume representation as well as a smooth two-
dimensional surface contouring the volume. To be specific,
the CFA subcortical template consists of 14 binary images
Itemp 5 Itemp struct 1

; Itemp struct 2
; :::; Itemp struct 14

� �
and 14 surfa-

ces bounding the corresponding structure images
Stemp 5 Stemp struct 1

; Stemp struct 2
; :::; Stemp struct 14

� �
. For each

subject, the corresponding volume segmentation images
of the 14 structures, Isub i

5 Isub i struct 1
; Isub i struct 2

; :::;f
Isub i struct 14

g, were created by FreeSurfer [Fischl et al.,
2002]. A 14-channel LDDMM-image mapping [Ceritoglu
et al., 2009] was performed to obtain a diffeomorphic
change between the template coordinate system and the
subject coordinate system, with each individual channel
being the volume image of each structure. To do this, we
define a distance function, between the deformed template
and the i-th subject, as: D Itemp 8/i

21; Isub i

� �
5
P14

j51

jItemp struct j
8/i

212Isub i struct j
j2L2 , where the optimizing defor-

mation /i is generated as the end point, /i5uv
1, of the

flow of smooth time-dependent vector field, vt 2 V; t 2
½0; 1� with the ordinary differential equation,

duv
t

dt 5

vtðuv
t Þ; t 2 ½0; 1� for V, a reproducing kernel Hilbert space

with a smooth kernel and norm j�jV . The optimal diffeo-
morphism solves the matching problem:

EðvÞ5
ð1

0

jvtj2V dt1D Itemp 8/i
21; Isub i

� �
: (1)

The deformed template segmentations, corresponding to
the i-th subject, are given by:

Îsub i
5 Îsub i struct 1

; Îsub i struct 2
; :::; Îsub i struct 14

n o

5 Itemp struct 1
8/i

21; Itemp struct 2
8/i

21; :::; Itemp struct 14
8/i

21
� �

:

(2)

These can be regarded as the “filtered” or “denoised”
approximations of the subject structure segmentations. The
surface representations of the subject structures were then
created by applying the deformation /i to the template
surfaces:

Ssub i
5 Ssub i struct 1

;Ssub i struct 2
; :::; Ssub i struct 14

f g

5 /i � Stemp struct 1
;/i � Stemp struct 2

; :::;/i � Stemp struct 14

� �
:

(3)

The surfaces Ssub i
; i51; 2; :::; 754 are the ones our statis-

tical analyses were based on in subsequent sections.
LDDMM carries the smooth submanifold diffeomorphi-
cally, and thus is capable of maintaining the smooth
boundary and the correct topology of the template surfa-
ces in the target surfaces [Miller et al., 2006]. This method
of surface generation has already been validated in [Qiu
and Miller, 2008] in detail. We quantitatively compared
the structure volumes after the de-noising procedure with
the original FreeSurfer volumes in terms of kappa overlap
[Landis and Koch, 1977] and volume difference. As shown
in Figure 1, for each structure, an average kappa overlap
above 0.85 was obtained. For each structure, the average
volume of the segmentations from the de-noising proce-
dure and that of the original FreeSurfer segmentations, as
well as their differences are listed in Table II. For a major-
ity of structures, the mean volume discrepancy is within
10%. The discrepancy mostly occurs where the FreeSurfer
segmentations are not smooth or have topological errors
or thin structures that FreeSurfer is not able to identify in
the MR image. Examples of such discrepancies can be
found in [Qiu and Miller, 2008].

Template Surface Generation

Our statistical shape analysis within the framework of
LDDMM is done on the basis of a template surface. To
reduce the difference between the template and the group
populations, we generated the template surface from a
subset of the populations. For each single structure, every
subject surface was first rigidly aligned (rotation and
translation) to a common spatial position. The rigid regis-
tration algorithm computes an optimal transformation
between the vertex sets of two surfaces S0 and S1, by mini-
mizing a score combining registration and soft assignment,
which is similar to the one considered in [Rangarajan
et al., 1997]. In detail, let xi ði51; 2; ::;MÞ denote the set of
vertices on the template surface, and yj ðj51; 2; :::;NÞ the
set of vertices on the target surface, the cost function is:

E5kð32trðRÞÞ1
XM
i51

XN

j51

ðwij1vijÞjRxi1T2yjj2

1tðwijlog wij1vijlog vijÞ
(4)

for some k > 0, subject to constraints
PM

i51 wij51;PN
j51 vij51; wij � 0; vij � 0. The term ð32trðRÞÞ is the
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regularization term. The matching term and the soft assign
term are given by ðwij1vijÞjRxi1T2yjj2 and tðwijlog wij1

vij log vijÞ respectively. R is the rotation matrix, and
T 2 R3.

After rigid registration, we computed an averaged tem-
plate surface, using the algorithm described in [Ma et al.,
2010]. Each observed subject surface is modeled as a ran-
dom deformation of a hidden template plus additive
Gaussian noise. Given this model, the template is esti-
mated from the subject surfaces using an approximation of
the expectation-maximization (EM) algorithm [Dempster
et al., 1977], subject to some topology constraints. It is
enacted by ensuring that the hidden template surface is a
diffeomorphic deformation of a reference shape, called
hypertemplate. Equal proportions of subjects from the
three groups were selected for the template averaging,
resulting in a total of 270 subjects.

LDDMM-Surface Registration

After obtaining the template surface for each structure,
we performed LDDMM-surface mapping [Vaillant and
Glaunès, 2005] to compute a diffeomorphic registration
between the template and each of the 754 target surfaces
for each structure. In the LDDMM setting, the set of ana-
tomical shapes is placed into a metric space. This is mod-
eled by assuming that one shape can be generated from
another via group actions of diffeomorphisms, i.e., that
compared shapes are topologically equivalent, which is
true for the subvolumes that we consider in this article. To
compare shapes, we generate time-dependent diffeomor-
phisms by solving the ordinary differential equation
_/t5vt /tð Þ; t 2 0; 1½ � with /0 being the identity map and vt

a three-dimensional vector field that will be computed by
the algorithm. Given a template surface Stemp and a target
shape Sobs (the observed subject surface), the inexact
matching registration algorithm minimizes the functional:

E vð Þ5 inf
v: _/ t5vt /tð Þ; /05id

ð1

0

jvtjV2dt1Dð/1 � Stemp;SobsÞ (5)

where /1 � Stemp is the deformed template, resulting from
the action of the diffeomorphism at time t 5 1 on the tem-
plate surface. The function D is a discrepancy measure
between surfaces [Vaillant and Glaunès, 2005]. After mini-
mization, the integral term in the cost function can be
interpreted as a squared geodesic distance, in shape space
between the template and the deformed template. The
norm j�jV is a Hilbert norm, V being a reproducing kernel
Hilbert space of vector fields. To ensure that the solutions
are diffeomorphisms, V must be a space of smooth vectors
[Dupuis et al., 1998].

