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ON SOLVING THE SIFF ODE'S OF THE KINETICS OF 

CHEMICALLY REACTING GAS FLOW 

Ilkka Karasalo and John Kurylo 

Physics, Computer Science, and Mathematics Division 
Lawrence Berkeley Laboratory, University of California 

Berkeley, California 94720 

ABSTRACT 

We study the efficiency of computational methodsfor the stiff 

ordinary differential equations of chemical kinetics that arise when the 

partial differential equations of chemically reacting gas flow are 

treated by a fractional step technique. In this application, the over-

head work associated with evaluating partial derivatives and decomposing 

matrices for the Newton-like corrector iterations used in most algorithms 

for stiff ODE's can be eliminated for the most part by keeping in store 

a suitable number of different copies of the Jacobian matrix, reduced to 

Hessenberg form to facilitate changes of stepsize and order. Computa-

tional results In the case of ignition and propagation of a one-dimen-

sional, premixed laminar flame with different realistic chemical kinetic 

models are presented to show the reduction of computational work obtained 

by modifying a modern general-purpose ODE-code in this manner. 

This work was supported by the Physics, Computer Science and. Mathematics 
Divisions of the U. S. Department of Energy under contract No. W-7405-
ENG-48. 
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INTRODUCTION AND SUMMARY 

Operator splitting, or fractional step, techniques 24  are used 

frequently for the numerical simulation of the flow of multicomponent 

gas mixtures undergoing rapid chemical reactions such as flame ignition 

and flame propagation.' 3 " 4 " 7  Reasons for the popularity of operator 

splitting techniques for this class of problems include the following: 	 - 

They often offer a reasonable compromise between the poor 

storage economy of fully coupled implicit schemes and the unacceptably 

small time steps required for stability by explicit schemes. 

They provide a convenient way for treating different parts of 

the governing system of partial differential equations by different 

discretization formulas and stepsize strategies to improve computational 

performance. 

Their generally low orders of accuracy are acceptable since the 

accuracy requirements in practice are moderate. 

In this paper we study the computational efficiency of operator 

splitting techniques when applied on the equations of reacting gas flow 

(See Ref. 23, p.  2-9) in such a way that, in particular, heat release 

and species production due to chemical reactions are computed in a sep-

arate fractional step. In such a fractional step, the values of the 

temperature and concentrations of the reacting species are advanced by 
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solving, for each spatial gridpóint, an initial value problem for a 

system of ordinary differential equations over a time interval equal to 

the length of the fractional step. Since this time interval generally 

exceeds by several orders of magnitude the time constants associated 

with the most rapidly changing particular solution for the system of 

ordinary differential equations, the initial value problems must be 

treated by methods suitable for "stiff" ordinary differential equations. 

However, straightforward.use of general purpose algorithms for stiff 

initial value problems would be far from optimal here, partly for the 

following reasons (See also Ref. 16, pp.  14-15): 

A substantial portion of the computational work consists of 

evaluating the Jacobian matrices needed for solving the nonlinear equa-

tions arising from the implicit discretization formulas used by the stiff 

ODE-solver. Because initial values and parameters of the ODE's generally 

vary smoothly in space and because approximately the same set of initial 

value problems—slightly displaced in space—is solved in adjacent frac-

tional steps, much of this work is likely to be redundant. 

As a consequence of the operator splitting, initial rapid tran-

sients occur generally at each spatial gridpoint and each fractional 

"chemistry step". As a rule, these lead to several changes of stepsize 

and possibly order during each ODE-integration. Most such changes re-

quire a re-decomposition of the iteration matrix and hence are rather 

costly at the matrix sizes of interest if standard LU-decomposition 

techniques are used. 
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3. Even though the exact solutions to the ODE's may be shown to 

remain positive at all times, 3  a general purpose algorithm is likely to 

introduce negative species concentration values at some point because 

of truncation and rounding errors. Since particular solutions with 

sufficiently large negative concentration values may become unstable, 

the algorithm may therefore fail unless the local error bound is chosen 

smaller than is required by the global accuracy requirements. 

In this paper, we present computational results showing that the 

above drawbacks can largely be eliminated by making some rather simple 

modifications of the general purpose stiff ODE algorithm being used. In 

summary, these modifications consist of: 

Keeping in store a suitable number of different copies of the 

Jacobian matrix reduced to Hesseriberg form and reusing these copies 

until corrector convergence becomes slow. 

