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Computational materials discovery efforts utilize hundreds or thousands of density functional
theory (DFT) calculations to predict material properties. Historically, such efforts have performed
calculations at the generalized gradient approximation (GGA) level of theory due to its efficient
compromise between accuracy and computational reliability. However, high-throughput calcula-
tions at the higher metaGGA level of theory are becoming feasible. The Strongly Constrained and
Appropriately Normed (SCAN) metaGGA functional offers superior accuracy to GGA across much
of chemical space, making it appealing as a general-purpose metaGGA functional, but it suffers from
numerical instabilities that impede it’s use in high-throughput workflows. The recently-developed
r2SCAN metaGGA functional promises accuracy similar to SCAN in addition to more robust nu-
merical performance. However, its performance compared to SCAN has yet to be evaluated over a
large group of solid materials. In this work, we compared r2SCAN and SCAN predictions for key
properties of approximately 6,000 solid materials using a newly-developed high-throughput compu-
tational workflow. We find that r2SCAN predicts formation energies more accurately than SCAN
and PBEsol for both strongly- and weakly-bound materials and that r2SCAN predicts systematically
larger lattice constants than SCAN. We also find that r2SCAN requires modestly fewer computa-
tional resources than SCAN and offers significantly more reliable convergence. Thus, our large-scale
benchmark confirms that r2SCAN has delivered on its promises of numerical efficiency and accuracy,
making it a preferred choice for high-throughput metaGGA calculations.

I. INTRODUCTION

Density functional theory (DFT) has emerged as the
most widely-used computational method for predicting
material properties in recent decades [1]. Hundreds of
thousands of DFT calculations now populate materials
databases such as the Materials Project [2], NOMAD [3],
or OQMD [4, 5], laying the foundation for a new era of
data-driven materials discovery [6].

The vast majority of these calculations employ the
Perdew-Burke-Ernzerhof (PBE) [7] generalized gradient
approximation (GGA) [8] functional, due to its popular-
ity among researchers and its efficient compromise be-
tween high accuracy and high performance across a wide
variety of chemistries and properties. However, as a
semi-local GGA functional, PBE and its variants such
as PBEsol [9] have well-documented and systematic er-
rors related to electron self-interaction [1, 10] and fail
to capture medium- and long-range dispersion [1, 11].
These errors compromise their predictive accuracy for
many properties of interest. Specifically, PBE system-
atically under-predicts the magnitude of formation ener-
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gies (i.e., under-binds) [12], slightly over-predicts lattice
parameters [12, 13], and severely under-predicts semicon-
ductor bandgaps [12, 14, 15]. In principle, higher levels
of theory such as metaGGA DFT functionals can capture
medium-range dispersion interactions and should exhibit
smaller self-interaction errors than GGA functionals such
as PBE [10]. However, metaGGA functionals have his-
torically been either too specific to selected properties or
chemistries and/or too computationally demanding to be
feasible for high-throughput calculations across the entire
periodic table.

The challenge of generality was addressed by Sun and
co-workers via development of the Strongly Constrained
and Appropriately Normed (SCAN) [16] functional. This
non-empirical metaGGA functional has been shown to be
substantially more accurate than PBE for predicting lat-
tice constants and ground-state structures of solids [13,
17–20], and modestly more accurate for semiconduc-
tor bandgaps [12, 15]. SCAN predicts formation ener-
gies more accurately than PBE for strongly-bound com-
pounds, but less accurately than PBE for weakly-bound
compounds (e.g., intermetallics) [12]. Researchers have
also noted that SCAN underpredicts some lattice param-
eters compared to experiment [12] and identified short-
comings in SCAN’s predictions of the magnetic moments
of ferromagnetic systems [21, 22], the ground-state poly-
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morphs of selected binary compounds [13], and the elas-
tic constants of water ice [23]. Nevertheless, the gener-
ally superior accuracy of SCAN compared to PBE across
many chemical systems and properties makes it appeal-
ing as a general-purpose functional for solids. However,
it has a higher computational cost than PBE (by a factor
of about 5 [12, 24]), and suffers from numerical instabil-
ity. This numerical instability in particular makes it im-
practical to reliably and efficiently perform automated,
high-throughput calculations with SCAN.

To mitigate the computational challenge, Furness and
co-workers recently introduced r2SCAN [25], a modifica-
tion of the original SCAN functional with substantially
improved numerical stability, allowing calculations to
converge much more reliably than in the original SCAN
functional. This improved stability is achieved by relax-
ing one of the 17 theoretical constraints satisfied by the
original SCAN functional (specifically, the fourth order
gradient expansion constraint for exchange GE4X [25]),
resulting in a smoother potential energy surface free of
discontinuities. r2SCAN was shown to largely preserve
the accuracy of SCAN when benchmarked against sev-
eral hundred molecular properties and 20 solid lattice
constants [25]. Hence, it would appear that the ar-
rival of r2SCAN has at last created a general-purpose,
numerically-robust metaGGA functional. However, its
accuracy compared to SCAN has yet to be demonstrated
for a large group of solid materials.

To further promote progress towards high-throughput
metaGGA DFT calculations for solids, in this work we
compare the formation energies, cell volumes, and elec-
tronic structures of approximately 6,000 solid materi-
als calculated in r2SCAN and SCAN by means of an
automated, high-throughput workflow. We show that
r2SCAN achieves comparable or even improved accuracy
compared to SCAN and reaches convergence much more
reliably for this large and diverse set of calculations.

II. METHODOLOGY

A. Automated workflow for metaGGA calculations

DFT calculations were carried out using a two-step
workflow comprising an initial GGA structure opti-
mization followed by a structure optimization with the
SCAN [16] or r2SCAN [25] metaGGA functionals, cou-
pled with automatic error correction logic (see Figure 1).
The purpose of the initial GGA structure optimiza-
tion was to generate an initial guess of the structure
and charge density at lower computational cost, thereby
speeding up the subsequent metaGGA calculation. Per-
forming two optimizations in series also makes the calcu-
lation more robust to changes in the size or shape of the
unit cell, as elaborated further in Appendix A. SCAN
calculations used PBE [7] for the initial GGA optimiza-
tion, while r2SCAN calculations employed the PBEsol [9]
functional, which is a variant of PBE tuned to predict

solid lattice constants with greater accuracy. Since the
purpose of the initial GGA calculation is simply to ac-
celerate the metaGGA optimization, the final metaGGA
result should not be particularly sensitive to the choice
of GGA functional.

We employed the Vienna ab initio Simulation Package
(VASP) [26, 27], version 6.1.1 with custom patches for
r2SCAN, in conjunction with projected augmented wave
(PAW) pseudopotentials [28] and a plane-wave energy
cutoff of 680 eV. Note that r2SCAN is officially available
in VASP as of version 6.2. k-point grids were gener-
ated automatically by VASP using KSPACING values
ranging from 0.22 to 0.44 Å−1, which were determined
from the GGA-estimated bandgap of each material based
on the work of Wisesa et al. [29]. Plane-wave energy
cutoff and k-point density settings were selected such
that formation energies converged within approximately
1 meV/atom for a benchmark set of 21 materials (listed
in Appendix A) and were selected to be conservatively
high. All calculations used pseudopotentials from the
“PBE PAW datasets version 54” set released in Septem-
ber 2015; a list of the specific POTCAR symbols used for
each element is provided in Appendix I. Although these
pseudopotentials were developed for use with the PBE
functional, their use with SCAN is common practice be-
cause no SCAN-specific pseudopotentials are available for
use in VASP. Additional details related to development of
our computational workflow are provided in Appendix A.