The solutions take a special form after discretization.
Assume that surfaces are triangulated, and let xj denote
the vertices of the template surface Stemp. It has been
proved that the solution of Eq. (5) must be of the form

vt xð Þ5
X

j

kV xt
j; x

� �
at

j (6)

where kV denotes the reproducing kernel of the space V
and a is the momentum vector [Camion and Younes, 2001;
Joshi and Miller, 2000]. In practice, kV is selected to be a

Gaussian kernel in the sense that kV x; yð Þ5exp 2
jx2yj2
2rV

2

� �
.

After reduction, Eq. (5) can be equivalently put in the
form:

E að Þ5 inf
at: _/ t5kVat /tð Þ; /05id

ð1

0

at
TK xtð Þatdt1Dð/1 � Stemp;SobsÞ

(7)

where K xtð Þ is the matrix formed with kV xt
i; xt

j
� �

.

Vertex-Based Statistical Analysis

From the LDDMM-surface mapping, we calculate a sca-
lar field on the template surface according to:
J5log det D/tð Þð Þ, where D/t is the Jacobian matrix of /t.
This scalar field measures the expansion or atrophy at
each vertex of the subject relative to the template in the
logarithmic scale: i.e. positive values correspond to surface
expansion of the subject’s structure relative to the template
at a particular location, while negative values denote sur-
face atrophy of the subject’s structure relative to the tem-
plate. We shall call this scalar field as a “deformation
marker” JkðsÞ which is indexed at each vertex k of the tem-
plate surface for each subject s. Similar morphometric sta-
tistics have been used in [Ashburner and Friston, 2000;
Chiang et al., 2007; Qiu et al., 2009; Wang et al., 2011;
Woods, 2003]. This vertex-based analysis (which therefore
restricts to shape boundaries) arises naturally for studying
shape changes since, in our case, the subcortical structures
at 1 mm scale MRI appear constant in contrast (so that lit-
tle information is available inside the structures).

Figure 1.

This figure shows the mean and the standard deviations of the

Kappa Overlaps between the segmentations from the de-noising

pipeline and the original FreeSurfer segmented volumes. Black

and white bars respectively denote left and right structures.

Vent: lateral ventricles, thal: thalamus, caud: caudate, puta: puta-

men, pall: pallidum, hipp: hippocampus, amyg: amygdala.
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In our vertex-based statistical group analysis, we intro-
duce a group variable YðsÞ to represent one of the groups
in comparison. Let YðsÞ be equal to 1 if subject s belongs
to that group. The statistical model is given by (at each
vertex k):

JkðsÞ5bk;01bk;1YðsÞ1
X
cov

acov Xcov ðsÞ1EkðsÞ (8)

where Xcov sð Þ is the covariate information (confounding
factors) included in the analysis. In our study, we co-
varied for age, sex, and the estimated intracranial volume.
We tested for the null hypothesis that bk;150 separately
for all vertices k. Statistics were therefore computed at
each vertex of the triangulated template surface, and P
values were corrected for multiple comparisons. More pre-
cisely, for each k, we computed the statistic:

Fk5
RSS0 kð Þ
RSS kð Þ 21 (9)

where RSS0 is the residual sum of squares under the null
hypothesis, and RSS the residual sum of squares under
the general hypothesis. We then compute F�5max kFk, the
maximum value of the statistics over all vertices of the
template surface. The statistical significance of differences
between the two groups in comparison is measured based
on Fisher’s method of randomization. We utilized Monte
Carlo simulations to generate 40,000 uniformly distributed
random permutations of the group labels, which gives rise
to a collection of the F� statistic coming from each permu-
tation. The p-value for the significance of the group labels
is then given by the fraction of the times that the values F�

from the permutations are larger than the value obtained
from the true groups. The set of vertices on which the null
hypothesis is not valid is estimated to be:

D5 k : Fk � q�f g (10)

where q� is the 95% value of the collection of the F� statistic
from the permutation tests [Nichols and Hayasaka, 2003]
and Fk is the observed statistic at vertex k (with the true
labels). To quantify the group shape variation (compression
or expansion), we define the degree of the group shape dif-
ferences as the negative value of the sum of b coefficients
associated to the two groups in comparison. Thus, negative
values denote expansion in the latter group for comparison
while positive values denote atrophy.

In our study, for each structure, we first performed
three statistical comparisons between every two of the
three groups—HC, MCI, and AD, and then compared the
two subtypes of MCI: MCI-stable and MCI-AD.

PCA-Based Analysis

Miller et al. [2006] proved that the optimal momentum,
at, solution of Eq. (7) satisfies a conservation property: the

initial momentum a0 encodes the geodesic connecting the
template surface to the deformed template surface via

at
i5 D/t xi

� �� �2T
a0

i (11)

where ðÞ-T denotes matrix inverse and transpose and /t is
the diffeomorphism associated to vt in Eq. (6). The defor-
mations from the LDDMM-surface mappings are com-
pletely encoded by the initial momentum a0 in the
template surface coordinates, which allows for linear tech-
niques to be applied to it.

For each structure, we performed principal component
analysis (PCA) on the initial momentum a0 of all the sub-
jects to construct an orthonormal basis. The feature space
constructed via the initial momentum was then linearly
projected to the orthogonal directions that carry the great-
est shape variance. Age, sex, and the estimated intracranial
volume information has been corrected using a linear
regression model before performing a nonparametric sta-
tistical test, in which we utilized the first M (M< 754) coef-
ficients in the principal component basis (PCs) that
account for 95% of the total variance.

Nonparametric permutation tests were performed
between every two of the three groups. Take group HC

and group AD for example. Let Ẑ
HC

and Ẑ
AD

be the sam-
ple means of the first M principal component values for

the two groups, and R̂ the pooled sample covariance. To

test the null hypothesis H0 : Ẑ
HC

5Ẑ
AD

, we computed the

Hotelling’s T2 statistic [Anderson, 1958] as:

T2 _5
NHC3NAD

NHC1NAD
ðẐHC

2Ẑ
ADÞTR̂

21ðẐHC
2Ẑ

ADÞ (12)

where NHC is the total number of HC subjects and NAD is
the total number of AD subjects. Similar to the vertex-
based analysis, we used Monte Carlo simulations to gener-
ate random permutations to correct the P values.

The same statistical tests have also been applied to the
structure volumes (replacing the principal component values
with the structure volume size) for comparison purposes.

