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ABSTRACT

OPIOID-INDUCED CHANGES IN SPECTRAL DENSITIES OF THE
RAT ELECTROENCEPHALOGRAPH

Stacey Young-McCaughan RN, PhD, Lieutenant Colonel, U. S. Army Nurse Corps
University of California, San Francisco, 1997

Opioids are routinely used for relief of moderate to severe pain. While effective
in relieving pain, these drugs are not without side effects. One of the most common and
troublesome side effects associated with these drugs is an altered level of consciousness,
commonly referred to as sedation.

The purpose of this study was to describe the effects of two doses of three
relatively-selective opioid agonists (i. e., morphine 0.5 pg/kg & 500 pg/kg, pentazocine
0.5 pg/kg & 500 pg/kg, and naloxone 0.5 pg/kg & 500 pg/kg) on selected
electroencephalograph (EEG) parameters of conscious rats.

Adult, male Sprague-Dawley rats weighing between 240 and 260 grams were
surgically implanted with cortical EEG recording electrodes. On the day of the
experiment, two hours of baseline EEG recordings were collected before each rat
received a subcutaneous injection of normal saline or one of the doses of drug. EEG
recordings continued for another four hours for a total recording time of six hours.

For EEG frequencies between 1 and 30 hertz (Hz), time domain parameters (i. €.,
activity, mobility & complexity) and frequency domain parameters (i. €., absolute power,

peak frequency, median frequency, edge frequency & percent of absolute power



attributable to individual one Hz frequency bands) were assessed. From three-
dimensional graphs of the percent of absolute power attributable to individual one Hz
frequency bands for each minute of the 360 minute experiment, cyclic fluctuations in the
percent of absolute power at 7 and 8 Hz were observed. When the baseline recording
period was compared with the two, two hour recording periods following drug
administration using an area-under-the-curve analysis, the lower doses of all three opioid
agonists significantly increased (p < .05) the magnitude of the percent of absolute power
at 7 and 8 Hz.

The results of this study suggest that changes in the cyclic fluctuations of the
percent of absolute power at 7 and 8 Hz might be a parameter indicative of alterations in
central nervous system functioning following opioid administration and a focus of future

research investigating the phenomenon of opioid-induced sedation.

CHRISTINE MIASKOWSKI RN, PhD, FAAN,
Professor, Chairperson Dissertation Committee
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CHAPTER 1 - THE STUDY PROBLEM
Introduction

Opioids are routinely used to manage moderate to severe pain (Jacox et al., 1994;
Reisine & Pasternak, 1996). While effective in relieving pain, this class of analgesics
produces significant side effects. One of the most common and troublesome side effects
associated with opioid analgesics is a depressed level of consciousness (LOC) or sedation
(Cherny & Portenoy, 1994; Jacox et al., 1994; Way, Way, & Fields, 1995).

Significance

Understanding the mechanisms underlying the sedative effects of opioids is
becoming a more urgent concemn in light of ongoing changes in the health care
environment. With increasing frequency, patients are discharged home immediately
following surgical procedures. The sedative effects of opioids prescribed to control acute
surgical pain can impair patients' abilities to perform requisite self-care activities. This
situation can be particularly problematic for older patients who do not metabolize drugs
as quickly and are more likely to experience opioid-induced side effects.

While the pain and the need for opioids is usually short-lived in postoperative
patients, sedation can be much more problematic for patients taking opioids for chronic
pain. Clinical experience suggests that many patients find sedation so difficult to manage
that they choose to suffer with the pain rather than feel sedated from the drugs. For
patients prescribed opioids for relief of either acute or chronic pain, sedation can
adversely affect the quality of their lives (Ahles & Whedon, 1993).

Even though sedation is acknowledged as one of the most common side effects of
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opioid analgesics, the characteristics and mechanisms of this phenomenon remain elusive.
Although no common definition of sedation exists, neither lay nor professional people
express difficulty understanding the concept. Words used by patients to describe sedation
include feeling drowsy, sleepy, groggy, dizzy, dreamy, cloudy, mentally foggy, or
lethargic. Signs of sedation may include cognitive impairment, lack of coordination,
slowed reaction time, or performance deficits. Sedation is problematic for patients to
describe and practitioners to assess because although patients may relate feelings of
sedation, when tested they can perform successfully both motor and cognitive tasks.
However, when patients are not engaged actively in doing a specific task, they drift back
into a sedated state.

Only a few studies have attempted to determine the incidence of opioid-induced
sedation. In one study of postoperative patients who received either codeine, oxycodone,
pentazocine, or morphine (Kantor, Hopper, & Laska, 1981), the incidence of adverse
effects ranged between 22% and 28%. Dizziness and sleepiness were the most common
adverse effects reported for all four of these opioids. Another study of 30 patients with
end-stage cancer receiving opioids for pain control (Bruera, Macmillan, Hanson, &
MacDonald, 1989) reported that 23% of the patients were "severely sedated," which the
researchers defined as "an inability to establish a dialog with the patient" (p. 787). In
addition, 53% of the patients experienced delirium, defined as a confusional state with or
without hallucinations and hyperactivity. Whether these changes in mental status were
due to opioid use, a metabolic process associated with the disease, or some other cause

was not discussed by the investigators.
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Recent reports indicate that once patients are on a stable dose of opioid for two to
three days, tolerance to the sedative effects of the drug develops with a return of normal
cognitive functioning (Cherny & Portenoy, 1994; Jacox et al., 1994; Levy, 1994; Way,
Way, & Fields, 1995). However, clinical experience suggests that many patients on a
stable dose of an opioid continue to experience unpleasant sedative effects.

Bruera and his colleagues reported improved cognitive functioning in patients
who took methylphenidate with their opioid analgesics (Bruera, Brenneis, Paterson, &
MacDonald, 1989; Bruera, Chadwick, Brenneis, Hanson, & MacDonald, 1987; Bruera,
Fainsinger, MacEachemn, & Hanson, 1992; Bruera, Miller, Macmillan, & Kuehn, 1992).
The authors do not describe a mechanism for opioid-induced impairments in cognitive
functioning or how methylphenidate improves cognitive functioning. Although Bruera
and his colleagues did not define opioid-induced cognitive impairment as sedation, based

on these studies many references recommend methylphenidate to counteract the sedative
effects of opioids (Chemny & Portenoy, 1994; Jacox et al., 1994; Levy, 1994; Way, Way,
& Fields, 1995).

In addition to a lack of a common definition, and a known mechanism, the study
of opioid-induced sedation has been hindered by the lack of a direct means of measuring
the phenomenon. As previously discussed, although patients may describe symptoms of
sedation and practitioners may observe signs of sedation, existing measures of sedation
are not sensitive to the central nervous system (CNS) effects of opioids in patients
concentrating on performing a test. Non-invasive measures of sedation, that can assess

continuously a patient's level of sedation without having to rely on repeatedly stimulating
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the patient to perform a certain task, need to be investigated. Anesthesiologists have used
electroencephalograph (EEG) recordings to assess a patient's level of anesthesia (Black,
Mahla, & Cucchiara, 1994; Rampil, 1992). Potentially, EEG recordings could also be
used to assess sedation in patients taking opioids to control pain.
Specific Aims
Because very little research has been done on opioid-induced changes in LOC,

this study investigated the effects of two antinociceptive doses of three subcutaneously
administered relatively-selective opioid recep.tor agonists (i. €., morphine, pentazocine &
naloxone) on selected EEG parameters of conscious rats. The specific aims for each of
the experiments conducted as part of this study are outlined below.

Normal Saline Experiment

1. To describe the EEG time domain parameters (i. e., activity, mobility, &
complexity) and frequency domain parameters (i. e., absolute power, peak
frequency, median frequency, & edge frequency) over six hours in conscious rats
who received a subcutaneous injection of normal saline.

2. To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of normal
saline.

3. To determine if there are visual differences, over time, in the three-dimensional

plot of percent of absolute power attributable to individual one hertz (Hz)
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frequencies of the EEG in conscious rats who received a subcutaneous injection of

normal saline.

4. To determine if there are differences, over time, in the magnitude of percent of
absolute power attributable to specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of normal saline.

S. To describe the cyclic fluctuations in the percent of absolute power attributable to
specific EEG frequencies of interest in conscious rats who received a
subcutaneous injection of normal saline.

6. To determine if there are differences, over time, in the cyclic fluctuations in the
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of normal saline.

Morphine Experiment

7.

To determine if there are differences, over time, in any of the time domain
parameters (i. €., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of morphine
5 ng/kg.

To determine if there are visual differences, over time, in the three-dimensional
plot of percent of absolute power attributable to individual one Hz frequencies of
the EEG in conscious rats who received a subcutaneous injection of morphine 5

ng/kg.

To determine if there are differences, over time, in the magnitude of percent of

-




10.

11.

12.

13.

14.

absolute power attributable to specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of morphine 5 pg/kg.

To determine if there are differences, over time, in the cyclic fluctuations in the
percent of absolute power of specific EEG frequencies of interest in conscious rats
who received a subcutaneous injection of morphine 5 pg/kg.

To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of morphine
500 pg/kg.

To determine if there are visual differences, over time, in the three-dimensional
plot of percent of absolute power attributable to individual one Hz frequencies of
the EEG in conscious rats who received a subcutaneous injection of morphine 500
ug/kg.

To determine if there are differences, over time, in the magnitude of percent of
absolute power attributable to specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of morphine 500 pg/kg.

To determine if there are differences, over time, in the cyclic fluctuations in
percent of absolute power of specific EEG frequencies in conscious rats who

received a subcutaneous injection of morphine 500 pg/kg.

Pentazocine Experiment

15.

To determine if there are differences, over time, in any of the time domain



16.

17.

18.

19.

20.

parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of pentazocine
50 ug/kg.
To determine if there are visual differences, over time, in the three-dimensional
plot of percent of absolute power attributable to individual one Hz frequencies of
the EEG in conscious rats who received a subcutaneous injection of pentazocine
50 pg/kg.
To determine if there are differences, over time, in the magnitude of percent of
absolute power attributable to specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of pentazocine 50 pg/kg.
To determine if there are differences, over time, in the cyclic fluctuations in the
percent of absolute power of specific EEG frequencies of interest in conscious rats
who received a subcutaneous injection of pentazocine 50 pg/kg.
To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of pentazocine
5 mg/kg.
To determine if there are visual differences, over time, in the three-dimensional
plot of percent of absolute power attributable to individual one Hz frequencies of

the EEG in conscious rats who received a subcutaneous injection of pentazocine 5



21.

22.

mg/kg.

To determine if there are differences, over time, in the magnitude of percent of
absolute power attributable to specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of pentazocine 5 mg/kg.

To determine if there are differences, over time, in the cyclic fluctuations in
percent of absolute power of specific EEG frequencies in conscious rats who

received a subcutaneous injection of pentazocine 5 mg/kg.

Naloxone Experiment

23.

24.

25.

26.

To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. €., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of naloxone 5
ng/kg.
To determine if there are visual differences, over time, in the three-dimensional
plot of percent of absolute power attributable to individual one Hz frequencies of
the EEG in conscious rats who received a subcutaneous injection of naloxone 5
ng/kg.
To determine if there are differences, over time, in the magnitude of percent of

absolute power attributable to specific EEG frequencies of interest in conscious

rats who received a subcutaneous injection of naloxone 5 pg/kg.
To determine if there are differences, over time, in the cyclic fluctuations in the

percent of absolute power of specific EEG frequencies of interest in conscious rats



27.

28.

29.

30.

who received a subcutaneous injection of naloxone 5 pg/kg.
To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. €., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of naloxone
500 pg/kg.
To determine if there are visual differences, over time, in the three-dimensional
plot of percent of absolute power attributable to individual one Hz frequencies of
the EEG in conscious rats who received a subcutaneous injection of naloxone 500
ng/kg.
To determine if there are differences, over time, in the magnitude of percent of
absolute power attributable to specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of naloxone 500 pg/kg.
To determine if there are differences, over time, in the cyclic fluctuations in
percent of absolute power of specific EEG frequencies in conscious rats who

received a subcutaneous injection of naloxone 500 pg/kg.
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CHAPTER 2 - LITERATURE REVIEW

Introduction

Although little research exists that specifically addresses the mechanism of
opioid-induced sedation, a large body of research exists on the mechanisms of action of
opioid analgesics within the CNS. Additionally, a great deal of research has been done
on the phenomenon of consciousness. Therefore, the purpose of this chapter is to attempt
to meld these two bodies of research and propose a model of how opioids may act in the
CNS to produce sedation. The domain of consciousness will be reviewed and integrated
into a discussion of how opioids might induce sedation. Part of this discussion will be to
differentiate between what opioid-induced sedation is and what it is not. Based upon this
discussion, a definition of opioid-induced sedation is proposed that sets the stage for an
analysis of EEG measurement techniques and a review of the literature describing what is
currently known about the effects of systemically administered opioids on EEG
recordings in experimental animal models.

Consciousness

Consciousness is a complex physiologic process accomplished by all mammals
through the coordinated actions of the CNS. Plum and Posner (1980) proposed that
consciousness is composed of two interrelated domains: arousal and content. Many
authors have adopted this approach to explore the phenomena of consciousness
(Ackerman, 1993; Alcom, 1983; Crigger & Strickland, 1985; Grant & Kinney, 1990;
Summers, 1992; Turner & Knapp, 1995). According to Plum and Posner (1980), arousal

refers to the organism's state of awakeness, while content addresses how the organism
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interprets the environment. The expression of these domains as consciousness is a time-
sequenced process that fluctuates in a diurnal pattern of wakefulness and sleep.

Arousal

Arousal is the organism's state of responsiveness to sensory stimuli. Throughout

a 24-hour day, arousal normally fluctuates between awake and sleep states. Arousal is
believed to be mediated primarily by a large group of neurons that are known as the
reticular formation, distributed throughout the medulla, pons, and midbrain (Kelly &
Dodd, 1991; Moruzzi & Magoun, 1948; Role & Kelly, 1991). The reticular formation is
not a distinct anatomic site per se, but rather a network of neurons whose axons branch
both caudally and rostrally.

Work by Moruzzi and Magoun (1949) identified the role of the ascending
reticular activating system (ARAS) in arousal. In experiments using cats, when
transections of the brain stem were made at the junction of the spinal cord and medulla, a
chronic wake state was produced. When transections were made more rostrally in the
brain stem, at the level of the midbrain, a chronic sleep state was produced in the cats.
Prior to these studies, wake states were thought to be dependent upon sensory input
(Neylan, 1995), but the work of Moruzzi and Magoun (1949) suggest that wake states are
themselves intrinsic to the CNS, not simply a state induced with sensory bombardment.

The thalamus also plays an integral role in arousal (Newman, 1995). Neurons of
the ARAS project to neurons in the thalamus. These thalamic neurons, which are
reciprocally linked with neurons in the cerebral cortex, have two distinct settings which

correspond to awake and sleep states and are under the control of aminergic and
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cholinergic neurotransmitters (Hobson, 1990). The depolarized, or awake setting
responds to sensory input while the hyperpolarized, or sleep setting is relatively
unresponsive to sensory input (Steriade, McCommick, & Sejnowski, 1993). The
mechanism that triggers the switch from one setting to the other is not understood
(Hobson, 1990).

Within a 24-hour day, mammals normally fluctuate between sleep and wake
states. These cycles will be discussed in more detail later in this chapter. As depicted in
Figure 1, various pathologic or drug-induced conditions can disrupt arousal and be
manifested in the extreme as either hyperactive delirium or unconsciousness. However,
the gradations among the various arousal states between these two extremes have not
been well defined using explicit clinical criteria. Disrupted arousal states are best

considered in conjunction with content processing and will be discussed in more detail

later in this chapter.