B. Selection of materials

The dataset we analyze below includes 6,307 distinct
materials, comprising 412 elements, 5,297 binary mate-
rials, and 598 ternary materials whose elemental com-
positions cover the majority of the periodic table (see
Figure C.1). We first screened the Materials Project
Database [30] for materials that were within 20 meV of
the convex energy hull and had 20 or fewer sites, re-
sulting in a set of approximately 45,000 materials. We
retrieved PBE-relaxed structures for each of these from
the Materials Project REST API [30], which we used as
starting structures in our computational workflow. We
initially sought to compute all 45,000 materials using
SCAN; however we were able to complete only approxi-
mately 8,000 due to convergence problems and computa-
tional constraints. Using r2SCAN, we were able to com-
plete approximately 25,000 materials with the available
computational resources, and we did not encounter sig-
nificant problems with convergence (as discussed further
below). Among these SCAN and r2SCAN calculations,
there are 6,307 materials (including 5,895 non-elemental
solids) for which both SCAN and r2SCAN calculations
were completed. We use this set of materials to com-
pare the properties predicted by the two functionals. We
note that the ≈ 1,700 materials for which we completed
SCAN but not r2SCAN calculations do not indicate cases
where r2SCAN failed to converge. Rather, after complet-
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FIG. 1. Automated workflow for metaGGA calculations. The input structure is used to construct an initial guess of the charge
density for the GGA optimization using a GGA functional. A high k-point density is used in this step. The output charge
density from the GGA optimization is used as the initial guess in the subsequent metaGGA optimization using either r2SCAN or
SCAN. The bandgap estimated from the GGA calculation is used to refine the k-point density for the metaGGA optimization,
where metals have the highest k-point density and semiconductors or nonmetals have lower k-point density. Automated error
correction routines adjust settings and restart calculations that fail for well-defined reasons, improving reliability.

ing our SCAN calculations we chose to prioritize calcula-
tions slightly differently for r2SCAN, and hence some ma-
terials originally completed in SCAN were not attempted
in r2SCAN.

III. RESULTS AND DISCUSSION

A. Relative comparison of r2SCAN vs SCAN

1. Formation Energy

Computed formation energies predicted by r2SCAN
and SCAN are summarized in Figure 2a. In an exten-
sive benchmark of the original SCAN functional, Isaacs
and Wolverton [12] observed that SCAN formation en-
ergies were somewhat more accurate for strongly-bound
compared to weakly-bound materials, where ‘strongly-
bound’ materials are those with formation energies ≤ −1
eV/atom and ‘weakly-bound’ materials are those with
formation energies between 0 and −1 eV/atom. We
adopt the same categories here to facilitate comparison
with this prior work. By this definition, our data con-
tains 1,428 and 4,317 strongly- and weakly-bound mate-
rials, respectively. We exclude any materials containing
U, Np, or Pu (150 materials), because many exhibited
exceptionally large differences in formation energy be-
tween the two functionals. For these cases, we found
that r2SCAN-predicted formation energies were substan-
tially more accurate than SCAN-predicted energies com-
pared to experiment. However, since these calculations
were performed without spin-orbit coupling, the results
must be interpreted with caution and we do not consider
them in detail here. Further discussion is provided in
Appendix D.

Overall, r2SCAN and SCAN predicted similar forma-
tion energies for most materials within both the strongly-
and weakly-bound categories, as indicated by the fact
that the median difference in formation energy was only
−5 meV/atom. Nevertheless, there were substantial dif-
ferences for many materials. For 95% of strongly-bound

materials, ∆Hr2SCAN
f differed from ∆HSCAN

f by ≈ −135

to +170 meV/atom, while for weakly-bound materials,
the 95th-percentile difference in formation energy was ≈
−105 to +115 meV/atom. Although the absolute differ-
ences in formation energy were similar for strongly- and
weakly-bound materials, in relative terms they are much
more significant for weakly-bound materials, since the
magnitude of ∆Hf for weakly-bound materials is smaller
by definition. Reassuringly, we find that in spite of these
apparently large relative differences in predicted ∆Hf

for weakly-bound materials, r2SCAN has a lower aver-
age error compared to experiment by every measure(see
Section III B 1).

In Appendix G we analyze how differences in
r2SCAN and SCAN formation energies relate to specific
chemistries. Among strongly- and weakly-bound mate-
rials, the largest positive differences (i.e., materials for

which ∆Hr2SCAN
f was less negative than ∆HSCAN

f ) were
materials containing Pt or Au, while Co, Ni, Rh, and
Pd-containing materials also tended to have less negative

∆Hr2SCAN
f . On the other hand, the largest negative dif-

ferences in formation energy were observed for Cs, Pa, Br
and Bi-containing materials. It is unclear why the largest
differences in formation energy are associated with ma-
terials containing these particular elements. For the neg-
ative differences, a possible explanation may be that in-
termediate van der Waals interactions in the elemental
Cs, Pa, Br and Bi phases are less captured by r2SCAN
than SCAN [31]. In general, however, differences in el-



4

FIG. 2. Changes in a) formation energy, b) bandgap, c) cell volume, and d) formation electron localization function (∆ELFf ;
see Appendix E) when computed in r2SCAN vs SCAN. Note that the y axis is logarithmic. Dashed and dotted vertical lines
represent the median differences and two-sided 95th percentile differences, respectively, across both material categories.

emental energies do not explain our observations. For
pure elements, the difference in electronic energy between
r2SCAN and SCAN grows systematically larger with the
atomic number (Figure F.1), hence one might expect ma-
terials containing heavier elements to exhibit the largest
differences in formation energy. This is not what we ob-
served: formation energies of materials show no such sys-
tematic trend (Figure G.1 and G.2). Since the formation
energy of a material is calculated by subtracting the en-
ergies of elemental references from that of the material, it
would appear that the sometimes substantial differences
in formation energy predicted by r2SCAN and SCAN are

attributable to different energies of the materials rather
than the elemental references.

2. Bandgaps

GGA DFT functionals are known to systematically
and significantly underestimate bandgaps, and this short-
coming is only slightly mitigated by SCAN [12]. Nev-
ertheless, it is instructive to examine whether r2SCAN-
predicted bandgaps differ substantially from those pre-
dicted by SCAN (Figure 2b). For strongly and weakly
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bound materials, r2SCAN bandgaps were within ±0.15
eV of SCAN-predicted bandgaps for 95% of materials
studied. r2SCAN was slightly more likely to predict a
smaller bandgap than SCAN for strongly-bound materi-
als and a larger bandgap than SCAN for weakly-bound
materials.

