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Abstract

Objectives: To investigate the effectiveness of hydroxychloroquine and dexamethasone on coro-
navirus disease (COVID-19) mortality using patient data outside of randomized trials.

Design: Phenotypes derived from electronic health records were analyzed using the stability-
controlled quasi-experiment (SCQE) to provide a range of possible causal effects of hydroxy-
chloroquine and dexamethasone on COVID-19 mortality.

Setting and participants: Data from 2,007 COVID-19 positive patients hospitalized at a large
university hospital system over the course of 200 days and not enrolled in randomized trials were
analyzed using SCQE. For hyrdoxychloroquine, we examine a high-use cohort (n=766, days 1
to 43) and a later, low-use cohort (n=548, days 44 to 82). For dexamethasone, we examine a
low-use cohort (n=614, days 44 to 101) and high-use cohort (n=622, days 102 to 200).

Outcome measure: 14-day mortality, with a secondary outcome of 28-day mortality.

∗Address correspondence to chazlett@ucla.edu. KE and BM are co-senior authors. UCLA IRB approval #20-
000981. CH thanks the California Center for Population Research at UCLA (CCPR) for support. CCPR receives
population research infrastructure funding (P2C-HD041022) from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development (NICHD). KE was partially supported by National Institute on Aging (NIA)
grant R01AG054366-05. KE and BM were partially supported by NIH/NCATS Colorado CTSA Grant Number UL1
TR002535. OAA was partially supported by NIH National Center for Advancing Translational Sciences (NCATS)
UCLA CTSI grant number UL1TR001881 and the UCLA David Geffen School of Medicine (DGSOM) – Broad
Stem Cell Research Center (BSCRC) COVID-19 Research Award OCRC #20-44. Contents are the authors’ sole
responsibility and do not represent official views of NIH or any other agency.
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Results: Hydroxycholoroquine could only have been significantly (p<0.05) beneficial if baseline
mortality was at least 6.4 percentage points (55%) lower among patients in the later (low-use)
than the earlier (high-use) cohort. Hydroxychloroquine instead proves significantly harmful if
baseline mortality rose from one cohort to the next by just 0.3 percentage points. Dexametha-
sone significantly reduced mortality risk if baseline mortality in the later (high-use) cohort (days
102-200) was higher than, the same as, or up to 1.5 percentage points lower than that in the
earlier (low-use) cohort (days 44-101). It could only prove significantly harmful if mortality
improved from one cohort to the next by 6.8 percentage points due to other causes—an assump-
tion implying an unlikely 84% reduction in mortality due to other causes, leaving an in-hospital
mortality rate of just 1.3%.

Conclusions: The assumptions required for a beneficial effect of hydroxychloroquine on 14 day
mortality are difficult to sustain, while the assumptions required for hydroxychloroquine to be
harmful are difficult to reject with confidence. Dexamethasone, by contrast, was beneficial under
a wide range of plausible assumptions, and was only harmful if a nearly impossible assumption
is met. More broadly, the SCQE reveals what inferences can be credibly supported by evidence
from non-randomized uses of experimental therapies, making it a useful tool when randomized
trials have not yet produced clear evidence or to provide corroborative evidence from different
populations.

1 Introduction
Although randomized controlled trials (RCTs) are the gold standard for learning causal effects
of treatments on outcomes, running and awaiting the results of RCTs remains challenging and
sometimes infeasible. This is particularly evident in the case of the SARS-CoV-2 infection that
led to the coronavirus disease (COVID-19) pandemic, where a multitude of treatments were
adopted in the clinic on an urgent basis. It is particularly in these cases where the ability to
draw credible inferences regarding the effects of treatments used outside of RCTs is of enor-
mous interest to patients, healthcare workers and researchers. Yet, conventional approaches to
such observational studies have well-known limitations, particularly their vulnerability to uncon-
trolled confounding, which can bias results such that harmful treatments could appear beneficial
or vice versa without warning. Physicians and other expert consumers of medical research are
often (rightly) wary of drawing conclusions about treatment effects – be they null, beneficial,
or harmful – from non-randomized comparisons. Nevertheless, particularly in emergencies such
as the COVID-19 pandemic, healthcare providers often need to make decisions before RCTs
have been completed or for individuals not well represented in those trials. Further, the global
response to COVID-19 has seen numerous treatments provided off-label or through emergency
access provisions in parallel with ongoing RCTs, raising the question of what can credibly be
learned from the experiences of patients receiving these treatments outside of RCTs.

