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Abstract

Purpose of Review—To highlight recent developments in the field of gastroduodenal mucosal 

defense with emphasis on lumen-gut interactions.

Recent Findings—There has been a growing interest in the physiological functions of luminal 

chemosensors present from tongue to colon that detect organic molecules in the luminal content 

associated with nutrient ingestion, usually associated with specialized cells, in particular the 

enteroendocrine cells. These receptors transduce the release of peptide hormones, in particular 

proglucagon-derived products such as the glucagon-like-peptides (GLPs), which have profound 

effects on gut function and on metabolism. Luminal chemosensors transduce GLP release in 

response to changes in the cellular environment, as part of the mechanism of nutrient 

chemosensing. GLP-2 has important trophic effects on the intestinal mucosa, including increasing 

the proliferation rate of stem cells and reducing transmucosal permeability to ions and small 

molecules, in addition to increasing the rate of duodenal bicarbonate secretion. GLP-1, although 

traditionally considered an incretin that enhances the effect of insulin on peripheral tissues, also 

has trophic effects on the intestinal epithelium.

Summary—A better understanding of the mechanisms that mediate GLP release can further 

illuminate the importance of nutrient chemosensing as an important component of the mechanism 

that mediates the trophic effects of luminal nutrients. GLP-1 and -2 are already in clinical use for 

the treatment of diabetes and intestinal failure. Improved understanding of the control of their 

release and their end-organ effects will identify new clinical indications and interventions that 

enhance their release.
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Introduction

The decades-old observation that the gut atrophies during starvation serves as the basis for 

the concept of “trophic feeds” in which small amounts of luminal nutrients prevent mucosal 

atrophy, even when the overall nutritional status is inadequate. The mechanism on which 

this concept is based has usually been attributed to dietary components such as glutamine, 

which serve as direct “fuels” for enterocytes, based largely on in vitro studies [1]. 

Nevertheless, numerous observations support an alternative concept, in which trophic effects 

of luminal molecules are mediated mostly by hormonal mechanisms. Our overall theme will 

be to highlight some of the recent publications that support this hypothesis.

An important, early, and yet mostly unheralded observation supporting this hypothesis was 

published in 1958 by Flatt et al. [2], in which the addition of exogenous short-chain fatty 

acids (SCFAs) to the rumen of calves was observed to be trophic to the rumen mucosa. 

Since SCFAs are biologically produced by the oral microflora, an acute load of SCFAs 

alone may be enough to stimulate a physiological response, thus implicating external SCFA 

trophic feeds as possible therapies for intestinal damage. This type of experiment has been 

repeated in numerous models, in particularly the piglet model, in which the trophic effects of 

SCFAs occurred in intestinal segments remote to the one exposed, suggesting that the 

trophic effects of SCFAs is not due to direct mucosal exposure[3]. This effect supported the 

concept that indigestible dietary fibers, which comprise most of the ruminant diet, generate 

microbial fermentation products that are trophic to the mucosa [4,5]. Despite data such as 

those just cited, to the contrary, the prevailing hypothesis regarding the trophic effects of 

luminal SCFAs usually centers on the SCFA butyrate acting as a direct energy source for 

colonocytes [6*]. Indeed, cultured absorptive epithelial cells are damaged if directly exposed 

to SCFAs. The concept of trophic feeds is also widely accepted in clinical medicine, in 

particular in neonatology, where intestinal atrophy during the administration of parenteral 

nutrition can be devastating.

With the cloning and de-orphanization of multiple G protein-coupled receptors (GPCRs) 

activated by organic molecules that are either components of a meal or are generated or 

secreted in response to meal ingestion, much new interest has been generated in the concept 

of luminal chemosensing, due to molecular characterization of the luminal sensors involved. 

Although there have been five different tastes classically associated with the oral cavity, the 

gastrointestinal tract mostly expresses sweet, bitter, and umami (proteinaceous) taste 

receptors (TAS1R and TAS2R families), which are composed of GPCR heterodimers. The 

unique combinations of these receptor subtypes within each family confer different 

functionalities and thus perceptions of taste. Sweet taste receptors use a combination of 

TAS1R2 and TAS1R3, whereas umami receptors are composed of TAS1R1 and 

TAS1R3[7]. Bitter taste receptors utilize this second family of taste receptors, TAS2R, 

which have over 25 known subtypes[7].