Qualitative agreement between the r2SCAN and
SCAN predicted metallic character of materials is ar-
guably more relevant than the quantitative bandgap pre-
dictions. Out of 5,895 materials for which we computed
bandgaps, there were 73 cases (≈ 1%, listed in Table
B.1) in which r2SCAN predicted metallic character (zero
bandgap) when SCAN predicted non-metallic character
or vice versa. In six of these cases, the predictions dif-
fered by & 1 eV. Manual inspection of the density of
states (DOS; see Appendix B) for the materials with
the largest discrepancies indicates that they represent
edge cases in which the band occupancies are particu-
larly sensitive to the exchange energy. For example, the
material Sb2F13, was a notable outlier where r2SCAN
predicted a metallic material rather than the large-gap
insulator predicted by SCAN, due to a small amount of
ferromagnetism in the r2SCAN case shifting the Fermi
level into the valence band. Thus, the subtle differences
in construction between r2SCAN and SCAN can occa-
sionally result in large differences in predicted bandgaps.
However, this example represents a fictitious, unphysical
material, since the originating crystal structure file was
found to have omitted hydrogens when compared against
the original publication. We emphasize, that we observed
these large discrepancies in only ≈ 0.1% of materials in
our dataset, and that they may be partially attributable
to recently-identified changes in the way VASP computes
the Fermi level.

3. Lattice Volumes

r2SCAN systematically predicted larger lattice vol-
umes for many materials than SCAN, and this system-
atic difference was observed to a similar extent across
both material categories (Figure 2c). Specifically, the me-
dian volumes per atom predicted by r2SCAN were 1.4%
and 1.8%, (0.2 - 0.3 Å3/atom) larger than the SCAN
predicted volumes for strongly-bound and weakly-bound
materials, respectively. The systematically larger lat-
tice volumes predicted by r2SCAN compared to SCAN
may be fortuitous, since SCAN was previously shown to
under-predict experimental lattice volumes by an aver-
age of 0.11 Å3/atom [12]. We will examine the accuracy
of SCAN and r2SCAN lattice volumes compared to ex-
periment in a later section.

4. Electron Localization

To evaluate the consistency between r2SCAN and
SCAN in a more general way, we next present differences

in the electronic structure predicted by the two function-
als. Both r2SCAN and SCAN incorporate information
about the kinetic energy density into their calculation of
the exchange and correlation energies by means of the iso-
orbital indicator α = τ−τW

τunif
or ᾱ = τ−τW

τunif+ητW
for SCAN

and r2SCAN, respectively, where τ is the positive kinetic
energy density, τW and τunif are the limiting kinetic ener-
gies of a single orbital and uniform electron gas, respec-
tively and η=0.001 is a regularization parameter [10, 25].
The calculated value of the exchange and correlation en-
ergies depends on the value of the iso-orbital indicator,
and hence on the bonding regime (e.g. localized/covalent
or delocalized/metallic). This ability to adjust for differ-
ent local electronic environments is a major reason for
the superior accuracy of r2SCAN and SCAN compared
to GGA [12], and also explains why SCAN requires much
smaller Hubbard U values than GGA functionals to ac-
curately predict formation energies of transition metal
oxides [32].

r2SCAN differs from SCAN primarily in that 1) it uses
ᾱ instead of α as the iso-orbital indicator (see definitions
above) and 2) it uses a different ‘switching function‘ to
adjust the value of the exchange-correlation enhancement
factor, Fxc, for different values of ᾱ [25]. The iso-orbital
indicator is closely related to the electron localization
function (ELF), which is equal to (1 +α2)−1 [16, 25] and
ranges from 0 to 1, where a value of 0.5 corresponds to
an electron gas and 1 corresponds to highly localized (co-
valent) bonding [33]. Since both α and ᾱ and hence the
value of Fxc are directly related to ELF, in Figure 2d
we present the difference in ‘formation ELF’, ∆ELFf ,
predicted by r2SCAN and SCAN. ∆ELFf is calculated
by analogy to the formation energy (see Appendix E1),
and represents the degree to which the average amount of
electron localization around each atom in a material dif-
fers from that in the corresponding elemental references.
By construction, the formation ELF must fall between 0
and 1. However, because high electron localization oc-
curs only in a relatively small fraction of the volume
occupied by a crystal (e.g., near the nuclei or along a
covalent bond), average values for an entire atomic basin
are typically small. An example illustrating the local
value of ELF in a crystal structure is provided in Ap-
pendix E. In our dataset, the median values of ∆ELFf
were 0.034 and 0.036 (dimensionless) for r2SCAN and
SCAN, respectively. These values are 10-20% larger than
the median ∆ELFf calculated by PBEsol (0.030), indi-
cating that the two metaGGA functionals predict larger
changes in electronic structure during compound forma-
tion than GGA.

Figure 2d shows that broadly speaking, ∆ELFf val-
ues predicted by r2SCAN and SCAN are similar for
both categories of materials (as indicated by the differ-
ences being centered around 0). There is a slight skew
towards r2SCAN predicting smaller ∆ELFf (i.e., less
change in localization between elements and compounds)
than SCAN, with differences of−0.033 to +0.028 defining
the 95th percentile of all materials. However in relative
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terms (i.e.,

∣∣∣∣∆ELFr2SCAN
f −∆ELFSCAN

f

∆ELFSCAN
f

∣∣∣∣) these changes were

quite large, with a median relative change of 16% and
a 95th percentile relative change of 82%. Hence, while
r2SCAN and SCAN predict similar ∆ELFf in aggregate,
subtle absolute differences in their respective prediction
of ELF may result in large relative changes for specific
materials.

By definition, the difference in DFT energy between
the two functionals when evaluated on the same density
(and Kohn-Sham orbitals) is equal to the difference in
their exchange and correlation energy, which is a complex
function of not only the ELF, but also the density, den-
sity gradient, and kinetic energy density [10, 25] which
are themselves products of previous self-consistent itera-
tions. Hence, it is difficult to relate changes in ∆ELFf
directly to changes in DFT or formation energy. Fig-
ure 2a suggests that the large relative shifts in ∆ELFf
that we observe between r2SCAN and SCAN do not lead
to commensurately large shifts in ∆Hf . For compari-
son, the median and 95th percentile relative changes in
the electronic energy (i.e., the DFT energy) from SCAN
to r2SCAN were 26% and 32%, respectively, while the
median and 95th percentile changes in ∆Hf were 6.5%
and 54%. Nevertheless, Figure 2d shows that differences
in ∆ELFf tended to be larger for weakly-bound materi-
als compared to strongly-bound materials, and this fact
could be related to the larger relative changes in forma-
tion energy that we observed for weakly-bound materials
(see above).

B. Experimental benchmarks

1. Formation Energy

Having examined how material properties predicted by
r2SCAN differ from those of SCAN, we now turn our
attention to how accurately r2SCAN and SCAN predict
experimental formation energies, volumes, and bandgaps.
Predictions by the PBEsol GGA functional [9], executed
with the same settings as the first step of the auto-
mated workflow (see Section II A) are shown as an ad-
ditional point of comparison. We note that since ex-
perimental benchmarking was not the primary objective
of this work, the materials we evaluate in this section
are dictated primarily by the calculations we generated
rather than through deliberate selection. Complemen-
tary efforts are underway by other research groups [31]
to benchmark r2SCAN against experimental data using
carefully-curated sets of materials presented in previous
studies [12, 17].