Content Processing

Content processing is what adds quality to consciousness by means of sensation,
thought, speech, imagination, and interpretation of somatic modalities (Crigger &
Strickland, 1985). Content is primarily a function of the cerebral cortex which integrates
sensory and motor information from the thalamus thus coordinating appropriate
responses to various inputs (Kelly & Dodd, 1991). While arousal can occur without
content processing, content processing cannot occur without some level of arousal (Plum

& Posner, 1980).

As with pathologic and drug-induced states of altered arousal, states of altered
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content processing can be manifested in the extreme as either hallucinations or the
absence of content processing. Figure 1 attempts to integrate the two domains of
consciousness into a box-shaped model with seven columns representing gradations of
arousal and seven rows representing gradations of content processing. Terms commonly
used in the literature to describe alterations in consciousness have been placed within the
model as points of reference. The placement of these conditions along the continuums of
arousal and content is certainly subject to debate because of the lack of clarity in the
definitions of these conditions as well as a lack of knowledge about the physiologic
mechanisms underlying them. In Figure 1, only delirium (American Psychiatric
Association, 1994) and coma (Plum & Posner, 1980) have agreed upon diagnostic
criteria. As indicated by the shaded boxes in the figure, sedation can occur when either
arousal or content processing are depressed, or when both arousal and content processing
are depressed. This conceptualization is very similar to how Plum and Posner (1980)
defined clouding of consciousness. They referred to a clouding of consciousness as a
state of reduced wakefulness or awareness, while making note that it has neither been
described nor investigated in any detail (Plum & Posner, 1980).
Sleep-Wake Cycles

Medical literature often uses the terms sedation and sleepiness interchangeably.
Although not well studied, distinct differences exist between naturally occurring
sleepiness followed by sleep, medical conditions producing sedation such as head trauma
or CNS lesions, and pharmacologically-induced sedation.

Sleep is a naturally occurring circadian behavior that is believed to be a
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restorative process essential for normal metabolic, thermoregulatory, and information-
processing functions (Adams & Victor, 1993; Hobson, 1990). There are five distinct
stages of sleep. Stages I, II, I1I, and IV are collectively called non-rapid eye movement
(NREM) sleep. The fifth stage is labeled rapid eye movement or REM sleep. All stages
can be identified by EEG, electrooculogram (EOG), and electromyogram (EMG)
recordings. Table 1 describes the characteristics of the EEG waveforms for both sleep
and wake states.

In humans, each of the sleep stages is experienced several times during normal
sleep in cycles lasting approximately 90 minutes (Kelly, 1991a). During NREM sleep,
the EEG becomes progressively more synchronized. Temperature drops, as does heart
rate, blood pressure, and respiratory rate. REM sleep is characterized by the sudden onset
of an asynchronous EEG pattern. Very little muscle movement occurs during REM
sleep, except for muscle twitches of the face and the eyes. Sleepers awakened from REM
sleep typically report dreaming.

While at one time the awake and sleep states were thought to be two extremes on
the continuum of consciousness, the characteristics of REM sleep contradict this notion.
During REM sleep, thalamic neurons continue to be relatively unresponsive to sensory
input, and yet the cerebral cortex is very active (Adams & Victor, 1993; Hobson, 1990;
Kelly, 1991a). Because of this, sleep was placed into Figure 1 as two vectors normally
fluctuating along the continuums of arousal and content processing. States of disordered
consciousness and sleep may appear to be very similar to the casual observer. However,

while awake and sleep states normally exhibit a circadian rhythm, states of disordered
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consciousness do not fluctuate within predictable parameters of degree or time.

Sleep deprivation can have profound negative consequences. Humans deprived of
sleep for more than two days experience increasing levels of fatigue and irritability. They
have increased difficulty concentrating, and their motor coordination deteriorates. When
sleep-deprived individuals are finally able to sleep, they initially increase their Stage IV
NREM sleep time at the expense of Stage II NREM and REM sleep. Subsequently, REM
sleep time rebounds in proportion to the amount of time REM sleep was curtailed
(Adams & Victor, 1993; Kelly, 1991a).

Various drugs, particularly those active in the CNS, can change the proportion of
time an individual spends in the different sleep stages (Vogel, Buffenstein, Minter, &
Hennessey, 1990). Benzodiazepines, the most commonly prescribed sleeping medication,
reduce the number of awakenings during sleep so that people sleep more continuously
(Kelly, 1991b). However, benzodiazepines depress the amount of Stage III and IV
NREM sleep which are considered the most restful stages of sleep. Yet, people taking
benzodiazepines for sleeplessness report that the quality of their sleep is improved with
the short-term use of drug (Kales & Kales, 1984; Vgontzas, Kales, & Bixler, 1995).

Like benzodiazepines, opioids change the proportion of time spent in the different
stages of sleep. However, the effects of opioids on sleep have not been as well studied as
they have been for benzodiazepines. Kay, Eisenstein, and Jasinski (1969) reported that
morphine depressed REM sleep, but this study was done with only eight men, all of

whom were addicted previously to opioids.



Opioid Analgesics
The opioids are a large class of drugs that have been employed for centuries to
relieve pain (Bailey & Stanley, 1994; Reisine & Pasternak, 1996; Way, Way, & Fields,
1995). Endogenous opioids presumably function as the body's own analgesics.

Morphine and codeine are commonly used naturally occurring opioids and many

synthetic opioids have been manufactured.

Mechanism of Action of Opioid Analgesics

Nociceptive information is conveyed to the brain through at least five ascending
pathways (i. e., spinothalamic tract, spinoreticular tract, spinomesencephalic tract,
spinocervical tract, and the dorsal column of the spinal column). En route to the brain,
these signals can be modified by input from various afferent fibers and by central control
mechanisms that make use of opioids, as well as other neurotransmitters and peptides
(Basbaum & Fields, 1984; Jessell & Kelly, 1991; Melzack & Wall, 1965).

Both endogenous and exogenous opioids exert their antinociceptive effects within
the CNS in at least three ways. In the brain stem, opioids activate descending pain
modulatory pathways that originate within neurons of the periaqueductal gray matter
(PAG). PAG neurons project to the nucleus raphe magnus located in the medulla which
in turn send projections to the spinal cord inhibiting dorsal horn neurons in laminae I, II,
and V (Basbaum & Fields, 1984). In the spinal cord, opioids directly inhibit the firing of
dorsal horn neurons that carry nociceptive signals to the brain (Sabbe & Yaksh, 1990;
Yaksh, 1981). Peripherally, opioids modulate the primary afferent synapse depressing

both presynaptic and postsynaptic membrane potentials (Stein, 1993).

16
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Opioids inhibit the firing of individual neurons through interactions with cell
surface opioid receptors and second messenger systems. Three major classes of opioid
receptors have been described, mu (p), kappa (x), and delta (8), as well as subtypes of
each class. p- and 3-opioid receptors gate potassium ions hyperpolarizing the cell
membrane and making it resistant to excitation (Williams, Egan, & North, 1982). «-
opioid receptors have a different mechanism of action that blocks calcium flux across the
cell membrane thereby decreasing neurotransmitter release (Macdonald & Werz, 1986).
Table 2 lists the three major classes of opioid receptors, their location in the CNS, and the
proposed effects that can occur when the receptor is occupied with their specific
endogenous or exogenous ligand.

Sedative Effects of Opioid Analgesics

In addition to their antinociceptive effects, opioids can produce sedation. As
previously discussed, there is a paucity of information about the mechanism of opioid-
induced sedation. It has been postulated that opioids cause sedation by decreasing
sensory input thereby increasing the probability of sleep (Martin, 1984). There is limited
evidence that opioids disrupt sleep patterns by decreasing REM sleep in both humans
(Kay, Eisenstein, & Jasinski, 1969) and animals (Furst, 1990; King, Masserano, Codd, &
Byme, 1981; Landis, 1988). However, based on the work of Moruzzi and Magoun
(1949), awake and sleep states are not determined by the amount of sensory input but
rather are dependent upon intact systems that are intrinsic to the CNS.

Using spectral analysis, EEG studies of both humans and animals given opioids

have reported changes in power to the lower frequencies between 1 and 10 Hz.
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Quantitative changes in spectral densities of EEG recordings of humans (Bowdle &
Ward, 1989; Chi, Sommer, & Jasaitis, 1991; Scott, Cooke, & Stanski, 1991; Scott,
Ponganis, & Stanski, 1985; Smith et al., 1984; Wauquier, Bovill, & Sebel, 1984) and
animals (Bronzino et al., 1982; Campi & Clarke, 1995; Hong, Young, & Khazan, 1988;
Paquette & Young, 1991; Stamidis & Young, 1992, 1993; Young, Hudson, Stamidis, &
Steinfels, 1993a, 1993b; Young & Khazan, 1984) given opioids reported that spectral
power had shifted to lower frequencies between 1 and 10 Hz. The significance of these | el
power shifts in explaining the mechanism of opioid-induced sedation has not been
explored thoroughly (Avramov & White, 1995). -

There is some evidence from animal studies that the sedative effects of opioids
can be disassociated from their antinociceptive effects. p-receptor agonists have been
observed to produce sedation when given subcutaneously at doses 3 to 34 times higher
than their antinociceptive dose, and x-receptor agonists produce sedation at doses 29 to
2,500 times higher than their subcutaneous antinociceptive doses (Hayes & Tyers, 1983).
These researchers postulated that high doses of x-agonists produced sedation through
drug interaction at pu-receptors, rather than at x-receptors.
Use of Opioids with Benzodiazepines

It has been difficult to study the sedative effects of opioids in the clinical setting
because patients taking these drugs for pain relief are often taking many other drugs that
also depress LOC. Commonly, opioids are combined with benzodiazepines to control
pain and reduce anxiety in critically ill patients (Avramov & White, 1995; Levine, 1994),

patients undergoing diagnostic or surgical procedures (Stevens & White, 1994; Willenkin
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& Polk, 1994), and patients experiencing chronic pain (Hendler, Cimini, Long, & Long,
1980).

Biochemically, benzodiazepines and opioids have different mechanisms of action.
Benzodiazepines interact with the gamma-aminobutyric acid (GABA) receptor to
potentiate the actions of the inhibitory neurotransmitter, GABA (Becker, 1991; Méhler &
Richards, 1988). When occupied with GABA, the GABA receptor gates chloride which
hyperpolarizes the cell membrane thus making the cell resistant to firing. GABA
receptors are located throughout the CNS, the highest densities being measured in the
cerebral cortex, hypothalamus, cerebellum, brain stem, and spinal cord (M&hler & Okada,
1977). GABA is widely used throughout the CNS for both feedback inhibition and
modulation of excitatory neurotransmitter release (Mthler & Okada, 1977; Méhler &
Richards, 1988). The GABA receptor complex has three functional domains: 1) a GABA
binding site, 2) a benzodiazepine binding site, and 3) a barbiturate binding site. Although
benzodiazepines cannot open the chloride ion channel independently, the actions of
GABA can be potentiated in the presence of either benzodiazepines or barbiturates
(Becker, 1991; Méhler & Richards, 1988).

In addition to interacting with a different receptor, the EEG profiles of patients
taking a benzodiazepine are completely different from EEG profiles of patients taking an
opioid. Patients taking opioids are more likely to have increased power in the lower
frequencies between 1 and 10 Hz (Bowdle & Ward, 1989; Chi, Sommer, & Jasaitis,

1991; Scott, Ponganis, & Stanski, 1985; Smith et al., 1984; Wauquier, Bovill, & Sebel,

1984), whereas patients taking benzodiazepines are more likely to have increased power
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in the higher frequencies between 12 and 35 Hz (Hendler, Cimini, Long, & Long, 1980;
Seifert, Blouin, Conard, & Gross, 1993).

The behavioral correlates associated with these EEG changes are not well
understood. One study evaluated both EEG recordings and tests of cognitive function in
patients admitted to a chronic pain treatment center (Hendler, Cimini, Long, & Long,
1980). Of the 106 consecutively admitted patients, 74 were taking both benzodiazepines
and opioids, 13 were taking benzodiazepines alone, 13 were taking opioids alone, and 6 b
were not taking any drugs. In addition to the diffuse, high frequency waves observed on
EEG recordings, the 13 patients taking benzodiazepines had significant decreases in |
cognitive function when compared with the 13 patients taking only opioids. The patients
taking opioids alone did not have any EEG changes. However, the researchers did not
report either the type or doses of drugs being taken. Neither was the duration of drug |
therapy reported. In addition to the differences in cognitive functioning, this study points
out that many patients experiencing chronic pain are treated with both benzodiazepines
and opioids. Without a better understanding of the unique sedative effects of both
opioids and benzodiazepines, a reasoned approach to maximizing therapy and minimizing
side effects is impossible.

Conscious Sedation

Different from sedation as a side effect of opioids, conscious sedation is an
anesthetic technique that uses combinations of opioids and benzodiazepines to reduce the
pain and anxiety associated with short diagnostic, endoscopic, and surgical procedures

(Stevens & White, 1994). Drugs are chosen for their rapid onset of action, predictable
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dose-response relationship, minimal respiratory and cardiovascular effects, and rapid
recovery to normal consciousness. Mention is made of conscious sedation here because
the definition and classification of this type of intentional sedation for a specific
procedure using multiple drugs is a different phenomenon than sedation as a side effect of
opioids.

The definition and classification of sedation induced with general anesthesia is,
likewise, a different phenomenon than opioid-induced sedation. General anesthesia is a #
process where combinations of anesthetics, barbiturates, sedative hypnotics, analgesics,
and muscle relaxants are administered to a patient in preparation for a surgical procedure. ‘
Anesthesia aims to induce unconsciousness, analgesia, muscle relaxation, and amnesia
while maintaining adequate tissue oxygenation and perfusion (Rampil, 1992). Induction
of general anesthesia ideally accomplishes a rapid loss of consciousness and progression §
to a light surgical plane of anesthesia characterized by decreased ventilation, decreased
blood pressure, and a minimal response to stimuli (Willenkin & Polk, 1994). As with
conscious sedation, the sedative hypnotics are administered for their sedative effects and
analgesics, such as opioids, are given for their antinociceptive effects. Currently, the
sedative effects unique to opioids cannot be identified or described when used in
combination with other drugs that also cause sedation.

Proposed Definition of Opioid-Induced Sedation

Based on the preceding review of the anatomy of the CNS, the physiology of

consciousness, and opioid pharmacology, the proposition is made that opioid-induced

sedation represents a disordered LOC where both arousal mechanisms and content
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processing are functional but attenuated because of the action of opioids at receptors
within the CNS. Attenuated arousal is manifested as decreased wakefulness and
attenuated content is manifested as a slowed or faulty interpretation of the environment.
This depressed LOC is associated in humans with EEG spectral power shifts to lower
frequencies between 1 and 10 Hz. However, the clinical implications of these EEG
changes in the study of opioid-induced sedation has not been explored fully.
Electroencephalograph Recordings

Communication within the CNS and between the CNS and the rest of the body is
accomplished through an integration of electrical and chemical signals (Kandel,
Siegelbaum, & Schwartz, 1991). In neurons, the flux of sodium and potassium ions
across a cell membrane generates an action potential that travels the length of the cell
releasing various neurotransmitters that act upon other neurons and influence their ability
to generate an action potential. Activation of a receptor, present in the cell membrane can
either facilitate or block ion movement across the membrane. Various drugs, including
opioids, act on cell membrane receptors to influence ion movements and thus cell
signalling and communication.

