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- ON SOLVING THE STIFF ODE'S OF THE KINETICS OF

CHEMICALLY REACTING GAS FLOW

Ilkka Karasalo and John Kurylo

Physics, Computer Science, and Mathematics Division
Lawrence Berkeley Laboratory, University of California

Berkeley, California 94720

ABSTRACT

We'study the efficiency of computational methods-fqr'the stiff
ordinary differential equations of chemical kinetics that arise when the
vpartialvdifferential equations Qf'chemically reacting gas flow are
treated by a fractionalIStep technique.b In this application, the over-
head work associated with eveluating partial derivatives and decomposing
matrices for.the Newton-like corrector iterations used in most algorithms
for stiff QDE's can be eliminated for the most part by keeping in store
a suitable number of different copies of the Jacobian matrix, reduced to
Hessenberg fbrm to facilitate changes of stepsize and order. Computa—
tional results in the case of ignition and propegation of a one—dlmen—
.31ona1 premixed 1am1nar flame with different reallstlc chemical kinetlc
models are presented to show the reduction of computatlonal work obtained

by modifying a modern general—purpose ODE—code in this manner.

This work was supported by the Physics, Computer Science and. Mathematics
Divisions of the U. S. Department of Energy under contract No. W-7405-
- ENG-48. '



INTRODUCTION AND SUMMARY

Operator splitting, or fractional step, techniques24 are used
frequently for the numerical simulation of the flow of muiticomponent
'gas mixtures undergoing rapid chemical reactions such as flame ignition

13,14,17

and flame propagation.’ Reasons for the popularity of operator

splitting techniques for this class of problems include the following:

1. They often offer'a.reasonable.compromise between the poor
storage economy of fully coupled implicit schemes and the unacceptably

small time stéps required for stability by explicit schemes.

2. They provide a convenient way for treating different parts of
the governing system of partial differential equations by different
discretization formulas and stepsize strategies to improve computational

performance.

3. Their generally low orders of accuracy are acceptable since the

accuracy requirements in practice are moderate.

In this paper we study the computational efficiencyvbf operator
splitting tedhniqués'when applied on the_equations of reactiﬁg gas flow
(See Ref. 23, p. 2-9) in such a way that, in particular, heat release
aﬁd species production due to chémical reactions are'computed}in a sep-
arate fractional step. In éuch a fractional sfep, the values of the

temperature and concentrations of the reacting species are advanced by
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soi§ing, for eéch spatial gridpoint, an initial value problem for a
.system of ordinary differential équations oﬁer a time interval equal to:
the léngth of the fractional step; Since this time interval generally

exceeds byvseveral orders of magnitude the ﬁime constants associated
 with the most rapidly changing partiéular soiution'fdr the system of
ordinary differéntial equations, the initial value pfoblems must be
treated by methods suitable for "stiff" ordinary differential equationms.
‘ However,_straightforward.use of genéral purpose algorithms for stiff
inifial value problems would be fa; from obtiﬁal here, partly for the.

following reasons (See also Ref. 16, pp. 14-15):

1. A substantial portion of the computatiohal work consists of
evaluating the Jacobian matriceé needed for solving the nonlinear equa-
tions arisipg‘from the implicit discretization formulas used by the stiff
ODE-solver. Because initial valﬁes and paraméters of the ODE}S generally
~ vary smootﬁly in space and beqause approximately the same set of initial
value problems—slightly displaced in space—is soivéd in adjacent frac-

tional steps, much of this work is likely to be redundant.