Figure 3a shows the mean absolute error (MAE)
in formation energy for 986 materials. Experimen-
tal energies for these materials were obtained from the
expt formation energy kingsbury dataset distributed
with Matminer [34], which associates formation energies
with specific crystal structures, allowing us to match our

computed data with high confidence. Additional details
about the dataset are provided in Appendix H.

For the majority of materials studied, the MAE in for-
mation energy predicted by metaGGA functionals was
≈80-120 meV/atom. Strikingly, r2SCAN formation en-
ergies had approximately 20% and 15% lower MAEs than
SCAN for strongly- and weakly-bound materials, respec-
tively, even though r2SCAN is less theoretically exact
(i.e., r2SCAN relaxes the fourth order gradient expansion
constraint for exchange that is satisfied by SCAN [25]).
Although surprising from a theoretical standpoint, other
recent studies have also reported greater accuracy of
r2SCAN compared to SCAN. For example, r2SCAN was
found to predict cohesive energies and bulk moduli of
solids more accurately than SCAN [35].

We observed in Section III A that despite many ma-
terials having similar formation energies, there were a

number of outlying materials for which |∆Hr2SCAN
f −

∆HSCAN
f | ≥ 100-200 meV/atom or more. To evaluate

the implications of such large differences, we examined
the accuracy vs. experiment of all strongly- or weakly-

bound materials for which |∆Hr2SCAN
f −∆HSCAN

f | ≥ 50

meV/atom. There are 665 such materials in the entire
dataset, of which we have experimental data for 345.

Among this group of outliers, ∆Hr2SCAN
f is more accurate

than ∆HSCAN
f . Specifically, the mean error for r2SCAN

was −43.8 meV/atom, while the mean error for SCAN
was−55.8 meV/atom, and the MAEs were 90.2 and 134.9
meV/atom for r2SCAN and SCAN, respectively.

Comparing the metaGGA functionals to PBEsol, we
note that for strongly-bound materials, both r2SCAN
and SCAN predicted formation energy much more ac-
curately than PBEsol. This finding is similar to the
previous observation by by Isaacs and Wolverton [12]
that SCAN outperforms PBE for strongly-bound mate-
rials. For weakly-bound materials, however, SCAN was
slightly less accurate than PBEsol (also consistent with
previous findings [12]), whereas r2SCAN was more accu-
rate. Hence, r2SCAN predicted formation energy more
accurately than SCAN or PBEsol for all material cat-
egories. This is a fortuitous result: it appears that the
regularization procedure used to create r2SCAN not only
enhances numerical stability but also improves accuracy
in one of the few areas in which SCAN was less accurate
than PBE. This may be coincidental, or it may suggest
that the greater smoothness of the r2SCAN potential en-
ergy surface (achieved by sacrficing the GE4X constraint)
is beneficial to accuracy as well as computational relia-
bility [31].

2. Lattice Volume

Figure 3b summarizes the performance of the three
functionals for predicting cell volume using experimen-
tal data obtained from the Inorganic Crystal Structure
Database (ICSD) [36]. For strongly-bound materials,



7

FIG. 3. Mean absolute error compared to experiment in a) formation energy (n=986 materials) b) cell volume (n=4,974
materials), and c) bandgap (n=582 materials) computed with r2SCAN, SCAN, or PBEsol.

.

PBEsol has the lowest MAE of 0.89 Å3/atom, followed by
r2SCAN (0.97 Å3/atom) and SCAN (1.0 Å3/atom). For
weakly-bound materials, PBEsol and SCAN predict vol-
ume with a similar MAE of 0.97 Å3/atom, while r2SCAN
has a slightly higher MAE of 1.0 Å3/atom. Overall,
neither metaGGA functional shows a clear and signifi-
cant improvement in lattice volume prediction compared
to PBEsol. Although surprising considering that SCAN
lattice constants were shown to be more accurate than
PBE (albeit underpredicted, whereas PBE lattice con-
stants were overpredicted) [12], it is important to remem-
ber that PBEsol was developed specifically to reproduce
solid lattice constants with high accuracy.

3. Bandgap

The errors in predicted bandgap are shown in Figure 3c
for 582 materials that were present in both our dataset
and the experimental expt gap kingsbury dataset in
Matminer [34]. Compilation of the bandgap data is de-
scribed in more detail in Appendix H.

For strongly-bound materials, the MAE in predicted
bandgap was nearly identical between r2SCAN and
SCAN at 1.078 and 1.081 eV, respectively. The same
was true for weakly-bound materials; although in this
case the MAE was much lower at ≈0.28 eV. Although
the MAEs for both metaGGA functionals were consid-
erable, they were ≈0.21 eV and 0.04 eV lower than the
PBEsol MAE for strongly- and weakly-bound materials,
respectively.

C. Computational performance and reliability

Finally, we used the large amount of computed data
we generated to develop a qualitative understanding of
the relative computational demands and reliability of
r2SCAN and SCAN. In Figure 4a we present the rel-

ative performance of r2SCAN, SCAN, and PBEsol in
terms of 1) total CPU time, 2) total number of ionic
steps and 3) total number of self consistent field (SCF)
cycles (summed over all ionic steps) required to reach
convergence. We note that this was not a rigorous com-
putational benchmark, because the starting structures
for the GGA and metaGGA stages of the workflow were
not identical. As described in Section II A, each starting
structure was optimized using equivalent VASP settings
using both 1) PBE followed by SCAN and 2) PBEsol
followed by r2SCAN. All calculations were carried out
on the Cori supercomputer at the National Energy Re-
search Scientific Computing Center (Berkeley, CA); how-
ever the parallelization settings (i.e., number of nodes,
cores, and multiprocessing tasks) varied slightly among
calculations. As such, the information in Figure 4 should
not be considered a definitive representation of the rel-
ative computational demands of these functionals, but
rather a qualitative representation of their performance
over a large and diverse set of materials.

As shown in the figure, r2SCAN required approxi-
mately 0.5-2x the CPU time to converge as SCAN, and
0.5-1x the number of ionic and electronic steps. Com-
pared to PBEsol, r2SCAN required 2-4x the CPU time, 1-
3x the number of ionic steps, and 1-2x the number of total
SCF cycles. Our results here are largely consistent with
a previous rigorous benchmark for CPU time based on
single-point calculations, which showed that r2SCAN re-
quired approximately 0.9x of the CPU time as SCAN and
approximately 4x as much as PBE. [37] Our finding that
fewer ionic steps are required is consistent with a study
by Ning and co-workers [38] which found r2SCAN to
generate smoother potential energy surfaces (facilitating
convergence) compared to SCAN. Thus, modestly fewer
ionic steps and modestly less CPU time are required to
converge r2SCAN than SCAN, but both functionals re-
quire considerably more computational resources than
PBEsol.

