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EFFICIENT AND ETHICAL RESPONSE-ADAPTIVE
RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL
TRIALS WITH WEIBULL TIME-TO-EVENT OUTCOMES

Oleksandr Sverdlov1, Yevgen Ryeznik2, and Weng-Kee Wong3

1Translational Sciences, Novartis Pharmaceuticals Corporation, East Hanover,
New Jersey, USA
2CS Ltd., Kharkov, Ukraine
3Department of Biostatistics, Fielding School of Public Health, University of
California Los Angeles, Los Angeles, California, USA

We consider a design problem for a clinical trial with multiple treatment arms and time-
to-event primary outcomes that are modeled using the Weibull family of distributions. The
D-optimal design for the most precise estimation of model parameters is derived, along
with compound optimal allocation designs that provide targeted efficiencies for various esti-
mation problems and ethical considerations. The proposed optimal allocation designs are
studied theoretically and are implemented using response-adaptive randomization for a clin-
ical trial with censored Weibull outcomes. We compare the merits of our multiple-objective
response-adaptive designs with traditional randomization designs and show that our designs
are more flexible, realistic, generally more ethical, and frequently provide higher efficiencies
for estimating different sets of parameters.

Key Words: Censoring; D-optimal design; Ethical concern; Response-adaptive randomization; Weibull
distribution.

1. INTRODUCTION

Many randomized clinical trials have multiple treatment groups and pursue multiple
experimental objectives. Response-adaptive randomization (RAR) is used in clinical trials
to achieve selected experimental objectives while preserving the validity of the trial results
(Hu and Rosenberger, 2006). Modern research on RAR has focused on finding optimal
allocation strategies and implementing them using response-adaptive randomization
procedures with minimal variability (Rosenberger et al., 2001; Zhang and Rosenberger,
2007; Tymofyeyev et al., 2007; Liang and Carriere Chough, 2009; Li and Wang, 2013).
Most of these papers deal with binary or continuous outcomes. However, many clinical
trials use censored time-to-event outcomes as primary measures of treatment safety and/or
efficacy. Time-to-event outcomes arise in medical studies in oncology (progression-free
survival; overall survival), virology (duration of viral shredding; time until resolution of all
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 733

signs and symptoms), dentistry (time to onset and duration of anesthesia), and some other
therapeutic areas.

The research on optimal RAR designs in time-to-event trials has been limited. The
first paper that provided optimal RAR procedures for survival trials is by Zhang and
Rosenberger (2007), where they focused on two-armed survival trials with exponential and
Weibull outcomes with a goal to minimize the total hazard in the study while maintaining
power. Several other papers also deal with optimal design problems for time-to-event exper-
iments with two treatment arms (Jóźwiak and Moerbeek, 2010; Konstantinou et al., 2014).

Zhang and Rosenberger (2007) acknowledged the challenges and affirmed the use-
fulness of optimal allocation designs for survival trials with more than two arms. Sverdlov
et al. (2011) proposed optimal RAR designs for multi-arm survival trials with censored
exponential outcomes. In the current article we develop optimal RAR designs for (K ≥ 2)-
treatment multiple-objective clinical trials with censored time-to-event outcomes that can
be modeled using the Weibull family of distributions. We focus on the Weibull distributions
because this family is widely used in survival analysis and its utility is well documented
(Carroll, 2003). The significance of our optimal RAR designs is that they handle simulta-
neously the objective of efficient estimation of different sets of parameters of interest and
the goal of assigning more patients to clinically best treatments, while maintaining random-
ization. In addition, in our development we directly address the issue of using inherently
delayed responses in the design adaptations.

The next section contains statistical background material. In section 3, we obtain the
D-optimal allocation for a multi-arm clinical trial with censored Weibull outcomes and
propose two approaches for obtaining multi-objective optimal allocations. In section 4, we
discuss implementation of the proposed optimal allocation designs in practice by means of
RAR. In section 5, we present results of simulation studies to evaluate operating charac-
teristics of the proposed optimal RAR designs and assess how delayed responses impact
statistical properties of the designs. In section 6, we present an application of our method-
ology for a three-arm survival trial. In section 7, we give conclusions and outline future
research in this direction. All technical considerations are relegated to the appendix.

2. STATISTICAL BACKGROUND

Throughout we assume we have a predetermined sample size n, either from budget
considerations or based on prior experience of the number of patients that could be realisti-
cally recruited for the trial in the given time frame. Our main design question is then how to
allocate these n patients into K groups in some optimal way. For our setup, we only deter-
mine the optimal proportion of patients ρk to assign to group k for k = 1, . . . , K and do so
in practice by allocating roughly nk = nρk patients to group k subject to ρk ∈ [0, 1] with∑K

k=1 ρk = 1. More specifically, given a statistical model, our design problem is to find an
allocation vector ρ = (ρ1, . . . , ρK) that minimizes some convex criterion of the inverse of
the Fisher information matrix M(ρ, θ ), where θ is a vector of unknown model parameters.

Suppose there are K ≥ 2 treatment groups and the event time Tk from group k follows
a Weibull distribution such that

log Tk = μk + bW, k = 1, . . . , K. (1)

In equation (1), μk is the effect of treatment k, b > 0 is an unknown scale parameter
assumed to be common for the K groups and W is the standard extreme value random
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734 SVERDLOV ET AL.

variable with probability density function f (w) = ewexp(−ew). In what is to follow, we
let θ = (μ1, . . . ,μK , b). Note that when b = 1, we have the usual exponential model;
otherwise, we have a general Weibull model that allows for different hazard patterns.

In trials with time-to-event outcomes, observations are likely to be censored.
We assume that censoring time C is independent of Tk. For the ith patient in treatment
group k, one observes a pair (tik, δik), where tik = min(Tik, Cik) is the observed time and
δik = 1{tik=Tik} is an indicator of the event of interest for i = 1, . . . , nk and k = 1, . . . , K.