2. As a consequence of the operator splitting; initial rapid tran-
sients occur generally at each spatiai-gridpoint and each.fractional
"chemistrj step”. As a fule, thesevlead to several changes of stepsize
and possibly order‘during each ODE-integration. Most such changes re-
quire a re4decomposition ofvtﬁe iteration matrix and hence are rather
cbstlf at the matrix sizes of intereét if stah&ard LU-decomposition

techniques are used. -



3. EVen though‘ﬁhe exact‘solutions to the ODE's may be shown to
remain positive at.ail times,3 a general purpose algorithm>is likely to
introduée negative species éoncentratién values at some point because 
of truncation and rouﬁding errors. Since particular solutionS'wiﬁh
sufficiéntly large negative concentration values may Bécbme unstable,

the algorithm may therefore fail unless the local error bound is chosen

smaller than is required by the global accuracy requirements.

In this paper, we present computational results'showing that the
above drawbacks can largeiy_be eliminated by making some rather'simple
modifications of the general purpose stiff ODE algorithm béingvused. In

summary, these modifications consist of:

1. Keeping in store a suitable number of different copies of:the
- Jacobian matrix reduced to Hessenberg form and reusing these copies

until corrector convergence becomes slow.

2. Allowing stepsize and order to vary more frequently because step/

order changes are now comparatively cheap.

3. Keeping concentration values non-negative during prediction and

corrector iterationms.

We have used for our test runs a version by Hindmarsh10 of the
| algorithm by Gear (See Ref. 6, pp. 158-168), and studied as a test case
~the ignition and propagatioﬁ qf é one~-dimensional, constant pressure,
laminaf flame obtained for three differeﬁt realistic chemical kinetics
modelé of different fuel—éir mixtures. We present tables showing the

effects of our modifications on the average CPU~time per meshpoint
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consﬁméd bf the fractional step algorithm, in particular by vafioﬁs'
parté of the fractional "chemistry stép".':

The main resuits of this éﬁudy are contained in Table 4 and
show that a subétantial feductioﬂ, approximately 40-507 in our test -
cases, of the overall computational work can bé-obtained by.ouf mod-
ifidationéf This work reduction is gainedvat the cost of anvaffordable
(in particular bounded as the number of spatial gridpoints‘increases)
increase of the auxiliary storage needed. We note that similar results
.alsb may be expected to hold in cases with multidimensional geometry

and less restrictive assumptions on the fluid dynamics.

TEST EXAMPLES: EQUATIONS AND THE:FRACTIONAL STEPS

A

The partial differential equations ﬁsed in our test runs describe
'the'one—dimensional flow of a cheﬁically reacting multicomponent mixture
of ideallgas where pressure variations, viscosity, radiativé heat trans-
fer, and thermal and pressure diffusion are assumed to be negligible and
where a Fick's law (See Ref. 23, p. 11), is assumed to govern the diffu-

sion of each species, (See Ref. 23, pp. 2-9 and Ref. 12, p. 413)

= 2.
pt +_(vp)x 0 (2.1)
T T,
(A T) h™w T C D .Y
_ X _ == x~p d-x
T, +vT_ = 5C st T3¢ R (2.2)
P p P
"w (DY)
_ - d X . A . .
Xt+vgx il 5 | (2.3)
Ny, | | ‘
P, =R0-T-pf y _Wi . . (2.4)



Equations (2.1)-~(2.4) express, respectively, the laws of conservatlon of

'mass, energy and species and the ideal gas law. Here p (mass den51ty of

gas.migture), v (mess average velocity of gas mixture), T (temperature)

and X.=(Y1,.t..,YN;‘(mass fractiens of the species) are the unknown tunc—
tions of x_( space ) and t (time). The remaining quantities in Eq. .

'(2.1)—(2.4) are:

Po : _ o pressure_(assumed.constant)
'Ro . » | ‘ universai»gas constant

W, i éjl;...,N , '~ ‘molecular weights of the species
A | | ‘ thermal conductivity of mixture

(assumed constant)

D, = diag(d d.) o diagonal matrix of binary diffusion
coefficients of the species
(assumed constant)

h=h (D : >veetor of specific enthalpies per umit
mass of the species (known as function
of T (See Ref. 8, p. 32))

. dh _ ) S

C =c (D %*j% - vector of specific heats at constant

P TP ' 'preSSure of the species

cC = @, T = Z?-C (T) spec1f1c "heat at constant pressure of
P P gas mixture :

w =w (¥, T) . rates of production of species by

chemical reactions, see Eq.(3.1)below.