This study employs the stability-controlled quasi-experiment (SCQE)[1, 2] approach to in-
vestigate treatment effects on COVID-19 patients, which differs from conventional approaches
for observational studies in two key ways. First, unlike standard covariate-adjustment strategies
(regression, matching, weighting, and stratification), SCQE does not rely on the assumption that
there are no unobserved confounders, i.e. that the treated and untreated groups are comparable
after accounting for observed covariates. Instead, SCQE produces estimates that depend only
on what the user is willing to assume about the baseline trend, here meaning changes in the
COVID-19 mortality rates from one cohort to another that are not caused by changes in the
treatment in question. Second, whereas conventional approaches present a single estimate and
confidence interval that can be correct only under the assumption of no unobserved confounding
or other sources of bias, SCQE displays the entire range of estimates obtained over a plausible
range of assumptions about this baseline trend. These results can be restated to reveal what
assumptions about the baseline trend in mortality would have to be defended in order to argue
that the treatment was beneficial, null, or harmful. Such an exercise avoids reliance on narrow
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assumptions. Yet, as illustrated here, it can be informative both in showing the range of plau-
sible effects of a treatment and in showing us what cannot be safely concluded from available
evidence.

Using electronic health records from a university hospital cohort of 2,007 patients admitted
over 200 days, we apply SCQE to investigate what can be concluded regarding the impact of
hydroxychloroquine and dexamethasone on mortality in patients with COVID-19.

2 Methods

2.1 Approach and assumptions
To build intuition for the SCQE approach, let us consider a “natural experiment” that leverages
changes in treatment prevalence over time. Suppose there are two cohorts of patients. In the
first, no patients have access to a given treatment, and mortality is 20%. In another cohort (e.g.,
taken from a later period of time at the same facilities), 50% of patients are administered a new
treatment. They do so not at random, but based on patient and physician judgement and choice.
Suppose the overall mortality rate in the second cohort is 15%. With an assumption that the
two cohorts of patients are comparable (i.e. they would have the same average outcomes, absent
treatment differences) we can estimate that being in the second (“high-use”) cohort reduced
mortality by 5 percentage points. Further, since all of this benefit comes from the half of
patients who opted to take treatment, the benefit per treated patient must be twice that (i.e.
a 10 percentage point benefit per treated patient). Note that the required assumption here
regards comparability of the cohorts, and not comparability of the treated to the untreated
within either the first or the second cohort. This is beneficial as we acknowledge that treatment
decisions can be made in part due to unobservable factors, making the treated and control
groups incomparable regardless of efforts to adjust for all measured or observed variables.

Such an approach, however, is limited by the assumption that the two cohorts would have
the same average mortality rate, absent changes in the treatment. The SCQE takes the more
flexible position of allowing the cohorts to differ in this regard by variable, postulated degrees.
That is, we allow for some “baseline trend” that describes how differently the cohorts would have
fared on their average outcomes, if not for changes in the treatment in question. Equivalently,
this baseline trend can be defined as the difference in average outcomes between cohorts that
we would have seen if no patients in either cohort had used the treatment. For instance, if
treatment changes (other than the one in question) or changes in the composition of the cohorts
would have generated a mortality rate that was 2 percentage points lower in the later, high-use
cohort than the earlier one, the baseline trend for that analysis would be -2 percentage points.

The key mathematical fact is that in this case, for any assumed baseline trend, we can esti-
mate the treatment effect experienced by the treated patients, without additional assumptions or
covariates [1, 2]. For intuition behind this result, we return to the natural experiment consid-
ered above, where no individual in the first cohort takes the treatment, and hence the average
outcome we observe is the “average non-treatment outcome”.1 If we add to this the assumed
baseline trend, we obtain the average non-treatment outcome in the high-use cohort, i.e. the
outcome we would expect if we could see how all individuals in this cohort fared absent the
treatment (regardless of whether they actually took the treatment).

Algebraically, this average non-treatment outcome over everybody in the second cohort is the
sum of two terms: (i) the average non-treatment outcome we observe from the untreated patients
in this cohort, times the proportion that were untreated, and (ii) the (unobservable) average
non-treatment outcome that the treated patients would have had, times the proportion that were
treated. Since the average non-treatment outcome for the treated is the only unknown in this

1Borrowing from the potential outcomes framework [3, 4], we can conceptualize a patient’s outcome both had they
taken the treatment (their treatment outcome) and had they not (their non-treatment outcome), regardless of their
actual treatment status. An “average non-treatment outcome” for a cohort, then, is the average outcome we would
observe had no patients received treatment.
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equation, we can solve for this quantity (see [1] for a complete mathematical treatment). Next,
the (observed) average treatment outcome for the treated minus this average non-treatment
outcome for the treated is the average treatment effect among the treated (ATT). Figure 1
illustrates this reasoning graphically, using values similar to those from the dexamethasone
study below.