Linear Discriminant Analysis

Via non-parametric statistical tests on each set of PCs, we
found that group differences between AD and HC exist in a
majority of structures. It is natural to try to discriminate
between the two groups based on those PC features show-
ing group differences, and we chose linear discriminant
analysis (LDA) to do so. In this framework, for the two-class
problem, the discriminating direction is the projection of the
differences between the two class means onto the common
covariance, yielding K21 lHC2lAD

� �
, where K is the common

covariance of the two populations, and lHC, lAD are the two
class means.

In terms of discriminant analysis, we have several differ-
ent goals: (1) evaluate the performance of the LDA
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classifiers, trained on the PCs of each single structure, to
determine which structure has the most discriminating
shape information; (2) determine whether combining the
shape information of multiple structures will strengthen
the classification effect; (3) determine whether increasing
the number of structures we use would improve the accu-
racy; (4) determine the best LDA classifier we can build
based on the shape information of the seven structures; (5)
estimate the true classification rate we would obtain from
our classification procedure.

To reduce the dimension of the feature space, we
selected only the PCs that show significant group differ-
ence between HC and AD. For each PC, we did the same
non-parametric statistical test as described in PCA-based
analysis (PCA-Based Analysis section) and selected those
PCs with a p-value less than 0.05 obtained in the permuta-
tion test.

To fulfill our goals (1) to (4), we tested all the possible
LDA classifiers we could build from the PCs of the seven
structures. Considering each possible combination, we
built 27215127 different classifiers and compared their
classification performance with each other based on leave-
one-out cross validation. The procedure is demonstrated
in Figure 2, and consists of three steps. The first step is to
create all the possible feature spaces by combining the dif-
ferent sets of PCs. Since we have seven sets of PCs, the
result is a total of 127 feature spaces. The next step is to
test the classification rate based on the feature information
in each combination. In this step, we adopt leave-one-out
as the cross validation procedure: leave one subject out
and train an LDA classifier based on the feature vectors of
all the other remaining subjects, then use this LDA to clas-
sify the subject excluded at the beginning. In the end, we
select the LDA classifier with the highest average correct

Figure 2.

This figure summarizes the procedure of selecting the optimal

LDA classifier based on the PCs from all the fourteen struc-

tures, including three steps. Step 1 is to create all the combina-

tions of PCs, resulting in a total of 127. Step 2 is to test the

mean classification rate for each set of PCs, based on leave-one-

out LDA. Step 3 is to select the LDA classifier with the highest

mean correct classification rate in Step 2. Hi: hippocampus, am:

amygdala, vl: lateral ventricle, th: thalamus, pu: putamen, pa: pal-

lidum, ca: caudate.
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classification rate in the previous step as our optimal LDA
classifier. To test whether shape information is more dis-
criminating than volume information, we performed the
same procedure using only the volume information of the
structures and compared.

To estimate the true classification rate we would obtain
from our classification procedure, we again use leave-one-
out as our cross-validation strategy. The cross-validation
process is summarized in Figure 3. We exclude the initial
momentum of one subject at the very beginning, and then
build a PCA basis, based on the initial momentums of all
the other remaining subjects, for every structure. Then, we
take two steps to reduce the dimensionality of each feature
matrix: (1) we select the first N components that account
for a 95% of the total variance; (2) among the N feature
vectors we keep in (1), we sift the ones with significant
group difference, for which we use Student’s t-test. After
that, we select the optimal LDA classifier via the proce-
dure described in Figure 2. And in the end, the optimal
LDA classifier is used to classify the subject removed at
the very beginning. This procedure is done for each sub-
ject. To determine which structure, among all the seven,
exhibits the most discriminating shape information, we
tested the classification rate using each single structure.
For example, in examining the classification rate of the
LDA classifier built from hippocampus shape information,
we did not select the optimal LDA classifier for each sub-
ject. Instead, we used the LDA classifier built from the
shape feature of hippocampus to classify the subject
excluded at the very beginning and then took the average.

Transferring the Subregions of Hippocampus and

Amygdala Onto the Template Surfaces

Two ultra-high resolution (0:8mm 3 0:8mm 3 0:8mm) T1-
weighted images were collected using high-field 7T image
acquisition technology. One subject (sub#1) was used for
manually segmenting the hippocampus into subregions
while the other one (sub#2) was used for the left amyg-
dala subsegmentation. Subject sub#1 is a 30-year-old
male. And the subject sub#2 is a 42-year-old male. Both
subjects are considered healthy by self-report. The two
subjects were scanned using a standard MPRAGE proto-
col in a Philips Achieva 7.0T scanner (TR 5 4.3 ms,
TE 5 1.95 ms, flip 5 7, FOV 5 220 3 220 3 180). As
described in the Appendix, the hippocampus in both
hemispheres was manually subdivided into three distinct
regions: CA1, subiculum, and the remaining part consist-
ing of CA2, CA3, and dentate gyrus, for which we will
denote as CA21CA31DG. Triangulated surfaces repre-
senting the boundaries of the hippocampus as well as its
subregions were generated based on the Marching Cube
algorithm. Then, the boundaries of the three subregions
were projected onto the mother surface (the surface of the
hippocampus) by finding the nearest vertex. We per-
formed LDDMM-surface mapping between the hippo-
campus surface of the high-resolution image and our
template hippocampus to connect the two different co-
ordinate systems, and thereby transfer the three subre-
gions of the 7.0T hippocampus onto our template surface.
The left amygdala of the other high resolution MRI image

Figure 3.

This figure summarizes the leave-one-out cross-validation procedure of testing the true classifica-

tion rate that we would be able to yield using our procedure.
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Figure 4.

This figure illustrates the scheme of projecting the three subseg-

mentations of left hippocampus from a 7.0T high-field MRI image

to the template surface, including: manually segmenting the left

hippocampus of the 7.0T MR scan into three regions—CA1,

CA21CA31DG, and subiculum; generating the triangulated sur-

face for the left hippocampus of the 7.0T data; projecting the

three subregions of the volume onto the mother hippocampus

surface; performing LDDMM-surface mapping between the 7T

hippocampus surface and our template surface; transferring the

three subregions onto our template left hippocampus surface.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 5.

This figure illustrates the subsegmentations of the left hippocampus (a), the right hippocampus (b),

and the left amygdala (c) by projecting the boundaries onto the corresponding mother surface.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6.

a) and b) respectively show the group shape differences

between HC and AD, HC and MCI, as well as MCI and AD

measured in left and right amygdala. Both superior (left) and

inferior (right) views are displayed for each group comparison.