The amount of neurotransmitter released and the action potential generated by a
single cell can only be measured in vitro under experimental conditions. Measuring the
electrical activity of organized groups of cells, such as in the cerebral cortex, is possible
in vivo and is an important clinical tool for the diagnosis and management of various
neurologic conditions (Martin, 1991). The cerebral cortex is organized in vertical

columns of neurons and supporting glial cells that extend radially from the center of the
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brain outward toward the skull. Because these columns of cells operate in concert,
summed changes in the electrical potential across many cell membranes can be measured
between two electrodes.

An electroencephalograph is an instrument that detects and displays a difference
in electrical potential between two electrodes placed on the external surface of the scalp
or in the CNS. Electrode placement determines which portion of the CNS is being
monitored. Electrical activity of cortical neurons can be recorded from electrodes affixed
to the scalp (Rampil, 1987). To record the electrical activity of structures located deeper
within the CNS, electrodes must be implanted surgically into or near the structure of
interest. While tracings from scalp electrodes are attenuated by cerebral spinal fluid, the
skull, and the scalp, electrodes placed surgically into the scalp or skull can improve the

quality of the recordings. In the research setting, differences in skull size, scalp diameter,
volume of cerebral spinal fluid, and individual variations in neuron columns must be
considered when comparing EEG tracing between subjects.

The EEG voltage signal is processed through a series of filters and amplifiers to
filter out wave artifact and amplify specific wave frequencies of interest (Black, Mahla, &
Cucchiara, 1994; Rampil, 1987, 1992). EEG wave frequencies of interest range between
1 and 30 Hz, and so frequencies above 30 Hz are filtered out of the signal while
frequencies between 1 and 30 Hz are amplified. This filtered, amplified signal is still
subject to electrical artifact occurring between 1 and 30 Hz. Skeletal muscle activity,
cardiac contractions, and environmental electrical interference can inadvertently

contribute to the recorded EEG signal and influence the interpretation of the signals.
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EEG recordings can be analyzed either qualitatively, by a trained
electrophysiologist, or quantitatively, using computer analysis. Both methods describe
the EEG waveform by its frequency and amplitude. Delta (3), theta (8), alpha («), sigma
(o), and beta (B) are Greek letters that have been arbitrarily assigned to describe
waveforms of specific frequencies and amplitudes. In addition to these underlying
waveforms of a particular frequency and amplitude, discrete wave complexes can be
identified at various times throughout the wake and sleep cycles.

Experienced electrophysiologists learn to recognize many different waveforms
and can correlate changes in waveforms, or the occurrence of a specific waveform, with
the patient's neurologic state. Qualitative analysis of the EEG remains the gold standard
for describing sleep stages and sleep stage transition, as well as for describing seizure
activity (Black, Mahla, & Cucchiara, 1994; Gasser & Molinari, 1996).

Computerized quantitative assessment of the EEG is another approach to
analyzing EEG recordings (Donegan & Rampil, 1990; Rampil, 1987, 1992). The EEG
waveform is digitalized by converting the analog signal into a series of discrete numbers
that a computer can mathematically manipulate. Once digitalized, the computer can
analyze the EEG signal as a function of time or as a function of wave frequency.

Time domain analysis evaluates the wave voltage as a function of time (Donegan
& Rampil, 1990; Rampil, 1987, 1992). Activity, mobility, and complexity are three time
domain analyses. Activity is the variance of the wave amplitude (Hjorth, 1970).
Mobility is the relative number of zero crossings of the signal (Haberny & Young, 1994;

Hjorth, 1970). Complexity is the measure of the deviation of the observed wave from a



sine wave (Haberny & Young, 1994; Hjorth, 1970). Hjorth (1973) described an

algorithm to determine sleep and awake states in the rat by evaluating the time domain

parameters of activity and complexity. According to Hjorth, periods of decreased activity

and increased complexity were associated with both awake states and REM sleep.
Periods during which complexity and activity both returned to baseline were associated
with NREM sleep.

Frequency domain analysis makes use of fast Fourier-transformations (FFTs) to
decompose a digitalized EEG waveform into the frequencies of the component waves,
thereby evaluating wave voltage as a function of frequency (Donegan & Rampil, 1990;
Gottman, 1980; Rampil, 1987, 1992). Just as a prism breaks down white light into its
component colored light frequencies, so too does spectral analysis break down a
waveform into its component wave frequencies. This method is particularly useful in
EEG analysis where thousands of neuron units contribute to the observed waveform as a
means of determining the prominent brain wave frequency at any given time. The
spectral density, or variance, is plotted according to wave frequency. The greater the
spectral density at a particular frequency, the more prominent that wave is in the original

EEG recording. The spectral density below 1 Hz is the variance in the waveform that is
not attributable to a sinusoidal wave (Gasser & Molinari, 1996; Thomas, 1990). This
variance is unexplained and may be related to artifact within the frequencies of interest
that cannot be filtered or to measurement error that needs to be considered when
analyzing EEG data.

Treating the frequency spectrum as a statistical distribution, four frequency
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domain descriptors of the EEG waveform are absolute power, peak frequency, median
frequency, and edge frequency. Absolute power is the summation of spectral densities
over the frequency range of interest and is measured in uV? (Hudson, Marquis, Stamidis,
& Young, 1992). Peak frequency is the frequency at which the greatest power exists and
is analogous to the mode of the spectrum (Donegan & Rampil, 1990; Hudson, Marquis,
Stamidis, & Young, 1992; Rampil, 1987, 1992). Median frequency is the frequency at
which one-half of the power lies above and one-half of the power lies below in the
spectrum (Rampil, 1987, 1992). And, edge frequency is the frequency below which 97%
of the power lies (Hudson, Marquis, Stamidis, & Young, 1992; Rampil, 1987, 1992;
Rampil et al., 1980).
Quantitative assessment of the EEG that allows for an objective assessment of the
EEG waveform has been most useful in studying the neurologic effects of drugs,
including opioids, that act upon the CNS (Wauquier, 1993; Young, Hong, & Khazan,
1987). Quantified pharmaco-EEG, or QPEEG, has been used to define certain drug
classes, to assess both therapeutic and toxic drug levels, to assess the duration of drug
action, and to identify CNS effects of drugs not intended to target the brain or nervous
system (Gasser & Molinari, 1996; Wauquier, 1993).
Effects of Opioid Agonists on the Electroencephalograph
Drugs acting on receptors present in neuronal cell membranes can either facilitate
or block ion movements across the membrane, thereby influencing the electrical activity
within cell columns and the CNS. These changes can be observed with EEG recordings

(Wauquier, 1993). Opioid agonists produce specific, quantitative changes in EEG
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recordings.
p-Opioid Agonists
In rats, p-opioid agonists produce dose-dependent, high-voltage, slow-frequency
waves and increase spectral power in the lower frequencies of 0 to 10 Hz. Bronzino and
colleagues (1982) described EEG spindling within one minute of an intraperitoneal
injection of morphine (2.5 mg/kg or 5 mg/kg) which lasted for 30 to 60 minutes. At
higher doses of morphine (15 mg/kg or 30 mg/kg) they described more intense spindling
that lasted up to 100 minutes, as well as the occurrence of short epochs of synchronized
high-voltage, slow-frequency activity. With increasing doses of morphine, EEG spectral
power progressively shifted from the higher frequencies to the lower frequencies of 5 to 7
Hz and spectral power shifts persisted for longer periods of time. At a lower dose of
morphine (5 mg/kg), the percent of absolute power at 5 to 7 Hz was elevated for 60
minutes, while at a higher dose of morphine (30 mg/kg), the percent of absolute power at
5 to 7 Hz was elevated for 120 minutes. After every dose of morphine, the researchers
reported that, "the animals became immobile and rigid remaining in one corner of the
recording chamber until the drug effect abated" (Bronzino et al., 1982, p. 18). The
latency to the onset of this behavior and the duration of the behavior corresponded with
the measured EEG effects, specifically latency to peak spindle effect and duration of
spindle effect.
Stamidis and Young (1993) reported an increase in EEG spectral power between 1
and 10 Hz associated with "behavioral stupor" (p. 512) when 3 mg/kg of morphine was

given intravenously to rats. These EEG and behavioral changes persisted for 60 minutes

- -
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and were followed by a period of "EEG and behavioral excitation” (p. 512-513) which

lasted another 60 minutes. Neither stupor nor excitation was defined using either EEG or
behavioral characteristics. Young and Khazan (1984) reported a similar increase in
spectral power between 1 and 10 Hz associated with stupor, exophthalmos and
respiratory depression lasting 30 to 60 minutes when another p-opioid agonist,
methadone (1.0 mg/kg), was given intravenously to rats.

x-Opioid Agonists

The x-opioid agonists, like the p-opioid agonists, administered systemically to
rats produce high-voltage, slow-frequency bursts and increased power in the lower
frequencies between 2 and 8 Hz (Campi & Clarke, 1995; Young, Hudson, Stamidis, &
Steinfels, 1993a, 1993b; Young & Khazan, 1984). Similar findings have been reported
for seven different x-opioid agonists including ketocyclazocine, enadoline, spiradoline,
DuP 747, U-50,488H, BRL 52656, and BRL 53001. In each of these studies, researchers
observed sedative behaviors (Campi & Clarke, 1995) and stupor (Young, Hudson,
Stamidis, & Steinfels, 1993a, 1993b; Young & Khazan, 1984) associated with the EEG
changes. Neither sedation nor stupor was defined.
3-Opioid Agonists
Naloxone, a drug commonly considered an universal opioid antagonist, has been

identified as a 3-receptor agonist at low doses between 5 and 500 ng administered
intrathecally (Taiwo, Basbaum, Perry, & Levine, 1989). Doses of naloxone between 50
ng/kg and 5 pg/kg administered subcutaneously have been observed to be analgesic in

pain-free rats (Levine, Gordon, Taiwo, & Coderre, 1988), while doses between 10 and 30
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ng/kg administered intravenously were observed to be analgesic in arthritic rats but not in

pain-free rats (Kayser & Guilbaud, 1981). Higher doses of naloxone (1 mg/kg)
administered intravenously, increased EEG spectral power in the frequency bands
between 1 and 3.5 Hz (Grasing & Szeto, 1990, 1991). Naloxone was presumably acting
as an opioid antagonist at this dose however, not as a §-agonist.
Conclusions
Opioid-induced sedation is a clinical phenomenon that has received little
scientific investigation to date, although it is a commonly reported side effect of these
drugs (Cherny & Portenoy, 1994; Jacox et al., 1994; Way, Way, & Fields, 1995). Based
on a review of the anatomy of the CNS and the physiology of consciousness, this chapter
has proposed that opioid-induced sedation is a disordered level of consciousness where
both arousal mechanisms and content processing are functional but attenuated because of
the actions of opioid at receptors within the CNS. The acquisition, analysis, and
interpretation of EEG recordings as a measure of CNS functioning have been described.
As reviewed in this chapter, EEG recordings have been used previously to glean
information about the CNS effects of opioids. This study aims to expand the body of
knowledge of CNS effects of opioids by describing the effects of two antinociceptive
doses of three subcutaneously administered relatively-selective opioid receptor agonists

(i. e., morphine, pentazocine & naloxone) on selected EEG parameters of conscious rats.
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CHAPTER 3 - METHODS

Sample
Experiments were done using male Sprague-Dawley rats (Bantin Kingman,
Fremont, CA) weighing between 240 and 260 grams. Throughout the study, the rats were
maintained on a 12 hour light-dark schedule with lights on at 0700 and off at 1900. Rats
were housed in individual cages to maintain the integrity of the implanted EEG
electrodes. They were fed standard rat chow (Purina Corporation) and water ad libitum.
Animal Preparation
One week prior to the experiments, rats were anesthetized with sodium
pentobarbital (50 mg/kg) and four stainless steel wire electrodes were placed in the dura
through holes drilled in the skull. To permit comparison of EEG measurements among
rats and to the findings of previous studies, electrodes were stereotactically implanted
over both frontal (2 mm anterior and 2 mm lateral to bregma) and both parietal (3 mm
posterior and 2 mm lateral to bregma) cortices (Khazan, 1975). The electrodes were
seated in a receptacle strip connector (D. A. Grahn, PhD, Stanford University, personal
communication, January 18, 1996; Khazan, 1975), and the strip connector was secured to
the skull with dental acrylic cement. Rats were allowed five days to recover before any
testing was done.
Opioid Agonists
Three relatively-selective opioid agonists believed to act at the p-opioid receptor
(morphine), the x-opioid receptor (pentazocine), and the 8-opioid receptor (low-dose

naloxone) were chosen for this study (Reisine & Pasternak, 1996; Taiwo, Basbaum, Perry
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& Levine, 1989). Antinociceptive doses of these opioids (Levine, Gordon, Taiwo, &

Coderre, 1988) were administered to provide information about the effects of these drugs

on the EEG not previously reported, and to more closely approximate clinical situations

where opioids are used to manage pain.

Electroencephalogram
EEG signals were acquired, filtered, amplified, displayed, and stored using a

Model 7H polygraph, 7P511L amplifiers (Astromed-Grass, West Warwick, RI) and a
personal computer. Each day, prior to data collection, the amplifiers and the computer
were calibrated to each other. During the calibration procedure, the 50 microvolt (uV)
test signal produced by each amplifier set the standard by which the computer measured
the voltage of the recorded EEG. Analog signals above 100 Hz and below 1 Hz were
filtered and the remaining signals were amplified at 7.5 microvolts per millimeter
(1V/mm) by the polygraph. The analog signal was then digitalized at a sampling rate of
250 per second and stored on the computer hard drive in binary files.

A computer program written by Chad E. Kennedy (Software Engineer, VI
Technology, Sunnyvale, CA) using LabVIEW® software (National Instruments
Corporation, Austin, TX) analyzed the data files computing various time domain and
frequency domain parameters of the EEG.

Time domain parameters calculated by the computer program included activity,
mobility, and complexity. Activity is the variance of the wave amplitude and is
calculated by squaring the standard deviations of the amplitude of the EEG wave (Hjorth,

1970). Mobility is the relative number of zero crossings of the signal and is calculated by
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taking the square root of the ratio between the wave variance of the first derivative (the
slope of the curve) and amplitude (Hjorth, 1970). Complexity is the measure of the
deviation of the observed wave from a sine wave and is calculated by taking the ratio
between the mobility of the first derivative of the EEG and the mobility of the EEG itself
(Haberny & Young, 1994; Hjorth, 1970).

Frequency domain parameters calculated by the computer program included
absolute power, peak frequency, median frequency, edge frequency, and percent of
absolute power attributable to individual one Hz frequencies. To calculate the frequency
domain parameters, the computer program applied a fast Fourier transform (FFT) to
consecutive 60 second epochs of digitalized data. The computer program calculated
frequency bands in hundredths of a Hz. For this study, 1 Hz was defined as the
frequencies between 0.50 and 1.00 Hz; 2 Hz was defined as the frequencies between 1.01
and 2.00 Hz; 3 Hz was defined as the frequencies between 2.01 and 3.00 Hz. This
pattern continued through the frequency bands ending with 30 Hz which was defined as
the frequencies between 29.01 and 30.00 Hz. Absolute power is the summation of
spectral densities over the 1 to 30 Hz range measured in pV? (Hudson, Marquis, Stamidis,
& Young, 1992). Peak frequency is the frequency at which the greatest power exists and
is analogous to the mode of the spectrum (Donegan & Rampil, 1990; Hudson, Marquis,
Stamidis, & Young, 1992; Rampil, 1987, 1992). Median frequency is the frequency at
which one-half of the power lies above and one-half of the power lies below in the

spectrum (Donegan & Rampil, 1990; Rampil, 1987, 1992). And, edge frequency is the

firequency below which 97% of the power lies (Hudson, Marquis, Stamidis, & Young,
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1992; Rampil, 1987, 1992; Rampil et al., 1980).