The gas mixture is contained in a semifinfinite tube in x;BO, closed at
= 0 and is initiallf‘at‘rest with zero temperature— and species mass

fraction gradients everywhere. The flame is ignited by transferring

heat from an exterhal source into the tuBe at x = 0, leading to the

following initial and boundary conditions:



T (x, 0) = T;
TG0 =Y, x>0 (2.5)
'-v(x,0)=0A, x =0
T (0, £) = & (8(t) - T(0,t)), t =0
T (¢, t) = O s, t =20
x (2.6)
I_,x(ost) = Y (»,t) =__0_ s t =0 .
v (0,t) = O , t>=0

To,and;zo in Eq. (2.5) are such that the mixture is initially at chemical
quasi-equilibrium, w (¥, To):sgf The constant o and the function 6(t)

in Eq. (2.6) are assumed known. The condition Xx (0, t) =0 and-
v (O,t). = 0 express the léck of diffusion an&“mass avgrége velocities,
respectively, at the closed en& of the tube. -

In pracfice we repiace X = o with x = L where L > 0 is suffi-
ciently large énd introducé mgshpoints (i'Ax, jeAt), O=<15£NX = L/Ax,
] and_piJ.
J

s

0<j, with associated approximate solution values XiJ, TiJ, vi
T J+1’ _j+l

The values Y,J+1, v
8 i i

Dij, i =0,000, Nx by taking the following fractional steps in sequence:

and DiJH are computed from Y 7, ~To:.l’ Vi

1. Chemistry step: Solve the Nx.+'1 systems of N+1 ordinary differen-

—

tial equations .

dy w (¥, T)
ac T T o _
| naHle@wn |
dT _ - Y4 = =
&£ == 3 3 v (2.7)
N Y
’ = .I [ ] \ o .__k.
v Po = Ro T P 2

k=1 "k



with initial values

Y (G - At)

i
L]
(3

T (j « At)
over the time-interval (jAt, (j+1) <At) to obtain

Y'J+l,1
=i

Y ((3+1) - Ar) ,
, ' ' . i=0,...,N . (2.8)
TiJ+1’1 = T ((§+1) - At)

The species production rate function w (¥, T) is described in greater

deﬁail in Eq. (3.1) below.

2. Diffusion step: Solve the N linear tridiagbnal systems of Nx+ 1

ordinary differentiai equations

' B N N JUNE A
iy Dy ey tey )y X - (ot (Y ) (2.9)
it 3 |

1

2 sz

=Xy -1 P and
%t

with¥ ;=Y. Iy 4 =20, 7Py P4y T2 T Py
X N X X X

‘with initial values

. _ o L1
Y, (G At) Y, A § O""’Nx’

over the time-interval (j At, (j+1) At) to obtain

v Hl,2 =¥-i ((j..g.l)vAt) . i 0,...,N_ . (2.10)

i



3. Heat conduction step: Solve the linear tridiagonal system of N_+1

ordinary differential equations

2T, + T

T, 1 | R T e S |
dt 41,2 34,1 3 2
JHLLT i+1,2 _j+1,2 _
RO s T N T Nt .11
_ 2Ax ' v 2 Ax T
. 312 31,2 41,2 _4+1,2 -
th = = -7 . = 2Axea+(6(t)-T
R R T e S S T ®©-1)
and with inltlal values
. 3+,
T, (GAe) =TT, 4= 0,0,
over the time-interval (jAt, (j+l) At) to obtain
+1,2 1y .
T T = T (42 A), 1=0,..N (2.12)