Following convention, we focus on the D-optimal allocation problem where we want
to minimize |M−1(ρ, θ )| or, equivalently, log |M−1(ρ, θ )|, by choosing ρ in order to obtain
the most accurate inference for θ .

Let zik = (log tik − μk)/b and assume that event times from all patients are indepen-
dent. The log-likelihood function is

log L(θ ) = log
K∏

k=1

nk∏
i=1

{
b−1ezik exp (−ezik)

}δik {exp (−ezik)}1−δik .

The value of the maximum likelihood estimator of θ is found by solving the system
of score equations ∂ log L(θ)

∂θ
= 0, and its asymptotic variance–covariance matrix is inversely

proportional to the Fisher information matrix. For an allocation vector ρ = (ρ1, . . . , ρK),
the (K + 1) × (K + 1) Fisher information matrix for θ is found as

M(ρ, θ ) = n

b2

( diag{ρ1ε1, . . . , ρKεK} x

xT
K∑

k=1
ρk(εk + ck)

)
, (2)

where x = (ρ1a1, . . . , ρKaK)T, εk = Pr(δik = 1), ak = E (zikezik), ck = E
(
z2

ikezik
)
, and each

of the εk, ak, and ck is a function of θ and the censoring mechanism in the trial. Accordingly,
we shall first consider locally optimal designs that require nominal values of the parameter θ

be available. Such optimal allocation designs serve as “calibrating” designs for comparative
purposes in the ideal case, and they represent a useful starting point for finding optimal
RAR designs at a later stage.

3. OPTIMAL ALLOCATION DESIGNS

3.1. The D-Optimal Allocation

From equation (2) we obtain

|M(ρ, θ )| = (n/b2)K+1
K∏

k=1

ρkεk

K∑
k=1

ρkdk,

where dk = εk + ck − a2
k/εk > 0 for k = 1, . . . , K. The quantity dk is inversely proportional

to the asymptotic variance of the maximum likelihood estimator b̂ if treatment k is consid-
ered alone. A larger value of dk means more information for b in treatment group k. The
D-optimal allocation is found by solving the following minimization problem:
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 735

{
min

ρ1,. . .,ρK

(
∏K

k=1 ρkεk)−1(
∑K

k=1 ρkdk)−1

subject to
∑K

k=1 ρk = 1,
(3)

where 0 ≤ ρk ≤ 1, k = 1, . . . , K.
Using Lagrange multipliers, one determines that the D-optimal allocation vector

ρ∗ = (ρ∗
1 , . . . , ρ∗

K) satisfies the following system of K equations:

1

ρk
+ dk∑K

k=1 ρkdk

= K + 1, k = 1, . . . , K. (4)

From equation (4), it is clear that the D-optimal allocation vector ρ∗ depends on the
model parameters θ via dk, k = 1, . . . , K, which are unknown at the trial onset. In section 4
we discuss sequential estimation of θ and construct RAR procedures to target the D-optimal
allocation.

The D-optimal allocation has the following interesting properties:

(i) If there is no censoring in any treatment group, that is, ε1 = . . . = εK = 1, the D-
optimal allocation vector is ρ∗ = (1/K, . . . , 1/K), which is the balanced allocation.

(ii) For K = 2, the D-optimal allocation is as follows: If d1 = d2, ρ∗
1 = ρ∗

2 = 1/2.
If d1 �= d2,

ρ∗
1 = d1 − 2d2 + (d2

1 − d1d2 + d2
2)1/2

3(d1 − d2)
, ρ∗

2 = 1 − ρ∗
1 .

(iii) The D-optimal proportions satisfy 1/(K + 1) ≤ ρ∗
k ≤ 2/(K + 1), k = 1, . . . , K.

(iv) Assume that treatments 1, . . . , K are such that d1 ≥ d2 ≥ . . . ≥ dK . Then the
D-optimal allocation proportions satisfy ρ∗

1 ≥ ρ∗
2 ≥ . . . ≥ ρ∗

K .

This last property has a clear interpretation. Since we assume that parameter b is
common to the K treatment groups, one has greater allocation proportions for the treatment
groups that contribute a larger amount of information for b.

To fix ideas, suppose that shorter responses are clinically favorable (e.g., healing
times). For a pair of treatments (i, j), where i �= j, the condition μi < μj implies that treat-
ment i is more efficacious than treatment j. For many censoring schemes, including the
censoring scheme with constant follow-up time for each patient (subsection 5.1), dk is
monotonically decreasing in μk. In this case, the condition μ1 ≤ μ2 ≤ . . . ≤ μK implies
d1 ≥ d2 ≥ . . . ≥ dK , and from property (iv) it follows that ρ∗

1 ≥ ρ∗
2 ≥ . . . ≥ ρ∗

K . Hence,
the D-optimal allocation proportions are ordered consistently with the magnitude of treat-
ment effects such that larger proportions of patients are assigned to the treatments with
shorter healing times. This implies that the balanced allocation induces losses on both ethi-
cal and inferential grounds, and hence, in this case, it is not D-admissible (Baldi Antognini
and Giovagnoli, 2010).

In trials where the aim is to prolong life (e.g., survival trials), the objectives of
D-efficiency and ethics are in conflict for our model. In this case a balanced allocation
ρB = (1/K, . . . , 1/K) could be one compromise strategy. In subsection 3.2 we present a
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736 SVERDLOV ET AL.

more rigorous approach to determine allocation rules to achieve trade-off between inferen-
tial efficiency and ethical considerations, and in section 6 we explore an application of this
approach for survival trials where longer event times imply higher treatment efficacy.