Procedures

On testing days, animals were weighed and then placed in individual acrylic
recording cages with their implanted recording electrodes connected to a flexible
recording cable. The recording cable was in turn connected to the polygraph through a
commutator (Airflyte Electronics, Bayonne, NJ) which permitted free movement of the
animals in the recording cages. Overhead lights in the room were turned off and gray
shades drawn over the windows to minimize bright light. After animals acclimated to the
recording environment for at least 30 minutes, continuous EEG recordings were begun
between 0800 and 0830 and continued for six hours.

Upon the completion of the experiments, the rats were euthanized with an
overdose of 200 mg/kg of sodium pentobarbital (J. Wyrick, DVM, University of
California San Francisco, personal communication, February 16, 1996) which is a
method consistent with the recommendations of the Panel on Euthanasia of the American
Veterinary Medical Association (American Veterinary Medical Association, 1993).
Normal Saline Experiment

Procedure for Normal Saline Experiment. For the normal saline experiments,
24 animals were given a subcutaneous injection of 0.2 milliliters (mls) of normal saline

just prior to beginning the EEG recordings. This injection stimulated the animals so that
the EEG recording were begun with all of the animals at a similar LOC. Two hours after
the EEG recordings were begun, animals were given another subcutaneous injection of

normal saline (1 ml’kg). EEG recordings continued for another four hours for a total
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recording time of six hours. The first two hours of EEG recording, between 0800 and
1000, were considered the baseline recording period; the second two hours of EEG
recording, between 1000 and 1200, were considered the saline recording period; and the
final two hours of EEG recording, between 1200 and 1400, were considered the post-
saline recording period.

Data Analysis Plan for Normal Saline Experiment. To describe the EEG
parameters, means (+ standard error of the mean or SEM) were calculated for each of the
time domain parameters (i. e., activity, mobility & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency & edge frequency),
for each animal for the entire six hour experiment. To determine if there were differences
over time in any of the EEG parameters, means (x SEM) were calculated for each of the
time and frequency domain parameters for each animal for each of the three, two hour
recording periods, and a one-way repeated measures analysis-of-variance (RMANOVA)
was performed. When a significant difference was identified in any of the parameters,

pairwise comparisons were made using the Dunnett's post-hoc test to determine
differences from the baseline recording period.

To assess the percent of absolute power attributable to individual one Hz
frequencies over time, data from the 24 animals were meaned and three-dimensional
graphs were created for each of the three, two hour recording periods displaying the
percent of absolute power of individual one Hz frequency bands at each minute of the 360
minute experiment. Visual assessments of these graphs were done and frequency bands

with fluctuations in percent of absolute power over time were identified for further
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evaluation. The raw data were evaluated to confirm that the frequency bands with the
greatest variability in percent of absolute power over time were identified correctly from
the visual assessment.

To assess the magnitude of absolute power attributable to specific EEG
frequencies of interest, area-under-the-curve (AUC) (Max & Laska, 1991) was calculated
for the frequencies of interest identified from the three dimensional graphs for each of the
three, two hour recording periods. To determine if there were differences over time in the
magnitude of absolute power attributable to specific frequencies of interest, a one-way
RMANOVA was performed. When a significant difference was identified, pairwise
comparisons were made using the Dunnett's post-hoc test to determine differences from
the baseline recording period.

To describe cyclic fluctuations in the percent of absolute power attributable to
specific EEG frequencies of interest, the data were subjected to a time-series analysis
(Abraham & Neundorfer, 1990; Gottman, 1981, Taylor, 1990, 1994). For ﬂﬁs analysis,
the data from the first five minutes of the baseline recording period and the first five
minutes of the saline recording period were deleted because the animals had just received
an injection. Therefore, for the six hour recording period, 350 data points were available
for each animal's time-series analysis. Data from individual animals were analyzed for

shape, structure, and statistical significance using an autocorrelation function (ACF).
This statistical technique measures the correlation between observations in a time-series
using a predetermined time lag. The ACF can be defined as the shared variance of one

observation with successive observations and assesses the extent to which observations at
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one point in time are predictive of observations at a future point in time (Taylor, 1990).

Using each animal's time-series data of percent of absolute power, 60 autocorrelation

coefficients for time lags of 1 through 60 minutes were plotted as a correlogram. From

this correlogram, the shape of the time-series data could be visualized and recurring

patterns identified from highly correlated observations. If a recurring pattern was
identified, the period length (i. e., the time lag at which observations were most highly
correlated) was used to describe the shape of these time-series data. Then, another
correlogram using a time lag just a few minutes longer than the observed period length
was done to determine the structure and statistical significance of existing patterns. The
structure of the data was described by the strength of the autocorrelation coefficient for
the observed period length. The statistical significance (p < .05) of the pattern was
established when the correlation coefficient of the period length was greater than two
times the standard deviatioﬁ of the autocorrelation falling outside the so-called Bartlett
band of statistical significance (Gottman, 1984, Taylor, 1990). Descriptive statistics were
used to describe the percent of animals establishing a pattern, the period length, and the
strength of that pattern.

To determine if there were differences, over time, in the cyclic fluctuations in
percent of absolute power attributable to specific EEG frequencies of interest, the data
were again subjected to a time-series analysis. For this analysis, data from the first five
minutes of the baseline recording period and the first five minutes of the saline recording
period were deleted because the animals had just received an injection. Therefore, for the

baseline recording period and the saline recording period, 115 data points were available
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for each animal's time-series analysis. And for the post-saline recording period, 120 data
points were available for each animal's time-series analysis. Again, data from individual
animals were analyzed for shape, structure, and statistical significance using an
autocorrelation function (ACF). This statistical technique measures the correlation
between observations in a time-series using a predetermined time lag. Using each
| animal's time-series data of percent of absolute power, 60 autocorrelation coefficients for
time lags of 1 through 60 minutes were plotted as a correlogram. From this correlogram,
the shape of the time-series data could be visualized and recurring patterns identified
from highly correlated observations. If a recurring pattern was identified, the period
length (i. e., the time lag at which observations were most highly correlated) was used to
describe the shape of this time-series data. Then, another correlogram using a time lag
just a few minutes longer than the observed period length was done to determine the
structure and statistical significance of existing patterns. The structure of the data was
described by the strength of the autocorrelation coefficient for the observed period length.
The statistical significance (p < .05) of the pattern was established when the correlation
coefficient of the period length was greater than two times the standard deviation of the
autocorrelation falling outside the so-called Bartlett band of statistical significance
(Gottman, 1984; Taylor, 1990). Descriptive statistics were used to describe the percent of
animals establishing a pattern, the period length, and the strength of that pattern.
Morphine Experiment
Procedure for Morphine Experiment. For the morphine experiments, eight

animals were given a subcutaneous injection of 0.2 mls of normal saline just prior to
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beginning the EEG recordings. This injection stimulated the animals so that the EEG

recording were begun with all of the animals at a similar LOC. Two hours after the EEG
recordings were begun, animals were given a subcutaneous injection of morphine (5
ng/kg). EEG recordings continued for another four hours for a total recording time of six
hours. The first two hours of EEG recording, between 0800 and 1000, were considered
the baseline recording period; the second two hours of EEG recording, between 1000 and
1200, were considered the drug recording period; and the final two hours of EEG
recording, between 1200 and 1400, were considered the post-drug recording period. Ata
minimum of 24 hours later, this procedure was repeated giving the animals a higher dose
of morphine (500 ug/kg).

Data Analysis Plan for Morphine Experiment. To determine if there were
differences over time in any of the EEG parameters, means (+x SEM) were calculated for
each of the time domain parameters (i. ., activity, mobility & complexity) and frequency
domain parameters (i. e., absolute power, peak frequency, median frequency & edge
frequency), for each animal for each of the three, 'two hour recording periods, and a one-
way RMANOVA was performed. When a significant difference was identified in any of
the parameters, pairwise comparisons were made using the Dunnett's post-hoc test to

determine differences from the baseline recording period.

To assess the percent of absolute power attributable to individual one Hz
frequencies over time, data from the eight animals were meaned and three-dimensional
graphs were created for each of the three, two hour recording periods displaying the

percent of absolute power of individual one Hz frequency bands each minute of the three,
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two hour recording periods. Visual assessments of these graphs were done comparing the
baseline, drug, and post-drug recording periods. Frequency bands with fluctuations in
percent of absolute power over time were identified for further evaluation. The raw data
were evaluated to confirm that the frequency bands with the greatest variability in percent
of absolute power over time were correctly identified from the visual assessment.
To assess the magnitude of absolute power attributable to specific EEG

frequencies of interest, AUC was calculated for the frequencies of interest identified from
the three dimensional graphs for each of the three, two hour recording periods. To
determine if there were differences over time in the magnitude of absolute power
attributable to specific frequencies of interest, a one-way RMANOV A was performed.
When a significant difference was identified, pairwise comparisons were made using the
Dunnett's post-hoc test to determine differences from the baseline recording period.

To determine if there were differences, over time, in the cyclic fluctuations in
percent of absolute power attributable to the specific frequency bands of interest the data
were subjected to a time-series analysis (Abraham & Neundorfer, 1990; Gottman, 1981,
Taylor, 1990, 1994). For this analysis, the data from the first five minutes of the baseline
recording period and the first five minutes of the drug recording period were deleted
because the animals had just received an injection. Therefore, for the baseline recording
period and the drug recording period, 115 data points were available for each animal's
time-series analysis. And for the post-drug recording period, 120 data points were
available for each animal's time-series analysis. Again, data from individual animals

were analyzed for shape, structure, and statistical significance using an ACF. Using each
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animal's time-series data of percent of absolute power, 60 autocorrelation coefficients for
time lags of 1 through 60 minutes were plotted as a correlogram. From this correlogram,
the shape of the time-series data could be visualized and recurring patterns identified
from highly correlated observations. If a recurring pattern was identified, the period
length (i. e., the time lag at which observations were most highly correlated) was used to
describe the shape of this time-series data. Then, another correlogram using a time lag
just a few minutes longer than the observed period length was done to determine the
structure and statistical significance of existing patterns. The structure of the data was
described by the strength of the autocorrelation coefficient for the observed period length.
The statistical significance (p < .05) of the pattern was established when the correlation
coefficient of the period length was greater than two times the standard deviation of the
autocorrelation falling outside of the Bartlett band of statistical significance (Gottman,
1984, Taylor, 1990, 1994). Descriptive statistics were used to describe the percent of

animals establishing a pattern, the period length, and the strength of that pattern.

Pentazocine Experiment

.
Procedure for Pentazocine Experiment. For the pentazocine experiments, eight
animals were given a subcutaneous injection of 0.2 mls of normal saline just prior to
beginning the EEG recordings. This injection stimulated the animals so that the EEG
recording were begun with all of the animals at a similar LOC. Two hours after the EEG
recordings were begun, animals were given a subcutaneous injection of pentazocine (50
ng/kg). EEG recordings continued for another four hours for a total recording time of six

hours. The first two hours of EEG recording, between 0800 and 1000, were considered
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the baseline recording period; the second two hours of EEG recording, between 1000 and
1200, were considered the drug recording period; and the final two hours of EEG
recording, between 1200 and 1400, were considered the post-drug recording period. At a
minimum of 24 hours later, this procedure was repeated giving the animals a higher dose
of pentazocine (5 mg/kg).

Data Analysis Plan for Pentazocine Experiment. To determine if there were
differences over time in any of the EEG parameters, means (+ SEM) were calculated for
each of the time domain parameters (i. €., activity, mobility & complexity) and frequency
domain parameters (i. €., absolute power, peak frequency, median frequency & edge
frequency), for each animal for each of the three, two hour recording periods, and a one-
way RMANOVA was performed. When a significant difference was identified in any of
the parameters, pairwise comparisons were made using the Dunnett's post-hoc test to
determine differences from the baseline recording period.

To assess the percent of absolute power attributable to individual one Hz
frequencies over time, data from the eight animals were meaned and three-dimensional
graphs were created for each of the three, two hour recording periods displaying the
percent of absolute power of individual one Hz frequency bands each minute of the three,
two hour recording periods. Visual assessments of these graphs were done comparing the
baseline, drug, and post-drug recording periods. Frequency bands with fluctuations in
percent of absolute power over time were identified for further evaluation. The raw data
were evaluated to confirm that the frequency bands with the greatest variability in percent

of absolute power over time were correctly identified from the visual assessment.
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To assess the magnitude of absolute power attributable to specific EEG
frequencies of interest, AUC was calculated for the frequencies of interest identified from
the three dimensional graphs for each of the three, two hour recording periods. To
determine if there were differences over time in the magnitude of absolute power
attributable to specific frequencies of interest, a one-way RMANOV A was performed.
When a significant difference was identified, pairwise comparisons were made using
Dunnett's post-hoc tests to determine differences from the baseline recording period.

To determine if there were differences, over time, in the cyclic fluctuations in
percent of absolute power attributable to the specific frequency bands of interest the data
were subjected to a time-series analysis (Abraham & Neundorfer, 1990; Gottman, 1981,
Taylor, 1990, 1994). For this analysis, the data from the first five minutes of the baseline
recording period and the first five minutes of the drug recording period were deleted
because the animals had just received an injection. Therefore, for the baseline recording
period and the drug recording period, 115 data points were available for each animal's
time-series analysis. And for the post-drug recording period, 120 data points were
available for each animal's time-series analysis. Again, data from individual animals
were analyzed for shape, structure, and statistical significance using an ACF. Using each
animal's time-series data of percent of absolute power, 60 autocorrelation coefficients for
time lags of 1 through 60 minutes were plotted as a correlogram. From this correlogram,
the shape of the time-series data could be visualized and recurring patterns identified
from highly correlated observations. If a recurring pattern was identified, the period

length (i. e., the time lag at which observations were most highly correlated) was used to
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describe the shape of this time-series data. Then, another correlogram using a time lag
just a few minutes longer than the observed period length was done to determine the
structure and statistical significance of existing patterns. The structure of the data was
described by the strength of the autocorrelation coefficient for the observed period length.
The statistical significance (p < .05) of the pattern was established when the correlation
coefficient of the period length was greater than two times the standard deviation of the
autocorrelation falling outside of the Bartlett band of statistical significance (Gottman,
1984; Taylor, 1990, 1994). Descriptive statistics were used to describe the percent of
animals establishing a pattern, the period length, and the strength of that pattern.
Naloxone Experiment

Procedure for Naloxone Experiment. For the naloxone experiments, eight
animals were given a subcutaneous injection of 0.2 mls of normal saline just prior to
beginning the EEG recordings. This injection stimulated the animals so that the EEG
recording were begun with all of the animals at a similar LOC. Two hours after the EEG
recordings were begun, animals were given a subcutaneous injection of naloxone (5
ng/’kg). EEG recordings continued for another four hours for a total recording time of six
hours. The first two hours of EEG recording, between 0800 and 1000, were considered
the baseline recording period; the second two hours of EEG recording, between 1000 and
1200, were considered the drug recording period; and the final two hours of EEG
recording, between 1200 and 1400, were considered the post-drug recording period. Ata
minimum of 24 hours later, this procedure was repeated giving the animals a higher dose

of naloxone (500 pg/kg).



Data Analysis Plan for Naloxone Experiment. To determine if there were
differences over time in any of the EEG parameters, means (+ SEM) were calculated for
each of the time domain parameters (i. €., activity, mobility & complexity) and frequency
domain parameters (i. €., absolute power, peak frequency, median frequency & edge
frequency), for each animal for each of the three, two hour recording periods, and a one-
way RMANOVA was performed. When a significant difference was identified in any of
the parameters, pairwise comparisons were made using the Dunnett's post-hoc test to
determine differences from the baseline recording period.