4, Convection step: Solve the N+l linear tridiagonal systems of Nx+1

ordinary differential equations

e R B T R
dt i 2 Ax .
» 1=0,.,N, (2.13)
it T B # W 1
Tt BT 2 Ax
| = = ’ | j = : 3 ; -
with XNx+l ZNx-l’ TNx+1 TNX_1 (note that v, 0), and with ‘ini

tial values

. ARy = v 3152
¥, G Af-) Y. ,
o . »i =O,...,NX,

. - j+1,2
Ti (j At) Ti
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over the time-interval (j+At, (j+1)°+At) to obtain

Y.J+l
—i

¥, ((3+1) *t)

o e
Ti = Ti ((j+1) *At)

5. Mass continuity step: Compute _piJ+l

t 4 . .
TiJ 1 in (2.14) and the ideal gas law (2.4) and put -

j+1 j

s 1i=0,...,N.
X

(2.14)

using the values XiJ+1 and

341 o - Py ‘
PL . = i 1 . f -
ti - X3 » 1 'Q"f'fgx° (2.15)
~G+L . . il | AL
Let pt (x) be the cubic spline fitted to the‘Ni+1values pt i‘in (2.15)
: 2 . : ,
(with side-conditions Jé—i '5i+1(x) =0 at x =0 and x = L) and then
dx .
compute
iAX ,
j+l _ 1 j+l : .
v, = —H / B, (x) dx. (2.16)
Di o

S )
The truncation error of the above scheme: is expected to be 0(At + Ax')

- as At, Ax + 0, in good agreement with computational results. The equa-

tions (2;9),‘(2.11) and (2.13) of the diffusion, heat conduction and .

convection steps were treated by the implicit trapezoidal rule with step-

size At, the length of the fractional step. The above-subsplitting into

steps 2-5 and the associated discretization formulas and stepsize strat-

egies probably could be replaced by more effective choices, however our

main interest is with .the treatment of the equations (2.7) of the chem-

istry step (which will consume by far the largest portion of the computa-

tional work anyway (See Table 4 below)).
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THE CHEMISTRY STEP
The species production rate function w (¥, T) in the differentiai

equations (2.7) is of the form (See Ref. 23, pp. 2-4):

w @ =01l g {Dk ,h) PARS <Tij)gY"}, (3.1)

D
v ol H

where

DW =  diag (Wl,.,.,WN) diagonal matrix of molecﬁlarlweights
" of the species. |

v', V" _ | : ' MxXN matriceé of (iﬁtegef) stoichio-
metric coefficients fof reactants énd
products respegtivély.v ™M = number of
reactions).

D, (T), Dkb(T) MxM diagonal matrices of reaction rate
constants for forward and backward
reactions, respectively. The diagonal
elements of Dk (T) are of the form
X, i(1:') o L éxp(—Efi/RoT) ,

i =1,...M, vhere R .o and E

£fifi f£fi
D
Ky

are constants. (T) is defined

similarly.
Z= (Zl,...,ZN)T : vector of concentfa;ions (in moles per
unit volume) of the N species,
Zi3= p Yi/wi’ i=1,...,N,
vector of the M products I Zk 1k,

k=1
. 1" N
i=1,..., M. 2z 4is defined similarly.

V'

[ow
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Some éf the N species, such as N2 in our test examplés, may
occur only as "third bodies" in'thé reactions and thus give rise to zero
rows in the matrix V"T—V'T in.Eq.;(3.1). in suéh cases, we exclude the
corresponding ,conétant Y-components when éolving_the system Eq. 2.7)
numerically, thus reducing its dimensionality to NA + 1 where NA=§ N is
the number of remainingv(non—inert) species. By putting y = (Yl""
YNA; T)T and defihing_g(ip accordingly, Eq. (2.7),.(3.1),assume the

normal form of an autonomous system of ordinary differential equations.