Figure 1: Understanding the SCQE

Note: Each ball represents a group, and the height represents that group’s average outcome. Starting on the
left, in the low-use (in this case, no-use) cohort we observe the average mortality (8%) under non-treatment.
We then impose an assumption regarding how the non-treatment outcome would have changed from one
cohort to the next. Here this is a 2 percentage point drop, meaning the average non-treatment outcome
over the entire high-use cohort is assumed to be 6% (b). Because the value of (b) is the weighted sum of
the average non-treatment outcomes for those who were not treated (c) and those who were treated, we can
solve algebraically for the average non-treatment outcome that would have been experienced by the treated
(d). Comparing the observed average outcome for the treated (e) to this imputed average non-treatment
outcome for the treated (d) produces the average treatment effect for the treated. No assumption regarding
the comparability of the treated and control (c and e) is made, only an assumption on the trend in the
average non-treatment outcome.

Finally, rather than place our confidence in a single assumption, we “invert” the analysis
to reveal the needed assumptions about the baseline trend in mortality to declare that a given
treatment had a beneficial, null, or harmful effect. Confidence intervals can be constructed for
the effect estimate at any given choice of the baseline trend assumption, using the approach
described in [2]. Throughout this paper, we describe an estimated effect as a “significantly”
beneficial or harmful effect when its 95% confidence interval excludes zero, which is equivalent
to a two-sided p-value at or below 0.05.

While no analysis can determine the true value of the baseline trend, beliefs about this
quantity can be defended or challenged through auxiliary analyses, such as examining the change
in the composition and risk factors of the patients in the two cohorts and changes in any other
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documented treatment practices. We consider what baseline trends can be deemed plausible or
implausible in the Discussion below.

While we have described the approach in its simplest form, several extensions are important,
some employed here. First, we need not have a cohort with zero use of the treatment, just two
cohorts with sufficiently different levels of treatment.2 Second, the two cohorts do not need to
be cohorts separated by time; they could be cohorts from separate hospitals, for example. We
need only be able to consider how widely the high-use cohort may have differed in its average
outcome from the low use cohort, for reasons other than the treatment in question. Third, while
we employ individual observations for the analysis and a range of auxiliary variables that are
an aid to validating the approach, the SCQE can be used to estimate effects where we are only
given average outcomes and the proportion treated in two cohorts.3

2.2 Data Collection
Data were extracted from the electronic medical records for a multicenter hospital system in-
cluding an academic tertiary referral hospital. Hospital courses were identified based on a docu-
mented COVID-19 infection indicated by either recorded diagnosis or identification of a positive
PCR test for the SARS-CoV-2 virus. Data were extracted for all persons with hospitalizations
that began between 3/8/2020 and 10/7/2020. Individuals with multiple hospitalizations within
the follow-up period were considered to be a single observation, using the earlier date of ad-
mission for cohort determination and considering therapies and mortality within the follow-up
period if they occurred during any of the hospitalizations.

Clinical data extracted included demographic factors (age, sex, race/ethnicity, body mass
index at or prior to the period of hospitalization), baseline laboratory assessments (white blood
cell count, C-reactive protein, ferritin, procalcitonin), medication use (remdesivir, convalescent
plasma, hydroxychloroquine, dexamethasone, prednisone, methylprednisolone, hydrocortisone),
and use of proning for assistance with ventilatory support. We additionally extracted whether
the patient had been admitted by transfer from a skilled nursing facility, and disposition at
discharge.

Use of dexamethasone and hydroxycholoroquine, our treatments of interest, were defined as
any use during the hospital stay(s). Hydroxychloroquine was administered as a standard 5-day
course. For dexamethasone, the prescribed course was variable in the few cases given in the
low-use cohort (days 44-101). Its prescription in the high-use cohort became more standardized,
typically administered at 6 mg for 10 days, following initial evidence for its potential effectiveness
at that dose [5].