Time required for convergence does not tell the whole
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FIG. 4. a) Relative computational performance of r2SCAN compared to SCAN (blue) or PBEsol (orange), demonstrating that
computational time required for r2SCAN is smaller than SCAN but larger than PBEsol. Each variable is plotted as the ratio
of the value in the r2SCAN calculation divided by the value in the corresponding SCAN or PBEsol calculation. Dashed lines
inside each violin represent the quartiles of the distribution. b) Completion rate of calculations carried out using each density
functional.

story, however, because the data in Figure 4a reflect only
successful calculations, and hence mask the much more
reliable convergence of r2SCAN. Among approximately
11,000 and 25,000 total calculations we attempted with
SCAN and r2SCAN, respectively, we observed a comple-
tion rate of 96% for r2SCAN, but only 69% for SCAN
(Figure 4b). Calculations that did not complete either
failed with unrecoverable errors or ran out of wall time.
Again, although these failure statistics do not represent a
rigorous comparison of the two functionals, they qualita-
tively highlight the generally much more reliable conver-
gence of r2SCAN compared to SCAN, which was a key
objective of its development [25].

IV. SUMMARY AND OUTLOOK

In summary, we have compared r2SCAN and SCAN
predictions for key properties of approximately 6,000
solid materials. We find that r2SCAN predicts sub-
stantially similar formation energies, bandgaps, and de-
grees of electron localization as the original SCAN func-
tional, but predicts systematically larger lattice con-
stants. r2SCAN is found to predict formation ener-
gies more accurately than SCAN and PBEsol for both
strongly- and weakly-bound materials, while r2SCAN
and SCAN calculated bandgaps are virtually identical
and modestly more accurate than those predicted by
PBEsol. For materials containing U, Np or Pu, r2SCAN
predicts formation energies that are substantially differ-
ent from and considerably more accurate than those pre-
dicted by SCAN. The reason for this is not clear, and
could arise from a fortuitous cancellation of errors re-

lated to the lack of spin-orbit-coupling in our calcula-
tions and/or as a consequence of the smoother potential
energy surface generated by r2SCAN. With respect to
computational reliability, we find that r2SCAN requires
modestly fewer computational resources than SCAN, but
offers much more reliable convergence. Thus, our large-
scale benchmark confirms that r2SCAN has delivered on
its promises of numerical efficiency and accuracy [25],
making it an ideal choice for high-throughput metaGGA
calculations.

V. DATA AVAILABILITY

All data referenced herein are publicly available on
Figshare [39] and will be integrated into the Materials
Project database [30] in the near future. Our computa-
tional workflow has been implemented into the pymat-
gen [40], custodian [40], and atomate [41] packages as of
versions 2020.12.3, 2021.1.8, and 0.9.6, respectively, for
readers wishing to utilize it in their own work.
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tayev, S. Lany, and G. Ceder, Chemistry of Materials

29, 6936 (2017).
[19] J.-S. Park, Current Applied Physics 22, 61 (2021).
[20] C. J. Bartel, A. W. Weimer, S. Lany, C. B. Mus-

grave, and A. M. Holder, npj Computational Materials
5, 10.1038/s41524-018-0143-2 (2019).

[21] Y. Fu and D. J. Singh, Physical Review B 100, 045126
(2019).

[22] F. Tran, G. Baudesson, J. Carrete, G. K. H. Madsen,
P. Blaha, K. Schwarz, and D. J. Singh, Shortcomings of
meta-gga functionals when describing magnetism (2020),
arXiv:2004.04543 [cond-mat.mtrl-sci].

[23] J. S. Rego and M. de Konig, Journal of Chemical Physics
152, 10.1063/1.5142710 (2020).

[24] D. Mejia-Rodriguez and S. B. Trickey, Physical Review
B 98, 10.1103/physrevb.98.115161 (2018).

[25] J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and
J. Sun, The Journal of Physical Chemistry Letters 11,
8208 (2020).

[26] G. Kresse and J. Furthmüller, Computational Materials
Science 6, 15 (1996).

[27] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169
(1996).
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X. APPENDICES

Appendix A: Workflow development

a. Design

Historically, it has been common practice in the Materials Project [2] and AFLOW [42] to perform two structure
optimization calculations in series for any given material. The purpose of this double optimization is to make the
calculations more robust to changes in the size or shape of the unit cell during the calculation. If the cell changes size,
for example, then the initial wavefunctions and k-point grid are not rigorously valid. Performing a double optimization
allows them to be re-initialized to account for the changed unit cell.

Taking inspiration from this model, we tested five workflow designs incorporating 1) an initial GGA calculation
followed by 2) one or two metaGGA optimizations. The initial GGA precondition step serves two purposes in
addition to helping account for changes in the unit cell. First, it accelerates convergence of the subsequent metaGGA
calculations by generating an initial guess of the optimized structure and charge density. Second, it provides an
estimate of the material’s bandgap that we use to select an appropriate value of KSPACING for the subsequent
metaGGA step (see next section).

Comparative testing of different workflow designs was carried out using PBE [7] and SCAN [16] for the GGA and
metaGGA steps, respectively. The five workflow designs compared several different strategies, including 1) whether
to use a single point or full structure optimization during the GGA preconditiong step, 2) whether to use force
convergence criteria for all steps or only the final step and 3) whether to enable van der Waals corrections in the
metaGGA steps (see Table A.1). Among the five designs, we observed that there were significant (≈5%) changes in
cell volume between the GGA precondition step and the first metaGGA relaxation, but negligible (<0.5%) changes in
cell volume during the second metaGGA relaxation. We also observed fewer failed calculations when all calculations
were force-converged. Hence, for the final workflow design we eliminated the 2nd metaGGA structure optimization
and employed a force-converged criteria for both GGA and metaGGA optimizations.

TABLE A.1. Workflow designsa

1 2 3 4 5
GGA precondition PBE static PBE opt. (F) PBE opt. (F) PBE opt. (E) PBE opt. (F)
metaGGA optimiza-
tion 1

SCAN (F) SCAN (F) SCAN (E) SCAN (E) SCAN+rvv10 (F)

metaGGA optimiza-
tion 2

SCAN (F) SCAN (F) SCAN (E) SCAN (E) SCAN+rvv10 (F)

No. of failed
calculations

2 / 30 2 / 30 4/30 6/ 30 2 / 30

Avg. change in cell
volume from optimiza-
tion 1 to 2

0.34% −0.03% −0.09% −0.06% 0.35%

a E = energy converged, F = force and energy converged, rvv10 = Van der Waals correction

b. Plane-wave energy cutoff and k-point density convergence

We next determined an appropriate plane-wave energy cutoff and k-point density for our workflow through a series
of formation energy convergence tests. We selected 21 materials representing a diversity of chemical systems and
computed the formation energy of each by subtracting the energies of the corresponding elemental references. The
structures selected for benchmarking were obtained from the from the Materials Project [30] database and are listed
in Table A.2.