Due to the influx of a multitude of intact and partially digested organic compounds 

accompanying meal ingestion, it is of keen interest to study foregut chemosensors for these 

compounds present in the upper intestine. Thus far GPCRs activated by long-chain FAs 

(FFA1 and 4, also known as GPR40 and 120), SCFAs (FFA3 and 2, also known as GPR41 
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and 43), and bile acids (GPBAR, also known as GPR131 or TGR5) have been identified in 

the intestinal luminal membrane [8].

Activation of TASRs, FFARs, and GPBAR release several bioactive peptides, including the 

family of GLPs, which are generated through the activity of prohormone convertase 1/3, 

which proteolytically cleaves proglucagon to produce GLP-1 and GLP-2 in enteroendocrine 

L cells[9*]. GLP-1 is an important incretin released by L cells distributed throughout the 

gastrointestinal tract, conventionally thought to help mediate glycemic control. GLP-2 has 

important trophic effects on the intestinal epithelium, including modulating crypt-villus 

depth, crypt cell proliferation rate, and intestinal length and weight[10*]. Furthermore, 

GLP-2 is expressed in other cell types within the gastrointestinal tract and central nervous 

system[11], supporting its function as an important intermediate in many cell-signaling 

pathways. GLPs are metabolized mostly by dipeptidyl peptidase IV (DPP-IV), the inhibition 

of which has been used clinically to enhance the effects of endogenous hormones, mostly in 

the treatment of diabetes[12*].

Thus, these GPCRs, particularly expressed on L cells, have been implicated in transducing 

the effects of meal ingestion into many postprandial metabolic effects. A schematic diagram 

depicting the activation of luminal-facing GPCRs expressed on enteroendocrine cells and 

their physiological functions is depicted as Figure 1.

Taste Receptor-Related Release of GLPs

The three taste receptors are GPCRs that are coupled with the taste signal-specific G-protein 

α–subunits α-gustducin and/or α-transducin, to regulate the intestinal response to the 

luminal content through the mechanism of nutrient chemosensing (Fig 1).

The sweet taste receptor (TAS1R2/TAS1R3) is a major glucose sensor, important to 

regulating glucose tolerance and the effects of insulin. Gustducin, TAS1R2 and TAS1R3, all 

coexpressed on GLP-2-producing L cells, are involved in the functional physiological 

hormonal response to sweet taste receptor ligands[13*]. In TAS1R3 knockout mice, 

Murovets et al. [14*] reported that glucose tolerance was reduced, accompanied by 

increased insulin resistance, indicating that this component of the sweet receptor is involved 

in gut sugar-sensing pathways, probably involving impaired release of GLP-1. The broad 

distribution of TAS1R3, with high abundance particularly in the central nervous system and 

pancreas, however supports extraintestinal pathways as well. New data by Shirazi-Beechey 

et al. suggests that in addition to being expressed in K cells, TAS1R2 and TAS1R3 are co-

localized with GLP-2 in L cells, supported by a reported increase of GLP-1 and GLP-2 

release due to TAS1R2 and TAS1R3 activation[15**].

The umami receptor (TAS1R1/TAS1R3), associated with the α-gustducin and α-transducin, 

is activated by the representative umami ligand monosodium glutamate and allosterically 

enhanced by inositol monophosphate, which activates local intestinal functions. Findings by 

Kendig et al. suggest that umami receptors, which are highly expressed in colonic 

enteroendocrine cells, specifically L cells, accelerate colonic pellet movement and the 

peristaltic reflex[16*]. In the foregut, luminal perfusion of umami receptor ligands increases 

the release of GLP-2, which increases the rate of bicarbonate secretion, an established 
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foregut mucosal protective mechanism, implicating nutrient chemosensing in the 

enhancement of mucosal defense mechanisms[17]. Moreover, bicarbonate secretion via 

umami receptor activation of a GLP-2-mediated pathway, which attenuates NSAID-induced 

intestinal damage, as reported by Inoue et al., is enhanced by DPP-IV inhibition that 

increases circulating GLP-2 concentrations by decreasing its metabolism [18].

Finally, bitter taste receptors (TAS2Rs) exist in over 25 different subtypes, which are 

present either in monomer or homo-multimeric forms. The widespread variety of bitter taste 

receptors is likely related to the importance for organisms to avoid toxins, which are usually 

bitter tasting. The strength of the bitter taste correlates directly with how large a 

homomultimer of TAS2Rs is present[19*]. Bitter taste receptors are expressed in numerous 

enteroendocrine cells types – no study has been able to localize them to a specific cell type 

in situ – with extremely high expression in cultured STC-1 and NCI-H716 enteroendocrine-

based cell lines, both of which also co-express α-gustducin and GLP-1 [20*,21*]. The α-

subunit of G-protein coupled to bitter taste receptors, like the sweet and umami receptors, is 

also α-gustducin, which Kim et al. have reported increases phospholipase C activity and 

reduces intracellular cAMP levels, with a resultant downstream increase in intracellular 

calcium levels and GLP-1 release[21*]. This mode of release of the incretin GLP-1 provides 

the basis for novel diabetes therapies in which the bitter taste receptor serves as a molecular 

target.

