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Abstract

The neurodegenerative disorder amyotrophic lateral sclerosis (ALS) is characterized by the 

progressive loss of upper and lower motor neurons, with pathological involvement of cerebral 

motor and extra-motor areas in a clinicopathological spectrum with frontotemporal dementia 

(FTD). A key unresolved issue is how the non-random distribution of pathology in ALS reflects 

differential network vulnerability, including molecular factors such as regional gene expression, or 

preferential spread of pathology via anatomical connections. A system of histopathological staging 

of ALS based on the regional burden of TDP-43 pathology observed in postmortem brains has 

been supported to some extent by analysis of distribution of in vivo structural MRI changes. In this 

paper, computational modeling using a Network Diffusion Model (NDM) was used to investigate 

whether a process of focal pathological ‘seeding’ followed by structural network-based spread 

recapitulated postmortem histopathological staging and, secondly, whether this had any correlation 
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to the pattern of expression of a panel of genes implicated in ALS across the healthy brain. 

Regionally parcellated T1-weighted MRI data from ALS patients (baseline n = 79) was studied in 

relation to a healthy control structural connectome and a database of associated regional cerebral 

gene expression. The NDM provided strong support for a structural network-based basis for 

regional pathological spread in ALS, but no simple relationship to the spatial distribution of ALS-

related genes in the healthy brain. Interestingly, OPTN gene was identified as a significant but a 

weaker non-NDM contributor within the network-gene interaction model (LASSO). Intriguingly, 

the critical seed regions for spread within the model were not within the primary motor cortex 

but basal ganglia, thalamus and insula, where NDM recapitulated aspects of the postmortem 
histopathological staging system. Within the ALS-FTD clinicopathological spectrum, non-primary 

motor structures may be among the earliest sites of cerebral pathology.

1. Introduction

Amyotrophic lateral sclerosis (ALS), the commonest phenotype of motor neuron disease, is 

a progressive and fatal neurodegenerative disorder with complex molecular underpinnings 

(Talbot et al., 2018). The disease is clinically characterized by the progressive loss of 

upper motor neurons in the primary motor cortex and corticospinal tract and lower motor 

neurons of the spinal cord and brainstem. However ALS also involves extra-motor cerebral 

systems, with clear pathological, genetic and clinical overlap with frontotemporal dementia 

(FTD) (Es et al., 2017), with the behavioral variant being most common. Advances in 

neuroimaging have revealed many aspects of pathogenesis across the ALS-FTD spectrum 

(Turner et al., 2013; Chiò et al., 2014), with increasing interest in its potential to deliver 

therapeutic outcome measures (Menke et al., 2017).

The pattern of clinical symptom spread in ALS (Ravits et al., 2007b; Turner et al., 2010) 

and the associated spinal cord pathology (Ravits and La Spada, 2009), is not random but 

is focal in onset and spreads contiguously. Nearly all cases of ALS and around 50% of 

FTD are associated with cytoplasmic neuronal and glial inclusions of aggregated 43 kDa 

transactive response DNA-binding protein, TDP-43 (Neumann et al., 2006). Postmortem 
histopathological classification has been interpreted as evidence of a stereotyped pattern of 

cerebral pathological involvement in ALS (Brettschneider et al., 2013). Several molecular 

mechanisms have been proposed to explain the apparent selective vulnerability of motor 

neurons. These include cell-autonomous factors, involving oxidative stress, excitotoxicity, 

and mitochondrial dysfunction (Turner et al., 2013) and non cell-autonomous factors 

involving cell-cell communication (e.g. glia (Philips and Rothstein, 2014)) or trans-neuronal 

transmission of aggregate-prone proteins through prion-like templating (Polymenidou and 

Cleveland, 2011; Riku, 2020), in which network connectivity might define the canonical 

pattern of spread (Seeley et al., 2009).

It is not yet clear how molecular vulnerability and network connectivity might combine in 

mediating regional patterns of pathology in ALS. Like other neurodegenerative diseases, 

the spatial topography of ALS histopathology is not related in a simple way to regional 

expression of genes implicated in pathogenesis (Fusco et al., 1999; Jackson, 2014; 

Subramaniam, 2019). A high level of clinical and molecular heterogeneity in the ALS-FTD 
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syndrome meanwhile hamper the ability to map its course in a precise manner to facilitate 

effective therapeutic trials (Turner and Swash, 2015).

In this paper we address these issues using computational modeling, gene expression 

analysis and large observational imaging studies in ALS, combined with prior 

histopathological staging data. We interrogate whether focal seeding followed by structural 

network-based spread recapitulate patterns of ALS pathology by employing a Network 

Diffusion Model (NDM) to map neurodegenerative topography (Raj et al., 2012). This 

model was successful in recapitulating spatial patterns of diverse proteinopathies including 

Alzheimer’s (Raj et al., 2015), frontotemporal dementia (Raj et al., 2012), Parkinson’s 

disease (Freeze et al., 2018, 2019; Pandya et al., 2019), Huntington’s disease (Poudel et 

al., 2019), Traumatic brain injury (Poudel et al., 2020) and progressive supranuclear palsy 

(Pandya et al., 2017). We also include spatial transcriptomic analysis in this framework, to 

understand the role of innate regional vulnerability in ALS.

2. Methods

2.1. Participants

Data used in this study were obtained after informed consent from participants in the 

longitudinal Oxford Study for Biomarkers in Motor Neuron Disease (‘BioMOx’) cohort 

based on referrals to a large tertiary ALS clinic and clinical assessment involving two 

experienced neurologists (KT, MRT). For the purposes of this group-level analysis, a 

diagnosis of ALS included those within all El Escorial clinical diagnostic categories at 

baseline (including those with pure upper or lower motor neuron syndromes clinically) who 

also showed clear progression of motor involvement in subsequent follow-up. Data were 

available for 79 such ALS participants (mean age at baseline 61 ± 11 years, male:female 2:1, 

mean duration from symptom onset 49 ± 57 months). Of these, 48 were also able to undergo 

repeat MRI every 6 months to a maximum of 5 visits in total (cohort overlaps with (Menke 

et al., 2018)). One baseline participant initially labelled as ALS was removed from the study 

cohort later due to failure to progress. MRI and cognitive data were obtained for thirty-nine 

age matched normal during a single visit (cohort overlaps with (Proudfoot et al., 2015)). 