3.2. Weighted Optimal Allocation

We have shown in subsection 3.1 that the D-optimal allocation is an attractive strategy
in trials where shorter event times are clinically favorable (e.g., pain relief in migraine stud-
ies; viral shredding in virology studies; time to onset of anesthesia in dentistry). However,
the D-optimal allocation is skewed not far away from the balanced allocation; see prop-
erty (iii). An investigator may want to apply a greater degree of skewing toward better
treatments, while maintaining statistical efficiency. Better treatments here mean the time to
recovery is shorter, and an allocation strategy that places more patients to better treatments
is desirable from an ethical standpoint (a similar idea can be applied in survival trials where
longer event times are clinically favorable; see section 6).

Suppose one of the trial objectives is to identify a “clinically best” treatment group
with shortest recovery times. Let ρE = (ρE1, . . . , ρEK) denote an allocation vector for
which condition μi ≤ μj must imply ρEi ≥ ρEj, with equality if an only if μi = μj.
We define the components of ρE as follows:

ρEk = {exp (−μk/b)}ν∑K
j=1{exp (−μj/b)}ν , k = 1, . . . , K, (5)

where ν ≥ 0 is a user-specified parameter controlling the degree of skewness to the bet-
ter treatment. When ν → ∞, ρEk → 1 for k = arg min

j=1,. . .,K
μj, and one achieves the most

ethical allocation for which all patients are assigned to the treatment arm having the
smallest value of μk (or, if there are several such treatments, these treatments receive
equal proportions). A large but finite value of ν ensures that ρE is a smooth func-
tion. Other treatment effect mappings can be considered for ρE (Rosenberger, 1993).
In practice, it is helpful to have a graphical review of the allocation proportions of the
selected ρE across different scenarios. This should be done collaboratively by clinician and
statistician.

We now present a simple yet general approach for constructing allocation designs
that balance inferential and ethical considerations. We assume that the inferential objec-
tive is implemented by the allocation ρI = (ρI1, . . . , ρIK), and the ethical objective
is implemented by the allocation ρE = (ρE1, . . . , ρEK). Note that both ρI and ρE are
functions of θ .

Let λ(ρ, ρ̃) be some measure of the distance between allocation vectors ρ and ρ̃,
and let 0 ≤ α ≤ 1 be a user-selected constant. We define a weighted optimality allocation
vector ρα as the one that minimizes the weighted distance between ρI and ρE, that is,

ρα = arg min
ρ

{αλ(ρ, ρI) + (1 − α)λ(ρ, ρE)}.

Different choices of the distance function will yield different solutions. For example, if we
use the Kullback–Leibler directed divergence measure λKL(ρ, ρ̃) = ∑K

k=1 ρk log(ρk/ρ̃k), it
is easily shown that ρα has components
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 737

ραk = (ρIk)α(ρEk)1−α∑K
j=1(ρIj)α(ρEj)1−α , k = 1, . . . , K. (6)

If we select a quadratic distance metric λ2(ρ, ρ̃) = ∑K
k=1(ρk − ρ̃k)2, then ρα has

components

ραk = αρIk + (1 − α)ρEk, k = 1, . . . , K. (7)

If α = 1, the optimal solution is ρI. If α = 0, the optimal solution is ρE. For 0 < α < 1 we
have an allocation that provides a compromise between efficiency and ethics. The choice
of the value of α will have to be determined by the experimenter and scientists in the
field.

3.3. Compound Optimal Allocation

Here we present another approach for achieving trade-off between inferential and
ethical objectives. This approach borrows ideas from a general methodology of compound
optimal designs (Cook and Wong, 1994). As in subsection 3.2, we assume that shorter event
times are clinically favorable. Let us show that for model (1) with censoring, an allocation
that leads to the most accurate inference for the parameter b is also attractive from the
ethical perspective. By property (iv), a larger value of dk leads to the greater allocation
proportion for treatment k. The asymptotic variance of b̂ is avar(b̂) = b2(n	)−1, where
	 = ∑K

k=1 ρkdk. The allocation minimizing avar (b̂), or, equivalently, minimizing
1(ρ) =
− log	, places all subjects on the treatment arm with the maximum value of dk (or assigns
equal proportions if there are several such treatments). The merits of such an allocation are
twofold: It is optimal for estimating b, and it assigns all subjects to the treatment(s) with
shortest recovery times. A disadvantage of this allocation is that it provides no information
about other treatment arms.

To achieve trade-off between the criteria 
1(ρ) = − log	 and 
2(ρ) =
− log |M(ρ, θ )|, we consider the following convex minimization problem:{

min
ρ1,. . .,ρK

α
1(ρ) + (1 − α)
2(ρ)

subject to
∑K

k=1 ρk = 1,
(8)

and

ρk ε [0, 1], k = 1, . . . , K

where 0 ≤ α ≤ 1 is a user-selected constant that determines the importance of the two
objectives. The problem (8) is a well-defined convex optimization problem with a unique
solution that is found numerically by solving the following nonlinear system of K
equations:

1 − α

ρk
+ dk∑K

k=1 ρkdk

= (1 − α)K + 1, k = 1, . . . , K.

If α = 0, we have the D-optimal allocation. If α = 1, the problem is to minimize 
1(ρ) =
− log	, and we obtain the allocation that places all patients to the treatment(s) with
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738 SVERDLOV ET AL.

shortest recovery times. For 0 < α < 1 we have an allocation that provides a compromise
between the two criteria.

4. IMPLEMENTING OPTIMAL ALLOCATION USING RESPONSE-ADAPTIVE

RANDOMIZATION

The optimal allocation designs we have discussed thus far cannot be directly imple-
mented because they depend on model parameters θ that are unknown at the trial onset.
For implementing optimal allocation in practice we use a doubly adaptive biased coin
design (DBCD) (Eisele, 1994; Hu and Zhang, 2004), a RAR procedure with established
statistical properties. The key assumption for applying the DBCD procedure to target
ρ = (ρ1(θ ), . . . , ρK(θ )) is that ρ is a continuously differentiable vector function of θ that is
twice continuously differentiable in a small neighborhood of the true value of the parameter.
The D-optimal allocation function meets this regularity assumption, and trade-off alloca-
tion schemes in subsections 3.2 and 3.3 also have smooth allocation functions. Therefore,
the DBCD procedure is applicable for our proposed allocation schemes.