Negative color scale values indicate surface expansion in the lat-

ter group, and positive values indicate atrophy. The scale value

quantifies the ratio of the local volume of the former group at a

particular location to that of the latter group in logarithmic

scale. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 7.

a) and b) demonstrate the group shape differences between HC

and AD, HC and MCI, MCI and AD of hippocampus in both

hemispheres. Both superior (left) and inferior (right) views are

displayed for each group comparison. Negative color scale values

indicate surface expansion in the latter group, and positive val-

ues indicate atrophy. The scale value measures the ratio of the

local volume of the former group to that of the latter group in

logarithmic scale. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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was also subsegmented into four regions: basolateral,
basomedial, centromedial, and lateral nucleus. The four
subregions were also similarly transferred to the left

amygdala template surface used in our study. The pro-
cess of transferring the three left hippocampus subregions
from the 7.0T high-resolution MRI image onto our

Figure 8.

Group shape differences detected in the lateral ventricles in

both hemispheres. Colors corresponding to negative values indi-

cate local expansion of surfaces in the latter group whereas pos-

itive values imply atrophy, compared with the former group. The

more negative the value, the more prominent the expansion.

The scale value measures the ratio of the local volume of the

former group to that of the latter group in logarithmic scale.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 9.

Surface deformation differences between HC and AD, HC and

MCI, as well as MCI and AD in basal ganglia regions and the thala-

mus. Colors corresponding to negative values indicate local expan-

sion of surfaces in the latter group, compared with the former

group, whereas positive indicates atrophy in the latter group. The

scale value quantifies the ratio of the local volume of the former

group to that of the latter group in logarithmic scale. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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template surface is illustrated in Figure 4. The boundaries
of the subsegmentations of the hippocampus in both hemi-
spheres and the left amygdala are shown in Figure 5 by
projection onto the “mother” surface. Group shape varia-
tions were then evaluated based on each single subregion.

RESULTS

Comparisons of HC, MCI, and AD

Results obtained from the vertex-based statistical analy-
ses are summarized in Figures 6 to 11, describing
regionally-specific group surface differences between HC
and AD, HC and MCI, as well as MCI and AD. The fig-
ures highlight vertices on the template surfaces at which
significant compression or expansion was detected in the
latter group at the significance level of P 5 0.05. To be spe-
cific, Figure 6 to 8 respectively show group shape differen-
ces detected in those structures near medial temporal
regions—the amygdala and the hippocampus, as well as
the lateral ventricle. Figure 9 shows the group differences
in the basal ganglia regions as well as the thalamus. Figure
10 shows the relative shape variations of all the seven

structures in the left hemisphere while Figure 11 shows
shape differences in the right hemisphere.

To explore the shape variations between different groups
in the amygdala and the hippocampus more finely, and iden-
tify subregions that are most affected by MCI or AD pathol-
ogy, we evaluated the shape differences on each subregion of
the left amygdala and the hippocampus in both hemispheres,
the subregions of which were transferred from high-field 7T
manual segmentations. Figure 12 demonstrates the group
surface deformation differences between HC and AD, HC
and MCI, as well as MCI and AD in terms of the four com-
patible compartments of the left amygdala—basolateral,
basomedial, centromedial, and lateral nucleus. Figures 13
and 14 show the group shape differences in the three subre-
gions—CA1, CA21CA31DG, and subiculum of the left hip-
pocampus and the right hippocampus.

For the PCA-based analysis, the value, M, that indicates
the number of the main PCs accounting for 95% of the
total variance of the initial momentum feature space (con-
sisting of the initial momentum vector of all subjects) was
21 for left amygdala, 24 for right amygdala, 48 for left hip-
pocampus, 49 for right hippocampus, 44 for left ventricle,
40 for right ventricle, 45 for left caudate, 45 for right cau-
date, 57 for left putamen, 59 for right putamen, 61 for left
thalamus, 60 for right thalamus, 30 for left pallidum, and

Figure 10.

Group differences, between every two of the three groups,

measured in the surfaces of all the seven structures in the left

hemisphere. Warm color denotes regions where the correspond-

ing structure has significant atrophy in the latter group when

compared with the former group. Cool color suggests local

expansion of the structure in the latter group when compared

with the former group. Am: amygdala, hi: hippocampus, vent: lat-

eral ventricle, thal: thalamus, puta: putamen, pal: globus pallidus,

caud: caudate. The scale value measures the ratio of the local vol-

ume around a particular vertex of the former group to that of

the latter group in logarithmic scale. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11.

Group shape variations of all the seven structure in the right hemi-

sphere. Colors corresponding to positive values indicate regions on

the structure where there is significant atrophy in the latter group

when compared with the former group. Colors corresponding to

the negative values suggest local expansion on the structure in the

latter group, compared with the former one. Am: amygdala, hi: hip-

pocampus, vent: lateral ventricle, thal: thalamus, puta: putamen, pal:

globus pallidus, caud: caudate. The scale value measures the ratio of

the local volume of the former group to that of the latter group in

the logarithmic scale. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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29 for right pallidum. The value M is related to the vari-
ability of the structure in the general population. The fact
that this value varies from structure to structure may indi-
cate that some structures are more stable than others, in
the sense that the variance of those structures with small
M is concentrated in a small number of components. In
testing the true classification rate as described in Figure 3,
there will be different PCA bases for different left-out sub-
jects since we do leave-one-out on PCA. Among all the
385 (210 HC subjects and 175 AD subjects) PCA bases that
were computed in that way, the amount numbers of
selected PCs was were the same for the left amygdala (21
PCs), right amygdala (23 PCs), left hippocampus (46 PCs),
right hippocampus (47 PCs), left thalamus (58 PCs), right
thalamus (57 PCs), left putamen (55 PCs), right putamen
(56PCs), left pallidum (29), right pallidum (28), and left
caudate (42 PCs). For the left ventricle, 368 out of 385 PCA
bases had 39 vectors (the mean value being 39.0442), while
for the right ventricle, 384 out of 385 had 39 vectors (the
mean value being 39.0078). Finally, for the right caudate,
303 out of 385 runs selected 43 PC’s, with mean value
equal to 42.7870. Results obtained from the PCA-based
analyses were in strong agreement with those found in the
vertex-based analyses. In Figure 15, we plot the empirical

distributions of the left amygdala and the left hippocam-
pus from randomized Hotelling’s T2 tests with 40,000
group permutations, between HC and MCI, HC and AD,
as well as MCI and AD. The p-values were calculated
from the random permutation tests, after correcting for
age, sex, and the estimated intracranial volume. All the
three comparisons show group differences in both the left
hippocampus and the left amygdala, as revealed by the
p-values. The upper bounds of the confidence intervals for
all the p-values obtained based on PCs and the structure
volumes are listed in Table III.