To assess the percent of absolute power attributable to individual one Hz
frequencies over time, data from the eight animals were meaned and three-dimensional
graphs were created for each of the three, two hour recording periods displaying the
percent of absolute power of individual one Hz frequency bands each minute of the three,
two hour recording periods. Visual assessments of these graphs were done comparing the
baseline, drug, and post-drug recording periods. Frequency bands with fluctuations in
percent of absolute power over time were identified for further evaluation. The raw data
were evaluated to confirm that the frequency bands with the greatest variability in percent
of absolute power over time were correctly identified from the visual assessment.

To assess the magnitude of absolute power attributable to specific EEG
frequencies of interest, AUC was calculated for the frequencies of interest identified from
the three dimensional graphs for each of the three, two hour recording periods. To
determine if there were differences over time in the magnitude of absolute power

attributable to specific frequencies of interest, a one-way RMANOVA was performed.



45

When a significant difference was identified, pairwise comparisons were made using
Dunnett's post-hoc tests to determine differences from the baseline recording period.

To determine if there were differences, over time, in the cyclic fluctuations in
percent of absolute power attributable to the specific frequency bands of interest the data
were subjected to a time-series analysis (Abraham & Neundorfer, 1990; Gottman, 1981,
Taylor, 1990, 1994). For this analysis, the data from the first five minutes of the baseline
recording period and the first five minutes of the drug recording period were deleted
because the animals had just received an injection. Therefore, for the baseline recording
period and the drug recording period, 115 data points were available for each animal's
time-series analysis. And for the post-drug recording period, 120 data points were
available for each animal's time-series analysis. Again, data from individual animals
were analyzed for shape, structure, and statistical significance using an ACF. Using each
animal's time-series data of percent of absolute power, 60 autocorrelation coefficients for
time lags of 1 through 60 minutes were plotted as a correlogram. From this correlogram,
the shape of the time-series data could be visualized and recurring patterns identified
from highly correlated observations. If a recurring pattern was identified, the period
length (i. e., the time lag at which observations were most highly correlated) was used to
describe the shape of this time-series data. Then, another correlogram using a time lag
just a few minutes longer than the observed period length was done to determine the
structure and statistical significance of existing patterns. The structure of the data was
described by the strength of the autocorrelation coefficient for the observed period length.

The statistical significance (p < .05) of the pattern was established when the correlation



46
coefficient of the period length was greater than two times the standard deviation of the

autocorrelation falling outside of the Bartlett band of statistical significance (Gottman,
1984; Taylor, 1990, 1994). Descriptive statistics were used to describe the percent of
animals establishing a pattern, the period length, and the strength of that pattern.
Committee on Animal Research Approval

This study was approved by the Committee on Animal Research (CAR) at the

University of California San Francisco (A7025-11249-02). Appendix A includes a copy
of the CAR approval letter.
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CHAPTER 4 - RESULTS

Introduction
This chapter is divided into four sections describing the results of each of the four
experiments conducted as part of this study. All 24 of the rats used in this study received
normal saline and the results of that experiment are discussed in the section entitled,
Normal Saline Experiment. Following the normal saline experiment, groups of eight rats
each received one of the three study drugs (i. e., morphine, pentazocine, or naloxone). A
minimum of 24 hours later, the same eight rats received a higher dose of the same study
drug. The results of those experiments are discussed in the sections entitled, Morphine
Experiment, Pentazocine Experiment, and Naloxone Experiment.
Normal Saline Experiment
Aim #1: To describe the EEG time domain parameters (i. e., activity, mobility, &
complexity) and frequency domain parameters (i. e., absolute power, peak
frequency, median frequency, & edge frequency) over six hours in conscious rats
who received a subcutaneous injection of normal saline.

Figures 2 - 6 show the various EEG time domain parameters (i. €., activity,
mobility & complexity) and frequency domain parameters (i. €., absolute power, peak
frequency, median frequency & edge frequency) over the entire six hour recording period
for the 24 conscious rats who received a subcutaneous injection of normal saline. Table 3
shows the mean values of the EEG parameters.

Aim #2: To determine if there are differences, over time, in any of the time domain

parameters (i. e., activity, mobility, & complexity) and frequency domain
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parameters (i. e., absolute power, peak frequency, median frequency, & edge

frequency) in conscious rats who received a subcutaneous injection of normal saline.
Figures 2 - 6 show the various EEG time domain parameters (i. €., activity,

mobility & complexity) and frequency domain parameters (i. €., absolute power, peak

frequency, median frequency & edge frequency) over the entire six hour recording period

for the 24 conscious rats who received a subcutaneous injection of normal saline. Table 4 e
provides a statistical analysis of the EEG parameters using a one-way RMANOVA to e

compare the three, two hour recording periods. Statistically significant differences
between the three recording periods were identified for mobility (F, . = 3.87, p = .02),
complexity (F, 4 = 3.73, p = .03), and median frequency (F,, = 5.25, p =.007). Testing
for pairwise differences between the recording periods, Dunnett's post hoc comparisons '
revealed that the median frequency for the post-saline recording period was significantly

higher than for the baseline recording period (p =.01). No significant differences from

baseline (p < .05) were identified for either mobility or complexity. The statistical

differences in mobility, complexity, and median frequency following the injection of

normal saline can be attributed to the low variance of these measures rather than to

physiologically significant differences in these EEG parameters.

Aim #3: To determine if there are visual differences, over time, in the three-

dimensional plot of percent of absolute power attributable to individual one Hz

frequencies of the EEG in conscious rats who received a subcutaneous injection of

normal saline.

The percent of absolute power of individual one Hz frequencies of the right and
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left EEG recordings were meaned for the 24 animals who received a subcutaneous
injection of normal saline. Results are shown in Figures 7 (0800-1000), 8 (1000-1200),
and 9 (1200-1400). The highest density of spectral power occurred in the frequencies
below 5 Hz and persisted over the six hour recording period. Spectral power in the very
low frequencies is usually considered to be artifact (Gasser & Molinari, 1996). The
second highest density of spectral power occurred at 7 and 8 Hz and also persisted over
the six hour recording period. Approximately every 10 to 15 minutes recurring
fluctuations in power at 7 and 8 Hz were evident. The raw data were evaluated to
confirm that 7 and 8 Hz were the frequency bands where these fluctuations occurred.
Above 9 Hz, the percent of absolute power for individual one Hz frequency bands
remained below 5% of the absolute power.

Aim #4: To determine if there are differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of normal saline.

From the visual analysis of the three-dimensional plots (Figures 7 - 9) of percent
of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of normal
saline, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to further analyze these data.

Figure 10 shows the percent of absolute power at 7 and 8 Hz over the entire six

hour recording period for the 24 rats who received a subcutaneous injection of normal
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saline. Figure 11 shows the AUC for percent of absolute power at 7 and 8 Hz for each of
the three, two hour recording periods. Table 4 provides a statistical analysis of AUC data
using a one-way RMANOVA to compare the three, two hour recording periods. No
statistically significant differences (p < .05) between the three recording periods were
identified.

Aim #5: To describe the cyclic fluctuations in the percent of absolute power
attributable to specific EEG frequencies of interest in conscious rats who received a
subcutaneous injection of normal saline.

From the visual analysis of the three-dimensional plots (Figures 7 - 9) of percent
of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of normal
saline, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to do a time-series analysis of these
data.

Over the six hour recording period (0800-14Q0), 350 observations of percent of
absolute power at 7 and 8 Hz were available for the time-series analysis. Correlograms
plotting autocorrelation coefficients with a time lag of 60 minutes revealed recurring
patterns with a period length between 8 and 39 minutes in 23 (96%) of the 24 animals.
For the 23 animals who established a recurring pattern, another correlogram was done
using a time lag a few minutes longer than the observed period length. From this second

correlogram, 18 of the animals established a statistically significant cyclic pattern (0.12 <
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r<0.26, p <.05). Data for each of the animals are summarized in Table 5.

Typical of the 23 animals who established a cyclic pattern, Figure 12 is a graph of
the percent of absolute power at 7 Hz and 8 Hz over the entire six hour experiment for
one animal. Figure 13 is the correlogram with a lag of 60 minutes showing positive
correlations at 11, 21, 34, 45, and 58 minutes. And, Figure 14 is the correlogram with a

lag of 15 minutes showing a statistically significant autocorrelation (r = 0.26, p < .05) at

11 minutes that falls outside the Bartlett band. PLas
In contrast, Figure 15 is a graph of the percent of absolute power at 7 and 8 Hz i:—
over the entire six hour experiment for an animal who did not establish a cyclic pattern. -
Figure 16 is the correlogram with a 60 minute lag for these data demonstrating that this -
animal never established a regular pattern. : . |
Aim #6: To determine if there are differences, over time, in the cyclic fluctuations in '

the percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of normal saline.

From the visual analysis of the three-dimensional plots (Figures 7 - 9) of percent
of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of normal
saline, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to do a time-series analysis of these

data.

Over the baseline recording period (0800-1000), 115 observations of percent of
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absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 6 and 24
minutes in 20 (83%) of the 24 animals. For the 20 animals who established a recurring
pattern, another correlogram was done using a time lag a few minutes longer than the
observed period length. From this second correlogram, only 10 of the animals
established a statistically significant cyclic pattern (0.24 <r < 0.49, p < .05). Data for
each of the animals are summarized in Table 6.

Over the saline recording period (i. e., the first two hours following nonmal saline
administration, 1000-1200), 115 observations of percent of absolute power at 7 and 8 Hz
from each animal were available for the time-series analysis. Correlograms for individual
animals plotting autocorrelation coefficients with a time lag of 60 minutes revealed
recurring patterns with a period length between 6 and 22 minutes in 19 (79%) of the 24
animals. For the 19 animals who established a recurring pattern, another correlogram
was done using a time lag a few minutes longer than the observed period length. From
this second correlogram, only 7 of the animals established a statistically significant cyclic
pattern (0.25 <r < 0.45, p <.05). Data for each of the animals are summarized in Table
6.

Over the post-saline recording period (i. e.. third and fourth hours following
nommal saline administration, 1200-1400), 120 observations of percent of absolute power
at 7 and 8 Hz from each animal were available for the time-series analysis. Correlograms

for individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
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revealed recurring patterns with a period length between 7 and 27 minutes in 20 (83%) of
the 24 animals. For the 20 animals who established a recurring pattern, another
correlogram was done using a time lag a few minutes longer than the observed period
length. From this second correlogram, only 7 of the animals established a statistically
significant cyclic pattern (0.24 <r < 0.38, p <.05). Data for each of the animals are
summarized in Table 6.

Morphine Experiment
Aim #7: To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of morphine 5
ng/kg.

Figures 17 - 21 show the various EEG time domain parameters (i. €., activity,
mobility & complexity) and frequency domain parameters (i. €., absolute power, peak
frequency, median frequency & edge frequency) over the entire six hour recording period
for the 8 conscious rats who received a subcutaneous injection of morphine 5 pg/kg.
Table 7 provides a statistical analysis of the EEG parameters using a one-way
RMANOVA to compare the three, two hour recording periods. Statistically significant
differences between the three recording periods were identified for mobility (F,;, = 6.13,
p =.006), complexity (F,; = 5.12, p=.01), and edge frequency (F,;, = 7.27, p = .003).
Testing for pairwise differences between the recording periods, Dunnett's post hoc

comparisons revealed that the complexity for the post-drug recording period was
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significantly higher than for the baseline recording period (p = .05) and that the edge
frequency for the post-drug recording period was significantly lower than for the baseline
recording period (p = .01). No statistically significant differences (p < .05) from baseline
were identified for mobility. The statistical differences in mobility, complexity, and edge
frequency following the injection of morphine 5 pg/kg can be attributed to the low
variance of these measures rather than to physiologically significant differences in these
EEG parameters.

Aim #8: To determine if there are visual differences, over time, in the three-
dimensional plot of percent of absolute power attributable to individual one Hz
frequencies of the EEG in conscious rats who received a subcutaneous injection of
morphine 5 pg/kg.

The percent of absolute power of individual one Hz frequencies of the right and
left EEG recordings were meaned for the eight animals who received a subcutaneous
injection of morphine 5 pg/kg. Results are shown in Figures 22 (0800-1000), 23 (1000-
1200), and 24 (1200-1400). The highest density of spectral power occurred in the
frequencies below 5 Hz and persisted over the six hour recording period. Spectral power
in the very low frequencies is usually considered to be artifact (Gasser & Molinari, 1996).
The second highest density of spectral power occurred at 7 and 8 Hz and also persisted
over the six hour recording period. Approximately every 10 to 15 minutes recurring
fluctuations in power at 7 and 8 Hz were evident. The raw data were evaluated to
confirm that 7 and 8 Hz were the frequency bands where these fluctuations occurred.

Above 9 Hz, the percent of absolute power for individual one Hz frequency bands
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remained below 5% of the absolute power.

Aim #9: To determine if there are differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of morphine 5 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 22 - 24) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of morphine 5
ng/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to further analyze these data.

Figure 25 shows the percent of absolute power at 7 and 8 Hz over the entire six
hour recording period for the eight rats who received a subcutaneous injection of
morphine 5 pg/kg. Figure 26 shows the AUC for percent of absolute power at 7 and 8 Hz
for each of the three, two hour recording periods. Table 7 provides a statistical analysis

of AUC data using a one-way RMANOVA to compare the three, two hour recording
periods. A statistically significant difference in AUC between the three recording periods
was identified (F,;, = 4.15, p =.03). Testing for pairwise differences between the
recording periods, Dunnett's post hoc comparisons revealed that the AUC for the drug
recording period was significantly higher than for the baseline recording period (p = .05).
Although Dunnett's post hoc comparisons did not show a statistically significant
difference between the baseline recording period and the post-drug recording period, a

paired t-test revealed that the AUC for the post-drug recording period was significantly
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higher than for the baseline recording period (p = .04).

Aim #10: To determine if there are differences, over time, in the cyclic fluctuations
in the percent of absolute power of specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of morphine 5§ pg/kg.

From the visual analysis of the three-dimensional plots (Figures 22 - 24) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of morphine 5
ug/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to do a time-series analysis of these
data.

Over the baseline recording period (0800-1000), 115 observations of percent of
absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 4 and 23
minutes in 6 (75%) of the 8 animals. For the 6 animals who established a recurring
pattern, another correlogram was done using a time lag a few minutes longer than the
observed period length. From this second correlogram, only 2 of the animals established
a statistically significant cyclic pattern (0.17 <r < 0.26, p <.05). Data for each of the
animals are summarized in Table 8.

Over the drug recording period (i. e.. the first two hours following morphine 5

ug/kg administration, 1000-1200), 115 observations of percent of absolute power at 7 and
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8 Hz from each animal were available for the time-series analysis. Correlograms for
individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
revealed recurring patterns with a period length between 10 and 25 minutes in 7 (88%) of
the 8 animals. For the 7 animals who established a recurring pattern, another correlogram
was done using a time lag a few minutes longer than the observed period length. From
this second correlogram, only 3 of the animals established a statistically significant cyclic
pattern (0.28 <r < 0.54, p <.05). Data for each of the animals are summarized in Table
8.

Over the post-drug recording period (i. €., third and fourth hours following
morphine 5 pg/kg administration, 1200-1400), 120 observations of percent of absolute
power at 7 and 8 Hz from each animal were available for the time-series analysis.
Correlograms for individual animals plotting autocorrelation coefficients with a time lag
of 60 minutes revealed recurring patterns with a period length between 8 and 24 minutes
in 7 (88%) of the 8 animals. For the 7 animals who established a recurring pattern,
another correlogram was done using a time lag a few minutes longer than the observed
period length. From this second correlogram, only 4 of the animals established a
statistically significant cyclic pattern (0.21 <r < 0.30, p <.05). Data for each of the
animals are summarized in Table 8.