All ALS participants were apparently sporadic (i.e. no family history of ALS or FTD). The 

study predated routine genetic testing in the clinic, but subsequent experience predicts this 

would have identified up to 3 apparently sporadic ALS gene mutation carriers, which is not 

felt to be material to the outcome. Demographic and clinical details of the participants are 

shown in Table SI – 1.

2.2. Image acquisition and regional volumetric analysis

Images were acquired using a 3T Siemens Trio scanner (Siemens AG) with a 12-channel 

head coil at the Oxford center for Clinical Magnetic Resonance (OCMR). A high resolution 

3D MP-RAGE T1-weighted sequence was obtained for each subject with the following 

parameters: 192 axial slices; repetition and echo time (TR/TE) = 2040/4.7 ms, flip angle 8°, 

1 × 1 × 1 mm3 voxel size, and 6 min acquisition time.
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MRI images were mapped to Freesurfer’s Desikan-Killany atlas. 68 cortical and 18 

subcortical volumes from these MRI images were extracted using FreeSurfer software with 

a cross-sectional pipeline for both the cohorts. Regional volumes were normalized by total 

intracranial volume generated by FreeSurfer to correct for head size. Image processing steps 

were visually inspected for white–gray matter boundary and skull-stripping errors to ensure 

they had been carried out correctly. 6 subjects that rated either ‘partial’ or ‘fail’ due to 

FreeSurfer failure or insufficient tissue contrast were excluded from analysis. A vector of 

regional atrophy was created by using a two tailed t-test between ALS and normal mean 

ICV corrected regional volumes such that tALS = tALS(i) ∣ i ∈ [1, N]  (N = 86). The t-statistic 

was converted to the natural positive range between 0 and 1 using the logistic transform 

given by Φ = 1/(1 + exp − tALS − a0 / /σ/std tALS , where, σ = 2 and a0 = 0.5* σ (Raj et al., 

2015). This transformation maps t-values such that they asymptotically approach 0 as tALS

approaches −∞ and 1 as tALS approaches +∞. The parameter σ controls the steepness of the 

logistic function. These atrophy measures were then used to test the propagation modeling 

analyses using NDM.

2.3. A healthy structural connectome

Axial T1-weighted structural MRI scans using fast spoiled gradientecho sequence(TE = 

1.5 ms, TR = 6.3 ms, TI = 400 ms, 15° flip angle, 230 × 230 × 156 isotropic 1 mm 

voxels) and high angular resolution diffusion tensor imaging data (DTI) (55 directions, 

b = 1000 s/mm2, 72 1.8-mm-thick interleaved slices, 0.8594 mm × 0.8594 mm planar 

resolution) were acquired on a 3T GE Signa EXCITE scanner from fully consented 73 

young healthy volunteers under a previous study approved by Weill Cornell’s institutional 

review board (Kuceyeski et al., 2013). Thus, the cohort used to extract a healthy structural 

connectome was different from the 39 age-matched controls described earlier, that was used 

for determining regional atrophy. Probabilistic tractography was performed on the diffusion 

MRI data after seeding each voxel at the interface of the WM and GM boundary. The 

resulting streamlines were binned into subsets corresponding to every pair of GM regions 

given by the parcellation scheme described above. The anatomical connection strength 

(ACS), a measure of connectivity, was used in this paper (Iturria-Medina et al., 2007). 

ACS is defined as the weighted sum of the streamlines found to exist between any pair of 

gray matter structures, weighted by each streamline’s probability score. The ACS is further 

normalized by a scaling factor equaling to the total sum of all streamlines. We define ci, j, 

as the resulting connection strength between ith and jth GM regions. We refer to the matrix 

collecting all pair-wise entries as the connectivity matrix C = ci, j . Here the ACS is used as 

an approximation of the cross-sectional area of all axonal projections connecting two regions 

– a plausible choice given our goal of modeling the amount of pathology transmission 

conducted through these projections. Connections are assumed to be bidirectional since 

directionality is not deducible from DTI tractography data.

2.4. NDM for ALS pathology spread

The hypothetical spread of disease-causing proteinopathy into the network represented by 

the connectivity matrix C over time t can be captured by starting a diffusion process from 

a ”seed ” region. Since we do not know a priori which region is the likely seed, we select 
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every brain region as the seed region, one at a time (Raj et al., 2012). The overall strategy is 

to simulate a diffusion process on the connectivity graph for many time points, starting from 

each seed location, while recording its correlation with measured regional atrophy maps.

We modeled ALS progression as a diffusion process of the pathology load x on the graph 

C over model time t. From (Raj et al., 2012) the transmission of pathology from region 

1 to region 2 is represented as dx1
dt = βc1, 2 x2 − x1  where x1 and x2 denote the magnitude of 

disease-causing pathology in each region, and β is a global diffusivity constant. Denoting 

pathology from all regions i into a vector x(t) = xi(t) , the above equation extends to 

become:

dx(t)
dt = − βHx(t) (1)

where H is the well-known graph Laplacian

H = I − D− 1
2CD− 1

2 (2)

where D is a diagonal matrix whose diagonal entries contain the degree of each node, 

degree being defined as the sum of weighted connections emanating from the node. Note, 

in order to accommodate regions having widely different out-degrees, we used the degree-

normalized version of the Laplacian matrix (Raj et al., 2015). Eq. 1 admits a closed-form 

solution x(t) = e−βHtx0 where x0 is the initial pattern of the disease process at t = 0, and 

we call term e−βHt the diffusion kernel since it acts essentially as a spatial and temporal 

blurring operator on x0. The unit of the model’s diffusion time t is arbitrary (au). The 

exact value of global diffusivity β is unknown, hence we chose a value that would roughly 

span ALS disease progression (3–10 years). Specifically, we chose a β such that the peak 

correlation of the NDM against empirical atrophy will occur, over all seeded regions, in the 

range tmax ∈ [3, 10] years. We ran NDM for multiple β values that would satisfy above criteria. 

In our experimentation, we achieved this for β = 1.

The NDM is described by pathology x(t) and our hypothesis is that it should correlate with 

empirical atrophy Φ. Pearson correlation strength (R statistic) and p-values were calculated 

between the (static) empirical atrophy measured on the ALS group Φ and x(t) at all model 

timepoints t.