We performed single point (static) energy calculations on each material using plane-wave energy cutoff (ENCUT)
values of 520, 680, 850, 1000, and 1200 eV. Rather than specifying the number of k-points explicitly, we specified a
KSPACING in the VASP INCAR file, which is the approach currently recommended by the VASP developers [26, 27].
Since non-metallic systems generally require fewer k-points for good convergence than metallic systems [43], we used
the GGA-estimated bandgap of each material to select a KSPACING value ranging from 0.22 Å−1 (metals) to 0.44 Å−1

(insulators). Between these two limits, KSPACING is calculated as a continuous function of the bandgap according
to: [29]
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rmin = 25.22− 2.87Egap (A1)

KSPACING = 1.0265

(
2π

rmin − 1.0183

)
(A2)

where rmin is the minimum distance between k-points on the real-space superlattice and Egap is the bandgap in
eV. Thus, a lower KSPACING value corresponds to a larger rmin and a denser k-point grid [29]. Conversions between
rmin and KSPACING are provided in Table A.3 and Figure A.1.

Our selection of KSPACING values was informed by the work of Wisesa et al. [29], who found that KSPACING=
0.54 and 0.22 Å−1 for metallic and non-metallic systems, respectively, resulted in approximately 80% of calculations
converging within 1 meV/atom. As a point of comparison, the Materials Project historically used a k-point density of
1000 k-points per reciprocal atom, which would yield similar convergence to an rmin of 24.7 Å [29], which corresponds
to a KSPACING of 0.254 Å−1. As an additional point of reference for convergence testing, we also performed static
calculations with a tighter KSPACING of 0.1 Å−1 at ENCUT values of 680 eV and 1200 eV.

In a prelminary phase of workflow development (not reported here), we performed this convergence testing using
PBE followed by SCAN. For the final results reported here, we used the PBEsol [9] GGA functional to perform the first
optimization because it is generally more accurate than PBE for solid lattice parameters, and we used r2SCAN [25]
for the metaGGA step. By comparing the data from both benchmarking exercises, we confirmed that the ENCUT
and KSPACING settings we selected for the PBEsol/r2SCAN workflow are also appropriate for PBE/SCAN.

Convergence results are shown for each material in Figures A.2 - A.22. The formation energies determined with
an ENCUT value of 680 eV converged within 1 meV/atom of the 1200 eV result for 17 out of 20 materials (in 1 case,
the 1200 eV energy could not be determined due to computational difficulties). Among the remaining 3 materials,
one (LiN) was converged within 1.5 meV/atom. For the two other materials (MoS2 and CeO2), ENCUT values
were converged within 1 meV/atom of the 1000 eV cutoff, but the formation energy increased abruptly between
1000 eV and 1200 eV by 20 meV/atom. The origin of this abrupt change in energy is not clear. However, since
the formation energy was well-converged over the range of other ENCUT values, which are more feasible for high
throughput workflows, we did not investigate it further.

KSPACING convergence was possible to evaluate only for 10 materials, because computational limitations prevented
the 0.1 Å−1 / 1200 eV calculation from completing for the remaining materials. The default KSPACING setting was
converged within 1 meV/atom for 6 out of 10 and within 3 meV/atom for 9 out of 10 materials. The one remaining
material (CeO2) did not converge because of the abrupt change in energy at ENCUT=1200 eV noted above. For this
material, the default KSPACING and KSPACING=0.1 scenarios were within 1 meV/atom of one another.

Based on these convergence tests, we concluded that a plane wave energy cutoff of 680 eV and a bandgap-determined
KSPACING value between 0.22 and 0.44 Å−1 should lead to well-converged formation energies (within 1-2 meV/atom)
for the majority of materials.
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TABLE A.2. Materials used to benchmark energy convergence.

Formula Spacegroup Symbol Materials Project ID [30]
AlN P63mc mp-661

Al2O3 R3c mp-1143
BN P63/mmc mp-984

BaBeSiO4 Cm mp-550751
CeO2 Fm3m mp-20194
CaF2 Fm3m mp-2741
EuO Fm3m mp-21394
FeP Pnma mp-1005
FeS P4/nmm mp-505531

GaAs F43m mp-2534
InSb F43m mp-20012
LiH Fm3m mp-23703
LiF Fm3m mp-1138
LiCl P63mc mp-1185319
Li2O Fm3m mp-1960
LiN I4m2 mp-1059612

MoS2 P3m1 mp-1027525
NaI Fm3m mp-23268
SrI2 Pnma mp-568284
TiO2 C2/m mp-554278
VO2 P21/c mp-1102963

FIG. A.1. Conversion of KSPACING to rmin values. KSPACING values are constrained to the range 0.22-0.44, as indicated
by the dashed horizontal lines.
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TABLE A.3. Conversion of KSPACING to rmin (Å) values.

KSPACING (Å−1) rmin (Å)
0.17 39
0.22 30
0.28 24
0.34 20
0.44 16
0.54 13
0.63 11
0.73 10

FIG. A.2. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.3. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.4. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.5. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.6. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.7. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.8. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.9. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.10. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.11. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.12. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.13. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.14. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.15. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.16. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.17. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.18. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.19. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.20. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).
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FIG. A.21. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).

FIG. A.22. Formation energy convergence of static r2SCAN calculations. Shading indicates convergence within 1 meV of the
calculation with ENCUT = 1200 eV. In some cases, the calculations with ENCUT=1200 eV or KSPACING = 0.1 failed to
converge, in which case shading and the corresponding bars or points are not shown. The dashed vertical line indicates the
final setting chosen for the computational workflow (ENCUT=680 eV, 0.22 ≤ KSPACING ≤ 0.44).



25

Appendix B: Cases of qualitative disagreement in metallic character

TABLE B.1: Cases of qualitative disagreement between r2SCAN and
SCAN in the metallic or insulating character of a material. Cases in
which predicted bandgaps disagree by & 1 eV are highlighted in bold
font.

Material ID Formula Er2SCAN
gap (eV) ESCAN

gap (eV)