With the DBCD procedure, first Km0 patients (where m0 is some small positive inte-
ger) are randomized among the K groups with equal probability. Consider a point in the
trial when j (j ≥ Km0) patients have been randomized and their outcome data have been
obtained. Based on the data, one computes θ̂ j and estimates the target allocation propor-
tions as ρ̂kj = ρk(θ̂ j) for k = 1, . . . , K. Let Nj/j = (N1j/j, . . . , NKj/j) denote the vector of
treatment proportions after j assignments. Then the probability of assigning treatment k for
the (j + 1)th patient is

ψj+1,k =
ρ̂kj

(
ρ̂kj

Nkj/j

)2

∑K
i=1 ρ̂ij

(
ρ̂ij

Nij/j

)2 , k = 1, . . . , K. (9)

For randomization procedure (9), as j → ∞, θ̂ j is strongly consistent and asymptoti-
cally normal, and the vector of treatment allocation proportions Nj/j is strongly consistent
for ρ and follows an asymptotically normal distribution. Note that in time-to-event trials,
responses are inherently delayed, and at the point of entry of the (j + 1)th patient, outcome
data from some of the patients 1, . . . , j may not be available yet, and therefore, θ̂ j will be
potentially computed based on data from fewer than j patients. Hu et al. (2008) showed
that large-sample properties of DBCD are unaffected by delayed response under the condi-
tion that the outcomes occur “not too far out” in the accrual pattern. A “rule of thumb” is
that 60% or more of the patients’ outcomes should be observed during the accrual period.
The next two subsections describe practical implementation of equation (9) with delayed
responses.

4.1. “Cohort” Response-Adaptive Randomization

One approach to facilitate procedure (9) with delayed responses is a “cohort” RAR
(Chappell and Karrison, 2006). For this group sequential procedure, every new cohort
of patients is enrolled only after all patients in the previous cohort have responded
(Fig. 1).

For a trial with K treatment groups we establish cohorts of size Km, where m is some
positive integer. The Km subjects in the first cohort are randomized to the treatment groups
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 739

Cohort 1

Cohort 2
X = event;

O = censoredInterim Analysis

to calculate

randomization

probabilities for

Cohort 2

...

Interim Analysis

to calculate

randomization

probabilities for

Cohort 3

Cohort 3

Interim Analysis

to calculate

randomization

probabilities for

Cohort 4

Figure 1 “Cohort” response-adaptive randomization design.

with equal probability to ascertain initial data, estimate model parameters and target allo-
cation proportions, and use equation (9) to determine randomization probabilities for the
second cohort. These randomization probabilities are applied individually to every subject
in the second cohort. After all subjects in the second cohort have been randomized and their
outcome data have been recorded, the full history of treatment assignments and responses
from the 2Km subjects in the study is retrieved to determine randomization probabilities for
the third cohort. The procedure is then repeated for the remaining cohorts in the study.

4.2. Response-Adaptive Randomization With Staggered Entry and

Delayed Responses

A disadvantage of the “cohort” RAR scheme is that one has to wait until all subjects
in a given cohort respond to make an adaptation for the next cohort. This may delay the
enrollment. An alternative approach is to use an adaptation scheme that accounts for patient
staggered entry and delayed responses (Latta, 1981; Zhang and Rosenberger, 2007). Such
a scheme can be described using a priority queue model as follows. The trial has a fixed
recruitment period of length R > 0. Patients enter the trial sequentially and their enrollment
times are random. The observed time of a patient (minimum between the event time and
the censoring time) is added to the patient’s enrollment time. The initial Km0 patients are

D
ow

nl
oa

de
d 

by
 [

M
cG

ill
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
3:

15
 0

1 
Fe

br
ua

ry
 2

01
5 



740 SVERDLOV ET AL.

equally randomized among the K treatments. At prespecified points in the trial, interim data
analyses are conducted to reestimate treatment randomization probabilities using data from
those trial participants whose outcomes were observed prior to the time of interim data
analysis.

Figure 2 shows a schematic of a RAR design with two interim analyses. One can
also consider a fully sequential RAR procedure: When patient j (j ≥ Km0) enters the trial,
data from (j − 1) (or fewer) patients whose outcomes were observed before the jth patient
arrival are used to determine treatment randomization probabilities for the jth patient. Note
that a substantial amount of patient outcome data must be observed during the recruitment
phase to enable meaningful adaptation in the design; mathematically, the probability that
a patient’s outcome (event time or censoring time) will be observed before additional n
patients arrive should be of order n−c for some constant c > 0 (Hu et al., 2008). This con-
dition is satisfied for clinical trials with uniform or exponential patient entry and Weibull
event times. Simulations show that when 60% or more of the study patients contribute out-
comes throughout the recruitment period, large-sample properties of the DBCD procedure
still hold (Zhang and Rosenberger, 2007).

5. NUMERICAL RESULTS

5.1. Theoretical Comparison of Optimal Allocation Rules

It is instructive to compare efficiencies of different allocation strategies under an “ide-
alized” situation when the model parameters θ = (μ1, . . . ,μK , b) are known and need not
be estimated adaptively. We consider a clinical trial with K = 3 treatment arms, and con-
sider four choices for the vector μ = (μ1,μ2,μ3) and three choices for b: b = 1

2 (increasing
hazard), b = 1 (constant hazard; exponential distribution), and b = 1.5 (decreasing haz-
ard). For the censoring scheme, we assume that each subject has a constant predetermined
follow-up time τ > 0 such that an observation occurs if Tk ≤ τ and the observation is
censored otherwise. Applications of such a scheme with constant censoring time can be
found in Cheung et al. (2006) and Zhang and Rosenberger (2007). In our example, we
set τ = 1/(− log(0.1)), the 10th percentile of the standard extreme value distribution.
We compare five allocation rules for our three-arm trial:

I. Balanced allocation, ρ = (1/3, 1/3, 1/3).
II. D-optimal allocation, ρ∗ (subsection 3.1).

III. Compound optimal allocation with α = 1/2 (subsection 3.3).
IV. Weighted optimal allocation with α = 1/2 using Euclidean metric (7).
V. Weighted optimal allocation with α = 1/2 using Kullback–Leibler metric (6).