Allowing stepsize and order to vary more frequently because step/ 

order changes are now comparatively cheap. 

Keeping concentration values non-negative during prediction and 

corrector iterations. 

We have used for our test runs a version by Hindmarsh 1°  of the 

algorithm by Gear (See Ref. 6, pp.  158-168), and studied as a test case 

the ignition and propagation of a one-dimensional, constant pressure, 

laminar flame obtained for three different realistic chemical kinetics 

models of different fuel-air mixtures. We present tables showing the 

effects of our modifications on the average CPU-time per meshpoint 
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consumed by the fractional step algorithm, in particular by various 

parts of the fractional "chemistry step". 

The main results of this study are contained in Table 4 and 

show that a substantial reduction, approximately 40-50% in our test 

cases, of the overall computational work can be obtained by our mod- 
( 4 

ifications. This work reduction is gained at the cost of an affordable 

(in particular bounded as the number of spatial gridpoints increases) 

increase of the auxiliary storage needed. We note that similar results 

also may be expected to hold in cases with multidimensional geometry 

and less restrictive assumptions on the fluid dynamics. 

TEST EXAMPLES: EQUATIONS AND THE FRACTIONAL STEPS 

The partial differential equations used in our test runs describe 

the one-dimensional flow of a chemically reacting multicomponent mixture 

of ideal gas where pressure variations, viscosity, radiative heat trans-

fer, and thermal and pressure diffusion are assumed to be negligible and 

where a Fick's law (See Ref. 23, p.  11), is assumed to govern the diffu-

sion of each species, (See Ref. 23, pp. 2-9 and Ref. 12, p. 413) 

Pt 
+ (vp) 	= 0 (2.1) 

(AT) 	hT 	T 	CTD 	Y 
T .+ VT 	= 

•- 
—pd —x 

+ 	
X 

P 	- 
(2.2) 

w 	(PD 	Y) 
Y 
—t 

+vY 	=+ 
—x 

d—xx 
p. 	.p 

(23 

p0 = R 	. T 	p 

N 	y 
• 	--  Wi  (2.4) 

1 i=1 
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Equations (2.1)-(2.4) express, respectively, the laws of conservation of 

mass, energy and species and the ideal gas law. Here p (mass density of 

gas mixture), v (mass average velocity of gas mixture), T (temperature) 

and Y=(Y 1  .....'
N 
 (mass fractions of the species) are the unknown func-

tions of x (space ) and t (time). The remaining quantities in Eq. 

(2.1)-(2.4) are: 

P 	 pressure (assumed constant) 

R 	 universal gas constant 

W, i = 1 , . . . ,N 	 molecular weights of the species 

A 	 thermal conductivity of mixture 
(assumed constant) 

Dd = diag(d1 	dN) 	 diagonal matrix of binary diffusion 
coefficients of the species 
(assumed constant) 

h = h (T) 	 vector of specific enthalpies per unit 
mass of the species (known as function 
of T (See Ref. 8, p.  32)) 

dh 
C = C (T). -= - 	 vector of specific heats at constant 

pressure of the species 

C = C (Y, T) = yT.c (T) 	specific heat at constant pressure of 
p 	p 	 gas mixture 

w = w (Y, T) 	 rates of production of species by 
chemical reactions, see Eq. (3.1)below. 

The gas mixture is contained in a semi-infinite tube in x>O, closed at 

x = 0 and is initially at rest with zero temperature- and species mass 

fraction gradients everywhere. The flame is ignited by transferring 

heat from an external source into the tube at x = 0, leading to the 

following initial and boundary conditions: 
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T (x,0) = T , 	x0 

Y (x, 0) = Y , 	x > 0 	 (2.5) 

.v(x,O)= 0 , 	x0 

T(O, t) = a (8(t) - T(0,t))., t 	0 

T(oo,t)= 0 	 , t0 x 	
(2.6) 

Y (0,t) = Y (oo,t) = 0 	, t > 0 

	

—x 	- 

v(0,t) = 0 	 , t0 

T and, Y in Eq. (2.5) are such that the mixture is initially at chemical 

quasi-equilibrium, w (Y, T)O. The constant a and the function 0(t) 

in Eq. (2.6) are assumed known. The condition Y (0, t) = 0 and 

v (0,0. = 0 express the lack of diffusion and mass average velocities, 

respectively, at the closed end of the tube. - 

In practice we replace x 	with x = L where L > 0 is suff i- 

ciently large and introduce meshpoints (itx, jt), 0iN = L/x, 

0j,.with associated approximate solution values Y. 	T, 	and p.. 