In terms of discriminating between the two groups HC
and AD, we found that the shape PC information associated
with each individual structure is uniformly significantly
more discriminating than the volume information of that
structure—i.e. using shape PCs yields better classification
accuracy than volume for every single structure. Generally,
based on the shape information, the classification errors were
reduced by more than 10% for each single structure. The two
sets of classification results are listed in Table IV. In addition,
Table IV demonstrates that, among all the seven structures,
hippocampus exhibits the highest discriminating ability.

Comparing the mean classification rates of all the LDA
classifiers obtained from different combinations of sets of

Figure 12.

a)–c) respectively show the shape differences between HC and

AD, HC and MCI, as well as MCI and AD in the four subregions

of left amygdala. Different color scale ranges have been adopted

for different comparisons. Warm color indicates regions where

atrophy was detected in the latter group as compared with the

former group. Cool color indicates local expansion in the region

in the latter group when compared with the former group. The

scale value measures the ratio of the local volume around each

vertex of the template surface measured in the former group to

that measured in the latter group in logarithmic scale. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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PCs, we found that, based on the initial momentum of all the
subjects, the optimal LDA classifier came from a combination
of three structures—the hippocampus, the amygdala, and the
lateral ventricle. This is in agreement with our vertex-based
analysis findings, as well as those in the nonparametric statis-
tical analysis, where we found that the strongest shape differ-
ences occurred at the hippocampus, the amygdala, and the
lateral ventricle. In estimating the true classification rate that

could be achieved using our classification pipeline, the opti-

mal LDA classifiers may be different across iterations since

the process of selecting the optimal LDA classifier is embed-

ded in the leave-one-out process. For example, when subject

1 is left out, the optimal LDA classifier comes from a combi-

nation of hippocampus and amygdala while for subject 2, the

optimal one comes from a combination of hippocampus,

amygdala, and ventricle. We therefore calculated the percent-

age of each structure being included in the optimal classifier.

We found that among all optimal LDA classifiers, hippocam-

pus has been selected 88% of the time, amygdala 83% of the

time, ventricle 71% of the time, thalamus 45% of the time,

caudate 36% of the time, putamen 37% of the time, and pal-
lidum 26% of the time. This, to some degree, confirms our
conclusion that if we were to design a single classifier based
on the information from all the subjects, the combination of
the hippocampus, the amygdala, and the ventricle would
likely yield an optimal LDA classifier. According to the
leave-one-out cross-validation procedure, as described in Fig-
ure 3, the correct classification rates were: 88% for the HC
group, 86% for the AD group, and 86% for the two groups
together. In comparison, the correct classification rates using
volume information, via the same procedure, were: 76% for
the HC group, 75% for the AD group, and 75% for the two
groups in overall.

Comparisons of MCI-Stable and MCI-AD

To compare the two subtypes of MCI at baseline: MCI
that remained stable (MCI-stable) and MCI that

Figure 13.

Group shape differences detected in the three subregions of left

hippocampus—CA1, subiculum, and CA21CA31DG. Colors

corresponding to positive values indicate atrophying regions in

the latter group while negative indicates expanding regions in

the latter group as compared with the former group. The color

scale value quantifies the ratio of the local volume of the former

group to that of the latter group in the logarithmic scale. Differ-

ent color scale ranges have been used for different comparisons.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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deteriorated to AD (MCI-AD), we performed the same
vertex-based statistical analysis for all the seven structures
in both hemispheres. Vertices on the template surfaces
revealing statistically significant group differences are
shown in Figures 16 to 18. Comparing MCI-stable versus
MCI-AD, we found group surface differences in three
structures: the hippocampus, the amygdala, and the lateral
ventricle. Little difference has been detected on other sub-
cortical structures. The shape variations between MCI-
stable and MCI-AD, in terms of the subregions of left
amygdala and the hippocampus in both hemispheres, are
displayed in Figures 19 and 20.

DISCUSSION

Statistical shape analysis offers an alternative to volume-
based analysis for detecting and quantifying abnormalities
of deep subcortical and ventricular structures in dementia

of the Alzheimer type. An analysis of the surfaces enclos-
ing the brain structures allows for the characterization of
shape abnormalities that are associated with MCI or AD,
which do not necessarily involve changes in the overall
size of the structures. In addition to measuring group dif-
ferences in subjects with MCI or AD compared with HC
ones, shape-based analysis may also help identifying MCI
individuals who are suffering from prodromal AD [McE-
voy and Brewer, 2010; Morris and Cummings, 2005]. Exist-
ing shape analysis methods have mainly focused on a
single structure such as hippocampus [Ferrarini et al.,
2006; Thompson et al., 2004; Wang et al., 2003, 2006],
whereas our study included all the subcortical structures
and the lateral ventricle. The shape abnormality of a single
structure may be nonspecific to AD. Thus, a combination
of neuroimaging measures from multiple structures may
be more sensitive and specific to AD pathology, helping
identify abnormalities in MCI and AD and predicting con-
version from MCI to AD more accurately. According to

Figure 14.

Group shape differences between HC and AD, HC and MCI, as

well as MCI and AD, detected respectively in CA1, subiculum,

and CA21CA31DG of the right hippocampus. Warm color

suggests atrophy while cool color suggests expansion in the lat-

ter group when compared with the former group. The scale

value measures the ratio of the local volume of the former

group to that of the latter group in logarithmic scale. Different

color scale ranges have been used for different comparisons.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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our discriminant analysis results, combining the shape
information of the three structures—amygdala, hippocam-
pus, and lateral ventricle improved both the sensitivity
and the specificity obtained from any single structure. The
highest specificity and sensitivity from a single structure is
86% and 81% from the hippocampus. These two numbers
were increased to 88% and 86% by using the shape meas-
ures from those three structures. This study is an exten-
sion and enrichment of the study reported in Qiu et al.
[2009]. The procedures of surface generation, surface tem-
plate estimation, and surface mapping are similar to those
introduced in [Qiu et al., 2009]. Other methods of creating
surfaces with topology correction from volume segmenta-
tions are available [Bazin and Pham, 2007; Brechb€uhler
et al., 1995; Han et al., 2003; Shi et al., 2010], the investiga-
tion of which will be one important future direction of our
work. This study differs from the one by [Qiu et al., 2009]
in several aspects: First, the analysis methods are different
in that, [Qiu et al., 2009] introduced the Laplace-Beltrami
(LB) operator on the template surfaces and then performed

random field testing on the LB coefficients of multiple
structures whereas we constructed a statistical model
directly on the log-determinant of the Jacobian of the
deformation maps and utilized PCA on the initial
momenta vectors to discriminate between the HC and AD
groups. Second, compared with the results reported in
[Qiu et al., 2009], our method detected much stronger
shape differences between different groups. Also, the
results are slightly different since we found no atrophy in
lateral ventricle in either side and no expansion in either
hippocampus or amygdala in both hemispheres. In con-
trast, according to the results shown in [Qiu et al., 2009],
mild expansion was found in the posterior segment of the
hippocampus and some regions on amygdala in both
hemispheres. Mild atrophy was also reported between
MCI and AD in the posterior horn of the bilateral lateral
ventricles. Third, instead of only evaluating the differences
that exist in MCI and AD, we also applied our method to
differentiate the subtypes of MCI based on baseline meas-
ures. Moreover, we explored more subtle structural

Figure 15.