For allocation rules IV and V, we set ν = 2 in equation (5). For each alloca-
tion we compute the D-efficiency and the efficiency for estimating the parameter b. The
D-efficiency of an allocation ρ relative to ρ∗ is defined as follows:

E1(ρ) =
{

|M−1(ρ∗, θ )|
|M−1(ρ, θ )|

}1/4

.

Let ρ† = (ρ†
1 , ρ†

2 , ρ†
3 ) be the compound optimal allocation with α = 1 (from subsec-

tion 3.3) for the most efficient estimation of b. The efficiency of ρ relative to ρ† is defined as
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 741

E2(ρ) =
∑3

k=1 ρkdk∑3
k=1 ρ

†
k dk

.

Clearly, E1(ρ) and E2(ρ) are between 0 and 1 and high values of each efficiency criterion
are desirable.

Table 1 shows that under all scenarios, allocation rules II, III, IV, and V have higher
values of E2(ρ) than allocation rule I. In terms of E1(ρ) (D-efficiency), the ranking of
the allocation rules in the order of their performance is: 1, D-optimal (allocation II); 2,
Compound optimal (allocation III); 3, Balanced (allocation I); 4, Weighted optimality
(WO) with Euclidean metric (allocation IV); and 5, WO with Kullback–Leibler metric
(allocation V).

5.2. Simulation of Optimal Response-Adaptive Designs With

“Cohort” RAR Scheme

Here, we present results of simulation studies to evaluate utility of RAR procedures
targeting optimal allocation with a “cohort” RAR scheme described in subsection 4.1.
We consider 12 experimental scenarios for θ = (μ1,μ2,μ3, b) as in subsection 5.1. For
each scenario, a trial with n = 150 patients was simulated 1000 times. We implemented
five randomization designs: complete randomization for which every subject is randomized
to treatment groups with equal probability (design I), and the DBCD procedure targeting
four different optimal allocation schemes described in subsection 5.1 (designs II, III, IV,
and V respectively). For implementing designs II–V, we used 10 cohorts of size 15.

Table 1 Efficiencies of the five allocation rules when θ = (μ1,μ2,μ3, b) is known

b = 0.5 b = 1 b = 1.5

(μ1,μ2,μ3) Allocation E1(ρ) E2(ρ) E1(ρ) E2(ρ) E1(ρ) E2(ρ)

(0, −1, −1) I 0.990 0.728 0.996 0.814 0.998 0.863
II 1.000 0.783 1.000 0.840 1.000 0.876
III 0.995 0.821 0.997 0.860 0.998 0.888
IV 0.923 0.907 0.955 0.912 0.974 0.920
V 0.782 0.961 0.930 0.927 0.967 0.925

(0, −1, 0) I 0.974 0.455 0.993 0.629 0.997 0.725
II 1.000 0.555 1.000 0.666 1.000 0.743
III 0.985 0.630 0.994 0.702 0.997 0.762
IV 0.833 0.801 0.922 0.792 0.962 0.810
V 0.684 0.879 0.911 0.801 0.960 0.811

(0, −0.5, −1) I 0.985 0.547 0.996 0.708 0.998 0.788
II 1.000 0.613 1.000 0.732 1.000 0.800
III 0.990 0.667 0.996 0.755 0.998 0.811
IV 0.879 0.795 0.950 0.813 0.975 0.843
V 0.785 0.837 0.939 0.820 0.973 0.844

(0, −0.5, 1) I 0.977 0.485 0.991 0.636 0.996 0.725
II 1.000 0.576 1.000 0.680 1.000 0.750
III 0.987 0.645 0.994 0.717 0.997 0.772
IV 0.867 0.786 0.925 0.800 0.955 0.824
V 0.636 0.856 0.877 0.823 0.941 0.833

Note. E1(ρ), D-efficiency; E2(ρ), efficiency for estimating b.
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742 SVERDLOV ET AL.

Table 2 Simulated characteristics of the five randomization procedures with K = 3 treatments, n = 150 subjects,
and a “cohort” response-adaptive randomization scheme using 10 cohorts of size 15, based on 1000 simulations

b = 0.5 b = 1 b = 1.5

(μ1,μ2,μ3) Design M(E1) M(E2) TT (SD) M(E1) M(E2) TT (SD) M(E1) M(E2) TT (SD)

(0, −1, −1) I 0.990 0.690 50.0 (1.5) 0.996 0.767 43.1 (1.9) 0.998 0.810 38.9 (2.1)
II 1.000 0.747 48.8 (1.4) 1.000 0.796 42.4 (1.9) 1.000 0.826 38.4 (2.1)
III 0.994 0.785 48.1 (1.3) 0.997 0.819 41.9 (1.8) 0.998 0.837 38.1 (2.0)
IV 0.919 0.870 46.5 (1.4) 0.950 0.873 40.6 (1.8) 0.968 0.879 37.2 (2.1)
V 0.749 0.924 45.6 (1.6) 0.914 0.893 40.2 (2.0) 0.958 0.890 36.9 (2.2)

(0, −1, 0) I 0.974 0.455 55.6 (1.3) 0.993 0.630 47.9 (1.8) 0.997 0.725 42.8 (2.1)
II 1.000 0.554 53.6 (1.3) 1.000 0.662 47.1 (1.8) 1.000 0.744 42.2 (2.1)
III 0.985 0.630 52.1 (1.3) 0.993 0.701 46.2 (1.9) 0.997 0.764 41.7 (2.1)
IV 0.831 0.800 48.9 (1.6) 0.915 0.795 43.8 (2.0) 0.956 0.812 40.4 (2.2)
V 0.632 0.890 48.0 (1.8) 0.877 0.816 43.3 (2.1) 0.946 0.820 40.2 (2.4)