Repeated seeding—The NDM was run for all 86 seed regions, each time starting from 

a different ROI, such that x0 is a unit vector with 1 at the index of the seed and zeros at 

all other regions. We observed that the atrophy pattern in our group was generally bilateral, 

hence for repeated seeding experiments, we chose to seed bilaterally, so that two entries in 

the “unit ” vector were assigned 1. This was repeated for each region in turn, and the NDM-

predicted pathology pattern was calculated. The Pearson’s correlation coefficient R was 

computed between each predicted pathology vector xi(t) seeded at region i and the empirical 

pathology vector Φ over all model timepoints t, giving Ri(t). “R-t curves” were represented 

Pandya et al. Page 5

Neuroimage. Author manuscript; available in PMC 2023 December 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by plotting these Ri(t) values on common axis. Rmax
i  was recorded as the maximum value 

from each Ri(t), which reflected the likelihood of i-th region as the true region of pathology 

onset. In this study we included seed regions in computing Rmax. In addition, we re-ran 

NDM with ACS connectome and excluded seed regions in computing Rmax, and also with 

connectome derived from human connectome project (HCP) and Euclidean distance for 

further validation.

Histopathological staging.—We tested whether NDM recapitulated the postmortem 
histopathological staging published in ALS (Brettschneider et al., 2013), assigning each 

of the 86 regions available in our atlas an ALS stage from 1 to 4. Regions that were 

not part of this staging schema were arbitrarily assigned stage 5, a category that denotes 

the least vulnerable regions X. In our study we largely followed the staging scheme from 

(Brettschneider et al., 2013) rather than (Schmidt et al., 2016), but with a few changes in 

order to achieve a more graded mapping of TDP-43 implicated regions. Since we wanted 

to map all 86 regions of the Desikan-Killany atlas, we used (Brettschneider et al., 2013) to 

assign stages to most prefrontal and temporal areas, while (Schmidt et al., 2016) did a much 

less granular mapping (Table 1 in (Schmidt et al., 2016)). Those regions that were differently 

mapped between our study and (Schmidt et al., 2016) are mainly in frontal and temporal 

areas, and reflect our understanding from Brettschneider and additional inputs from the 

wider literature (Braak et al., 2013, 2017; Cykowski et al., 2014; Braak and Del Tredici, 

2018; Kawakami et al., 2019).

Spatiotemporal evolution from most likely seed regions.—The top five regions i
with the highest Rmax were chosen to qualify as best seeds, along with the precentral gyrus 

which is considered a key early site of ALS. We tabulated a similar list of top 5 seed 

regions that gave the highest Pearson correlation (RTDP43) between the NDM and the ALS 

TDP-43 pathology staging data. An average of these two Pearson correlation values (Ravg) 

was computed from both empirical atrophy and TDP-43 staging after taking an absolute of 

RTDP43 values. The regions with the highest Ravg were considered as the best seeds overall and 

were used as seeding locations for further analysis (see Results).

Regional gene expression analysis.—Prominent genes linked to familial ALS were 

(n = 25) identified from various studies (Robberecht and Eykens, 2015; Smith et al., 2017; 

Vajda et al., 2017; Chia et al., 2018; Karch et al., 2018; Nicolas et al., 2018) and mapped 

to 86 regions in the Desikan-Killiany atlas as in (Freeze et al., 2018). Additionally, genes in 

which pathogenic variants have been associated with TDP-43 pathology (n = 26) (Scotter et 

al., 2015) were also mapped to 86 regions as above. A list of all the genes used in this study 

can be found in the supplementary data. For each gene, data were obtained from six-post 

mortem brains provided by the human Allen Brain Atlas (AHBA) (Hawrylycz et al., 2012). 

Since only two of the six brains included samples from the right hemisphere, analyses were 

conducted from microarray gene expressions obtained from these two donors that had full 

spatial coverage. We used abagen toolbox (Markello et al., 2021) to reliably and robustly 

process and map gene expressions to the 86 regions of the Desikan-Killiany atlas.
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Briefly, the regional microarray expression data were obtained from 2 postmortem brains 

provided by the AHBA. Data were processed with the abagen toolbox (version 0.1.3) using 

a 86-region volumetric atlas in MNI space. First, microarray probes were reannotated using 

data provided by (Arnatkeviciute et al., 2019) instead of the default probe information 

available with the AHBA; probes not matched to a valid Entrez ID were discarded. Next, 

probes were filtered based on their expression intensity relative to background noise, such 

that probes with intensity less than the background in >=50.00% of samples across donors 

were discarded, yielding 30,534 probes. When multiple probes indexed the expression 

of the same gene, we selected and used the probe with the most consistent pattern of 

regional variation across donors (i.e., differential stability). The MNI coordinates of tissue 

samples were updated to those generated via non-linear registration using the Advanced 

Normalization Tools. Samples were assigned to brain regions in the provided atlas if 

their MNI coordinates were within 2 mm of a given parcel. To reduce the potential 

for misassignment, sample-to-region matching was constrained by hemisphere and gross 

structural divisions (i.e., cortex, subcortex/brainstem, and cerebellum, such that e.g., a 

sample in the left cortex could only be assigned to an atlas parcel in the left cortex). 

If a brain region was not assigned a tissue sample based on the above procedure, every 

voxel in the region was mapped to the nearest tissue sample from the donor in order to 

generate a dense, interpolated expression map. The average of these expression values was 

taken across all voxels in the region, weighted by the distance between each voxel and the 

sample mapped to it, in order to obtain an estimate of the parcellated expression values 

for the missing region. Inter-subject variation was addressed by normalizing tissue sample 

expression values across genes using a robust sigmoid function. Normalized expression 

values were then rescaled to the unit interval. Gene expression values were then normalized 

across tissue samples using an identical procedure. All available tissue samples were used 

in the normalization process regardless of whether they were matched to a brain region; 

however, normalization was performed separately for samples in distinct structural classes 

(i.e., cortex, subcortex/brainstem, cerebellum). Tissue samples not matched to a brain 

region were discarded after normalization. Samples assigned to the same brain region were 

averaged separately for each donor and then across donors, yielding a regional expression 

matrix with 86 rows, corresponding to brain regions, and 15,329 columns, corresponding to 

the retained genes.

2.5. Statistical analyses

Throughout this paper the primary test statistic used to evaluate all models was Pearson’s 

correlation strength R. In each case the dependent variable was the vector of regional 

atrophy or ALS staging, while the dependent variables were the NDM-predicted regional 

vector, and/or regional gene expression. As described above, R was computed at each model 

time t and the highest value was chosen as the model evidence.