Fatty Acid Receptor (FFAR) – Mediated GLP Release

In addition to taste receptors, FFAs have recently been implicated as important mediators of 

GLP release (Fig 1). FFAs are highly expressed on L cells, implying their involvement in 

the release of proglucagon-derived peptides. FFA1 ligands such as oleic acid activate the 

mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) 

pathway to preserve the viability of tight junctions in the intestinal epithelium[22*]. 

Miyamoto et al. reported that GLP-2 affects the function of the junctional structural proteins 

zonula occludens (ZO) 1–3, occludin, and the claudins, through the MAPK/ERK pathway to 

increase paracellular resistance to permeation of ions and small molecules, increasing 

epithelial integrity [22*].

The ileal-expressed FFA1 and FFA4 have been implicated in mediating GLP-2 release in 

Crohn’s disease patients [23*], which is of importance since GLP-2 has associated anti-

inflammatory effects. Although FFAR1 activation increased GLP-2 release, the pro-

inflammatory mediator tumor necrosis factor (TNF)-α activated FFA4 that attenuated the 

beneficial anti-inflammatory effects of FFA1 dependent GLP-2 release, indicating a 

feedback mechanism to inhibit excess GLP-2 production[23*].

In the duodenum, the long-chain FFAR FFA1 and the short-chain FFAR FFA3 increase the 

rate of epithelial bicarbonate secretion through a GLP-2-dependent mechanism[24**], 

further implicating GLP-2 in cytoprotective mechanisms. Tanaka et al. have reported that 

DPP-IV inhibition combined with FFA1 activation synergistically increases the glucose-

dependent insulin release and plasma concentration of GLP-1 [25*], and Akiba et al. have 

reported similar results using a duodenal perfusion system[24*]. These results indicate that 
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FFA1 mediates the release of both GLPs that maintain gut integrity. Moreover, Kawaguchi 

et al. reported that exendin-4, a DPPIV-resistant GLP-1 analogue, was an extremely 

effective treatment for steatohepatitis in murine models[26*], which further parallels GLP-1 

and GLP-2 as important molecules in regulating inflammation, especially in the digestive 

organs. Whether it is through a taste or fatty acid receptor-mediated nutrient chemosensing 

mechanism, GLP-1 and GLP-2 release are important factors involved in mucosal defense 

and glycemic control.

Bile acid receptor (GPBAR)

Bile acids are endogenous cholesterol metabolites secreted into the duodenal lumen at mM 

concentrations in response to meal ingestion. The bile acid selective membrane-bound 

GPCR termed GPBAR is expressed in L cells. Oral supplementation of a synthetic GPBAR 

agonist prevented inflammation in a mouse colitis model via a GLP-2-mediated 

pathway[27*]. Unlike TASRs and FFAs, GPBAR is coupled with Gαs, activating an 

intracellular cAMP- exchange protein directly activated by cAMP (Epac) signaling pathway 

preceding GLP release [28,29*], which can enhance glucose- or L-glutamate-evoked GLP 

release [28,30], implicating GPBAR in the modulation of nutrient chemosensing in L cells 

(Fig 1). Since GPBAR is widely expressed in many other organs such as in the gallbladder, 

targeting a GPBAR agonist to the intestinal receptors would likely be necessary for 

therapeutic applications of novel agonists [31*].

GLPs in Common Gastrointestinal Disorders

During digestion, GLP-1 release is associated with satiation [32*], essentially acting as a 

feedback mechanism to inhibit excess food intake, through activation of central satiety 

receptors present in but not limited to the hypothalamic paraventricular and arcuate nuclei. 

Nguyen et al. reported that in morbid obesity, GLP-1 release in response to intraduodenal 

glucose perfusion was diminished even though insulin and the release of another incretin, 

glucose-dependent insulinotropic polypeptide (GIP), increased, with resultant 

hyperinsulinemia and hyperglycemia[33*]. These results suggest that a primary defect 

underlying morbid obesity could be lack of post-prandial satiety due to impaired GLP-1 

release.