PCA of the initial momentum matrices of the left hippocampus

and the left amygdala. Each subfigure shows the permutation

test results for group comparison based on the first M PCs that

account for 95% of the total variability. Shown are: (1) F̂ðT2Þ
value (solid blue line) of each group comparison (total of three

comparisons); (2) p 5 0.0001 (red dot line), p 5 0.001 (blue dot

line), and p 5 0.05 (black dot line) for reference; (3) p-value

derived from the 40,000 permutation tests (solid green line).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

r Structural Shape Abnormalities in MCI and AD r

r 3717 r



abnormalities by subdividing the hippocampus at each
side into CA1, subiculum, and the remaining part consist-
ing of CA2, CA3, and dentate gyrus, the left amygdala
into basolateral, basomedial, centromedial, and lateral
nucleus. Finally, about twice as many MR scans have been
used in our study.

Our study revealed significant atrophy in the hippocam-
pus and the amygdala and prominent expansion in the lat-
eral ventricle, in both hemispheres, in MCI as well as AD
groups (Figs. 6–8), which suggested that histopathological
changes occurred before being defined as AD clinically.
This conclusion is consistent with previous findings [Fen-
nema- Morra et al., 2009; Notestine et al., 2009; Qiu et al.,
2009]. Transferring the subregions of the hippocampus,
both left and right, from a 0.8 mm isotropic 7.0T MR scan

onto our template surfaces (Figs. 13 and 14) suggested that
the most pronounced atrophy occurred in the subregion
CA1, which has been reported to be associated with mem-
ory and learning [Lepage et al., 1998; Markesbery et al.,
2006; Price et al., 2001; West et al., 2004]. The subregions
revealing the strongest atrophy in either MCI or AD popu-
lations on the left amygdala were found to be close to the
basolateral complex (Fig. 12), the region that has also been
reported to play a role in modulating consolidation of mem-
ory [Vazdarjanova and McGaugh, 1999]. According to
[Price, 2003], the amygdala can be parcellated into core and
noncore subregions based on functional characteristics. The
core region consists of the lateral, basal, and accessory basal
nuclei while the non-core region consists of the remaining
central, medial, and cortex nuclei [Munn et al., 2007; Sheline
et al., 1998]. The fact that relatively stronger shape compres-
sion was detected at basolateral and lateral nucleus, com-
pared with the other two subregions, is plausible because
these two regions are core regions that are responsible for
storing the memories of emotion.

There have been extensive studies on hippocampal
shape analysis in comparing healthy controls with AD
populations [Csernansky et al., 2000, 2005; Li et al., 2007;
Scher et al., 2007; Wang et al., 2003, 2006]. The general
conclusions have been that there is atrophy near CA
regions, which is in agreement with our findings on the
hippocampus. However, some studies revealed no group
differences in the right hippocampus [Csernansky et al.,
2005]. One potential limitation of those earlier studies is
that the sample size was limited. For example, the largest
study conducted by [Wang et al., 2006] compared 49 cases
with minimal AD to 86 normal controls. The sample size
of our study (210 HC, 369 MCI, 175 AD) is large for this

TABLE III. A comparison of the upper bounds of the confidence intervals for p-values obtained from the volume

analysis and the PCA-based shape analysis for each structure

HC vs. AD HC vs. MCI MCI vs. AD

Volume analysis Shape analysis Volume analysis Shape analysis Volume analysis Shape analysis

lamyg p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1.4 E 24 p < 1 E 24 p < 1 E 24
ramyg p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1 E 24
lhipp p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 1 E 24
rhipp p < 1 E 24 p < 1 E 24 p < 1 E 24 p < 2.6 E 24 p < 1 E 24 p < 1 E 24
lvent p < 1 E 24 p < 1 E 24 p < 0.04 p < 1 E 24 p < 1 E 24 p < 1 E 24
rvent p < 1 E 24 p < 1 E 24 p < 5 E 23 p < 3.7 E 24 p < 1 E 24 p < 1 E 24
lcaud p < 0.46 p < 1 E 24 p < 0.52 p < 0.07 p < 0.15 p < 3.7 E 24
rcaud p < 0.89 p < 1 E 24 p < 0.19 p < 0.01 p < 0.17 p < 0.12
lputa p < 0.02 p < 1 E 24 p < 0.47 p < 1 E 24 p < 0.05 p < 5.9 E 24
rputa p < 0.04 p < 1 E 24 p < 0.95 p < 2.6 E 24 p < 0.02 p < 5.6 E 23
lthal p < 0.07 p < 1 E 24 p < 0.96 p < 1.2 E 24 p < 0.09 p < 4 E 24
rthal p < 0.05 p < 1 E 24 p < 0.67 p < 1 E 24 p < 0.1 P< 1 E 23
lpall p < 0.08 p < 1 E 24 p < 0.27 p < 0.21 p < 5 E 23 p < 1.3 E 23
rpall p < 0.45 p < 1 E 24 p < 0.12 p < 2 E 23 p < 0.02 p < 0.02

vent: left lateral ventricle, ltha: left thalamus, lcaud: left caudate, lputa: left putamen, lpall: left globus pallidus, lhipp: left hippocampus,
lamyg: left amygdala, rvent: right lateral ventricle, rtha: right thalamus, rcaud: right caudate, rputa: right putamen, rpall: right globus
pallidus, rhipp: right hippocampus, ramyg: right amygdala

TABLE IV. A comparison of the specificity and the sensi-

tivity obtained from the LDA classifiers built respec-

tively from the volume information and the shape

information for each structure

Specificity Sensitivity

Volume
information
(%)

Shape
information
(%)

Volume
information
(%)

Shape
information
(%)

Amyg 75 80 72 78
Hipp 76 86 74 81
Vent 73 83 53 79
Caud 47 68 58 68
Puta 53 75 58 78
Thal 49 76 58 75
Pall 51 68 54 68
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kind of analysis, which may be an explanation for our
stronger results. For interpreting the role of the amygdala
in MCI and AD, there are relatively few neuroimaging
studies [Poulin et al., 2011], despite that there are quite a
few earlier histopathological findings on it [Herzog and
Kemper, 1980; Scott et al., 1991, 1992; Tsuchiya and
Kosaka, 1990]. The nonuniform shape changes along the
amygdala may well explain the variation of volume
detected in [Poulin et al., 2011]. Our results in the lateral
regions of the left amygdala coincide with the findings
presented in [Cavedo et al., 2011; Qiu et al., 2009].