For the gene results, genes for each category were corrected for multiple comparisons 

using Bonferroni method, with thresholded pcorr = 0.05/25 = 0.002 for ALS-related genes 

and thresholded pcorr = 0.05/22 = 0.0023 for TDP-43 specific genes. Correlation coefficients 

with p-values less than pcorr were considered statistically significant. Next, L1 regularized 

regression model was created containing NDM from the seed region at tmax xt max
seed  and regional 
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genetic expression profiles. Where, tmax is the time at which Rmax is achieved between the 

predicted pathology and the empirical pathology for each region from the repeated seeding. 

Leave-one-out cross-validation was performed for each model by setting k to total number 

of samples across a range of values for the tuning parameter lambda (λ) using the Matlab 

script ‘lasso’. These mapped genes and xt max
seed  were then linearly correlated with the atrophy 

using Matlab’s ‘fitlm’ multiple linear regression script to achieve significant predictors for 

atrophy. Predictors for each lasso were corrected for multiple comparisons using Bonferroni 

method, with thresholded pcorr = 0.05/(1 + 25 + 22) = 0.0010 for xt max
seed , ALS-related genes, and 

TDP-43 specific genes. Correlation coefficients with p-values less than pcorr were considered 

statistically significant.

Random scrambling.—In order to build a null distribution for assigning significance to 

the NDM, we performed two levels of randomization experiments. 1) We ran the NDM on 

2000 randomly scrambled versions of the connectivity matrix C. C was scrambled using 

a symmetric transformation of the network’s nodes by randomly permuting entire rows 

and columns, and the NDM was evaluated for each shuffled network after bilateral Insula 

(In) seeding. This scrambling procedure maintains the edge and node statistics of the true 

connectivity C. The NDM evaluated on these 2000 randomly scrambled networks therefore 

constitute null or reference models which supplied significance values to results of the true 

model. 2) We ran the NDM on 2000 randomly scrambled ALS atrophy vector. Atrophy 

values in tnorm vector were randomly assigned amongst the 86 cerebral regions with 2000 

different permutations. This scrambling method maintained the true connectivity C but 

replaced true regional atrophy pattern with a random distribution of atrophy.

2.6. Data availability

All data used in this study will be made available upon reasonable request and relevant code 

will be uploaded to https://github.com/Raj-Lab-UCSF repository. Oxford’s Wellcome center 

for Integrative Neuroimaging has an inherent commitment to data-sharing. To get access 

to the data and comply with the research ethics committee approval an application to the 

corresponding author will be required so that the precise geographical extent of sharing is 

known.

3. Results

3.1. Spatial distribution of ALS atrophy and repeated seeding of the NDM

Fig. 1A shows glass-brain (LoCastro et al., 2014; Marinescu et al., 2019) illustrations of 

spatial distribution of ALS atrophy from our cross-sectional cohort which is consistent with 

progression of ALS pathology (Kassubek et al., 2005; Grosskreutz et al., 2006; Mezzapesa 

et al., 2007; Agosta et al., 2010; Westeneng et al., 2015). Severity of disease in each region 

is proportional to the t-statistic of ALS atrophy after logistic transform, where color towards 

red show increased severity. Table SI – 2 shows empirical atrophy values of top 20 regions 

averaged across both the hemispheres.

Each region was computationally seeded in succession and the NDM evolved over model 

time t on the healthy connectome C. The spatial distribution of Rmax, which is indicative of 
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the likelihood of each region as a seed is depicted (Fig. 1B). Fig. 1C and Fig. 1D shows the 

distribution of empirical atrophy and Rmax for each of these 86 regions alongside and a scatter 

plot respectively, which indicates that the NDM-derived seeding propensity value (Rmax) does 

not simply reproduce the regions displaying the highest atrophy but instead reflects the 

consequence of network transmission starting from that region.

Fig. 1E shows the R-t curve revealing spread of Rmax corresponding to the best fit between 

empirical data and the NDM seeded at the ith region (Eq. 2). For each region, the R-t curve 

would yield an intermediate peak in R, resembling the best match between the NDM and 

empirical data, and then after diffusing uniformly with decreasing resemblance between 

the actual data and the NDM. Table SI 3 shows top 20 regions with maximum Pearson 

correlation strength for each region seeded in succession. We show four sets of results: 

a) NDM is evaluated on our chosen ACS connectome, and the seed region is included 

in the calculation of Pearson correlation (NDMACS
Incl Seeds); b) NDM is evaluated on the ACS 

connectome, but seed region is excluded from correlation calculation (NDMACS
Excl Seeds); c) 

NDM is evaluated on an alternative HCP connectome (NDMHCP); and d) NDM is evaluated 

on a distance graph whose edges are monotonically decreasing function of the Euclidean 

distance between region centroids (NDMEuc Dist). Basal ganglia structures and the insula were 

among the top best seed regions for predicting ALS atrophy (Table SI – 3 - NDMACS
Incl Seeds), 

with the insula serving as the most likely seed region for ALS with the highest Ravg as 

seen in Table 1. Table SI – 3 - NDMACS
Excl Seeds shows Rmax resulting from seed exclusion which 

are either equal to or higher than the previous ones, suggesting that model’s fitting is not 

overly influenced by the seed region’s atrophy. Repeated seeding when replicated with HCP 

connectome resulted in similar Pearson correlation strength between different seed regions 

(Table SI – 3 - NDMHCP). The R values are generally higher than with ACS, albeit with 

lower variability between seeding sites. The order of seeding sites is generally consonant 

with the ACS results, with thalamus (Th), insula and striatum being prominent in both. 

When the model is simulation on the Euclidean distance graph (Table SI – 3 - NDMEuc Dist), 

the resulting R values are generally much lower than those from connectivity graphs (ACS 

or HCP). Thus, the evidence for proximity-based spread of ALS pathology is not as strong 

as evidence for spread on the connectivity graph.

To test whether the above results on group regional data and generic ALS staging data 

are also applicable to individual ALS subjects, we also ran NDM on ALS individuals 

and calculated maximum Pearson’s R after seeding each of 43 bilateral ROIs for each 

subject. Peak R is achieved by frontal, parietal, temporal and subcortical regions, with 

frontal and subcortical regions achieving Rmax > 0.4 from most subjects (Fig. 1F). Thus, 

there is considerable inter-subject heterogeneity in seeding, while at the group level there 

is a convergence of the likely seeds in frontoinsular and basal ganglia regions. In addition, 

we show distribution of seed likelihood in individual subjects when NDM is ran from a 

single seed Fig. 2A and when ran from everyone’s best seeds Fig. 2B. We selected insula 

as a single seed given its obvious choice from our group level approach. Maximum R 

of 0.4642 was achieved when NDM was ran from insula seeding for individual subjects. 