Aim #11: To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge

frequency) in conscious rats who received a subcutaneous injection of morphine S00
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ng/kg.

Figures 27 - 31 show the various EEG time domain parameters (i. e., activity,

mobility & complexity) and frequency domain parameters (i. ., absolute power, peak

frequency, median frequency & edge frequency) over the entire six hour recording period

for the eight conscious rats who received a subcutaneous injection of morphine 500
pg/kg. Table 9 provides a statistical analysis of the EEG parameters using a one-way
RMANOVA to compare the three, two hour recording periods. No statistically
significant differences (p < .05) between the three recording periods were identified for
any of the EEG parameters.

Aim #12: To determine if there are visual differences, over time, in the three-
dimensional plot of percent of absolute power attributable to individual one Hz
frequencies of the EEG in conscious rats who received a subcutaneous injection of
morphine 500 pg/kg.

The percent of absolute power of individual one Hz frequencies of the right and
left EEG recordings were meaned for the eight animals who received a subcutaneous
injection of morphine 500 pg/kg. Results are shown in Figures 32 (0800-1000), 33
(1000-1200), and 34 (1200-1400). The highest density of spectral power occurred in the
frequencies below 5 Hz and persisted over the six hour recording period. Spectral power
in the very low frequencies is usually considered to be artifact (Gasser & Molinari, 1996).
The second highest density of spectral power occurred at 7 and 8 Hz and also persisted
over the six hour recording period. Approximately every 10 to 15 minutes recurring

fluctuations in power at 7 and 8 Hz were evident. The raw data were evaluated to
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confirm that 7 and 8 Hz were the frequency bands where these fluctuations occurred.
Above 9 Hz, the percent of absolute power for individual one Hz frequency bands
remained below 5% of the absolute power.
Aim #13: To determine if there are differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of morphine 500 pg/kg.
From the visual analysis of the three-dimensional plots (Figures 32 - 34) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of morphine
500 pg/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified
as having cyclic fluctuations over time. For each animal, the percentages of absolute
power attributable to these two frequencies were combined to further analyze these data.
Figure 35 shows the percent of absolute power at 7 and 8 Hz over the entire six
hour recording period for the eight rats who received a subcutaneous injection of
morphine 500 pg/kg. Figure 36 shows the AUC for percent of absolute power at 7 and 8
Hz for each of the three, two hour recording periods. Table 9 provides a statistical
analysis of AUC data using a one-way RMANOVA to compare the three, two hour
recording periods. No statistically significant differences (p < .05) between the three
recording periods were identified.
Aim #14: To determine if there are differences, over time, in the cyclic fluctuations
in percent of absolute power of specific EEG frequencies in conscious rats who

received a subcutaneous injection of morphine 500 pg/kg.
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From the visual analysis of the three-dimensional plots (Figures 32 - 34) of

percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of morphine
500 pg/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified
as having cyclic fluctuations over time. For each animal, the percentages of absolute
power attributable to these two frequencies were combined to do a time-series analysis of

these data.

Over the baseline recording period (0800-1000), 115 observations of percent of
absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 5 and 11
minutes in 4 (50%) of the 8 animals. For the 4 animals who established a recurring
pattern, another correlogram was done using a time lag a few minutes longer than the
observed period length. From this second correlogram, only 3 of the animals established
a statistically significant cyclic pattern (0.22 <r < 0.27, p <.05). Data for each of the
animals are summarized in Table 10.

Over the drug recording period (i. ¢., the first two hours following morphine 500
ug/kg administration, 1000-1200), 115 observations of percent of absolute power at 7 and
8 Hz from each animal were available for the time-series analysis. Correlograms for
individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
revealed recurring patterns with a period length between 12 and 18 minutes in 4 (50%) of

the 8 animals. For the 4 animals who established a recurring pattern, another correlogram
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was done using a time lag a few minutes longer than the observed period length. From
this second correlogram, only 2 of the animals established a statistically significant cyclic
pattern (0.27 <r < 0.28, p <.05). Data for each of the animals are summarized in Table
10.

Over the post-drug recording period (i. €., third and fourth hours following
morphine 500 ug/kg administration, 1200-1400), 120 observations of percent of absolute
power at 7 and 8 Hz from each animal were available for the time-series analysis.
Correlograms for individual animals plotting autocorrelation coefficients with a time lag
of 60 minutes revealed recurring patterns with a period length between 6 and 37 minutes
in 7 (88%) of the 8 animals. For the 7 animals who established a recurring pattern,
another correlogram was done using a time lag a few minutes longer than the observed
period length. From this second correlogram, only 2 of the animals established a
statistically significant cyclic pattern (0.25 <r < 0.48, p <.05). Data for each of the
animals are summarized in Table 10.

Pentazocine Experiment
Aim #15: To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of pentazocine
50 pg/kg.
Figures 37 - 41 show the various EEG time domain parameters (i. €., activity,

mobility & complexity) and frequency domain parameters (i. €., absolute power, peak
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frequency, median frequency & edge frequency) over the entire six hour recording period
for the eight conscious rats who received a subcutaneous injection of pentazocine 50
ug/kg. Table 11 provides a statistical analysis of the EEG parameters using a one-way
RMANOVA to compare the three, two hour recording periods. Statistically significant
differences between the three recording periods were identified for mobility (F, 5, = 3.23,
p =.05), peak frequency (F, ;, = 8.95, p = .001), median frequency (F,;, = 6.87, p = .004),
and edge frequency (F,;, = 10.86, p = .000). Testing for pairwise differences between the
recording periods, Dunnett's post hoc comparisons revealed that the peak frequency and
median frequency for the post-drug recording period were both significantly higher than
for the baseline recording period (p =.01). The peak frequency for the drug recording
period was also significantly higher than for the baseline recording period (p =.01). The
edge frequency for the post-drug recording period was significantly lower than for the
baseline recording period (p =.01). No significant differences (p <.05) from baseline
were identified for mobility. The statistical differences in mobility, peak frequency,
median frequency, and edge frequency following the injection of pentazocine 50 pg/kg
can be attributed to the low variance of these measures rather than to physiologically
significant differences in these EEG parameters.
Aim #16: To determine if there are visual differences, over time, in the three-
dimensional plot of percent of absolute power attributable to individual one Hz
frequencies of the EEG in conscious rats who received a subcutaneous injection of

pentazocine 50 pg/kg.

The percent of absolute power of individual one Hz frequencies of the right and
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left EEG recordings were meaned for the eight animals who received a subcutaneous
injection of pentazocine 50 pg/kg. Results are shown in Figures 42 (0800-1000), 43
(1000-1200), and 44 (1200-1400). The highest density of spectral power occurred in the
frequencies below 5 Hz and persisted over the six hour recording period. Spectral power
in the very low frequencies is usually considered to be artifact (Gasser & Molinari, 1996).
The second highest density of spectral power occurred at 7 and 8 Hz and also persisted
over the six hour recording period. Approximately every 10 to 15 minutes recurring
fluctuations in power at 7 and 8 Hz were evident. The raw data were evaluated to
confirm that 7 and 8 Hz were the frequency bands where these fluctuations occurred.
Above 9 Hz, the percent of absolute power for individual one Hz frequency bands
remained below 5% of the absolute power.

Aim #17: To determine if there are differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of pentazocine 50 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 42 - 44) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of pentazocine
50 ug/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to further analyze these data.

Figure 45 shows the percent of absolute power at 7 and 8 Hz over the entire six

hour recording period for the eight rats who received a subcutaneous injection of
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pentazocine 50 pg/kg. Figure 46 shows the AUC for percent of absolute power at 7 and 8
Hz for each of the three, two hour recording periods. Table 11 provides a statistical
analysis of AUC data using a one-way RMANOVA to compare the three, two hour
recording periods. A statistically significant difference between the three recording
periods were identified (F, ;, = 24.50, p = .000). Testing for pairwise differences between
the recording periods, Dunnett's post hoc comparisons revealed that the AUC for both the
drug recording period and the post-drug recording period were significantly higher than
for the baseline recording period (p = .01).

Aim #18: To determine if there are differences, over time, in the cyclic fluctuations
in the percent of absolute power of specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of pentazocine 50 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 42 - 44) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of pentazocine
50 ug/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to do a time-series analysis of these
data.

Over the baseline recording period (0800-1000), 115 observations of percent of
absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a

time lag of 60 minutes revealed recurring patterns with a period length between 8 and 24

Ve L
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minutes in 6 (75%) of the 8 animals. For the 6 animals who established a recurring
pattern, another correlogram was done using a time lag a few minutes longer than the
observed period length. From this second correlogram, only 1 of the animals established
a statistically significant cyclic pattern (r = 0.30, p <.05). Data for each of the animals
are summarized in Table 12.

Over the drug recording period (i. e., the first two hours following pentazocine 50
ug/kg administration, 1000-1200), 115 observations of percent of absolute power at 7 and

8 Hz from each animal were available for the time-series analysis. Correlograms for
individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
revealed recurring patterns with a period length between 8 and 17 minutes in 5 (63%) of
the 8 animals. For the 5 animals who established a recurring pattern, another correlogram
was done using a time lag a few minutes longer than the observed period length. From
this second correlogram, only 2 of the animals established a statistically significant cyclic
pattern (0.24 <r < 0.29, p <.05). Data for each of the animals are summarized in Table
12.

Over the post-drug recording period (i. €., third and fourth hours following
pentazocine 50 pg/kg administration, 1200-1400), 120 observations of percent of

absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 7 and 19
minutes in all (100%) of the animals. For each of the animals, another correlogram was

done using a time lag a few minutes longer than the observed period length. From this
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second correlogram, only 3 of the animals established a statistically significant cyclic
pattern (0.25 <r <0.36, p <.05). Data for each of the animals are summarized in Table
12.

Aim #19: To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of pentazocine 5
mg/kg.

Figures 47 - 51 show the various EEG time domain parameters (i. e., activity,
mobility & complexity) and frequency domain parameters (i. e., absolute power, peak
frequency, median frequency & edge frequency) over the entire six hour recording period
for the eight conscious rats who received a subcutaneous injection of pentazocine 5
mg/kg. Table 13 provides a statistical analysis of the EEG parameters using a one-way
RMANOVA to compare the three, two hour recording periods. A statistically significant
difference between the three recording periods was identified for edge frequency (F, 3 =
5.41, p = .01). Testing for pairwise differences between the recording periods, Dunnett's
post hoc comparisons revealed that the edge frequency for the drug recording period was
significantly higher than for the baseline recording period (p = .01). The statistical
difference in edge frequency following the injection of pentazocine 5 mg/kg can be
attributed to the low variance of the measure rather than to a physiologically significant
difference this EEG parameter.

Aim #20: To determine if there are visual differences, over time, in the three-
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dimensional plot of percent of absolute power attributable to individual one Hz
frequencies of the EEG in conscious rats who received a subcutaneous injection of
pentazocine S mg/kg.

The percent of absolute power of individual one Hz frequencies of the right and
left EEG recordings were meaned for the eight animals who received a subcutaneous
injection of pentazocine 5 mg/kg. Results are shown in Figures 52 (0800-1000), 53
(1000-1200), and 54 (1200-1400). The highest density of spectral power occurred in the
frequencies below 5 Hz and persisted over the six hour recording period. Spectral power
in the very low frequencies is usually considered to be artifact (Gasser & Molinari, 1996).
The second highest density of spectral power occurred at 7 and 8 Hz and also persisted
over the six hour recording period. Approximately every 10 to 15 minutes recurring
fluctuations in power at 7 and 8 Hz were evident. During the drug recording period
(1000-1200), this pattern appeared to be interrupted after pentazocine 5 mg/kg was
administered, reappearing during the post-drug recording period (1200-1400). The raw
data were evaluated to confirm that 7 and 8 Hz were the frequency bands where these
fluctuations occurred. Above 9 Hz, the percent of absolute power for individual one Hz
frequency bands remained below 5% of the absolute power.

Aim #21: To determine if there are differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of pentazocine 5 mg/kg.

From the visual analysis of the three-dimensional plots (Figures 52 - 54) of

percent of absolute power attributable to individual one Hz frequencies over the six hour
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recording period in conscious rats who received a subcutaneous injection of pentazocine

5 mg/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as

having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to further analyze these data.

Figure 55 shows the percent of absolute power at 7 and 8 Hz over the entire six
hour recording period for the eight rats who received a subcutaneous injection of
pentazocine 5 mg/kg. Figure 56 shows the AUC for percent of absolute power at 7 and 8
Hz for each of the three, two hour recording periods. Table 13 provides a statistical
analysis of AUC data using a one-way RMANOVA to compare the three, two hour
recording periods. A statistically significant difference between the three recording
periods was identified (F,;, = 5.17, p = .01). However, testing for pairwise differences
between the recording periods, Dunnett's post hoc comparisons failed to demonstrate
significant differences (p < .05) from the baseline recording period.

Aim #22: To determine if there are differences, over time, in the cyclic fluctuations
in percent of absolute power of specific EEG frequencies in conscious rats who
received a subcutaneous injection of pentazocine 5 mg/kg.

From the visual analysis of the three-dimensional plots (Figures 52 - 54) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of pentazocine
5 mg/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power

attributable to these two frequencies were combined to do a time-series analysis of these
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data.

Over the baseline recording period (0800-1000), 115 observations of percent of
absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 7 and 36
minutes in 6 (75%) of the 8 animals. For the 6 animals who established a recurring
pattern, another correlogram was done using a time lag a few minutes longer than the
observed period length. From this second correlogram, only 1 of the animals established
a statistically significant cyclic pattern (r = 0.31, p <.05). Data for each of the animals

are summarized in Table 14.

Over tlle l lo . ’ :. I ﬁ I E l] . . S
mg/kg administration, 1000-1200), 115 observations of percent of absolute power at 7

and 8 Hz from each animal were available for the time-series analysis. Correlograms for
individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
revealed a recurring pattern in only one (13%) of the 8 animals. For the animal who
established a recurring pattern, another correlogram was done using a time lag a few
miinutes longer than the observed period length. This second correlogram was not
statistically significant (p <.05). Data for each of the animals are summarized in Table

14.

Over the post-drug recording period (i. ¢., third and fourth hours following
Pentazocine 5 mg/kg administration, 1200-1400), 120 observations of percent of absolute

Power at 7 and 8 Hz from each animal were available for the time-series analysis.
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Correlograms for individual animals plotting autocorrelation coefficients with a time lag
of 60 minutes revealed recurring patterns with a period length between 7 and 33 minutes
in all (100%) of the animals. For each of the animals, another correlogram was done
using a time lag a few minutes longer than the observed period length. From this second
correlogram, only 2 of the animals established a statistically significant cyclic pattern
(0.25 <r<0.26, p <.05). Data for each of the animals are summarized in Table 14.
Naloxone Experiment
Aim #23: To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of naloxone §
ng/ke.