(0, −0.5, −1) I 0.985 0.549 53.6 (1.4) 0.995 0.705 45.8 (1.8) 0.998 0.784 40.9 (2.2)
II 1.000 0.612 52.4 (1.2) 1.000 0.732 45.2 (1.8) 1.000 0.796 40.6 (2.2)
III 0.990 0.667 51.3 (1.3) 0.996 0.755 44.7 (1.8) 0.998 0.814 40.3 (2.1)
IV 0.877 0.797 48.8 (1.5) 0.942 0.815 43.3 (1.9) 0.967 0.843 39.3 (2.1)
V 0.743 0.851 48.1 (1.7) 0.918 0.830 42.7 (2.1) 0.960 0.849 39.2 (2.2)

(0, −0.5, 1) I 0.977 0.485 60.5 (0.9) 0.991 0.632 53.1 (1.6) 0.995 0.723 47.6 (2.0)
II 1.000 0.576 60.0 (1.0) 1.000 0.680 52.4 (1.6) 1.000 0.750 47.1 (2.0)
III 0.987 0.645 59.7 (1.2) 0.993 0.716 51.8 (1.7) 0.996 0.769 46.5 (2.0)
IV 0.867 0.786 59.1 (1.6) 0.918 0.798 50.4 (1.8) 0.947 0.824 45.4 (2.1)
V 0.656 0.856 59.0 (1.7) 0.842 0.839 50.1 (1.9) 0.920 0.845 45.1 (2.2)

Note. M(E1), median D-efficiency; M(E2), median efficiency for estimating b; TT, total observed time; SD,
standard deviation.

Table 2 presents key design characteristics: median values of the distributions of effi-
ciency criteria E1(ρ) and E2(ρ) and average total time (TT) observed in the trial, with
standard deviation. Since we assume that the response is time to recovery, designs with
smaller TT are more ethically appealing. The detailed results including distributions and
summary statistics of allocation proportions, and maximum likelihood estimates are not
shown here for the sake of brevity but are available upon request.

Table 2 shows the efficiencies of all five designs are consistent with the the theoret-
ical results in Table 1 when θ = (μ1,μ2,μ3, b) was assumed known. While the balanced
randomization (design I) has high median values of E1(ρ), it has lowest median values of
E2(ρ), and therefore, it is least efficient for estimating the underlying hazard pattern among
the five designs. Designs II, III, IV, and V achieve reasonable trade-off between the two
efficiency criteria, and at the same time, they have smaller average values of TT compared
to design I. Among the five designs considered, the compound optimal design (III) seems
to provide the best compromise between randomization, efficiency, and ethics.

5.3. Simulation of Optimal RAR Designs With Staggered Entry and

Delayed Response

In this subsection we report simulation results for optimal RAR designs with an adap-
tation scheme with staggered entries and delayed responses, as described in subsection
4.2. We consider 12 experimental scenarios for θ = (μ1,μ2,μ3, b) as in subsection 5.1 and
focus on the compound optimal design III with n = 150 patients. Patient arrival pattern was
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X = event;

O = censored

Re-estimate

randomization

probabilities

Re-estimate

randomization

probabilities

Stop

Recruitment

Final

Data

Analysis

0 Interim Analysis 1 Interim Analysis 2 R

Start

Recruitment

Figure 2 Response-adaptive randomization design with staggered entry and delayed responses.

generated using a Poisson process with the ordered recruitment times uniformly distributed
over the recruitment period (0, R). We set R = 3; with such a choice of R, the average
proportions of study patients with observed outcomes before time R are between 80% to
89% for our considered experimental scenarios. For the adaptation scheme we require that
treatment randomization probabilities are updated twice in the trial: after enrollment of
50 patients, and after enrollment of 100 patients. Note that some patients may not have
outcome data by the time when the design adaptations are made (Fig. 2).

Table 3 reports theoretical and simulated (average with standard deviation) treatment
allocation proportions. The simulated average allocation proportions agree well with the
theoretical values. The simulated median values of E1(ρ) and E2(ρ) are very close to the
theoretical values. These results show that our designs work as intended in trials where 80%
to 89% of patients contribute outcome data during the recruitment phase.

5.4. Effect of Delayed Responses on the Convergence to Target

Allocation

We further examined an impact of delayed responses on the convergence of RAR
procedures to their target allocation. For the scenario with μ1 = 0 μ2 = −0.5, μ3 = −1,
and b = 0.5, we simulated RAR design III with n = 150 patients as in subsection 5.3 for
different lengths of the recruitment period R. We investigated R = 1, 1.5, 3, 7, and 9. For
such choices of R, the estimated average proportion of study patients p̂R with observed
outcome before R was 47%, 57%, 87%, 91%, and 99%, respectively.
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744 SVERDLOV ET AL.

Table 3 Theoretical (Theor.) and simulated characteristics of the DBCD procedure targeting compound optimal
allocation with K = 3 treatments, n = 150 subjects, and a response-adaptive randomization scheme incorporating
patient staggered entry and delayed responses, based on 1000 simulations

b = 0.5 b = 1 b = 1.5

(μ1,μ2,μ3) Theor. Simulated∗ Theor. Simulated∗ Theor. Simulated∗

(0, −1, −1) ρ1 0.220 0.222 (0.027) 0.252 0.252 (0.033) 0.272 0.272 (0.037)
ρ2 0.390 0.389 (0.042) 0.374 0.372 (0.045) 0.364 0.364 (0.047)
ρ3 0.390 0.389 (0.042) 0.374 0.375 (0.045) 0.364 0.364 (0.045)
E1(ρ) 0.995 0.992 0.997 0.993 0.998 0.994
E2(ρ) 0.821 0.820 0.860 0.859 0.888 0.890