mp-2832 Cr2Se3 0.0000 0.0032
mp-559435 CoF3 0.0000 0.0119
mp-1168 HfTe5 0.0000 0.0139
mp-999143 SrPd 0.0000 0.0148
mp-2142 Te2Os 0.0000 0.0251
mp-7302 CrP4 0.0000 0.0304
mp-1936 TaAs 0.0000 0.0327
mp-656887 Ni3O4 0.0000 0.0332
mp-20633 PbO2 0.0000 0.0775
mp-19871 PbAu2 0.0000 0.0811
mp-2733 Al8Mo3 0.0000 0.0942
mp-795 LiSi 0.0000 0.0988
mp-9429 USe3 0.0000 0.1175
mp-1192044 ZrCl3 0.0000 0.1262
mp-7898 Rb3As 0.0000 0.1328
mp-567510 BaSn2 0.0000 0.2130
mp-2480 OsSe2 0.0000 0.2397
mp-861727 PuBr2 0.0000 0.2769
mp-29950 Nb3Cl8 0.0000 0.3260
mp-11108 SrP3 0.0000 0.3673
mp-23223 TiI3 0.0000 0.4426
mp-19142 Mn2V2O7 0.0000 0.4484
mp-1225059 FeCl4 0.0000 0.5583
mp-14107 NpF3 0.0000 0.5698
mp-571143 TiCl3 0.0000 0.5980
mp-2804 LaP2 0.0000 0.7922
mp-1024969 NpF5 0.0000 0.9807
mp-2455 As2Os 0.0000 0.9898
mp-1186069 Na(MoSe)3 0.0000 1.0002
mp-1104255 Sb2F13 0.0000 4.2005
mp-542313 Ce2O3 0.0267 0.0000
mp-1018663 CeS2 0.0339 0.0000
mp-1007661 InSb 0.0353 0.0000
mp-8601 Te4Mo3 0.0540 0.0000
mp-1106024 Eu5As3 0.0576 0.0000
mp-861975 PaO3 0.0653 0.0000
mp-29621 Ba5Bi3 0.0678 0.0000
mp-569388 Te2Ir 0.0702 0.0000
mp-540671 Ti7Cl16 0.0761 0.0000
mp-30794 Na15Sn4 0.0805 0.0000
mp-1076951 CeNiGe 0.0814 0.0000
mp-20305 InAs 0.0851 0.0000
mp-22942 BaBiO3 0.1039 0.0000
mp-4083 MgCuAs 0.1065 0.0000
mp-9530 Y4C7 0.1145 0.0000
mp-1007652 InAs 0.1251 0.0000
mp-7570 RuF3 0.1272 0.0000
mp-19225 FeAgO2 0.1430 0.0000
mp-1101892 CeAs2 0.1433 0.0000
mp-569095 Rb3Bi 0.1630 0.0000
mp-23679 PuH3 0.1829 0.0000
mp-27258 P3Au2 0.1924 0.0000
mp-15700 Zn3As2 0.2167 0.0000
mp-20905 OsS2 0.2235 0.0000
mp-1025373 TcF6 0.2501 0.0000
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mp-568753 TcBr3 0.2658 0.0000
mp-20724 Mg2Pb 0.2713 0.0000
mp-27838 Na3Bi 0.2787 0.0000
mp-569850 CeBr3 0.2824 0.0000
mp-22735 Ca2Sn 0.3358 0.0000
mp-1018059 GaSb 0.3735 0.0000
mp-1156 GaSb 0.3774 0.0000
mp-568002 HfI3 0.3838 0.0000
mp-32606 Ba3P2 0.3840 0.0000
mp-1317 CoSb3 0.4053 0.0000
mp-1201 Sb2Te3 0.4520 0.0000
mp-2008 FeAs2 0.5437 0.0000
mp-27974 PuBr3 0.6421 0.0000
mp-23247 ZrBr3 0.6614 0.0000
mp-27655 Te2I 0.6935 0.0000
mp-635413 Cs3Bi 0.7957 0.0000
mp-16608 Si3Os2 0.9849 0.0000
mp-567431 ThCl4 4.2044 0.0000

FIG. B.1. Example density of states (DOS) plots for materials where SCAN and r2SCAN predict significantly different metallic
or insulating character. The examples shown are the cases of largest positive and negative disagreement in the bandgap (ThCl4
and Sb2F13, respectively). Insets indicate the bandgap as predicted by VASP. DOS plots were generated using sumo [44].
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Appendix C: Elemental representation among studied materials

FIG. C.1. Representation of elements among the materials evaluated in this study. The periodic table is colored according to
how many materials contained each element. Hence, TiO2 would add one unit to both the Ti and O boxes.
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Appendix D: Anomalous behavior of materials containing U, Np, or Pu

Materials containing U, Np, or Pu (n=150 materials) were found to exhibit exceptionally large differences in r2SCAN
formation energy compared to SCAN. Specifically, r2SCAN formation energies for many U, Np or Pu-containing
materials were much more negative (by up to 0.75 eV/atom) than those predicted by SCAN (Figure D.1a). The
largest discrepancies appear to be associated specifically with compounds that also contain late transition metals or
metalloids such as Sn, Sb, Te, As, or Se (Figure G.3). The materials with the largest discrepancies in formation energy
do not exhibit systematic differences in other properties (e.g. volumes, bandgaps, or ∆ELFf , see Figure D.1b-d).

Median volumes per atom predicted by r2SCAN were 4.0% (0.7 Å3/atom) larger than the SCAN predicted volumes on
average (vs. 1.4-1.8% larger for strongly- and weakly-bound materials), while r2SCAN bandgaps were within −0.16
to +0.28 eV of the SCAN predictions for 95% of materials in this category.

FIG. D.1. Changes in a) formation energy, b) bandgap, c) cell volume, and d) formation electron localization function (∆ELFf ;
see Appendix E) when computed in r2SCAN vs SCAN for materials containing U, Np, or Pu. Note that the y axis is logarithmic.
Dashed and dotted vertical lines represent the median differences and two-sided 95th percentile differences, respectively,.

The anomalously high differences in formation energy for materials containing U, Np, or Pu may indicate that these
chemistries are particularly sensitive to the differences in construction between r2SCAN and SCAN (i.e., the omission
of the fourth order gradient expansion constraint for exchange). It may also be a consequence of the fact that our
calculations were run without spin-orbit coupling, which is typically required for accurate energies of heavy elements.
We omitted spin-orbit coupling because our objective in this work was to develop a general-purpose workflow suited
primarily to main group and transition metal compounds.

We also examined errors with respect to experimental formation energies and lattice volumes among materials
containing U, Np, or Pu (Figure D.2). Strikingly, the MAE in formation energy predicted by r2SCAN was 50% lower
than that of SCAN. The poor accuracy of SCAN describing Np compounds is consistent with previous work: in their
benchmark of the original SCAN functional, Isaacs and Wolverton [12] fit corrections to SCAN formation energies using
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a FERE approach [45] and found that the chemical potential of Np had to be adjusted by ≈1 eV/atom to minimize
error with respect to experiment. This was the largest adjustment fitted to any element studied. Considering that
our calculations did not include spin-orbit coupling, it is unclear whether the superior accuracy of r2SCAN formation
energies compared to SCAN is simply a fortuitous coincidence, or an indication of inaccuracies in the SCAN description
of U, Np, or Pu.

FIG. D.2. Mean absolute error compared to experiment in a) formation energy (n=30 materials) and b) cell volume (n=127
materials) computed with r2SCAN, SCAN, or PBEsol.

.

With respect to lattice volumes, both metaGGA functionals achieved considerably lower MAEs than PBEsol (0.89
and 0.95 Å3/atom for SCAN and r2SCAN, respectively, vs. 1.17 Å3/atom for PBEsol). Hence, the dramatic dis-
crepancy we observed between r2SCAN and SCAN formation energies is not evident in predictions of the lattice
parameters.
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Appendix E: Analysis of electron localization

Differences in the treatment of electron localization by r2SCAN and SCAN were quantified via analysis of the
electron localization function (ELF) [46]. We used Bader analysis [47, 48] to partition the charge density data
generated by each VASP calculation into basins corresponding to each atom in a material’s structure. We then used
these basin assignments as a ‘mask’ on the ELF data to obtain statistics about the degree of electron localization
around each atom in the material.