In addition to structural abnormalities near the medial
temporal area and the lateral ventricle, we also found mild
regional atrophy of basal ganglia structures such as the
left and right putamen and globus pallidus in MCI and
AD groups (Fig. 9). Either atrophy or expansion has been
detected on some vertices of the surfaces of thalamus at
each side in MCI and AD, compared with HC (Fig. 9).
Mild expansion was also found in caudate nucleus in AD

when compared with normal healthy subjects (Fig. 9).
Since the number of vertices showing expansion on the
caudate surface is very small, this may not influence the
overall volume size, which makes it difficult to measure
via the overall structure volume. Also, the expansion in
either caudate or thalamus may be due to inaccurate auto-
mated volumetric segmentations or partial volume effects.
As revealed by Figure 9, most expansion in the caudate
nucleus occurs at the tail part. This part of the caudate has
been suggested to be the most difficult region to segment
even manually since the contrast decreases a lot in 3T T1-
weighted images between the caudate tail and its sur-
rounding white matter. We examined the original segmen-
tation from FreeSurfer around this region in representative
scans. As shown in Figure 21, the original automated seg-
mentation inaccurately labeled the tail part of the caudate,
which could be a potential cause for the unexpected
expansion in the AD group when compared with the other
two groups. Further application of the same statistical
shape analysis pipeline on the manually-labeled caudate
may help address this issue. Comparing MCI and AD, we
found a similar pattern but much stronger magnitude of
atrophy or expansion in AD, which indicates that the
severity of regional shape changes (atrophy or expansion)
is associated with the degree of clinical impairment. This
finding has also been reported for cortical regions [Dicker-
son et al., 2009; McDonald et al., 2009].

The purpose of comparing the baseline measures of the
subgroups of MCI is to help assess whether a person diag-
nosed with MCI has underlying AD pathophysiology
based only on baseline information. In our datasets,
among the subjects that had been diagnosed as MCI at
baseline, 205 were diagnosed to have remained MCI (MCI-
stable), while another 151 converted to AD (MCI-AD) over
a fixed follow-up time of 1 year. Unlike the significant dif-
ferences observed among HC, MCI, and AD groups in
basal ganglia and thalamus, the MCI subgroups did not

Figure 17.

Hippocampal shape differences between MCI-stable and MCI-

AD. Warm color indicates regions on the hippocampus where

significant atrophy has been detected in MCI-AD when com-

pared with MCI-stable, whereas cool color indicates expansion.

The scale value measures the ratio of the local volume of the

hippocampus in MCI-stable to that in MCI-AD in the logarithmic

scale. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 18.

Shape differences between MCI-stable and MCI-AD detected on

lateral ventricles in both hemispheres. The color corresponding to

value 0 suggests no regional shape variation. Colors corresponding

to negative values suggest expanding regions in MCI-AD when com-

pared with MCI-stable, while those corresponding to positive val-

ues indicate atrophy in MCI-AD. The scale value measures the ratio

of the local volume of the lateral ventricle in MCI-stable to that in

MCI-AD in logarithmic scale. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 16.

a) and b) display group differences, detected in the left and right

amygdala, between the two subtypes MCI-stable and MCI-AD.

Positive values indicate atrophy in MCI-AD while negative indi-

cates expansion as compared with MCI-stable. The scale value

measures the ratio of the local volume around each vertex on

the template surface of the MCI-stable group to that of the

MCI-AD in logarithmic scale. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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significantly differ in these structures. Compared with
MCI individuals that did not deteriorate to AD, atrophy in
both hippocampus and amygdala and regional expansion
of lateral ventricle in both hemispheres was detected in
MCI-AD (Figs. 16–18). According to the subsegmentations
of the hippocampus, the strongest shape changes also
occurred at CA1 in both hemispheres (Fig. 20). For the left
amygdala, the basolateral subregion was found to display

most prominent atrophy in MCI-AD (Fig. 19), as compared
with MCI-stable.

According to the p-values shown in Table III, the PCA-
based method is capable of capturing even the mild differ-
ences between two groups, demonstrating results consist-
ent with those obtained from the vertex-based analyses.
As suggested in [Wang et al., 2007], our PCA-based
method may provide a good way to find a biomarker for

Figure 20.

Shape differences between MCI-stable and MCI-AD detected on the three subregions of the hip-

pocampus. Positive values indicate atrophying regions in MCI-AD while negative values indicate

expanding regions as compared with MCI-stable. The scale value measures the ratio of the local

volume of the former group to that of the latter group in logarithmic scale. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 19.

Shape difference between MCI-stable and MCI-AD in terms of

the four subregions of left amygdala – basolateral (panel (a)),

basomedial (panel (b)), centromedial (panel (c)), and lateral

nucleus (panel (d)). Warm color suggests atrophying regions in

MCI-AD while cool color suggests expanding regions when com-

pared with MCI-stable. The scale value measures the ratio of the

local volume of each subregion in MCI-stable to the local volume

in MCI-AD in logarithmic scale. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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discriminating healthy subjects from the subjects with MCI or
AD. Our initial discriminant analysis suggests that the shape
information associated with each individual structure is con-
sistently more discriminating than the corresponding volume
information. A direct comparison shown in Table IV suggests
that, for each single structure, utilizing its shape information
for LDA discrimination would improve the classification rates
obtained by utilizing the volume information. We tested on all
the combinations of the PCs from all the structures to select
the optimal LDA classifier in the leave-one-out procedure.
Our procedure yielded correct classification rates of 88% for
the HC group and 86% for the AD group. Among all the opti-
mal LDA classifiers, hippocampus has been selected for 88%
of the time, amygdala 83% of the time, ventricle 71% of the
time. This conclusion agrees with our vertex based analysis
results in which we found that the most prominent shape var-
iations occurred at these three structures.