(0, −1, 0) ρ1 0.226 0.236 (0.031) 0.268 0.267 (0.037) 0.289 0.287 (0.039)
ρ2 0.547 0.528 (0.041) 0.465 0.465 (0.044) 0.421 0.420 (0.048)
ρ3 0.226 0.237 (0.032) 0.268 0.269 (0.038) 0.289 0.293 (0.042)
E1(ρ) 0.985 0.988 0.994 0.990 0.997 0.993
E2(ρ) 0.630 0.613 0.702 0.703 0.762 0.761

(0, −0.5, −1) ρ1 0.225 0.228 (0.029) 0.261 0.260 (0.035) 0.282 0.281 (0.038)
ρ2 0.276 0.279 (0.039) 0.313 0.316 (0.044) 0.324 0.323 (0.043)
ρ3 0.500 0.493 (0.040) 0.426 0.424 (0.047) 0.395 0.396 (0.045)
E1(ρ) 0.990 0.988 0.996 0.992 0.998 0.994
E2(ρ) 0.667 0.663 0.755 0.755 0.811 0.812

(0, −0.5, 1) ρ1 0.266 0.302 (0.049) 0.314 0.319 (0.056) 0.330 0.331 (0.055)
ρ2 0.527 0.415 (0.089) 0.453 0.444 (0.058) 0.415 0.415 (0.057)
ρ3 0.207 0.282 (0.058) 0.233 0.237 (0.033) 0.255 0.254 (0.037)
E1(ρ) 0.987 0.983 0.994 0.989 0.997 0.989
E2(ρ) 0.645 0.551 0.717 0.714 0.772 0.775

Note.∗Mean (SD) is reported for allocation proportions; medians are reported for E1(ρ) and E2(ρ).

Figure 3 is a plot of the average values (±S.D.) of the treatment allocation propor-
tions. The target allocation is ρ = (0.225, 0.275, 0.500). We observe that as p̂R increases
from 47% to 99%, convergence of the design to its target improved. We also observed
(results not shown here) that as p̂R increases from 47% to 99%, the design results in more
accurate estimates of θ and simulated values of design efficiencies are getting closer to
their theoretical values. These findings reinforce the importance of the assumption that a
substantial amount of outcome data must accumulate during the recruitment phase.

6. APPLICATION OF THE PROPOSED METHODOLOGY FOR SURVIVAL

TRIALS

In this section we demonstrate utility of our proposed methodology in survival tri-
als. We use a Phase III survival trial in head and neck cancer reported by Fountzilas
et al. (2004) as an illustration. The trial used three treatment groups: standard fraction-
ated radiotherapy (RT) alone (group 1), RT concomitantly with cisplatin (group 2), and
RT concomitantly with carboplatin (group 3). The objective was to compare each of the
experimental treatments 2 and 3 versus control 1 with respect to overall survival.

To match the experimental setup of the trial in Fountzilas et al. (2004), we assume
the trial duration is D = 96 months and the length of the recruitment period is R = 55
months. For the censoring scheme we assume a combination of uniform and administrative
censoring (Latta, 1981; Rosenberger and Seshaiyer, 1997). Patient enrollment follows a
Poisson process over (0, R), and the observed time for the ith patient in group k is tik =
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 745

Figure 3 Effect of delayed response on convergence of the compound optimal design (III) to the target allocation
ρ = (0.225, 0.275, 0.500). Displayed are means ±SD.
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746 SVERDLOV ET AL.

Table 4 The parameter values (μ1,μ2,μ3, b) and treatment hazard ratios to match the median overall survival
times of 12.2, 48.6, and 24.5 months of the head and neck cancer trial in Fountzilas et al. (2004)

Hazard ratio

Scenario μ1 μ2 μ3 b 2 vs. 1 3 vs. 1

A 2.81 4.20 3.51 0.85 0.20 0.44
B 2.87 4.25 3.57 1.00 0.25 0.50
C 2.96 4.34 3.66 1.25 0.33 0.57

min(Tik, Cik, D − R), where Tik is the survival time following a Weibull model (1) and Cik

is an independent censoring time uniformly distributed over (0, D). Patients who are alive
and have not dropped out by the end of the study are administratively censored.

From Fountzilas et al. (2004), the reported intent-to-treat median overall survival
times for treatment groups 1, 2, and 3 are 12.2, 48.6, and 24.5 months, respectively. We con-
sider three choices of θ = (μ1,μ2,μ3, b) (referred to as scenarios A, B, and C) to match
the reported treatment effects with Weibull distributions with cumulative hazard functions
Hk(t) = (te−μk )1/b, k = 1, 2, 3. The parameter values and treatment differences expressed
as hazard ratios of treatments 2 versus 1 and 3 versus 1 are summarized in Table 4.

Let ρ∗ = (ρ∗
1 , ρ∗

2 , ρ∗
3 ) denote the D-optimal allocation and ρE = (ρE1, ρE2, ρE3)

denote the ethical allocation with components

ρEk = {exp (μk/b)}2

3∑
j=1

{exp (μj/b)}2

, k = 1, 2, 3. (10)

The allocation proportions in equation (10) are skewed in favor of treatments with longer
survival times (μi ≥ μj implies ρEi ≥ ρEj, with equality if and only if μi = μj). To bal-
ance the requirements of statistical efficiency and ethics, we consider a weighted optimal
allocation

ραk = αρ∗
k + (1 − α)ρEk, k = 1, 2, 3, (11)

where 0 ≤ α ≤ 1 is a prespecified trade-off parameter. To calibrate the design, we study
operating characteristics of allocation (11) for various choices of α, for different values of
θ , and we use balanced allocation ρB = ( 1

3 , 1
3 , 1

3 ) as the reference in our comparisons. The
operating characteristics include:

� D-efficiency of ρα relative to ρB:

E1 =
{

|M−1(ρB, θ )|
|M−1(ρα , θ )|

}1/4

.