By analogy to the formation energy, we next calculated a “formation ELF” with respect to elemental references.
We first determined the ELF values associated with each element in a material. For example, for the compound PtO2,
we averaged the ELF values in the regions associated with Pt (as determined by Bader analysis of the charge density),
and then averaged ELF values in regions associated with O. We then subtracted the average ELF from calculations
of the corresponding elemental references to obtain a “formation ELF”, ∆ELFf as

∆ELFf =

√√√√ N∑
i

(ELFi,cpd − ELFi,el)2

N
(E1)

where N is the number of atoms in the material. Note that in contrast to the definition of formation energy, here
we use a root mean square difference between the compound and its elemental references. This was done in order to
prevent changes in ELF from cancelling one another out as electron localization shifts away from some elements and
towards others during compound formation. The formation ELF thus provides a quantitative measure of the degree
to which the electron localization predicted by DFT for a material differs from that of the corresponding elements.

For example, ∆ELFf for the compound PtO2 is calculated as

∆ELFPtO2
=

√
(ELFPt,PtO2

− ELFPt,el)2 + 2(ELFO,PtO2
− ELFO,el)2

3
(E2)

A graphical example illustrating the ELF generated by r2SCAN and SCAN for PtO2 is shown in Figure E.1. In
general, oxide compounds displayed larger changes in formation ELF from r2SCAN and SCAN than other types of
compounds, and PtO2 exhibited a particularly large change in ∆ELFf . As shown in the figure, local changes of ±10%

occurred around the oxygen atoms in this material, resulting in ∆ELFr2SCAN
f = 0.03899 and ∆ELFSCAN

f = 0.00989,

and a change from SCAN to r2SCAN of +0.0291, or a 294% increase over the SCAN value.
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FIG. E.1. Illustration of shifts in electron localization (as described by the ELF) from r2SCAN to SCAN as shown on the (100)
face of PtO2.
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Appendix F: Electronic energy of r2SCAN and SCAN elements

FIG. F.1. Difference in electronic energy (i.e., DFT energy) computed by r2SCAN and SCAN for ground-state elements. The
systematic trend with atomic number may be explained by considering that as the number of electrons increases, the amount
of slowly-varying density (where α ≈ 1) increases, and these are the regions in which the different formulations of the gradient
expansion terms in r2SCAN and SCAN have the most effect [25, 49]. Note that in general, the electronic energies generated by
DFT calculations using pseudopotentials do not have a clear physical interpretation. However, VASP uses all-electron potentials
for the elements H, He, Li, and Be which makes the comparison of energies for those elements more physically meaningful [31].
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Appendix G: Differences in r2SCAN and SCAN formation energy by element

FIG. G.1. Differences in r2SCAN and SCAN formation energy for strongly-bound materials. The periodic table is colored
according to the average difference in ∆Hf per atom. The difference in ∆Hf is counted once for each element in a compound,

and the values for each element are averaged. Hence, the compound NpP, for which ∆Hr2SCAN
f − ∆HSCAN

f = −0.754 eV/atom
would contribute a value of −0.754 to both the Np and P boxes.
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FIG. G.2. Differences in r2SCAN and SCAN formation energy for weakly-bound materials. The periodic table is colored
according to the average difference in ∆Hf per atom. The difference in ∆Hf is counted once for each element in a compound,

and the values for each element are averaged. Hence, the compound NpP, for which ∆Hr2SCAN
f − ∆HSCAN

f = −0.754 eV/atom
would contribute a value of −0.754 to both the Np and P boxes.
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FIG. G.3. Differences in r2SCAN and SCAN formation energy for U, Np, and Pu-containing materials. The periodic table is
colored according to the average difference in ∆Hf per atom. The difference in ∆Hf is counted once for each element in a

compound, and the values for each element are averaged. Hence, the compound NpP, for which ∆Hr2SCAN
f −∆HSCAN

f = −0.754
eV/atom would contribute a value of −0.754 to both the Np and P boxes.
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Appendix H: Experimental benchmarking data

Experimental formation enthalpy and bandgap data were obtained from the
expt formation enthalpy kingsbury and expt gap kingsbury datasets distributed with Matminer[50], re-
spectively. The formation energy data comprise 2,135 unique materials and were compiled primarily from the
Kubaschewski tables[51], the NIST JANAF database[52], and the compilation of Kim et al.[53, 54], as described
in previous work [55]. 1,580 of these materials are associated with a specific Materials Project ID (mp-id) via the
likely mpid field. The bandgap dataset was derived from Zhuo et al.[56] and contains 4,604 materials, of which
2,481 have a likely mpid. likely mpid for the bandgap data were assigned using the same procedure used for
the formation enthalpy data, which is described in previous work [55]. In this study, we match the mp-id of each
computed material to the likely mpid in the respective datasets to determine the corresponding experimental
formation enthalpy and bandgap. Experimental lattice volumes were obtained from the Inorganic Crystal Structure
Database (ICSD) [36]. Each mpid in the the Materials Project database has an associated set of ICSD identifiers that
correspond to a single experimental entry in the ICSD. We calculated the median volume of all the ICSD structures
associated with a material’s likely mpid, and report this as the experimental volume.
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Appendix I: List of VASP pseudopotentials used

All calculations used pseudopotentials from the “PBE PAW datasets version 54” set released in September 2015.
The table below lists the specific pseudopotential (i.e., POTCAR) used for each element. An up-to-date list of POTCAR
symbols can always be found in the MPScanRelaxSet class in pymatgen [40].

Element POTCAR Symbol
Ac Ac
Ag Ag
Al Al
Ar Ar
As As
Au Au
B B
Ba Ba sv
Be Be sv
Bi Bi
Br Br
C C
Ca Ca sv
Cd Cd
Ce Ce
Cl Cl
Co Co
Cr Cr pv
Cs Cs sv
Cu Cu pv
Dy Dy 3
Er Er 3
Eu Eu
F F
Fe Fe pv
Ga Ga d
Gd Gd
Ge Ge d
H H
He He
Hf Hf pv
Hg Hg
Ho Ho 3
I I

In In d
Ir Ir
K K sv
Kr Kr
La La
Li Li sv
Lu Lu 3
Mg Mg pv
Mn Mn pv
Mo Mo pv
N N
Na Na pv
Nb Nb pv
Nd Nd 3
Ne Ne
Ni Ni pv
Np Np
O O
Os Os pv
P P
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Element POTCAR Symbol
Pa Pa
Pb Pb d
Pd Pd
Pm Pm 3
Pr Pr 3
Pt Pt
Pu Pu
Rb Rb sv
Re Re pv
Rh Rh pv
Ru Ru pv
S S

Sb Sb
Sc Sc sv
Se Se
Si Si

Sm Sm 3
Sn Sn d
Sr Sr sv
Ta Ta pv
Tb Tb 3
Tc Tc pv
Te Te
Th Th
Ti Ti pv
Tl Tl d

Tm Tm 3
U U
V V pv
W W sv
Xe Xe
Y Y sv
Yb Yb 2
Zn Zn
Zr Zr sv