dy _

Unless At, the\timestep of the fractional step algorithm, is
chosen much smaller‘than needéd for.accuracy, the’prdduct -ReA*At will
be much larger ;hap one.(maybe'lo3 or larger in our test examples)'for
some eigenvalues A to the Jacobian matrix J = J(@) = 3f/9y. ﬁehce Eq.
(3.2) must Be.tfeated By'metﬁodé‘suitable for stiff,ordinary differential
equations. Our test runs were made us1ng a version by Hindmarsh Lo of the
widely used algorlthm by Gear (See Ref. 6, PP- 158-168) with the purpose‘
of improving its performance by taking advantage of particular features

of the ébove problem in the following way:v

l. We subdivide the temperature range of interest into‘K sub~-
intervals by»introducing constants Tl < T2<...<"I‘K_1 (we used K = 10 in
our test runs) and‘reserve storage spaée for K real (NA+l) x (NA + 1 )
matrices and K integer vectors with NA + lvcomponents. Whenever a
iacobian‘matfix is evaluated, we reduce it to Hessenberg form by stabi-

lized elementary similarity transformations,'(See Ref. 22, p. 353, and

Ref. 5), i;e,, we compute matrices P, L, and H such that
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Jg) = pLEL P! | (3.3)

where P is a pefmutation maﬁrix, the elements hij of H are zero for
i>j+1 and thg elements lij of L are nénzero only for i = j =1 or
i=zj>1 withvlii =1, i = l,...,NAHL, Furthermdre, by the‘requiremént
that the number of atoﬁs of each chemical element Be consé;ved-in each
reaction

| rank J.= “rank H < NA + i - NE ' - (3.4)
indepeﬁaently‘of_z, Where NE is the number of different chemical elemehts
appeéring in the NA reacting species. in all our test'examples, when
choosing the ﬁermutation matrix P by the simple pivoting stragegy used
iﬁ Ref. 22, p. 354; this rank deficiency of H showed b& the last NE rows
- of H being zero to working accuracy, thus allowing for premature termina-
tion of the decomposition (3.3). )

The value of the temperature component of y in Eq. (3.3) will be

in one of the temperature subintervals defined above, say the k'th,
and we store the matrix P and the matrices L, H into the k'th of the
reserved storage areas. Subsequently, whenever the temperature component
of y in Eq. (3.2) is in the k'th subinterval, we use ;bese métrices P, L
and H by Ed. (3.3) as the aﬁproximafe Jacobian matrix needed in the
Newton-like corrector iterations updating P,L and H by re-evaluating and
reducing J(y) only when corréétor convergence,becomés unacceptably slow.
In all our test runs'sﬁch updétes, summed over all temperature ihtervals,‘
6c¢urred on the average less than oﬁce in every five initial value prob-
lems, thus keeping the overhead work for the decompositions (3.3)

acceptably small (See Tables 2-4 below).
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The linear system of equations appearing in the corrector iter-

ations is of the form shown in Ref.'6, pp. 216-217,
(I—onphJ(z))§=2 (3.5)

where h is the current stepsize, ap_is a number dependent of the order p
and I is the identity matrix. By Eq. (3.3), Eq. (3.5) becomes

PL(I-o hH et x=p ' (3.6)

which:can be solved by baék-substitutions after LU decomposition df‘

only the (NA + 1 QvNEf X (NA + 1 - NE) upper left corner éf the Hessen-
Bgrg matrix I - aﬁ hH, (See the coﬁment after Eq. (3.4) abové).: The over-
 head work for this LU decompositioﬁ, which has to be redone whenever the
product ap°h changes significantly, is. thus roughly (NA + 1 - NE)Z/é |
operations fo be compared to the roughlyb(NA + 1)3/3voperationsbneeded
for LU decomposition of Eq. (3.5) directly (here "operation" stands for
one addition andfone multiplication or division in floating point»arith—
metic). The back substitutions in Eq. (3.6) require roughly 3(NA + 1)2/2-
operations as compared to (NA + 1)2 in the direcﬁ LU-decomposition case.
However, step/order changes requiring LU décomposition are.sufficiéntly

frequent to make the net gain substantial (See Tables 3 and 4 below).