Figures 57 - 61 show the various EEG time domain parameters (i. e., activity,
mobility & complexity) and frequency domain parameters (i. €., absolute power, peak
frequency, median frequency & edge frequency) over the entire six hour recording period
for the eight conscious rats who received a subcutaneous injection of naloxone 5 pg/kg.
Table 15 provides a statistical analysis of the EEG parameters using a one-way
RMANOVA to compare the three, two hour recording periods. Statistically significant
differences between the three recording periods were identified for mobility (F,;, = 7.21,
p = .003), peak frequency (F, 3, = 3.97, p = .03), and median frequency (F,3, = 5.85,p =
.007). Testing for pairwise differences between the recording periods, Dunnett's post hoc

comparisons revealed that the mobility for the post-drug recording period was
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significantly lower than for the baseline recording period (p = .01). The peak frequency

for the drug recording period was significantly higher than for the baseline recording
period (p = .05). The median frequency for the drug recording period was significantly
higher than for the baseline recording period (p = .05). This effect persisted into the post-
drug recording period where the median frequency was again significantly higher than for
the baseline recording period (p =.01). The statistical differences in mobility, peak
frequency, and median frequency following the injection of naloxone 5 pg/kg can be
attributed to the low variance of these measures rather than to physiologically significant
differences in these EEG parameters.

Aim #24: To determine if there are visual differences, over time, in the three-
dimensional plot of percent of absolute power attributable to individual one Hz
frequencies of the EEG in conscious rats who received a subcutaneous injection of
naloxone S pg/kg.

The percent of absolute power of individual one Hz frequencies of the right and
left EEG recordings were meaned for the eight animals who received a subcutaneous
injection of naloxone 5 ng/kg. Results are shown in Figures 62 (0800-1000), 63 (1000-
1200), and 64 (1200-1400). The highest density of spectral power occurred in the
frequencies below 5 Hz and persisted over the six hour recording period. Spectral power
in the very low frequencies is usually considered to be artifact (Gasser & Molinari, 1996).
The second highest density of spectral power occurred at 7 and 8 Hz and also persisted
over the six hour recording period. Approximately every 10 to 15 minutes recurring

fluctuations in power at 7 and 8 Hz were evident. The raw data were evaluated to
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confirm that 7 and 8 Hz were the frequency bands where these fluctuations occurred.
Above 9 Hz, the percent of absolute power for individual one Hz frequency bands
remained below 5% of the absolute power.

Aim #25: To determine if there are differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of naloxone 5 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 62 - 64) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of naloxone 5
ug/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to further analyze these data.

Figure 65 shows the percent of absolute power at 7 and 8 Hz over the entire six
hour recording period for the eight rats who received a subcutaneous injection of
naloxone 5 pg/kg. Figure 66 shows the AUC for percent of absolute power at 7 and 8 Hz
for each of the three, two hour recording periods. Table 15 provides a statistical analysis
of AUC data using a one-way RMANOV A to compare the three, two hour recording
periods. A statistically significant difference between the three recording periods was
identified (F, 3, = 5.23, p =.01). Testing for pairwise differences between the recording
periods, Dunnett's post hoc comparisons revealed that the AUC for both the drug
recording period and the post-drug recording period were significantly higher than the

baseline recording period (p = .05).
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Aim #26: To determine if there are differences, over time, in the cyclic fluctuations
in the percent of absolute power of specific EEG frequencies of interest in conscious
rats who received a subcutaneous injection of naloxone 5 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 62 - 64) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of naloxone 5
ng/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to do a time-series analysis of these
data.

Over the baseline recording period (0800-1000), 115 observations of percent of
absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 6 and 20
minutes in 7 (88%) of the 8 animals. For the 7 animals who established a recurring

pattern, another correlogram was done using a time lag a few minutes longer than the
observed period length. From this second correlogram, only 2 of the animals established
a statistically significant cyclic pattern (0.22 <r < 0.33, p <.05). Data for each of the
animals are summarized in Table 16.
Over the drug recording period (i. ¢.. the first two hours following naloxone 5
ug/kg administration, 1000-1200), 115 observations of percent of absolute power at 7 and

8 Hz from each animal were available for the time-series analysis. Correlograms for
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individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
revealed recurring patterns with a period length between 8 and 17 minutes in 7 (88%) of
the 8 animals. For the 7 animals who established a recurring pattern, another correlogram
was done using a time lag a few minutes longer than the observed period length. From
this second correlogram, only 3 of the animals established a statistically significant cyclic
pattern (0.25 <r < 0.29, p <.05). Data for each of the animals are summarized in Table
16.

Over the post-drug recording period (i. ¢., third and fourth hours following
naloxone 5 ug/kg administration, 1200-1400), 120 observations of percent of absolute
power at 7 and 8 Hz from each animal were available for the time-series analysis.
Correlograms for individual animals plotting autocorrelation coefficients with a time lag
of 60 minutes revealed recurring patterns with a period length between 7 and 23 minutes
in all (100%) of the animals. For each of the animals, another correlogram was done
using a time lag a few minutes longer than the observed period length. However none of
the patterns were statistically significant (p <.05). Data for each of the animals are
summarized in Table 16.

Aim #27: To determine if there are differences, over time, in any of the time domain
parameters (i. e., activity, mobility, & complexity) and frequency domain
parameters (i. e., absolute power, peak frequency, median frequency, & edge
frequency) in conscious rats who received a subcutaneous injection of naloxone 500
ng/ke.

Figures 67 - 71 show the various EEG time domain parameters (i. €., activity,
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mobility & complexity) and frequency domain parameters (i. €., absolute power, peak
frequency, median frequency & edge frequency) over the entire six hour recording period
for the eight conscious rats who received a subcutaneous injection of naloxone 500
ng/’kg. Table 17 provides a statistical analysis of the EEG parameters using a one-way
RMANOVA to compare the three, two hour recording periods. No statistically
significant differences (p < .05) between the three recording periods were identified for
any of the EEG parameters.

Aim #28: To determine if there are visual differences, over time, in the three-
dimensional plot of percent of absolute power attributable to individual one Hz
frequencies of the EEG in conscious rats who received a subcutaneous injection of
naloxone 500 pg/kg.

The percent of absolute power of individual one Hz frequencies of the right and
left EEG recordings were meaned for the eight animals who received a subcutaneous
injection of naloxone 500 pug/kg. Results are shown in Figures 72 (0800-1000), 73
(1000-1200), and 74 (1200-1400). The highest density of spectral power occurred in the
frequencies below 5 Hz and persisted over the six hour recording period. Spectral power
in the very low frequencies is usually considered to be artifact (Gasser & Molinari, 1996).
The second highest density of spectral power occurred at 7 and 8 Hz and also persisted
over the six hour recording period. Approximately every 10 to 15 minutes recurring
fluctuations in power at 7 and 8 Hz were evident. The raw data were evaluated to
confirm that 7 and 8 Hz were the frequency bands where these fluctuations occurred.

Above 9 Hz, the percent of absolute power for individual one Hz frequency bands
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remained below 5% of the absolute power.

Aim #29: To determine if there ar; differences, over time, in the magnitude of
percent of absolute power attributable to specific EEG frequencies of interest in
conscious rats who received a subcutaneous injection of naloxone 500 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 72 - 74) of
percent of absolute power attributable to individual one Hz frequencies over the six hour
recording period in conscious rats who received a subcutaneous injection of naloxone 500
ug/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to further analyze these data.

Figure 75 shows the percent of absolute power at 7 and 8 Hz over the entire six
hour recording period for the eight rats who received a subcutaneous injection of
naloxone 500 pg/kg. Figure 76 shows the AUC for percent of absolute power at 7 and 8
Hz for each of the three, two hour recording periods. Table 17 provides a statistical
analysis of AUC data using a one-way RMANOVA to compare the three, two hour
recording periods. No statistically significant differences (p < .05) between the three
recording periods were identified.

Aim #30: To determine if there are differences, over time, in the cyclic fluctuations
in percent of absolute power of specific EEG frequencies in conscious rats who
received a subcutaneous injection of naloxone 500 pg/kg.

From the visual analysis of the three-dimensional plots (Figures 72 - 74) of

percent of absolute power attributable to individual one Hz frequencies over the six hour
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recording period in conscious rats who received a subcutaneous injection of naloxone 500
ng/kg, the percent of absolute power of the EEG at both 7 and 8 Hz were identified as
having cyclic fluctuations over time. For each animal, the percentages of absolute power
attributable to these two frequencies were combined to do a time-series analysis of these
data.

Over the baseline recording period (0800-1000), 115 observations of percent of
absolute power at 7 and 8 Hz from each animal were available for the time-series
analysis. Correlograms for individual animals plotting autocorrelation coefficients with a
time lag of 60 minutes revealed recurring patterns with a period length between 5 and 30
minutes in all (100%) of the animals. Another correlogram was done using a time lag a
few minutes longer than the observed period length. From this second correlogram, only
4 of the animals established a statistically significant cyclic pattern (0.24 <r<0.29, p <

.05). Data for each of the animals are summarized in Table 18.

ug/kg administration, 1000-1200), 115 observations of percent of absolute power at 7 and
8 Hz from each animal were available for the time-series analysis. Correlograms for
individual animals plotting autocorrelation coefficients with a time lag of 60 minutes
revealed recurring patterns with a period length between 7 and 16 minutes in 7 (88%) of
the 8 animals. For the 7 animals who established a recurring pattern, another correlogram
was done using a time lag a few minutes longer than the observed period length. From
this second correlogram, only 2 of the animals established a statistically significant cyclic

pattern (0.21 <r < 0.24, p <.05). Data for each of the animals are summarized in Table
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18.

Over the post-drug recording period (i. ¢.. third and fourth hours following
naloxone 500 ug/kg administration, 1200-1400), 120 observations of percent of absolute
power at 7 and 8 Hz from each animal were available for the time-series analysis.
Correlograms for individual animals plotting autocorrelation coefficients with a time lag
of 60 minutes revealed recurring patterns with a period length between 11 and 32 minutes
in all (100%) of the animals. For each of the animals, another correlogram was done
using a time lag a few minutes longer than the observed period length. From this second

correlogram, only 2 of the animals established a statistically significant cyclic pattern

(0.27 <r<0.34, p <.05). Data for each of the animals are summarized in Table 18.
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CHAPTER § - DISCUSSION

Introduction

The purpose of this research was to describe the effects of two antinociceptive
doses of three subcutaneously administered relatively-selective opioid receptor agonists
(i. e., morphine, pentazocine & naloxone) on selected EEG parameters of conscious rats.
While previous research used higher doses of opioid agonists, presumably to elicit a
maximum effect on the EEG, this study used lower, antinociceptive doses of the opioid
agonists. The results of this study demonstrate the feasibility of using EEG recordings to
document opioid-induced changes in CNS functioning.

This study benefitted from the recent revolution in computer technology enabling
the acquisition, analysis, and storage of large volumes of data as well as the capacity to
display the data in a user-friendly environment. While previous research evaluated only
short, selected segments of EEG recordings, this study evaluated six continuous hours of
EEG recordings providing a more comprehensive assessment of the effects of opioid
analgesics on various EEG parameters. Furthermore, this study characterized both time
domain parameters (i. e., activity, mobility & complexity) and frequency domain
parameters (i. €., absolute power, peak frequency, median frequency, mode frequency &
percent of absolute power attributable to individual one Hz frequencies) of the EEG
recordings. This contrasts with previous research that used only qualitative descriptions
of voltage and frequency to describe the effects of opioids on EEG recordings
(Arankowsky-Sandoval & Gold, 1995; Bronzino et al., 1982; Hong, Young, & Khazan,

1988; Stamidis & Young, 1993; Tortella, Moreton, & Khazan, 1978; Young, Hudson,
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Stamidis, & Steinfels, 1993a).
Normal Saline Experiment

The normal saline experiment provided information about the typical EEG
recordings for these animals during the moming and early afternoon, the same time of
day the drug experiments were conducted. Additionally, the possibility of exaggerated or
prolonged EEG effects from the subcutaneous injection were ruled out. From the graphs
of each of the EEG time domain parameters (i. e., activity, mobility & complexity) and
frequency domain parameters (i. e., absolute power, peak frequency, median frequency &
mode frequency) over the six hour experiment (Figures 2 - 6), no changes were evident in
any of the EEG parameters. RMANOVA did demonstrate some statistical differences
between each of the three, two hour recording periods, but as discussed in the previous
chapter, there was so little variability in the measures that small differences in the
measures themselves became statistically significant. The physiological significance of
these very small, yet statistically significant differences is currently unknown.

The normal sleep-wake cycle of the rat lasts between 10 and 30 minutes
depending upon the time of day (Ambrosini et al., 1994; Van Twyver, 1969). During the
course of the six hour experiment casual observations of the animals' behavior over time
indicated that they experienced multiple episodes of both sleep and awake episodes.
During awake periods the animals would explore the recording cage or groom

themselves, while during sleep periods, the animals would be curled into a ball with their

eyes closed. Sleep-wake cycles were not assessed using polygraph recordings of the

EEG.
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Hjorth (1973) described an algorithm to determine sleep and awake étates in the -
rat by evaluating the time domain parameters of activity and complexity. According to
Hjorth, periods of decreased activity and increased complexity were associated with both
awake states and REM sleep. Periods during which complexity and activity both
returned to baseline were associated with NREM sleep. In the current study, activity and
complexity did not fluctuate in a discernable pattern as described by Hjorth (Figures 2 &
4).

Another method of determining sleep and wake periods in the rat has been
described by Young, Steinfels, and Khazan (1978) who determined from a spectral
analysis of 41-second epochs of EEG, spectral characteristics of awake, sleep, and REM
sleep. Awake states are associated with less absolute power than either sleep or REM

sleep. Sleep states are associated with a predominance of spectral power in the lower

frequency range (i. e., between 0 and 5 Hz). NREM sleep is associated with a
predominant peak of spectral power in the 6 to 9 Hz range. In the current study, cyclic
fluctuations in the percent of absolute power at 7 and 8 Hz were observed and, based
upon the work of Young, Steinfels, and Khazan (1978), was believed to be associated
with the animals' REM sleep cycle.

These cyclic fluctuations in percent of absolute power at 7 and 8 Hz were further

characterized with a time-series analysis. When evaluating the entire six hour recording

1

period, recurring patterns with a period length between 8 and 39 minutes in 96% of the
animals supported the observation that these cyclic fluctuations occurred at the same

frequency as normal sleep-wake cycles of rats.
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When the three, two hour recording periods were analyzed with a time-series
analysis, intra-individual differences in the shape, structure, and statistical significance of
the correlograms were observed. Even though animals were allowed to acclimate to the
recording cages for at least 30 minutes each day before beginning the experiment, the
changes in the cyclic fluctuations of percent of absolute power at 7 and 8 Hz, both
throughout the day and between animals, suggest that the animals need to be conditioned
to the EEG recording cables and cages more frequently and for longer periods of time
before experimental data are collected. The sleep-wake cycle of the rat is so brief that
disruptions of even a few minutes significantly alter the time-series analysis. The ability
to increase the sensitivity of the study measures by training rats in the experimental
paradigm has been previously reported by Taiwo, Coderre, and Levine (1989) who noted
that familiarity with the experimental environment influences laboratory animal behavior.
By training rats for three days in the Randall-Selitto paw-withdrawal test, these
researchers were able to increase the sensitivity of this test for detecting the hyperalgesic
effects of intradermal injections of the inflammatory mediator, bradykinin. In the current
study, conditioning the animals to the recording cables and cages, thereby reducing the
novelty of the experimental environment, could have reduced both the inter- and intra-
individual variability.
AUC, a measure of the magnitude of the percent of absolute power at 7 and 8 Hz,
was used as another way of characterizing these cyclic fluctuations over time. No

differences in this measure were detected comparing the three, two hour recording period.
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Opioid Experiments

From the graphs of each of the EEG time domain parameters (i. e., activity,
mobility & complexity) and frequency domain parameters (i. €., absolute power, peak
frequency, median frequency & mode frequency) over the six hour experiment (Figures
17 - 21,27 - 31,37 - 41,47 - 51,57 - 61, and 67 - 71), no changes were evident in any of
the EEG parameters. RMANOVA did demonstrate some statistical differences between
each of the three, two hour recording periods, but as discussed in the previous chapter and
with the normal saline experiment, there was so little variability in the measures that
small differences in the measures themselves became statistically significant. The
physiological significance of these very small, yet statistically significant differences is
currently unknown.