j+1 	j+1 	j+1 	j+1 	 .1  The values Y. 	, Ti 	, v 	and 	are computed from 	, T , v , 

i = 0,..., N by taking the following fractional steps in sequence: 

1. Chemistry step: Solve the N + 1 systems of N+1 ordinary differen-

tial equations 

dY 	w(Y,T) 

p 

dT 	
h (T 3)T 	(Y, T) 	

(2.7) 

= R S 



with initial values 

Y (j • At) = 

I = O,...,N 

T (j • At) = T.3 	
x 

over the time-interval (jAt, (j+1) At) to obtain 

= 	Y ((j+1) • At)  
-1 	

, 	 i=O,... N,. 
TJ+ll = 	T ((j+1) • At) 

(2.8) 

The species production rate function w (Y, T) Is described in greater 

detail in Eq. (3.1) below. 

2. Diffusion step: 	Solve the N linear tridiagonal systems of N+ 1 

ordinary differential equations 

dY1 	Dd 
dt - 	j 

pi  

with Y 	XN+1 
with initial values 

I+1+pi ) (X11-X1) - 1p1_(1x:1_1) 	(2.9) 

2Ax2  

= 	
, p1 = 2 p - p1 , N+1 = 

2 N 	N_1 and 

Y. (j At) = Y 	i = 0,... ,N, 

over the time-interval (j At, (j+1) At) to obtain 

=Y1  ((j+1)At) , 	I = O,...,N . 	(2.10) 
4 



. 

Heat conduction step: Solve' the linear tridiagonal system of N+1 

ordinary differential equations 

dT T 
i+1 

	

-2T'. 	+T. 

	

1 	i1 
dt 	 3+1l) - 	c 	(y• J 2 ,  T. 

_ 
p Ax2  

1 i  

j+i,1 T 
D 	

(yJ+l2_ yJ+12) 
i1 T 	- T 

+ d 	i+1 1+1 	i1 	(2.11) 
2Ax , 2Ax 

wit h Y j+1,2 - 
	j+l,2 	i+1,2_ 

- —1 	' 	'N 
j+1,2 T =T T -T 	= 2Axcx(O(t)-T ), +1 ' —N -1 	N +1 	N -1' 1 	-1 

x 	x x 
and with initial values 

T. (j•At) = T 	i = 

over the time-interval (jAt, (j+1) At) to obtain 

T.3+l2 = T.((j+1)•At), i=O,...,N. 	 (2.12) 

Convection step: 	Solve the N+1 linear tridiagonal systems of N+l 

ordinary differential equations 

	

dY. 	. Y.-Y 
-1 - 	j —1+1 —i-i 

	

dt 	i 	2Ax 

i = O,...,N, 	 (2.13) 

	

dT 	
-

Ti+i _T i1 

with YN 	 = 	
TN+l = T N 1 (note that v 03  = 0), and with 'mi- 

tial values 

	

(j • At) = 
	j+1,2 

T (j • At) = 



-10- 

over the time-interval (jAt, (j+1)•At) to obtain 

= 11 
(0+1) At) 

	

i = O,...,N . 	(2.14) 

Ti+l = Ti ((+1)•At) 	
x 

5. Mass continuity step: Compute pJ+l 
 using the values YJ+l  and 

T. 	in (2.14) and the ideal gas law (2.4) and put 

j+1 	j P j+I 	
=Pi 	- pi   

t_ 	 , 	I = 0,... ,N. 	(2.15) 
At 

.i+1 Let p t 
	

(x) be the cubic spline fitted to theN +lvalues p 	tin (2.15) 

	

2 	 x 

	

(with side-conditions d 	
Pj+I(x) = 0 at x = 0 and x = L) and then 

dx 
compute 

i•Ax 
3+1 	1 	 j+1 v1 	= 	I 	(x) dx. 	 (2.16) 

pi 	0 

The truncation error of the above scheme is expected to be 0(At + Ax2 ) 

as At, Ax 0, in good agreement with computational results. The equa-

tions (2.9),' (2.11) and (2.13) of the diffusion, heat conduction and 

convection steps were treated by the implicit trapezoidal rule with step-

size At, the length of the fractional step. The above subsplitting into 

steps 2-5 and the associated discretizatlon formulas and stepsize strat-

egies probably could be replaced by more effective choices, however our 

main interest is with the treatment of the equations (2.7) of the chem-

istry step (which will consume by far the largest portion of the computa-

tional work anyway (See Table 4 below)). 
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THE CHEMISTRY STEP 