Maximum Pearson’s R obtained after seeding each of 43 bilateral ROI’s for each subject 

were treated as best seeds. Maximum R of 0.5789 was obtained when NDM was ran from 
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best seeds from the individual subjects. We further correlated Rmax obtained by the NDM 

fitting of individual subjects as described above, using both individual seeding and insula 

seeding with two ALS-specific clinical scores: UMN and ALSFRS clinical scores. These 

correlations are shown in Table 2.

3.2. Comparison with histopathological staging

Table 3 shows ALS staging for TDP-43 pathology in each region. As shown in Fig. 3 

MRI atrophy and ALS staging are not highly correlated (R = −0.27), hence we wished to 

assess whether our model is also able to recapitulate postmortem histopathological staging. 

Therefore, the most likely seeding location for NDM was determined based on criteria 

that worked best for both atrophy and histopathological staging. Based on this criterion, 

the insula was selected as the best seed and used to play out NDM for all subsequent 

analyses (Table 1). Empirical atrophy, xt max
In , and staging maps are shown in Fig. 3A, 3B, 

and 3C respectively. Fig. 3B shows the distribution of predicted atrophy as determined 

by xt max
In . Pathology severity in each region is proportional to the color gradient. Regions 

with maximum severity as indicated by the NDM corresponded to regions in the more 

advanced histopathological stages, and is additionally statistically backed up by Fig. 3D,E. 

Given that seeding from the thalamus consistently produced the best R against empirical 

data (Fig. 1E, Table SI – 3), results were also obtained from xt max
Tℎ  (Figure SI – 1). This 

demonstrated bilateral volume loss mainly occurring in regions corresponding to advanced 

histopathological staging.

3.3. Spatiotemporal evolution of ALS atrophy

The spatiotemporal evolution of ALS atrophy as recapitulated by network diffusion and 

evolved from the insula at model times t = 2, 4, 6 (au) is shown in Fig. 4. The evolution 

of network diffusion process seeded at the insula starts at early stage (t = 2) through 

mature stage (t = 6), where the maximum correspondence of NDM to empirical data 

occurred. Here, time is arbitrary, hence we have used “au” as the unit of time for 

illustrative purpose only. At the initial stage, the disease involves subcortical and frontal 

regions, followed by motor regions, and finally showing widespread involvement of extra-

motor and cortical regions. A linear positive association between empirical atrophy and 

predicted atrophy R = 0.45, pcorr < 5.8 × 10−4  as represented by the NDM at model times 

t = 2, 4, 6 (au) was demonstrated (Fig. 4B). A linear association was found between the 

histopathological staging and the NDM at model times t = 2, 4, 6 (au) (Fig. 4C), with 

a negative correlation between the predicted atrophy and stage, which as model time 

progresses, shows increased correlation between the NDM prediction from insula-seeding 

and each stage R = − 0.66, pcorr < 5.8 × 10−4 . Earlier stages of histopathological staging 

show more atrophy compared to later stages, hence NDM predicted atrophy is negatively 

correlated with the histopathological stages at a given timepoint. Similarly, we also explored 

spatiotemporal evolution from thalamic-seeding at model times t = 3, 5, 8 (au) (Figure SI – 

2). With thalamic-seeding, the predicted disease course involved mainly subcortical regions 

at the initial stage, followed by diffusion into the frontal and motor regions. P-values of 
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correlation between empirical and predicted atrophy for all model times are shown in Table 

SI – 4.

3.4. Relationship of atrophy to regional ALS risk gene expression

The linear relationship between different categories of genes (listed in Table SI – 5) and 

empirical atrophy was studied (Fig. 5). Fig. 5A shows distribution of empirical atrophy 

for reference. Fig. 5B and 5C show scatter plots of empirical atrophy versus averages 

of ALS-related genes, and TDP-43 specific genes respectively. No association was found 

between the average of ALS-related genes and TDP-43 specific genes with empirical 

atrophy. Further, no association was found between atrophy and TARTDP gene itself (Fig. 

5D), which codes for TDP-43. Strong association with atrophy was found for a specific 

ALS-related and TDP- 43 specific gene: OPTN (R = 0.36) (Fig. 5E). The OPTN protein is 

a well- known etiological factor in ALS (Maruyama et al., 2010; Maruyama and Kawakami, 

2013; Toth and Atkin, 2018; Feng et al., 2019). No other gene was significantly (after 

multiple comparisons correction) associated with empirical atrophy. Fig. 5F, 5G, 5H, and 5I 

show local distribution of average of ALS-related genes, average of TDP-43 specific genes, 

TARDBP, and OPTN, respectively. Table SI – 5 shows correlations of ALS-related genes, 

and their PCA vs. empirical atrophy (to the left) and correlations of TDP-43 specific genes 

and their PCA vs. empirical atrophy (to the right). These results suggest that genes alone do 

not contribute to regional vulnerability, and that linear association between atrophy and gene 

expression profiles are complex and cannot be explained by univariate analysis of genes 

alone.

3.5. NDM and regional ALS risk gene expression as joint predictors of atrophy

Although most ALS-implicated genes do not bear an association with regional atrophy 

directly, it is possible that they may contribute to regional atrophy along with network 

transmission of pathology. To test this, we used cross-validated L1 regularized regression 

(LASSO) feature selection to identify highly informative predictors of ALS pathology from 

the NDM and ALS-related genes, and those genes that might result in TDP-43 misfolding 

via downstream events. The model included the NDM predictor xtmax
In , 25 ALS-related genes, 

and 22 TDP-43 specific genes (Fig. 6). Two predictors survived lowest MSE plus one 

standard deviation (Lambda1SE) in our model, those highlighted and colored as seen in 

Fig. 6B, and were significant from multiple linear regression: xt max
In * * and OPTN* with 

insula-seeding, suggesting that the NDM is the best predictor of ALS atrophy, and that only 

few genes in addition to the NDM contribute to the spatial pattern of disease, but in a weaker 

capacity.