2.3 Cohort Construction
Hydroxychloroquine. Initially, hydroxychloroquine was widely used, given to 62% of pa-
tients admitted in the first two weeks. Usage then began to fall steadily, with fewer than 2% of
patients admitted in week 7 or later receiving it. Cohorts were constructed based on each pa-
tient’s day of admission. Data from all days (1 to 200) were first split into two cohorts based on
the split-point that would maximize the strength of relationship between cohort and probability
of receiving hydroxychloroquine, as judged by the F-statistic. This occurred at day 44. Next,
the second cohort was trimmed, to avoid covering a period in which dexamethasone use rose.
Ending the second cohort on day 82 minimized the difference in proportion of patients receiving
dexamethasone in the first and second cohorts.When used in either cohort, hydroxychloroquine
was administered as a standard 5-day course.

Dexamethasone. Use of dexamethasone began low and remained at 5% or lower for the
first 15 weeks, after which it steadily rose and peaked near 50% in week 21. Cohort construction

2This does change the interpretation of effect in terms of the population of patients to whom it applies; see [2].
3Analyses using only aggregate data of this kind can be conducted using web-based software available at https:

//amiwulf.shinyapps.io/SCQE_demo/.
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proceeded by first choosing the split date that maximized the difference in dexamethasone use
in the two cohorts, as judged by the F-statistic, which occurred at day 102. We then trimmed
the first cohort to begin on day 44, ensuring little change in hydroxychloroquine usage between
the cohorts. Dexamethasone use in the first, low-use cohort was largely unstandardized. The
transition to higher use in the later cohort was triggered partly by the preliminary report of the
RECOVERY trial [5], and followed its standard dosing regimen of 6 mg of dexamethasone once
daily for up to 10 days.

We employed the SCQE approach using the scqe statistical package for R [6].

3 Results

3.1 Little evidence supporting beneficial role for hydroxychloroquine
The “high-use” (first) cohort for the hydroxychloroquine study included 766 patients admitted
from day 1 to 43, of which 36% used hydroxychloroquine, and a “low-use” (second) cohort of
548 patients admitted between days 44 and 82, of which only 2.9% used hydroxychloroquine.
The F-statistic for difference in hydroxychloroquine use between cohorts was 242.3 (p<1e-15).
Mortality at 14-days was 11.6% in the high-use cohort (89/766) and 8.6% (47/548) in the low-use
cohort, for a raw risk difference (RD) of 3.0 percentage points (t=1.79, p=0.07).

Figure 2: SCQE Estimates of risk difference for hydroxychloroquine
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Note: The vertical axis indicates an assumption about the baseline trend in mortality, i.e. how mortality
is postulated to have changed going from the low-use to high-use cohorts, for reasons other than changes in
hydroxychloroquine use. Because the high-use cohort is the earlier one here, positive values (towards the top
of the figure) correspond to falling mortality in the direction of time. At each postulated mortality trend,
we see the consequent effect estimate and its 95% confidence interval.

Figure 2 shows results for hydroxychloroquine. The vertical axis shows different assumptions
regarding the baseline trend, i.e. mortality shifts absent changes in hydroxychloroquine use.
These are expressed in terms of the mortality change going from the low-use to high-use cohorts,
and because the high-use cohort came first and the low-use came second, a value of 0.02, for
example, reflects an improvement (decrease) over time in mortality by 2 percentage points.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.06.20244798doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.06.20244798
http://creativecommons.org/licenses/by-nc-nd/4.0/


We find that hydroxychloroquine can only be claimed to have had a significant benefit if
baseline mortality decreased between the first and second cohort by 6.4 percentage points. In
other words, one must argue that there was a 55% reduction in COVID-19 mortality among
inpatients in this short time due to non-hydroxychloroquine related reasons, to argue for a
detectable benefit of hydroxychloroquine. Second, hydroxychloroquine was significantly harmful
if baseline mortality instead worsened over-time by just 0.3 percentage points—just 2.6% of the
original 11.6% mortality—or more. At this boundary the point estimate for hydroxychloroquine
is roughly a 10 percentage point increase in mortality. For all baseline trend assumptions in
between these, we would not reject the null hypothesis of zero effect.

We also consider 28-day mortality for comparability with existing studies. For hydroxy-
chloroquine to have been significantly beneficial would require that baseline mortality improved
by 6.8 percentage points, a 47% drop from the first cohort’s 28-day mortality of 14.5%. Hy-
droxychloroquine would prove significantly harmful if baseline mortality rose by 0.7 percentage
points.