The species production rate function w (Y, T) in the differential 

equations (2.7) is of the form (See Ref. 23, pp.  2-4): 

(X T) = Dw' vt ,
T_ v,T {Dk (Ti J ) 	D(T.)Z'}, 	(3.1) 

where 

= diag (w1 	,WN) 	 diagonal matrix of molecular weights 

of the species. 

V', V" 	 MXN matrices of (integer) stoichio- 

metric coefficients for reactants and 

products respectively. (N = number of 

reactions). 

Dk (T), D 
kb 

 (T) 	 MXM diagonal matrices of reaction rate 

constants for forward and backward 

reactions, respectively. The diagonal 

elements of Dk  (T) are of the form 

Kf  .(T) = Kf.Tafi. exP(_Ef./RT) 

i = 1,.. .M, where K and E 
of i f i . 	fi 

are constants. D (T) is defined 

similarly. 

Z = (Z1 ,. • , ZN) 	 vector of concentrations (in moles per 

unit volume) of the N species, 

Z =p Y/W., I 
1 	 N 	v' V 	 ik Z 	 vector of the H products II Zk 

- 	 vu 	
Ic=1 

i 	1,..., N. Z 	is defined similarly. 
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Some of the N species, such as N 2  in our test examples, may 

occur only as "third bodies" in the reactions and thus give rise to zero 

rows in the matrix v,,T_v,T in Eq. (3.1). In such cases, we exclude the 

corresponding constant Y-components when solving the system Eq. (2.7) 

numerically, thus reducing its dimensionality to NA + 1 where NA< N is 

the number of remaining (non-inert) species. By putting y = (Y 1 ,... 

NA' T)T and definingf(y) accordingly, Eq. (2.7), (3.1) assume the 

normal form of an autonomous system of ordinary differential equations 

. =!(i)• dt (3.2) 

Unless Ext, the timestep of the fractional step algorithm, is 

chosen much smaller than needed for accuracy, theproduct -ReXtt will 

be much larger than one (maybe 10 3  or larger in our test examples) for 

some eigenvalues X to the Jacobian matrix J = J(1) = Bf/yL. Hence Eq. 

(3.2) must be treated by methods suitable for stiff ordinary differential 

equations. Our test runs were made using a version by Hindmarsh 10  of the 

widely used algorithm by Gear (See Ref. 6, pp.  158-168) with the purpose 

of improving its performance by taking advantage of particular features 

of the above problem in the following way: 

1. We subdivide the temperature range of interest into K sub-

intervals by introducing constants T 1  < T2< ... < TK1 (we used K = 10 in 

our test rung) and reserve storage space for K real (NA+1) x  (NA + 1 ) 

matrices and K integer vectors with NA + 1 components. Whenever a 

Jacobian matrix is evaluated, we reduce it to Hessenberg form by stabi-

lized elementary similarity transformations, (See Ref. 22, p.  353, and 

Ref. 5), i.e., we compute matrices P, L, and H such that 
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= P L. H L1P T 
	

(3.3) 

where P is a permutation matrix, the elements h.. of H are zero for 
13 

i > j + 1 and the elements 1.. of L are nonzero only for i = j = 1 or 

i 	j > 1 with 1... = 1, 1 = 1,...,NA+1. Furthermore, by the requirement 
11 

that the number of atoms of each chemical element be conserved in each 

reaction 

rank J = rank H < NA + 1 - NE 	 (3.4) 

independently of, where NE is the number of different chemical elements 

appearing in the NA reacting species. In all our test examples, when 

choosing the permutation matrix P by the simple pivoting stragegy used 

in Ref. 22, p.  354, this rank deficiency of H showed by the last NE rows 

of H being zero to working accuracy, thus allowing for premature termina-

tion of the decomposition (3.3). 