2. We relax the stepsize selection strategy so.that a step in-
crease at order p is attempted whenever p steps have been taken with
constant stepsize, as compared to p + 2 steps in the original strategy
(See Réf. 10). We further permit step increase by ﬁp to a factor of
104 at all times (instead of only initially as in Ref. 10) except for

the first increase after a stepsize reduction. The risk of these
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modifications introducing unwanted error growth caused by too frequent

' stepsize char_lgesl’7"9’11

is expectéd.to bg small because: the order
geﬁerallyfis low due to the moderate accuracy requiréments;‘the toﬁal
number'of‘integratibn steps pér initial value probiém is on the aver-
agé very small; and the stepsize is.as a rule non—décreasing in each
initial value problem' (cf Ref. 1, p. 102 and Ref. 9, p; 133). In.our
test runs, fhese mbdifications weré found tb'redﬁce the averégé number
',of integrétioﬁ steps per initial value problem COﬁsiderably‘(See Table
3 below), mainly by uéing fewer steps in tﬁe initiél‘transients which
in generéllrestrict'the'starting stepsize to being several orders of

magnitude smaller than the interval of integfétion..

3. We modify the prediction—correction scheme to avoid intro-~
'ducing possibly harmful negative species mass fraction values4 by
rounding or truncation errors in the following way: Let zypr'bé the
predicted solution vector compﬁted by polyﬁomial extrabolation. Then
we use z? = (ylo,;,.,‘yNZ+1) as starting point fo; the éorrector iter-

ations, where

yio = max{ Yip -] 0}’ i =l$"-",NA+1’ ' . (3'7)

and subsequenﬁly adjust any negative compbnents occurring in y to zérq
aftgr each corfector iteratibn.‘ Wé»do, however, use the actual predicted
value}fn? when computing the accumulated corréctionvvector needed for the
local error estimate and for updating the Nordsieck métriX'after corrector

convergence. We note that, unlike the original scheme, this modified



-16-

corrector .procedure rno longer conserves iinear invarianfs of the solu-

tion, such as elément masses, within rounding error tolerance independent
of both local error and truncation error from solﬁing the corrector equa-
tions. However, such linear invariants are stili conserved to within the -

requested local error tolerance which, of course, is quite satisfactory.

COMPUTATIONAL RESULTS

Our test runs of the initiél-boundary value_problemé (2.1)~(2.6)
were performed with three different models of the chemical kinetics 6f
the gas mixtu;e. Table 1 shows the source references gsed for obtaining
the details of these models, together wiqh the number of specieskand re-

actions appearing in each model.

Table 1. Source references and dimensionality data for kinetics models
used in test runms.

Number of Number of Number of

Tesf case Kinetics model, references species, reacting reactions,
number : N species,NA M '
1 H, - Air' 20132 8 7 13
2 cu, - Air1821 19 18 56
3 cu, - air'?:?! 26 25 86

The entries of the last column of Table 1 assume that the formalism of

Eq. (3.1) has been extended so as to allow the sum of all speciés con-
N '

centrations, ZN+1 = 2 Zi, to appear as a third body in the reactions.
i=1 _

In the actual coding of Eq. (3.1) we include this extension by augmenting

the matrices V' and V" (which are stored row-wise in compact form) by
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identical (N + 1) 'th columms. We note that this extension is done
for the practical puréose of reducing computétional work and storage
requirements'énly, since such '"third body" reactions could equiv-
alently be split iﬁ;o N simpler reactions covered by the formﬁlism of
Eq. (3.1).
| V'Thevthermodynamic functions h (T) and Ep (T) =‘dh/dT were given -
as piecéwise polynomials in T as in Ref. 8, p. 32. The constant pressure
po‘was'chosen to bé 1.013- 107 dyn/cm2 (= 1 atm). The choiée of values
for the thermal conductivity A and the diffusion coefficients dl""’dn
is not.ctﬁcial for our reéults, and we simﬁly put d1 = ;.. = dn =d,
choosing the constants d (5 cmz/sec) and A (5.103 dyn/sec) so as to ob-
tain burning velocities{ species'concentration profiles, and flame thick~-
neéses roughly comparable to those in Ref. (13) and (20) in thé steady
state flame. The function G(t) in the boundary condition Eq. (2.6) for
the temperatﬁre was chosen to be:
T+ (T, —_T‘S) '.t/tr‘ » 0<t<t,
6(t) = o | (4.1)