Given that thalamic-seeding achieved the highest R from empirical data, LASSO analysis 

was repeated with NDM from thalamic-seeding using xt max
Tℎ  and different categories of genes. 

With thalamic-seeding of NDM, two predictors survived: xtmax
Tℎ * * and OPTN*, (Figure SI 

– 3). However, again genes were far less significant contributors than NDM. Interestingly, 

the same gene most associated with regional atrophy – OPTN also survived LASSO with 

both insula and thalamus seeding. All other genes showed non-significant association with 

regional atrophy independent from NDM, suggesting that they do not significantly govern 

ALS topography. Interestingly, this is true even of those genes that are highly implicated in 
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ALS or involved with ALS pathology, e.g. TARDBP, MAPT or FUS. It may be that some of 

these genes are either collinear with NDM, or similar to OPTN.

3.6. NDM evaluation against alternate modeling of network connectivity and ALS atrophy

To test the predictive power of NDM against alternate network models, we evaluated its 

specificity to ALS atrophy and to the connectome upon which it evolves. The distribution of 

Pearson’s R over 2000 randomly simulated connectome matrices and atrophy vectors from 

insula and thalamic-seeding are shown in Fig. 7 and Figure SI – 4 respectively. Random 

model’s R was much lower than the maximum R of 0.45 from insula-seeding and 0.47 

from thalamic-seeding which were achieved by the true model; statistically outside the 95% 

confidence interval, or p < 0.05. Hence, the reported insula and thalamic-seeded NDM 

outperforms all simulated models’ prediction and is unlikely to be explained by chance.

4. Discussion

Using a quantitative network-based model of pathology spread, this study sought to explore 

selective vulnerability and pathological progression in the ALS brain. We tested whether, 

setting each region of our brain atlas as the initiation site, the subsequent network spread 

modeled by the NDM correctly and significantly recapitulates cross-sectional patterns of 

regional atrophy and postmortem pathology staging. We also incorporated a novel aspect 

involving the regional expression of ALS-related genes in the healthy brain. The results 

support structural network-based transmission in relation to regional atrophy, but with no 

consistent relationship to the spatial distribution of the regional expression of ALS-related 

genes. The identification of a specific gene associated significantly with atrophy – OPTN, 

within the network-gene interaction model (LASSO) using both insula- and thalamus-

seeding, was a weaker but significant contributor in comparison to the NDM, and requires 

further dedicated study of this ALS genetic sub-group. No other gene showed significant 

association independently of NDM, including those involved in underlying pathology, but 

this may reflect the use of healthy brain regional expression data.

Intriguingly, the critical seed regions for spread within the model were not within the 

primary motor cortex but in basal ganglia, thalamus and insula. NDM applied to these 

seed regions also recapitulated the postmortem histopathological staging system. Within a 

continuous ALS-FTD clinicopathological spectrum, these non-primary motor structures may 

be the sites of some of the earliest cerebral pathology.

4.1. Stereotyped models of anatomical spread in ALS

The focality of initial symptom onset and the non-random, typically regionally contiguous 

spread of symptoms in ALS was shown to be mirrored, for limb involvement at least, 

by spinal cord histopathology (Ravits et al., 2007a,b). These data were used to infer 

a theoretical model of simultaneous cerebral focal onset and spread (Ravits and La 

Spada, 2009), but remain unproven. The most consistent regions of cerebral pathological 

involvement in ALS have been the corticospinal tract and corpus callosum (Filippini et al., 

2010; Müller et al., 2016), but with wider extra-motor involvement at baseline and a variable 

extent of both gray and white matter changes in longitudinal studies (Menke et al., 2014).
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Postmortem studies defined a variably overlapping extent of TDP-43 pathology, arbitrarily 

divided into four “stages”, with presumed but as yet unproven sequential trans-axonal 

progression in vivo (Brettschneider et al., 2013). In that model initial lesions were said 

to develop in the agranular motor cortex, in the bulbar and spinal somatomotor neurons, 

and the brainstem motor nuclei (stage 1). The next affected regions were the prefrontal 

neocortex, the brainstem reticular formation, the pre-cerebellar nuclei, and the red nucleus 

(stage 2), then striatum and into the prefrontal/postcentral cortices (stage 3), finally 

involving anteromedial portions of the temporal lobe and the hippocampus (stage 4). This 

pathological staging has been supported by the same group in analysis of cross-sectional in 

vivo MRI data (Gorges et al., 2018).

4.2. Role of network transmission in ALS

A plausible explanation for these patterns of progression may be trans-neuronal transmission 

of underlying pathology, which has been hypothesized in other neurodegenerative disorders 

including Alzheimer’s Disease, Frontotemporal Dementia (FTD), Parkinson’s Disease, 

Huntington’s Disease and Creutzfeldt–Jakob disease (Spillantini et al., 1998; Lee et al., 

2001; Neumann et al., 2006; Hansen et al., 2011; Herrera et al., 2011; Jack and Holtzman, 

2013; Jucker and Walker, 2013; Walker et al., 2013; Maniecka and Polymenidou, 2015; 

Freeze et al., 2020). Concepts of seeding and self-templating of aberrant, aggregate-prone 

proteins have extended to ALS (Polymenidou and Cleveland, 2011; Meier et al., 2020), with 

a similar hypothesis of trans-neuronal transmission of pathogenic proteins between cells 

(Schmidt et al., 2016; Subramaniam, 2019). These emerging concepts in ALS and FTD 

were comprehensively reviewed recently (Riku, 2020). Broader concepts of structural and 

functional networks in health have been invoked for defining patterns of neurodegeneration 

(Seeley et al., 2009). MRI studies in ALS have supported the concept that structural 

connectivity mediates the spatial and temporal evolution of ALS atrophy and leads to 

network disintegration (Verstraete et al., 2011, 2014; Schmidt et al., 2016; Bede et al., 2018; 

Törnquist et al., 2018; Meier et al., 2020).

The present study did not seek to investigate the question of whether structural connectivity 

networks themselves are being damaged by the disease process, but whether they might 

plausibly serve as conduits for regionally-preferential pathological transmission. We also 

explored alternate models of spread, principally whether proximity-based spread is capable 

of fitting empirical data – a widely assumed hypothesis. We found that the proximity model 

is not as well supported as the connectome-based model of spread.