The value of the temperature component of y in Eq. (3.3) will be 

in one of the temperature subintervals defined above, say the k'th, 

and we store the matrix P and the matrices L, H into the .k'th of the 

reserved storage areas. Subsequently, whenever the temperature component 

of y in Eq. (3.2) is in the k'th subinterval, we use these matrices P, L 

and H by Eq. (3.3) as the approximate Jacobian matrix needed in the 

Newton-like corrector iterations updating P,L and H by re-evaluating and 

reducing 	() only when corrector convergence becomes unacceptably slow. 

In all our test runs such updates, summed over all temperature intervals, 

occurred on the average less than once in every five initial value prob-

lems, thus keeping the overhead work for the decompositions (3.3) 

acceptably small (See Tables 2-4 below). 
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The linear system of equations appearing in the corrector iter-

ations is of the form shown in Ref. 6, pp. 216-217, 

	

(I - a h J()) •x = .12. 	 (3.5) 

where h is the current stepsize, a is a number dependent of the order p 

and I is the identity matrix. By Eq. (3.3),  Eq. (3.5) becomes 

	

P L (I - a h H) L'P T 
	

= b 	 (3.6) 

which can be solved by back-substitutions after LU decomposition of 

only the (NA + 1 - NE) x  (NA + 1 - NE) upper left corner of the Hessen- 

berg matrix I - a hH, (See the comment after Eq. (3.4) above). The over-

head work for this LU decomposition, which has to be redone whenever the 

product a•h changes significantly, is thus roughly (NA + 1 - NE) 2 /2 

operations to be compared to the roughly (NA + 1)/3 operations needed 

for LU decomposition of Eq. (3.5) directly (here "operation" stands for 

one addition and one multiplication or division in floating point arith-

metic). The back substitutions in Eq. (3.6) require roughly 3(NA + 1) 
2 
 /2 

operations as compared to (NA + 1)2  in the direct LU-decomposition case. 

However, step/order changes requiring LU decomposition are sufficiently 

frequent to make the net gain substantial (See Tables 3 and 4 below). 

2. We relax the stepsize selection strategy so that a step in-

crease at order p is attempted whenever p steps have been taken with 

constant stepsize, as compared to p + 2 steps in the original strategy 

(See Ref. 10). We further permit step increase by up to a factor of 

10 at all times (instead of only initially as in Ref. 10) except for 

the first increase after a stepsize reduction. The risk of these 
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modifications introducing unwanted error growth caused by too frequent 

stepsize changes 1 ' 7 ' 9 ' 11  is expected to be small because: the order 

generally is low due to the moderate accuracy requirements; the total 

number of integration steps per initial value problem is-on the aver-

age very small; and the stepsize is as a rule non-decreasing in each 

initial value problem (cf Ref. 1, p.  102 and Ref. 9, p.  133). In our 

test runs, these modifications were found to reduce the average number 

of integration steps per initial value problem considerably (See Table 

3 below), mainly by using fewer steps in the initial transients which 

in general restrict the starting stepsize to being several orders of 

magnitude smaller than the interval of integration. - 

- 	3. We modify the prediction-correction scheme to avoid intro- 

ducing possibly harmful negative species mass fraction values 4  by 

rounding or truncation errors in the following way: Let z 	be the 

predicted solution vector computed by polynomial extrapolation. Then 

we use 	= (y1 0 ,..., 	as starting point for the corrector iter- 

ations, where 

y° = max { yiP , o}, i = 1,... 9NA+1 3, 	 ( 3.7) 

and subsequently adjust any negative components occurring in y to zero 

after each corrector iteration. We do, however, use the actual predicted 

value y 	when computing the accumulated correction vector needed for the 

local- error estimate and for updating the Nordsieck matrix after corrector 

convergence. We note that, unlike the original scheme, this modified 
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corrector procedure no longer conserves linear invariants of the solu-

tion, such as element masses, within rounding error tolerance independent 

of both local error and truncation error from solving the corrector equa-

tions. However, such linear invariants are still conserved to within the 

requested local error tolerance which, of course, is quite satisfactory. 

COMPUTATIONAL RESULTS 

Our test runs of the initial-boundary value problems (2.1)-(2.6) 

were performed with three different models of the chemical kinetics of 

the gas mixture. Table 1 shows the source references used for obtaining 

the details of these models, together with the number of species and re-

actions appearing in each model. 

Table 1. Source references and dimensionality data for kinetics models 
used in test runs. 