T ’ s t>t
e r

with tr510-4 sec, TS = 300°K,’Te = 2400°K (for the H,-Air model) and

2

2700°K (for the CH,-Air models). Theé constant o was set to 200 cm_; in

4
-all cases. The boundary conditions to the right were given at L =1 cm

“and the step-sizes Ax = 5.10—3 cm,v At =2.5 °10_6 sec were found to

give sufficient accuracy for our purposes. At these stepsizes the bounds

|[w»;1.8, and At * || 8[|, < 0.6 hold in all test

b - Isylacz ae s,

cases, where SD,SH,and Scare the tridiagonal matrices in Eq. (2.9), (2.11),

and (2.13), respectively. The time-interval was 0<t <0.5msec in the

I-I2 - air case and 0 <t < 0.6 msec in the CH4 - air cases, correspohding
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roughly to three times the length of the flame ignition period. In all
cases, the local error bound for.the initial value problems, Eq. (2.7),
in the chemistry step was chosen to 6% 10-3, based on répeated runs
with successively decreasing € until visual con&érgence of graphs of

temperature, flow velocity, and species concentration profiles was

obtained. The norm of the local error is estimated in Ref. (10) by

: 9 NA+1 e, 2 ‘
| 1ocal error||“= g ) (—) - (4.2)
. P i=] Ymax, i

. . _ N
where Bp is a‘number dependent of the order p, e = (el,..., eNA+l) is

the difference between the corrected and predicted solution values, and

ymax,l ""’ymax,NA+1 are Weights to.ne chosen by the user. We updote

these weights after eaoh integration step in Eq. (3.1) to be the maximum
values of YisetesYyatl in any solution to Eq. (2.7), (3.2) computed since
t =0.

In Table 2, we list some of the main subalgorithms needed in
solving the initial value problem (2.7), (3.2).and show the CPU~times
required on a Digital VAX. 11/780 computer for executing each of these
once. |

Table 3 shows the average number of integration steps, function

- evaluations, and matrix handling operations per initial volue problem
performed in our runs of the three test cases. The entries in the "mod-
ified ODE solver" columns were obtained using the algorithm in Ref. 10
with the modifications described above. The en;rieo under "original ODE-
solver" are shown for comparison and were obtained using the original al-

gorithm of Ref. 10 with, however, the prediction—correcﬁionschemenmdified

\
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as described above. Our Attempts to use Ref. .10 without this modifica-
tion failed in all three cases at the chosen local error -tolerance be-
cause of introduction of negative mass fraction values leading eventu-

- ally to instability.

The entries in rows 7 and 8 of Table 4 are the average CPU-times
in ﬁillisecqndélper'meshpoint (iAx, iAt) needed for the chemistry step
and for ail o;her fractional steps, respectively. The‘entries in row 9
are the sums of the corresponding entries in rows 7 and 8 apd hence show
the averége total CPU-time required per meshpoint by the fractional step
algorithm, Rows 1-6 show a breakdown of the entries in row 7 into the
avérage CPU—cimes per meshpoint spent in the main subalgorithms of the
chemistry step. We remark that we actually applied the ODE-solver on
Eq. (2.7)'oniy if ]Tij - io | 2 0.5°K, i.e. only at meshpointé in and be-
hind the flgmefront, otherwise approximating the solution of Eq. (2.7) by
the constant initial.values Xij, Tijf The averages shown in Table_4»ére
' based on.the_subset éf meshpoints where the ODE-solver was applied
(roughly 15-25% of. all meshpoints in the strip .0<X<L, 0<t<tend in
all cases), an& the CPU-times of the other fractional steps have been

-normalized accordingly.