Cohort comparison. In assessing the plausibility of different baseline trends it is useful
to examine possible changes in the composition of the cohorts and in the treatments provided.
Table 1 describes these cohorts in terms of characteristics determined prior to or very shortly
after admission (A), the treatments received (B), and the predicted risk of mortality according
to a range of models (C). As the purpose of such comparisons is to inform our beliefs about the
plausible range of baseline mortality differences between the cohorts absent hydroxychloroquine,
statistical inferences regarding the comparisons are irrelevant.

Looking first at patient characteristics prior to or shortly after admission (A), we see the
two cohorts are similar overall, particularly on known risk factors such as age, gender, weight,
and BMI. The proportion who identify as Hispanic rises somewhat, from 38% to 49%. Taken
alone, and given documented differences in outcomes in Hispanic patients, this would contribute
towards an upward shift in baseline mortality risk over time. Similarly, the fraction of patients
coming from skilled nursing facilities rises somewhat (from 4% to 9%), which could also increase
baseline mortality in the second cohort. Recall that, because the high use cohort precedes the
low use cohort, potential increases in baseline mortality over time (as might be caused by these
changes) represent negative baseline trends (i.e. moving downwards on Figure 2), and lead
to more harmful estimated effects of hydroxychloroquine. On the other hand, two treatment
practices (B) that could have potentially improved mortality increased over time between these
cohorts: remdesivir (from 3% to 11%) and convalescent plasma (from 5% to 22%). Were these
treatments to improve mortality, they would encourage us to consider possible improvements
in mortality over time, moving upwards on Figure 2. Remdesivir’s effectiveness in reducing
mortality remains uncertain, with the ACTT-1 trial [7] showing a benefit on time to recovery,
while preliminary reports from the WHO Solidarity trial [8] show no significant mortality benefit.
Nevertheless, even if these treatments are relatively effective, the change in baseline mortality
due to these alone could not be large, given the low usage rates. Suppose that nearly all of the
11.6% of patients who would have died in the low-use cohort (based on the rate in the earlier,
high-use cohort) received treatment with remdesivir and/or convalescent plasma. Suppose these
therapies, in any combination, reduce mortality by 30%, which we take to be generous given
preliminary evidence. This would produce a 3.5 percentage point drop in mortality. Assuming
such a baseline trend (represented by 0.035 in Figure 2) would likely be conservative, given these
assumptions and that other factors such as ethnicity suggest mortality change in the opposite
direction. Yet, even at an assumed baseline trend of 0.035, hydroxychloroquine does not prove
significantly beneficial and has a point estimate near zero.

Finally, these differences in the cohorts are important only insofar as they suggest different
baseline mortality rates. Using simple linear probability models (C), we predict 14-day mortality
using only patient characteristics prior to treatment (“Linear model (pre)”), or using those
characteristics plus information on treatments (“Linear model (all)”). The same predictions can
instead be made using a more flexible and powerful machine learning model, kernel-regularized
least squares (KRLS, [9]). These models are reasonably predictive: the linear model with all
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Table 1: Comparison of hydroxychloroquine cohorts

Cohort means:
A. Characteristics High-use Low-use
age (years) 58 56
over 65 y.o. 36% 33%
female 42% 46%
ethnicity: Hispanic 38% 49%
weight (Lb) 194 187
BMI (kg/m2) 31 32
Admit from skilled nursing facility 4% 9%
Admit from non-healthcare facility 77% 0.74%
CRP (mg/L) 115 108
WBC (per mcL) 7.72 8.63
ferritin (µg/L) 747 601
procalcitonin (ng/mL) 0.89 1.11
ICU in first 24h 18% 15%

B. Other treatments High Use Low Use
remdesivir 3% 11%
tocilizumab 7% 3%
convalescent plasma 5% 22%
proning 3% 4%
dexamethasone 4% 5%
methylprednisolone 10% 7%
prednisone 1% 2%
hydrocortisone 3% 4%
nitazoxanide 1% 0%

C. Modeled risk of 14-day mortality High Use Low Use
linear model (pre-tx) 10.5% 9.8%
linear model (all) 10.9% 9.2%
KRLS model (pre-tx) 10.2% 9.5%
KRLS model (all) 10.4% 9.1%

(a) Note: Comparison of cohorts with high (earlier) or low (later) use of hydroxychloroquine, considering
(A) various patient characteristics, (B) other treatments received, and (C) model-estimated risk of 14-day
mortality. Lab measures (CRP, WBC, ferritin, procalcitonin) refer to the first measurement taken.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.06.20244798doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.06.20244798
http://creativecommons.org/licenses/by-nc-nd/4.0/


variables explains 17% of the variation in mortality; the KRLS model with all variables explains
52%. Yet, the average modeled risk levels in the two cohorts remains similar, as shown in Table 1.
The low-use (second) cohort has slightly lower risk by 0.7 to 1.7 percentage points. Such model
estimates only inform the range of plausible baseline trends considered. If we consider, for
example, a 1 percentage point drop in baseline mortality (a baseline trend represented by .01 on
Figure 2), this corresponds to a non-significantly harmful increased risk of 6 percentage points
(95% CI=[-0.04, 0.16]).