Number of Number of Number of 
Test case Kinetics model, references species, reacting 	reactions, 
number 	 N 	species,NA 	N 

1 	H2  - Air 13 " 5 ' 2 	 8 	 7 	 13 

2 	CH4  - Air 18,21 	 19 	18 	 56 

21 3 	CH4-Air 19, 	 26 	25 	 86 

The entries of the last column of Table 1 assume that the formalism of 

Eq. (3.1) has been extended so as to allow the sum of all species con-
N 

centrations, Z.N 	= 	Z,, to appear as a third body in the reactions. 
i= 1 

In the actual coding of Eq. (3.1) we include this extension by augmenting 

the matrices V and V" (which are stored row-wise in compact form) by 
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identical (N + 1) 'th columns. We note that this extension is done 

for the practical purpose of reducing computational work and storage 

requirements only, since such "third body" reactions could equiv-

alently be split into N simpler reactions covered by the formalism of 

Eq. (3.1). 

The thermodynamic functions h (T) and C. (T) = dh/dT were given• 

as piecewise polynomials in T as in Ref. 8, P.  32. The constant pressure 

p was chosen to be 1.013• 10 7  dyn/cm2  ( 1 atm). The choice of values 

for the thermal conductivity X and the diffusion coefficients 

is not crucial for our results, and we simply put d 1  = ... = dn = d, 

choosing the constants d (5 cm 2 /sec) and X (5.10 dyn/sec) so as to ob-

tain burning velocities, species concentration profiles, and flame thick-

nesses roughly comparable to those in Ref. (13) and (20) in the steady 

state flame. The function 0(t) in the boundary condition Eq. (2.6) for 

the temperature was chosen to be: 

T + (T - T ) • t/t 	0 < t < t 

	

s 	e 	s 	r 	 r 
0(t) = 	 (4.1) 

	

T 	 , tt 

	

e 	 r 

with t r =10 	sec, T 	300 °K, T = 2400 °K (for the H -Air model) and 

2700 °K (for the CH4 Ajr models). The constant a was set to 200 cm in 

all cases. The boundary conditions to the right were given at L = 1 cm 

and the step-sizes ix = 5.10 cm, At =2.5 	1o 6  sec were found to 

give sufficient accuracy for our purposes. At these stepsizes the bounds 

At 	SD11 < 2, At 11 SH 	< 1.8, and At • 	S< 0.6 hold in all test 
cases, where SD , SH, and Scare thetridiagonal matrices in Eq. (2.9), (2.11), 

and (2.13), respectively. The time-interval was 0t0.5msec in the 

H2 - air case and 0 <t < 0.6 msec in the CH4 -air cases, corresponding 
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roughly to three tines the length of the flame ignition period. In all 

cases, the local error bound for the initial value problems, Eq. (2.7), 

in the chemistry step was chosen to c= 	based on repeated runs 

with successively decreasing E until visual convergence of graphs of 

temperature, flow velocity, and species concentration profiles was 

obtained. The norm of the local error is estimated in Ref. (10) by 

2 
NA+1 	e. 2 
r 	1 localerror 	= 	L 	( 	) 	 (4.2) 

j=1 

where 	is a number dependent of the order p, e = (e1,..., eNA~1) is 

the difference between the corrected and predicted solution values, and 

max,1 '••' 	 are weights to be chosen by the user. We update 

these weights after each integration step in Eq. (3.1) to be the maximum 

values of y 1 ,. .. 	in any solution to Eq. (2.7), (3.2) computed since 

t = 0. 

In Table 2, we list some of the main subalgorithms needed in 

solving the initial value problem (2.7), (3.2) and show the CPU-times 

required on a Digital VAX 11/780 computer for executing each of these 

once. 

Table 3 shows the average number of integration steps, function 

evaluations, and matrix handling operations per initial value problem 

performed in our runs of the three test cases. The entries in the "mod-

if ied ODE solver" columns were obtained using the algorithm in Ref. 10 

with the modifications described above. The entries under "original ODE-

solver" are shown for comparison and were obtained using the original al-

gorithm of Ref. 10 with, however, the prediction-correction scheme modified 
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as described above. Our attempts to use Ref. 10 without this modifica-

tion failed in all three cases at the chosen local error tolerance be-

cause of introduction of negative mass fraction values leading eventu-

ally to instability. 