In this study, the shape PCs were computed for each
structure separately instead of being computed at once for
all the structures. The main concern of not performing
PCA on features from all the seven structures simultane-
ously is that it may downplay some small but important
structures such as the amygdala. Extracting features from
multiple structures at once should be considered in future
work, as done in [Gorczowski et al., 2010]. In finding the
optimal LDA classifier, we considered the set of PCs from
each structure as a unit and then did a cross-validation
search for all the possible combinations. It is plausible that
we may get even better classification results if we use a
combination of a subset of the PCs of one structure and a
subset of the PCs of some other structures. However, con-
sidering each PC separately would be computationally
prohibitive. A possible solution can be to boost the LDA
and select the most relevant PCs at each boosting iteration
[Flores et al., 2010; Lu et al., 2006; Skurichina and Duin,
2002]. This will be the subject of future work.

Our present study was mainly focused on analyzing the
shape differences of seven structures (left and right), as well

as the three subregions of hippocampus and the four subre-
gions of left amygdala, in groups of different disease states
(HC, MCI, AD). In addition, we applied our method to
study the shape differences within the MCI group, in an
attempt to identify regional changes in subjects with MCI
that converted to AD over time. We have also presented our
preliminary results in developing biomarkers from shape
information of those structures that can predict risk of

decline. The biomarker, designed from the initial momen-

tum information of the seven subcortical structures, is rela-

tively novel compared with the biomarker proposed by

other studies. Currently, a lot of studies have been focusing

on identifying biomarkers for the classification of AD/HC

based on structural MRI features such as the hippocampus

volume and the cortical thickness [Cho et al., 2011; Desikan

et al., 2009; Kl€oppel et al., 2008; Shen et al., 2011; Vemuri

et al., 2008]. Future work should focus on incorporating the

shape information of multiple cortical regions to aid the dis-

crimination procedure as well as utilizing more advanced

machine learning techniques beyond LDA for the analysis.

In addition, incorporating the subsegmentations of the hip-

pocampus and the amygdala should advance the classifica-

tion in AD/MCI as demonstrated in [Li et al., 2007].

Another important extension is to incorporate longitudinal

information by analyzing the subcortical structures on serial

structure images to determine whether these methods are

valuable for tracking disease progression and predicting

AD conversion from MCI or HC subjects.

APPENDIX

Manual Delineation Protocol

Hippocampus

The hippocampus is a horseshoe shaped structure with
interfolded layers that plays a central role in the limbic

Figure 21.

Automated volume segmentations of caudate from FreeSurfer for representative subjects. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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system. It is located within the temporal lobe, posterior to
the amygdala. The first anterior slice of the hippocampus
head appears as a thin stripe right inferior to the amyg-
dala and superior to the entorhinal cortex with its alvear
white matter as a well-defined boundary. The superior
boundary of the hippocampus is the amygdala while its
inferior boundary is the white matter of the temporal lobe
that separates it from the entorhinal cortex and the para-
hippocampal gyrus. Its lateral boundary is the temporal
horn of the lateral ventricle and the medial boundary is
the well-contrasted cerebral spinal fluid (CSF). Moving
posteriorly, the hippocampus gradually replaces the amyg-
dala. It is then surrounded by the white matter of the tem-
poral lobe and the crus of the fornix. The hippocampus
disappears when the splenium of the corpus callosum
stops connecting the two brain hemispheres.

For segmenting the hippocampus into subregions, due
to contrast limit, we decided to divide the hippocampus
into three subregions: Cornu Ammonis 1 (CA1), a subre-
gion containing CA2, CA3, and dentate gyrus
(CA21CA31DG), subiculum (SUB). In coronal slices, the
CA1 appears first to be inferior to the amygdala and supe-
rior to the SUB. Moving posteriorly, the part
CA21CA31DG appears to be wrapped around by CA1
and SUB. The CA1 moves laterally and appears as a cres-
cent with the temporal horn of the lateral ventricle as its
lateral boundary and the white matter of the temporal
lobe as its inferior boundary. The SUB subsequently
moves medially as a thin stripe adjacent to the CA1 and
lateral to the uncal sulcus. The CA21CA31DG part stays
inferior to the amygdala and medial to the temporal horn
of the lateral ventricle. Its lateral boundary is the CA1 and
its inferior boundary is the SUB. In the last few slices, the
CA21CA31DG part appears to be surrounded by the
crus of fornix and the lateral ventricle. The boundaries
among the three subregions are also more defined in sagit-
tal view.

Amygdala

The amygdala is a complex structure that is located in
the medial temporal lobe, inferior to the putamen and the
globus pallidus and anterior to the hippocampus. The first
anterior slice of the amygdala appears as an ovoid shape
when the temporal lobe already connects to the frontal
lobe by a visible limen insulae. The superior boundary of
the amygdala is the endorhinal sulcus while its inferior
boundary is the white matter that separates it from the
parahippocampal gyrus. Its lateral boundary is the white
matter of the temporal lobe and its medial boundary is
marked distinctively by CSF and the semiannular sulcus.
Moving posteriorly, the inferior boundary of the amygdala
is the uncal recess of the temporal horn of lateral ventricle
and the alvear white matter of the hippocampus. The
amygdala subsequently becomes smaller and is replaced
by the hippocampus. In caudal slices, the amygdala
appears as a thin gray matter stripe superior to hippocam-
pus and inferior to the globus pallidus and then gradually
disappears.

In our protocol for the manual delineation of the subre-
gions of the amygdala, it is traced in the coronal view and
divided into four nuclei: lateral nucleus, basolateral

nucleus, basomedial nucleus, and centromedial nucleus.
The lateral nucleus appears first in a characteristic ovoid
shape in more anterior slices when the limen insulae
already appears to connect the temporal lobe with the
frontal lobe. It becomes bigger when moving posteriorly
with the lateral and inferior boundaries defined by the
white matter of the temporal lobe. Moving 1 mm posteri-
orly, the basomedial nucleus starts to appear superior to
the lateral nucleus with the endorhinal sulcus and the
white matter of temporal lobe as superior and medial
boundaries. When the semiannular sulcus appears, the
basolateral nucleus starts to appear as stripes inferior to
the basomedial nucleus and superior to the lateral nucleus.
Moving more posteriorly, the hippocampus head appears
medially to the basolateral nucleus and the temporal horn
of the lateral ventricle becomes the lateral boundary of the
lateral nucleus. The centromedial nucleus starts to appear
superior to the basomedial nucleus and inferior to the
putamen and the globus pallidus. Moving caudally, the
hippocampus starts to replace the amygdala and the lat-
eral nucleus, the basolateral nucleus and the basomedial
nucleus start to be smaller and then disappear. The tempo-
ral horn of the lateral ventricle appears between the hippo-
campus and the amygdala and becomes the inferior
boundary of the centromedial nucleus. The centromedial
nucleus appears as a thin gray matter stripe above the hip-
pocampus and gradually disappears.
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