3.2 Dexamethasone: plausibly beneficial with very low risk of harm
In the low-use (first) cohort, 5.7% (35/614) of patients were given dexamethasone, and the
14-day mortality rate was 8.1% (50/614). In the high-use (second) cohort, 46% (287/622) of
patients were given dexamethasone, and the 14-day mortality rate was 4.0% (25/622).

Figure 3: SCQE Estimates of risk difference for dexamethasone
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Note: The vertical axis indicates an assumption about the baseline trend in mortality, i.e. how mortality
is postulated to have changed going from the low-use to high-use cohorts, for reasons other than changes in
dexamethasone use. Because the high-use cohort is now the later one, positive values (towards the top of
the figure) correspond to increases in mortality over time. At each postulated mortality trend, we see the
consequent effect estimate and its 95% confidence interval.

SCQE formalizes the simple logic that while mortality fell in the higher-use cohort, this
only implies a benefit of dexamethasone if mortality would not have improved too greatly “on
its own.” In Figure 3, the vertical axis again represents different postulated baseline trends.
Because the transition from low-use to high-use for dexamethasone is now the transition from
earlier to later cohorts, positive trends indicate higher (worse) baseline mortality over time.

We find that dexamethasone had a significant benefit if baseline mortality was increasing,
flat, or going down by as much as 1.5 percentage points (19%) for reasons not related to dex-
amethasone use. For dexamethasone to be significantly harmful, by contrast, baseline mortality
had to improve by 6.8 percentage points to a mortality rate of just 1.3%, an 84% drop. As dis-
cussed below, these results support a reasonable possibility that dexamethasone had a benefit,
while making it very unlikely that it was harmful.

Results are similar regarding the secondary outcome of 28-day mortality. Dexamethasone
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proves statistically beneficial so long as mortality rose, stayed flat, or fell by as much as 2.3
percentage points. Further, to prove harmful, baseline mortality would have to drop by 8.7
percentage points. Given the first cohort’s 28-day mortality rate of 10.9%, this would mean
arguing that mortality was reduced to just 2.2% in the second cohort for reasons other than
increasing dexamethasone use.

Cohort comparison. Table 2 aids in reasoning about possible baseline trends by comparing
the high- and low-use cohorts on numerous characteristics.

Table 2: Comparison of dexamethasone cohorts

A. Characteristics Low Use High Use
age (years) 55 55
over 65 y.o. 32% 33%
female 47% 53%
ethnicity: Hispanic 50% 46%
weight (Lb) 187 195
BMI (kg/m2) 32 32
Admit from skilled nursing facility 8% 1%
Admit from non-healthcare facility 76% 81%
CRP (mg/L) 109 101
WBC (per mcL) 8.79 8.24
ferritin (µg/L) 596 522
procalcitonin (ng/mL) 1.08 0.73
ICU in first 24h 14% 8%

B. Other treatments Low Use High Use
hydroxychloroquine 3% 1%
remdesivir 12% 28%
tocilizumab 3% 2%
convalescent plasma 22% 21%
proning 3% 1%
methylprednisolone 7% 3%
prednisone 2% 0%
hydrocortisone 4% 2%
nitazoxanide 0% 0%

C. Modeled risk of 14-day mortality Low Use High Use
linear model (pre-tx) 7.0% 5.0%
linear model (all) 7.3% 4.6%
KRLS model (pre-tx) 6.4% 5.0%
KRLS model (all) 6.8% 4.4%

(a) Note: Comparison of cohorts with low (earlier) and high (later) use of dexamethasone, considering
(A) various patient characteristics, (B) other treatments received, and (C) model-estimated risk of 14-day
mortality. Lab measures (CRP, WBC, ferritin, procalcitonin) refer to the first measurement taken.