The entries in rows 7 and 8 of Table 4 are the average CPU-times 

in milliseconds per meshpoint (lAx, iAt) needed for the chemistry step 

and for all other fractional steps, respectively. The entries in row 9 

are the sums of the corresponding entries in rows 7 and 8 and hence show 

the average total CPU-time required per meshpoint by the fractional step 

algorithm. Rows 1-6 show a breakdown of the entries in row 7 into the 

average CPU-times per meshpoint spent in the main subalgorithms of the 

chemistry step. We remark that we actually applied the ODE-solver on 

Eq. (2.7) only if IT 13  - T J 0.5 0K, i.e. only at meshpoints in and be-

hind the flamefront, otherwise approximating the solution of Eq. (2.7) by 

the constant initial values y, T 3 . The averages shown in Table 4 are 

based on the subset of meshpoints where the ODE-solver was applied 

(roughly 15-25% of all meshpoints in the strip OXL, 0ttend in 

all cases), and the CPU-times of the other fractional steps have been 

normalized accordingly. 

CONCLUDING REMA1KS 

In summary, Tables 3 and 4 indicate the following results for 

our test cases: 

1. 	a roughly 85% reduction of the CPU time spent on Jacobian eval- 

uations and matrix decompositions. 



-20- 

a 20%-40% reduction of the number of integration steps, counter-

acted, however, by perhaps 10-25% slower corrector convergence 

rate and more time-consuming backsolves, resulting in a net 

change of the CPU time spent on function evaluations and solution 

of factorized linear systems in the range -3% to + 12%. 

up to 25% increase of the CPU time spent in the ODEsolver for 

stepsize and order selection and other overhead. 

The net effect of these changes is a reduction of the overall 

CPU time for the fractional step algorithm by 38%-53%,. increasing with 

the size of the chemical kinetics model as the overhead for Jacobian 

evaluation and matrix decomposition grows dominant. 

A large portion of the computational work in the chemistry step 

(See Table 3) is caused by the initial rapid transients occurring in the 

solution of Eq. (2.7), (3.2) at each meshpoint. The introduction of 

these transients is largely an artificial by-product of the operator 

splitting technique and indeed is the main price to be paid for the corn-

putational advantages of this technique. It is not unreasonable to ex-

pect, however, that much of these transients could in fact be resolved 

only crudely without adverse effects on the global accuracy of the solu-

tion. In particular, one might consider applying a 'numerically super-

stable' integration formula like the implicit Euler method on Eq. (2.7), 

(3.2) choosing the stepsize without regard to local error estimates in 	 4 

the initial steps. Some preliminary computational experiments using the 

above equations and kinetics models support this idea at least in part: 

A constant stepsize predictor-corrector scheme related to the implicit 
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Euler formula (and complemented with some ad hoc criteria for accepting/ 

rejecting solutions to Eq. (2.7), (3.2) based on their global behavior) 

was found to give quite acceptable global accuracy for the H 2 -Air model 

(Case 1), when using in the steady-state flame only two integration steps, 

two evaluations of f(), three backsolves and no evaluations of J() per 

meshpoint (cf. the corresponding data for the variable step algorithm in 

Table 3, Case 1). For the CH 4 -Ajr model, (Cases 2 and 3) however, suf-

ficient global accuracy was obtained only by choosing the constant step-

size too small to be competitive with the variable step technique. 
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Table 2. CPU-times (in milliseconds) per execution of some algorithms 
needed in the chemistry step. 

Case 1 Case 2 Case 3 

Evaluation of 	f:() 	in Eq. 	(3.2), 2.7 9.2 13.8 
(2.7)., 	(3.1) 

Evaluation of J(y) = 12.2 54.3 92.2 

LU decomposition of I-a 	h J(1) 5.5 47.3 112 
in Eq. 	(3.5) 	 p 

Solution of Eq. 	(3.5) using 1.3 5.8 10.6 
LU-factors 

Reduction of J() to Hessenberg 7.7 87.6 216 
form as in Eq. 	(3.3) 

LU decomposition of I-a 	hH 1.4 6.4 12.3 
in Eq. 	(3.6) 	 p 

Solution of Eq. 	(3.6) using 1.8 .9.4 18.0 
LU-factors 

Evaluation of.h (T1),C 	(T) and 1.2 2.8 4.6 
C, in Eq. 	(2.2), 	(2.3)?(2.7) 

Evaluation of D 	(T. 3 ) and 2.2 10.0 15.4 

\ 
(T. 3 ) in Eq.(3.1) 
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