A previous modeling study used a Gaussian resampling of the structural connectome 

and a random walker applied to the connectivity matrix directly to predict ALS disease 

progression (Meier et al., 2020). We chose not to impose any such transformation of the 

connectivity data and the NDM employed the graph Laplacian, which is an analytically 

closed form solution. In our study we allowed every possible region to serve as a potential 

starting point of the NDM as a regionally unbiased approach. Therefore our study used 

focal seeding sites per simulation, in comparison to using the entire histopathological stage 

I (Meier et al., 2020). Finally, and most importantly, our use of an atrophy measure of 

impairment from morphometric analysis, rather than a count of altered connections from 
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each graph node, is considered a more direct measure of neuronal loss, whereas the use of 

network alteration is considered a measure of loss of white matter projections.

4.3. Insula, basal ganglia and thalamus as potential seeding sites in ALS

The critical seed regions for widespread pathological spread within our model were not 

in the motor cortex but in basal ganglia, thalamus and insula. Furthermore, NDM applied 

to these seed regions recapitulated the postmortem TDP43-based histopathological staging 

scheme. These brain regions are well connected with prominent cortical areas undergoing 

atrophy in ALS (Bede et al., 2018). Basal ganglia involvement in ALS has been increasingly 

recognized (Bede et al., 2013; Riku, 2020) and the thalamus in particular has been shown 

to reflect the wider extent of cortical involvement in ALS (Chipika et al., 2020), notably in 

relation to the longitudinal spread of frontotemporal involvement (Tu et al., 2018).

A speculative interpretation of our results is that such sites may be common ‘anchors’ 

for what is a continuous ALS-FTD spectrum; see e.g. a recent review (Riku, 2020). The 

frontoinsula region appears to be one of the more selectively vulnerable and perhaps earliest 

sites of pathology in behavioral variant FTD, from which large von Economo neurons are 

prominently lost (Seeley et al., 2008; Kim et al., 2012). Similarly, the striatum is a site 

of early and prominent atrophy in bvFTD (Halabi et al.). Pathology in these non-primary 

motor deep gray matter structures may progress into either predominantly motor areas in 

ALS patients, or frontotemporal regions in FTD. Carriers of the intronic hexanucleotide 

expansion in C9orf72, the commonest inherited form of both ALS and FTD, tend to 

dichotomize into a phenotype with a predominance of one or other condition, even within 

the same pedigree (Mahoney et al., 2012), and the application of the methodology to a large 

cohort of such individuals might strengthen the hypothesis.

4.4. Limitations and future directions

The NDM is a first-order, linear model of diffusive spread that assumes that the 

structural connectivity network remains unchanged during disease course. Although all 

neurodegenerative diseases lead to aberrant structural connectivity, in practice normative 

connectomes as used here usually do not lead to significant reduction in the model’s 

predictive power (Powell et al, 2017). Individual subjects’ genetic variables, medication 

history and age of symptom onset were not analyzed. In this study we did not explore 

multi-seeding approach as implemented by (Poudel et al., 2020) as our study design 

requires an apples-to-apples comparison of seeding between subjects – a task that is very 

challenging statistically if there are varying degrees of freedom. A proper exploration 

of this concept will require a detailed and thoughtful inference algorithm that would 

need sparsity constraints, and a proper accommodation of degrees of freedom via AIC / 

BIC criteria. This approach did not fit within the current scope, and we hope to pursue 

it in a future study. Demonstrating the causality of gene variants in regional selective 

vulnerability is challenging and requires further modeling that also considers expression 

patterns seen in the disease state and in relation to specific genetic sub-groups e.g. C9ORF72 
expansion carriers. Furthermore, study of the association of the NDM with regional gene 

expression and atrophy considers only a narrow range of possible indexes of vulnerability. 

Correlation between model outcomes and clinical measures needs to fully be investigated 
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through prospective and longitudinal studies, especially those that focus explicitly on 

developing diagnostically predictive algorithms. In the increasing move toward prevention 

of neurodegenerative disorders through pre-symptomatic identification and intervention, this 

study further highlights the need to consider pathological changes disparate from those that 

define the symptomatic state.
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Fig. 1. Spatial distribution of ALS atrophy and repeated seeding.
A] Measured regional ALS atrophy are depicted by glass brain visualization. Bilateral 

volume loss was observed in somatosensory, frontotemporal, and subcortical regions, with 

most atrophy occurring in precentral gyrus, inferior temporal gyrus, precuneus, putamen, 

and thalamus regions. Severity of disease in each region is depicted in a color bar, where 

color towards red show increased severity. B] Each region was seeded in turn and NDM 

was played out for all time points. Pearson’s R was recorded at each time point between 

the model and ALS atrophy vector. As the diffusion time increases, more and more of the 

pathogenic agent escapes the seed region and enters the rest of the network. The point of 

maximum correlation with measured atrophy was recorded with glass brains of measured 

R shown inset. Spheres are placed at the centroid of each brain region, and their diameter 

is proportional to effect size. Spheres are color coded by lobe – frontal = purple, parietal = 

red, occipital = orange, temporal = cyan, subcortical = green, and cerebellum = magenta. C] 

Histogram of empirical atrophy and seed region likelihood as represented by Rmax is shown 

side-by-side. Precentral which is the highest atrophied region when taking the average of 

empirical atrophy from left hemisphere (LH) and right hemisphere (RH) is not the best 

seed, thereby suggestive of inconsequential role of higher atrophy values in determination 

of Rmax. D] Scatter plot of empirical atrophy and seed region likelihood (represented as Rmax) 

showing a weak relationship between the two, thereby suggesting a non-trivial role played 

by empirical atrophy in reproducing Rmax. E] NDM seeded at bilateral regions indicates that 

the thalamus is the one of the most plausible candidate for ALS seeding – it has the highest 

peak R, and the characteristic intermediate peak indicative of true pathology spread. Other 

regions among the top five that obtained the highest R were insula, pallidum, putamen, and 

caudate. R-t curves for the remaining regions are shown in blue. F] Histogram of maximum 

R achieved from six major regions for all individual subjects. Rmax values were attained for 

each of these regions from 79 individual subjects. We can see that for most of the subjects’ 
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maximum R (> 0.4) was achieved from the frontal and subcortical regions compared to other 

regions.
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Fig. 2. Histogram of Rmax from individual subjects.