CONCLUDING REMARKS
In summary, Tables 3 and 4 indicaté the following results for
our test cases:’

1. a roughly 85% reduction of_the CPU time spent on Jacobian eval-

uations and matrix decompositions.
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2. a 20%-40% reduction'of the number of integratién»ﬁteps, counter-
acted, however, by perhaps 10-25% slower correcfor convergence
rate and more time-consuming backsolves, resulting in a net"
change of the CPU time spent on funétion evaluations and solution
of factorized linear systemé in the range —32 to + 12%.

3. up to 257% increase of the CPU fime spent in the ODE solver for

stepsize and order selection and other overhead.

The net effect éf‘these changes is a reduction of the overall
CPU time for the fractional step algorithm by 38%—53%, increasing with
the size of the chemicél kinetics‘model as the overhead for Jacobian |
evaluation and ﬁatrix decomposition grows dominant.

A large porﬁion of the compufétioﬁal work in the‘chemistry step
(See fabie 3) is caused by the initial rapid transientsIOCCufringAin the
solutionbof qu (2.7), (3.2) at each.heéhﬁoint. 'Thé introduction of
thesé transients is largely an artificiél by-product of the operator
splitting teéhnique andvindeed is the main price to be paid for the com-
putational.advantages of thié technique. It is not unreasbnable to ex-
pect, howeyer, that much of these transients could in fact be resolved
only crudely‘without adverse effects on the global>accuracy of thevsolu—
ﬁiOﬂ. Iﬁ particular, one might consider applying a 'numerically super-
stéble' integration formula like the implicit Euler method on Eq. (2.7),
(3.2) choosing the stepsize without regard to local error estimates in
the.initial steps. Some ptelimiﬁary comﬁutational experiments using the
above equations and kinetics modeis support this idea at least in part:

A constant stepsize predictor-corrector scheme related to the implicit
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Euier formula (and complemented with some ad hoc criteri; for accépting/
rejecting éolﬁtions to Eq. (2.7), (3.2) based}on their globél behaviér)
wa; found to give quite acceptable.global aCCuracy‘fér the H2-Aif médei

: (Case:l), when using in the steady-state flame only two integration steps,
two evaluations of £(z), three backsolves and no evaluations of J(y) per
meshpoint (cf. the corresponding data for the variabig step algorithm in
Table 3, Case l)f For the CH4-Air model, (Cases 2 and 3) bowever, suf-

ficient global accuracy was obtained only by choosing the constant step-

size too small to be competitive with the variable step technique.
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Table 2. CPU-times (in milliseconds) per execution of some algorithms
' needed ‘in the chemistry step. '

Case 1 »Case 2  Case 3

‘Evaluation of £(y) in Eq. (3.2), 2.7 9.2 13.8

2.7, (3.1) .

Evaluation of J(y) = 8f /3y 12.2 54.3 92.2
LU decomposition of I-0. h J(@y) ' 5.5 . 47.3 112

in Eq. (3.5) P

Solution of Eq. (3.5) using - ' 1.3 5.8 10.6

LU-factors : ' ’ ‘ :
Reduction of J(y) to Hessenberg 7.7 87.6 216

form as in Eq. (3.3) '

LU decomposiﬁion of I-o. hH 7 1.4 6.4 ‘ 12.3

in Eq. (3.6) P '

Solution of Eq. (3.6) using 1.8 9.4 18.0

LU-factors

Evaluation of h (T33),C  (T;7) and 1.2 2.8 46

C, in Eq. (2.2), (2.3),7(2.7) :

Evaluation of Dk (T J) and 2.2 10.0 15.4

kb (T, J) in Eq. (3 1)
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