Most differences between the cohorts are small and do not revise the range of baseline trends
we can consider plausible. One worrying exception is again remdesivir, with increased usage
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(from 12% to 28%) alongside dexamethasone. As noted above, while evidence for remdesivir’s
effectiveness remains mixed [7, 8], one can conservatively examine its potential impact on base-
line mortality under the assumption that it has a given benefit. If remdesivir reduced mortality
by 20 percentage points, for example, the increase in usage from 12% to 28% would suggest a
drop in the baseline mortality by 3.2 percentage points. If we took this to be the baseline trend
(-0.032), it would suggest a benefit of dexamethasone that does not reach significance (RD =
-0.023, 95% CI=[-.088, .043]).

Looking to models of mortality risk, in every case the predicted risk of mortality fell going
into the second (high-use) cohort, by 1.4-2.7 percentage points. If the baseline trend was believed
to be within this range, the corresponding effect estimates for dexamethasone would range from
a significant beneficial RD of -0.067 to a non-significant beneficial RD of -0.035. In summary,
dexamethasone could very plausibly have had either a beneficial or a null effect, while we can
nearly rule out that it had a harmful one.

4 Discussion
Our study shows what can be inferred about the effects of hydroxychloroquine and dexametha-
sone use on COVID-19 mortality using only electronic health records from outside of randomized
trials. We use the SCQE approach, which explicitly links assumptions about baseline trends in
mortality to conclusions we can reach about a therapy’s effect on mortality.

Several considerations aid in gauging what baseline trends are (im)plausible or (im)probable,
and hence the conclusions that can be supported. Studies of overall mortality in other popula-
tions show substantial decreases over time. For example [10] show large decreases in mortality
in mid-April to May as compared to March among critical care patients in England, which they
argue are not due to changes in patient demographics. Such results do not directly speak to
the baseline trends expected in our analysis given (i) differences in the population, time period,
outcomes, and (ii) that these reflect overall mortality inclusive of changes in treatments like dex-
amethasone, not the baseline mortality trends we require. In fact, [10] argue changes in mortality
may be partly due to treatments employed in the RECOVERY trial, such as dexamethasone.
Nevertheless, there are numerous reasons to expect improvements in baseline mortality in our
sample due to changes in other various treatment practices over time. Though the cohorts we
compared had similar exposure to most therapies (Tables 1 and 2), changes in treatment prac-
tice that remain unobserved to us could have led to improvements, notably delaying or avoiding
invasive respiratory support and improved ventilator management. Given such possibilities,
the reduced mortality seen in other settings, and the otherwise similar demographics and esti-
mated mortality risk in these cohorts, we would judge small increases in baseline mortality to
be unexpected but possible, while we judge large increases in baseline mortality—say by 20%
or more—to be extremely unlikely.

It is more difficult to say how large a drop in baseline mortality would be too large to be
plausible. For many other, longer-running diseases, it might be reasonable to suggest baseline
mortality would drop by no more than perhaps 10% in a matter of months. Given COVID-19’s
novelty, however, a much more generous bound is required. Still, given information about about
treatment practices in this health system (two of the authors are physicians there), we do not
expect any otherwise undocumented highly effective treatment was initiated and widely used in
this period. While we would argue that a 40% drop in baseline mortality can neither be ruled
out nor defended with certainty, we regard a drop of 75% or more to be highly improbable.

In the case of hydroxychloroquine, the mortality rate decreased as hydroxychloroquine use
decreased. This alone does not imply that hydroxychloroquine was harmful; such an inference
depends on how mortality would have changed anyway, i.e. the baseline trend. For example,
if mortality would have fallen even faster absent the drop in hydroxychloroquine usage, then
the observed data would be consistent with a beneficial effect of hydroxychloroquine. Hydroxy-
chloroquine was detectably beneficial only if baseline mortality improved from the earlier to later
cohort by 6.4 percentage points (55%). This is possible, but we must accept that it is far from
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confidently defensible, and certainly not supported by the modeled changes in mortality risk
between these cohorts. Further, against the difficulty of defending a beneficial effect, one must
consider the risk that hydroxychloroquine was harmful. If mortality worsened from one cohort to
the next by even 0.3 percentage points, then hydroxychloroquine must have had a statistically
significant harmful effect. These results are consistent with evidence from randomized trials
testing hydroxychloroquine for early treatment of mild COVID-19 in adults [11], for reduced
mortality among hospitalized patients (RECOVERY trial[12, 13]), or prophylactic protection
against infection among exposed participants [14], all of which concluded hydroxychloroquine
had null or potentially harmful effects on their varied outcomes.