A] Distribution of Rmax for individual subjects when NDM is ran from insula seeding. B] 

Distribution of Rmax for individual subjects when NDM is ran from their best seeds.
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Fig. 3. Spatial distribution of ALS atrophy, NDM Predicted atrophy and histopathological 
staging.
A] Measured regional ALS atrophy are depicted by glass brain visualization. Bilateral 

volume loss was observed in somatosensory, frontotemporal, and subcortical regions, with 

most atrophy occurring in precentral gyrus, inferior temporal gyrus, precuneus, putamen, 

and thalamic regions. Severity of disease in each region is depicted in a color bar, where 

color towards red show increased severity. B] Glass brains of NDM seeded at the bilateral 

insula at tmax = 6.06 au yields progression of ALS from insula to connected, subcortical, 
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anteromedial portions of temporal lobe and frontal areas. Bilateral volume loss is mainly 

observed in frontal and subcortical regions, with most atrophy occurring in later orbito-

frontal, superior frontal, precentral, rostral middle-frontal, and putamen regions. Severity of 

disease in each region is depicted in a color bar, where color towards magenta showing 

increased severity. C] The ALS stage from 1–4 for each of the 43 bilateral regions. Stage 1 

(maroon) starts with agranular motor cortex. The next affected regions (stage 2 in red) are 

the premotor cortex and parts of prefrontal neocortex. The pathology then progresses into 

striatum and into the prefrontal/postcentral cortices (stage 3 in orange), and finally to stage 

4 show (yellow) involving anteromedial portions of the temporal lobe and the hippocampus. 

Stage 5 shows regions in white that are not part of the published histopathological staging 

system. D] Correlation of empirical atrophy with histopathological staging. E] Correlation 

of NDM at tmax = 6.06 au with histopathological staging. Scatter plots in both D and E shows 

that regions with more empirical and predicted pathology correspond to histological stages 

with severe TDP-43 burden.
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Fig. 4. Spatiotemporal evolution, scatter plots of atrophy and histopathological staging with 
NDM at different model times.
A] Evolution of insula-seeded network diffusion at model times t = 2, 4, 6 (au) exhibited 

frontal involvement initially, followed by slower diffusion into the temporal, motor, and 

subcortical cortices, and finally showing widespread involvement of cortical regions. This 

temporal sequencing predicted by the model suggests that volume loss in ALS involves 

extra-motor regions, particularly the prefrontal and subcortical regions. Nodes in all the 

glass brains are placed at the centroid of each brain region, and their diameter is proportional 

to effect size. Spheres are color coded by lobe – frontal = purple, parietal = red, occipital 

= orange, temporal = cyan, subcortical = green, and cerebellum = magenta. B] Scatter 

plot of NDM from insula versus empirical ALS atrophy at model times t = 2, 4, 6 (au). 
Dots are color coded by lobe - frontal = purple; parietal = red; occipital = orange; 

temporal = cyan; subcortical = green; and cerebellum = magenta. A positive correlation is 

observed between ALS empirical atrophy and NDM predicted atrophy from bilateral insula, 
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which increases significantly (R = 0.45, pcorr < 5.8 × 10−4, 0.05/86) at matured model times 

t = 4, 6 (au). C] Scatter plot of NDM from insula versus histopathological staging at model 

times t = 2, 4, 6 (au). Dots are color coded by lobe - frontal = purple; parietal = red; occipital 

= orange; temporal = cyan; subcortical = green; and cerebellum = magenta. A negative 

correlation was observed between the NDM and ALS staging from bilateral insula, which 

decreases significantly (R = −0.66, pcorr < 5.8 × 10−4) at matured model times t = 4, 6 (au). As 

time progressed, greater frontal, temporal and subcortical regions were involved with NDM 

closely resembling empirical ALS-FTD pathology.
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Fig. 5. Spatial distribution of ALS atrophy, scatter plots of genes vs ALS atrophy, spatial 
distribution of genes.
A] Measured regional ALS atrophy are depicted by glass brain visualization. Bilateral 

volume loss was observed in somatosensory, frontotemporal, and subcortical regions, with 

most atrophy occurring in precentral gyrus, inferior temporal gyrus, precuneus, putamen, 

and thalamic regions. Severity of disease in each region is depicted in a color bar, where 

color towards red show increased severity. B] Scatter plot of empirical atrophy vs average 

of all ALS-related genes (F) shows no clear association. C] Scatter plot of empirical atrophy 

vs average of TDP-43 associated genes (G) shows no clear association. D] Scatter plot of 

empirical atrophy vs TARDBP gene expression (H) also shows no clear association – this 

was chosen for comparison, given that a small minority of ALS cases involve mutations in 

TARDBP. E] Scatter plot of empirical atrophy vs OPTN gene expression (I) shows a strong 

association between them – this is shown for comparison given a strong correlation between 

the two. Spheres in glass brains were placed at the centroid of each brain region, and their 

diameter was proportional to effect size.
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Fig. 6. Lasso plots and model parameters from insula-seeding.
A] Cross-validated MSE curves for determining regularized parameter lambda. Predictors 

with minimum L1 coefficient as a function of regularized parameter lambda with no more 

than one standard deviation (blue dotted line) were considered to be the most favorable. B] 

Cross-validated L1 regularized regression coefficients as a function of tuning parameter 

lambda for a model containing the NDM from insula, ALS-related genes, and genes 

implicated in trans-synaptic TDP-43 transfer as predictors. Trace plot shows that as lambda 

increases towards the left, lasso sets various coefficients to zero, thereby removing them 

from the model. C] Model parameters and p-values of significant predictors from multiple 

linear regression that survived with p < 0.05 (represented with “*”) and with Bonferroni 

corrected p (represented with “**”). The NDM and expression profiles of OPTN have 

non-zero coefficients at Lambda1SE and were significant, indicating that these are essential 

predictive variables.
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Fig. 7. NDM evaluation against alternate models.
A] Histogram of correlation strength between NDM and ALS data over 2000 shuffled 

networks. There is a hard limit on the left of this plot at R ∼0.03, which corresponds to the 

zero-diffusion time value of curve in Fig. 1E. B] Histogram of correlation strength between 

NDM and 2000 shuffled ALS data over using unshuffled structural connectome. The true 

connectome was shuffled by symmetrically permuting its rows and columns randomly, and 

the NDM was evaluated for each shuffled network after bilateral insula-seeding. The best R 

achieved by each model was recorded and entered into the histogram. The null models are 

distributed well below the true model, indicating that the latter is highly unlikely to arise by 

chance (p < 0.05).
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