Expression of the GLP-2 receptor (GLP-2R) in the colon and ileum are diminished in 

subjects with inflammatory bowel disease (IBD) [34*]. Since GLP-2 exerts anti-

inflammatory effects and also increases mucosal barrier integrity, as reported by Walker et 

al. [35*], diminished GLP-2R expression could in part explain the observed diminished 

barrier function and inflammation in Crohn’s disease and ulcerative colitis[36]. 

Furthermore, Pedersen et al. have recently reported that GLP-2R is not expressed on the 

intestinal epithelium but, rather, on enteric neurons in addition to subepithelial 

myofibroblasts [37*], which have been implicated in the regulation of inflammation in IBD 

[38*].

The United States Food & Drug Administration (FDA) has recently approved the DPP-IV 

resistant GLP-2 analog teduglutide for the treatment of intestinal failure. In clinical trials, 

teduglutide has convincingly improved intestinal fluid and electrolyte absorption [39,40**]. 
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In piglets with experimental intestinal failure, teduglutide treatment increased the overall 

intestinal weight per length and intestinal protein synthesis rates consistent with the trophic 

functions of GLP-2[41*], due to its release of growth factors such as keratinocyte growth 

factor (KGF) and insulin-like growth factor (IGF) from intestinal subepithelial 

myofibroblasts expressing GLP-2 receptors [42]. Although most of the benefit for 

teduglutide has been attributed to its intestinotrophic effects, its anti-inflammatory and 

barrier strengthening effects may be of additional benefit in the therapy of chronic 

inflammatory conditions, noting that teduglutide is not FDA approved for the treatment of 

inflammatory conditions.

Artificial Sweeteners

Exogenous GLP-2 analog administration, of proven benefit in intestinal failure, may, as 

discussed above, have additional benefits in IBD, functional bowel disease (FBD), and other 

diseases. Exogenous GLP-2 analog therapy is usually required over a prolonged period and 

can be quite costly. While exogenous GLP-2 analog administration has been studied 

thoroughly, increasing endogenous GLP-2 release has received much less clinical attention. 

One practical method to physiologically release endogenous GLP-2 is through the ingestion 

of ligands for receptors expressed on the L cell apical membrane that release GLP-2 when 

activated. In this regard, artificial sweeteners, which are simply high-affinity ligands for the 

sweet taste receptor (TASR1R2/3), release GLP-1 and GLP-2 [8,14**], with beneficial 

effects on glycemic control and on the intestinal mucosa. Since artificial sweeteners are in 

common clinical use and are recognized as food additives by the FDA, their non-FDA 

approved use in diabetes, FBD, and IBD deserves further study although some 

epidemiologic studies suggest that these substances may be ineffective or even detrimental 

[43].

Summary and future directions

The mechanistic basis for the observation that SCFAs and other nutrients and non-nutrients 

in the intestinal lumen following a meal are intestinotrophic has been unraveled by recent 

experimental studies in which luminal compounds activate nutrient chemosensors expressed 

on L cells. This specific cell type releases trophic hormones into the portal circulation and 

the lymphatics to activate receptors expressed on epithelial myofibroblasts that release 

growth factors and thus activate enterocyte-expressed receptors, increasing the proliferation 

rate of intestinal stem cells. The discovery of the many luminal nutrient sensors has provided 

numerous molecular targets on which novel therapies with low risk of side effects for 

intestinal failure, diabetes, obesity, FBD, and IBD can be based.
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Key Points

• Taste Receptors (TASRs) are expressed throughout the gastrointestinal tract and 

mediate GLP release

• Free fatty acids (FFAs) expressed on L cells modulate GLP release and act as 

important regulators of nutrient chemosensing

• The membrane bile acid receptor (GPBAR) expressed on L cells alters GLP 

release activated by TASRs and FFAs.

• Glucagon-like peptides (GLPs) are responsible for maintaining intestinal 

integrity and growth as well as sugar uptake
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Figure 1. 
Several nutrient-sensing GPCRs are expressed on the apical membrane of L cells. Receptor 

activation releases GLP mediated by an increase in intracellular calcium concentration 

([Ca2+]i). Taste receptors (TAS1R heterodimers) are coupled with α-gustducin, whereas the 

bile acid receptor (GPBAR) is coupled with Gαi, enhancing the TAS1R-mediated signal. 

Released GLP-1 and GLP-2 have many functions mediated via distinct receptors expressed 

on target organs such as enteric neurons and subepithelial myofibroblasts.
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