For dexamethasone, SCQE reveals that it was significantly beneficial if baseline mortality was
increasing over time between cohorts, stayed flat, or fell by up to 22% (1.5 percentage points).
Baseline trends falling in this range are certainly plausible or even probable. Consequently we
must conclude that dexamethasone could plausibly have had a beneficial effect in this sample.
Such a potential benefit is to be weighed against the risk of harm. Here the results are clear:
statistically significant evidence of harm requires that baseline mortality improved between
cohorts by at least 6.8 percentage points, leaving mortality at just 1.3% in the later cohort
(an 84% improvement). We regard this as highly unlikely given the small differences between
the cohorts and that no undocumented but highly effective treatment was likely to have been
discovered and widely used in the second cohort. Our results are consistent with, though more
reserved than, conclusions drawn from the CoDEX trial [15] showing increased days alive without
mechanical ventilation and the RECOVERY trial [5] showing lower mortality for those under
mechanical ventilation or with oxygen supplementation at randomization. Our results, however,
speak to the plausible range of effects among those given dexamethasone by choice, rather than
those meeting eligibility requirements for such trials.

4.1 Limitations
The central limitation of this study and approach is also its strength: it avoids providing a
narrow claim, because it avoids relying on a narrow assumption that is unlikely to be defensible.
This may remain unsatisfying for readers accustomed to more specific claims. However, the
types of estimates offered by conventional approaches obtain their apparent specificity not by
providing more information, but by concealing how our estimate depend upon on the value
of uncertain assumptions, thus risking over-confidence in unsupported conclusions. The SCQE
approach serves to communicate what can (not) be claimed subject to what assumption, leaving
the reader to argue positively for the assumptions that would be required to reach a conclusion
and illustrating the limits of our knowledge.

Another limitation, specific to this study, regards sample size. While the sample is larger
than those in some randomized trials, and more than sufficient for SCQE mechanically, the
estimated effect has to be relatively large (roughly 10 percentage points or more) for the 95%
confidence interval to exclude zero. This in turn means that our conclusions will be less decisive
over a given plausible range of baseline trends than they may have been with similar estimates
but a larger sample.

Finally, in both of the studies, the cohorts we defined were largely similar in their composition
and use of other treatments, which is not necessary but makes it far easier to reason about
plausible bounds on the baseline mortality difference between cohorts. That said, differences in
the use of remdesivir remain non-trivial in both cases, with convalescent plasma use also changing
in the hydroxychloroquine study. We have discussed the degree to which these could influence
the baseline mortality difference, and what this means for our estimates. Still, the existence of
these changes is a nuisance that widens the range of plausible estimates. A promising option
suitable in some contexts for future research would be a “design-based” version of the SCQE in
which hospitals plan to make a new treatment available, again by choice rather than as part
of an RCT, while intentionally limiting other changes in practice or patient composition over a
period of time around this transition. To the degree this is feasible, it would buoy arguments for
baseline trends of smaller magnitude, resulting in a narrower range of plausible effect estimates
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while preserving the ability to offer patients and doctors choice in treatment.

4.2 Conclusions
Our results are largely consistent with those of existing trials on hydroxychloroquine and dex-
amethasone, despite examining outcomes for patients outside of randomized trials using only
electronic health records. This study provides not only corroborative evidence from other pop-
ulations regarding these treatments, but also a useful and accessible application of the SCQE
approach to aid adoption.

More broadly, as observational studies are likely to remain part of the research landscape,
SCQE can offer a rigorous way to understand what can (and cannot) be safely determined based
on patient experiences with non-randomized treatments. SCQE estimates may be particularly
useful prior to the availability of data from randomized trials, or in domains such as quality-
improvement studies in which randomized trials are not always performed. This approach can
also complement randomized trials, as demonstrated here, by offering corroborating evidence
and assessing efficacy in a population that will often differ from those enrolled in trials.

We endorse the argument that even—or especially—in moments of urgency such as a pan-
demic, every effort should be made to launch and complete coordinated, well-designed random-
ized trials [16]. Nevertheless, there remains an important role for credible observational studies
that avoid risks of producing misleadingly confident results built on fragile assumptions.

Numerous opportunities remain to apply this approach to COVID-19 therapeutics in de-
velopment, including convalescent plasma, monoclonal antibodies, and additional antivirals and
anti-inflammatory agents currently being used experimentally. At a time when ongoing random-
ized trials often coexist with parallel access to experimental therapies under expanded access
provisions, the reduced uptake of randomized trials may additionally increase the importance
of methodological frameworks such as SCQE to evaluate observational data.
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