Cyclic fluctuations in the percent of absolute power at 7 and 8 Hz were observed
during the opioid experiments as they were during the normal saline experiment. When
the three, two hour recording periods were analyzed with a time-series analysis, inter- and
intra-individual differences in the shape, structure, and statistical significance of the
correlograms were observed. As with the normal saline experiment, it is difficult to
interpret this time-series analysis without conditioning the animals to the recording
environment, thus reducing the variability of the cyclic fluctuations in the percent of
absolute power at 7 and 8 Hz.

One observation of the graph of percent of absolute power at 7 and 8 Hz over time
for the higher dose of pentazocine (5 mg/kg) (Figure 55) is that the cyclic fluctuations

disappear for approximately an hour following drug administration. This disappearance
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of the cyclic fluctuations in percent of absolute power at 7 and 8 Hz was not observed
with the lower dose of pentazocine or with either of the other drugs at either dose. If
these cyclic fluctuations in the percent of absolute power at 7 and 8 Hz do represent REM
sleep cycles, the absence of the fluctuations following a dose of pentazocine (5 mg/kg)
supports observations made by other researchers that opioids suppress REM sleep (Furst,
1990; King, Masserano, Codd, & Byme, 1981; Landis, 1988). Verification that REM
sleep cycles are occurring when there are increases in the percent of absolute power at 7
and 8 Hz is warranted before this observation can be used as further evidence that opioids
do indeed disrupt sleep patterns.

Significant differences were observed in the measure of magnitude, AUC, of the
percent of absolute power at 7 and 8 Hz. As summarized on Table 19, the lower doses of
the opioid agonists increased the AUC of the percent of absolute power at 7 and 8 Hz.
Compared to the baseline recording period, the AUC was elevated for both the drug
recording period and the post-drug recording period indicating that this effect was
sustained for the four hours following drug administration. Curiously, the higher doses of
opioid agonists did not change the AUC of the percent of absolute power at 7 and 8 Hz.

In particular, the disappearance of cyclic fluctuations in the percent of absolute power at
7 and 8 Hz following the administration of the highest dose of pentazocine (5 mg/kg) was
not manifested as a change in AUC.

The increase in AUC for the percent of absolute power at 7 and 8 Hz following
the lower doses of all three opioid agonists, is not readily explainable. One possibility is

that the animals experienced a tachyphylaxis reaction when first exposed to the opioid.
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However, this hypothesis was tested on another group of animals given the same dose of

opioid on two consecutive days. No significant differences (p < .05) in any of the EEG

parameters were observed.

The effects of low, antinociceptive doses of opioid agonists on the EEG have not

been reported previously. Higher doses of the p-opioid agonist morphine (2.5 mg/kg to

30 mg/kg) administered systemically to rats produce dose-dependent, high-voltage, slow _“:‘: §
frequency waves and increase spectral power in the lower frequencies between 0 and 10 :":EE :
Hz (Bronzino et al., 1982; Hong, Young, & Khazan, 1988; Paquette & Young, 1991; :"ﬁ J
Stamidis & Young, 1993, Tortella, Moreton, & Khazan, 1978; Young & Khazan, 1984). ::_:‘;3 ! _
Like the p-opioid agonists, x-opioid agonists administered systemically to rats produce """‘J <
high-voltage, slow frequency waves and increase spectral power in the lower frequencies - ,,...:;
between 2 and 8 Hz (Campi & Clarke, 1995; Young, Hudson, Stamidis, & Steinfels, . :3 -
1993a, 1993b; Young & Khazan, 1984). The EEG effects of systemically administered - “ ,,“’
3-opioid agonists have not been described.

Paradoxical effects of low doses of the opioid-agonists on behavior have been

reported. p-opioid agonists produce both a behavioral excitation and a behavioral
depression in rodents that was both dose and time dependent. Small doses of morphine

(0.01 mg/kg to 5 mg/kg) given systemically have been observed to initially increase N

locomotor activity (Babbini & Davis, 1972; Fog, 1970; Iwamoto, 1981, 1984; Oka &

-l

Hosoya, 1976; Ostrowski & Caggiula, 1991; Vasko & Domino, 1978). At doses of
morphine greater than 3 mg/kg, a biphasic behavioral pattern has been described where

activity initially decreased and then increased (Babbini & Davis, 1972; Oka & Hosoya,



M S

ES A

118420




86
1976; Sloan, Brooks, Eisenman, & Martin, 1962; Vasko & Domino. 1978). With large

doses of morphine (between 60 mg/kg and 80 mg/kg), only depressed behavior has been
observed that persisted for as long as four hours following drug administration (De Ryck,
Schallert, & Teitelbaum, 1980; Sloan, Brooks, Eisenman, & Martin, 1962). The
behavioral effects of low doses of either x- and 8-opioid agonists given systemically have
not been described. If opioid-induced changes in EEG recordings mirror behavioral
changes following the administration of low doses of morphine, the increase in the
measures of magnitude of the percent of absolute power at 7 and 8 Hz may correspond to
the increase in locomotor activity observed by other researchers. However, why a similar
increase in the measures of magnitude was not observed in the current study when a
higher dose of opioid was given cannot be explained. Even the higher doses of drug
administered in the current study were below the doses that produced biphasic behavioral
patterns in previous studies. It was not until doses of morphine greater than 3 mg/kg
were given that locomotor activity initially decreased and then increased (Babbini &
Davis, 1972; Oka & Hosoya, 1976; Sloan, Brooks, Eisenman, & Martin, 1962; Vasko &
Domino. 1978).

Another possible explanation might be that different areas of the CNS were
activated by different thresholds of opioid receptor saturation. However, without
administering the agonists to specific CNS sites it is impossible to test this hypothesis.
Furthermore, although the effects of the lower doses of these three relatively-selective
opioid agonists were very consistent, the receptor specific effects cannot be determined

without using highly-selective agonists.
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Conclusions & Directions for Future Research

This research has described the effects of opioid agonists on selected parameters
of the rat EEG finding significant increases from baseline in AUC for the percent of
absolute power at 7 and 8 Hz over the four hours following an injection of low doses of
three relatively-selective opioid agonists. However, changes in the spectral parameters of
the EEG remain to be correlated with behavior. Automated activity boxes that record
both forward and horizontal locomotion, as well as inactivity could provide invaluable
information about the behavior of the animal during EEG recordings under various
experimental conditions.

Cyclic fluctuations in the percent of absolute power at 7 and 8 Hz were identified
that may represent the animals' REM sleep patten. However, the inter-and intra-
individual variability in these patterns suggest the need to condition the animals to the
experimental environment in future studies.

The objective of this program of research is to better understand the sedative side
effects of opioids being used to manage painful conditions. These experiments were all
done with pain-free animals, leaving the EEG effects of opioids in animals exposed to a
chronic nociceptive stimulus yet to be described. When compared with pain-free
animals, rats with a chronic, painful arthritis have a lower nociceptive threshold (Kayser
& Guilbaud, 1983), disrupted sleep patterns (Landis, Levine, & Robinson, 1989; Landis,
Robinson, & Levine, 1988), and more pronounced response to both non-steroidal anti-
inflammatory drugs (Landis, Robinson, Helms, & Levine, 1989) and morphine (Kayser &

Guilbaud, 1983, 1990). To date, no studies have compared opioid effects in pain-free
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animals with animals exposed to a chronic nociceptive stimulus using spectral analysis of
the EEG. And so, these experiments should be repeated using animals exposed to a
nociceptive stimulus.

And finally, relatively-receptor selective opioid agonists were used for these
experiments to develop the experimental paradigm and to demonstrate differences in
spectral parameters of the EEG following opioid administration. To further the study of
opioid receptor physiology and to determine how receptor agonists induce the sedative
effects observed with opioids, highly-selective agonists need to be administered directly
into specific sites within the CNS.

¢ ¢ & & o

This research has begun the exploration into opioid-induced changes in CNS
functioning by describing the effects of two antinociceptive doses of three
subcutaneously administered relatively-selective opioid receptor agonists (i. €., morphine,
pentazocine & naloxone) on selected EEG parameters of conscious rats. Cyclic
fluctuations in the percent of absolute power at 7 and 8 Hz were identified that may

represent the REM sleep cycle of the animals. When compared to the baseline recording
period, the lower doses of all three opioid agonists significantly increased the magnitude
of the percent of absolute power at 7 and 8 Hz as measured by AUC. This effect
persisted for the four hours following drug administration.

Consciousness is normally expressed as a time-sequenced process that fluctuates
between wakefulness and sleep. If opioids change the normal expression of

consciousness by acting at receptors located throughout the CNS, then intuitively these
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drugs change the continuum of consciousness expressed over time. Identifying
parameters indicative of change in a nonstationary system such as the CNS is a challenge.
The results of this study suggest that changes in the cyclic fluctuations of the percent of
absolute power at 7 and 8 Hz might be one such parameter and could be a focus of future

research investigating the phenomenon of opioid-induced sedation.
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Table 1: Awake & Sleep Electroencephalograph Waveforms

—onsal State | Waveform -r - -lide ]
—_— e [(range1-30Hertz) | (rangel-1004V) |
Awake
 relaxed 9-11 Hz 10-50 pv
active 13300z
; Sleep
Stage | NREM loss of alpha waves | mixed low voltage
Stage Il NREM .5-2 second bursts | 12-16 Hz high voltage
of sleep spindles
K complexes
Stage III NREM delta 1-2Hz high voltage
Stage IV NREM delta 1-2 Hz high voltage
REM rare alpha high frequency low voltage

Information from: Adams & Victor, 1993; Alcorn, 1983; Niedermeyer, 1993a.

alpha dropout - alpha waves in the range of 10 per second are replaced by low voltage
slow activity in the range of 2-7 cycles per second (Niedermeyer, 1993a, 1993b)

vertex waves - a compounded potential, a small spike discharge of positive polarity

followed by a large negative wave, another small positive spiky discharge usually
follows (Niedermeyer, 1993b)

spindles - a group of rhythmic waves in the range of 13-15 cycles per second
characterized by progressively increasing, then gradually decreasing amplitude,
also known as sigma activity or sigma waves (Niedermeyer, 1993b)

K complex - an initial sharp component, followed by a slow component that fuses with a
superimposed fast component, the shape may resemble that of an isolated vertex
wave, but the sharp component of the K complex shows greater complexity and
greater variation (Niedermeyer, 1993b)
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Table 2: Location and Proposed Effects of Opioid Receptors Within the Central Nervous

System

Opioid

Locations in Cenal Nus Syte |

| Receptor |

medulla - nucleus raphe magnus; trigeminal

supraspinal analgesia

mu
(n) nucleus; midbrain - PAG; substantia nigra,
superior & inferior colliculi), thalamus
dorsal hom of spinal cord spinal analgesia
solitary nucleus; nucleus ambiguous respiratory depression
area postrema nausea & vomiting
ventral tegmental area; nucleus accumbens; physical dependence
lateral hypothalamus
cerebral cortex, cingulate cortex, amygdala, sedation; euphoria
hippocampus, dentate gyrus
caudate putamen
| kappa | thalamus spinal analgesia
(x) amygdala, nucleus accumbens, caudate supraspinal analgesia
putamen respiratory depression
medial pre-optic area sedation
hypothalamus dysphoria
miosis
delta dorsal hormn of the spinal cord spinal analgesia
(%) cingulate cortex, cerebral cortex, amygdala supraspinal analgesia
caudate putamen, nucleus accumbens

Information from: Brownstein, 1993; Delfs et al., 1994; Goodman, Snyder, Kuhar &
Young, 1980; Kuhar, Pert & Snyder, 1973; Ling, Spiegel, Lockhart & Pasternak, 1985;
Mansour, Khachaturian, Lewis, Akil & Watson, 1987; Pasternak, 1993; Reisine &
Pasternak, 1996
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Figure 9: Effect of Normal Saline on Percent of Absolute Power Attributable to

Individual One Hz Frequencies Over Time, 1200-1400 (n=48 for 24 animals)
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Figure 22: Effect of Morphine 5 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 0800-1000 (n=16 for 8 animals)
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16 for 8 animals)

Figure 23: Effect of Morphine 5 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1000-1200 (n

0
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1000 <--- morphine 5 ug/kg
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16 for 8 animals)

Figure 24: Effect of Morphine 5 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1200-1400 (n
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16 for 8 animals)

re 32: Effect of Morphine 500 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 0800-1000 (n

Figu

158
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16 for 8 animals)

re 33: Effect of Morphine 500 ug/kg on Percent of Absolute Power Attributable to

Individual One Hz Frequencies Over Time, 1000-1200 (n

Figu

—
W
o

1000 <--- morphine 500 ug/kg

Frequency
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16 for 8 animals)

Figure 34: Effect of Morphine 500 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1200-1400 (n

160
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Figure 42: Effect of Pentazocine 50 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 0800-1000 (n=16 for 8 animals)
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16 for 8 animals)

Figure 43: Effect of Pentazocine 50 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1000-1200 (n
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16 for 8 animals)

Figure 44: Effect of Pentazocine 50 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1200-1400 (n
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16 for 8 animals)

Figure 54: Effect of Pentazocine 5 mg/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1200-1400 (n
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16 for 8 animals)

ure 62: Effect of Naloxone 5 ug/kg on Percent of Absolute Power Attributable to

Individual One Hz Frequencies Over Time, 0800-1000 (n

Fig

188

0800 <--- normal saline

WA AR
".\”‘3”3//45://4’4

Wil
N\ WA !

Frequency

wn
-



B R B N

-

¥ -y

l,v‘-vﬂ saze

53
Mirrri maerm t#

u,

ot
LI xemer Crpier e

1FRE 262y g 2g; s,



Figure 63: Effect of Naloxone 5 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1000-1200 (n=16 for 8 animals)
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Figure 64: Effect of Naloxone 5 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1200-1400 (n=16 for 8 animals)
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16 for 8 animals)

Figure 72: Effect of Naloxone 500 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 0800-1000 (n
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Figure 74: Effect of Naloxone 500 ug/kg on Percent of Absolute Power Attributable to
Individual One Hz Frequencies Over Time, 1200-1400 (n=16 for 8 animals)
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Appendix A: University of California San Francisco Animal Care Committee Approval

. e

COMMITTEE ON ANIMAL RESEARCH
Oﬁceqfkemh Affairs, Box 0962
University of California, San Francisco

CAR APPROVAL LETTER

Project # 95011249
January 19, 1996
Christine Miaskowski, Ph.D. Dept.: Physiological Nursing
Box 0610 Phone No.: x9407

E 5‘« [

Sludy Title Oploxd-Induced Changes in Consmousness in Rats

APPROVAL NUMBER: AT025-11249-02 Approval Date: 01/16/96
o - BT Expiration Date: 02/15/97 - .

This number is a UCSF Committee on Animal Research (CAR) number which should be used
for ordering animals for this study. This number may only be used by the principal investigator
and those listed as participants included in the protocol and should be referenced in any
correspondence regarding this study. The committee must be notified in writing of any changes
to the approved protocol including changes in personnel.

Please distribute the final approved protocol to all individual participants so that they ane famx]mr
with the procedures that have been approved. Please remember that all personnel are to be fully
trained before undertaking any procedures independently.

If you have any questions, please contact the Committee on Animal Research office at
(415) 476-2197, Suite 11, Laurel Heights or Box 0962.

SPECIES NAME TOTAL NUMBER APPROVED
Category Category Category

A B C

Rats 0 66 66

chael A. Heymann, M. alrman
Committee on Animal Research
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