Note that 0 < E1 < 1 implies ρα is less efficient than ρB, and E1 ≥ 1 implies ρα is at
least as efficient as ρB for estimating θ .

� DA-efficiency of ρα relative to ρB:
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RANDOMIZATION DESIGNS FOR MULTI-ARM CLINICAL TRIALS 747

E2 =
{

|ATM−1(ρB, θ )A|
|ATM−1(ρα , θ )A|

}1/2

,

where AT is a 2 × 4 matrix of contrasts such that ATθ = (μ2 − μ1,μ3 − μ1)T. The
DA-efficiency is a relative measure of precision for estimating the contrast vector.
If 0 < E2 < 1 then ρα is less efficient, and if E1 ≥ 1 then ρα is at least as efficient as ρB.

� Power for testing the homogeneity hypothesis H0 :μc = 0 versus H1 :μc �= 0, where

μc = (μ2 − μ1,μ3 − μ1)T. We use the Wald test statistic Wn = μ̂c
T
�̂

−1
n μ̂c, where μ̂c

is the maximum likelihood estimator of μc and �̂n is a consistent estimator of �n =
var (μ̂c). Given n and θ , the power is computed as

Power = Pr(Y > χ2
2,0.95),

where Y follows a noncentral chi-squared distribution with 2 degrees of freedom and
noncentrality parameter μT

c �nμc and χ2
2,0.95 is the 95th percentile of the central chi-

squared distribution with 2 degrees of freedom.
� Expected total hazard in the trial. The cumulative hazard over the interval (0, D) for a

single patient in group k is Hk(D) = (De−μk )1/b, k = 1, 2, 3. We use the expected total
cumulative hazard in the trial as an ethical characteristic of the design:

H(D) = n
3∑

k=1

ρkHk(D).

For each of the scenarios A, B, and C from Table 4 we compute the operating characteristics
of allocation (11) for the values of α from 0 to 1. The graphical summary of the results is
presented in Fig. 4. For α = 0 the design has lowest expected total hazard but low values of
statistical efficiency measures. As α increases, the D-efficiency, DA-efficiency, and power
are increasing, but the expected hazard is increasing as well. The DA-efficiency and power
curves are not monotone in α. Overall, from Fig. 4 we conclude that α = 0.5 is a good
trade-off value. Across the considered scenarios, the design with α = 0.5 yields the same
power, ≥89% D-efficiency, ≥92% DA-efficiency, and it is expected to achieve 14% to 23%
reductions in total hazard compared to the balanced allocation.

Next we apply the DBCD procedure (9) to target allocation (11) with α = 0.5 and
compare this RAR design with balanced randomization. The requisite sample size for
scenarios A, B, and C to achieve approximately 90% power is 60, 72, and 123 patients,
respectively. For the RAR design, randomization probabilities are recalculated twice: after
enrollment of n/3 and 2n/3 patients. Each interim analysis is based only on data observed
up to that point (see Fig. 2). For the balanced randomization, every patient is randomized
to the treatments with probabilities ( 1

3 , 1
3 , 1

3 ) (a completely randomized design, CRD). For
each design and scenario combination, a trial is simulated 10,000 times.

Table 5 is the summary of the simulation results. The RAR procedure results in
skewed allocations favoring the treatment arms with longer survival times but it has more
variable allocation proportions than the CRD. Due to delayed responses, the target allo-
cations for the RAR procedure are not attained perfectly. With regard to the statistical
characteristics, the RAR procedure has ≥94% median D-efficiency, ≥92% median DA-
efficiency, and the same average power as the CRD. At the same time, the RAR procedure
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748 SVERDLOV ET AL.

D DA

n n

Figure 4 Theoretical operating characteristics of a weighted optimal (WO) allocation design described in section
6 for a three-arm survival trial under three experimental scenarios (A, B, C) from Table 4. The D-efficiency and
DA-efficiency are calculated for the WO allocation relative to the balanced allocation (values less than 1 indicate
WO is less efficient than balanced). Scenario A, WO allocation. Scenario A, balanced
allocation. Scenario B, WO allocation. Scenario B, balanced allocation.
Scenario C, WO allocation. Scenario C, balanced allocation.

has 7% to 9% lower average total hazard, 2 to 4 fewer deaths on average, and longer average
total observed survival time compared to the CRD. We conclude that the proposed RAR
procedure is both an efficient and an ethical research design for the considered survival
trial.

7. SUMMARY

In this article we proposed a practical approach to construct optimal RAR designs
for multiple objective clinical trials with K ≥ 2 treatment arms and censored Weibull out-
comes. We derived the D-optimal allocation and gained insights into its properties. As noted
by Gwise et al. (2008, p.128), “How to combine the idea of D-optimal or DA-optimal
with minimizing the number of patients into the inferior treatment group remains a fur-
ther research topic.” The methodology of the current article addresses this question for
time-to-event trials, and it can be also applied for trials with other types of outcomes, such
as binary or continuous (normal). We presented two distinct approaches for constructing
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Table 5 Simulated characteristics of completely randomized design (CRD) and a response-adaptive randomiza-
tion (RAR) design targeting allocation (11) with α = 0.5 for a three-arm survival trial under three experimental
scenarios (A, B, C) from Table 4, based on 10,000 simulations

Scenario A
(n = 66)

Scenario B
(n = 72)

Scenario C
(n = 123)

CRD RAR∗ CRD RAR† CRD RAR§

ρ1 0.335 (0.041) 0.281 (0.083) 0.334 (0.032) 0.264 (0.078) 0.334 (0.025) 0.265 (0.072)
ρ2 0.331 (0.041) 0.390 (0.117) 0.332 (0.032) 0.409 (0.099) 0.333 (0.026) 0.404 (0.080)
ρ3 0.334 (0.041) 0.330 (0.103) 0.334 (0.032) 0.328 (0.093) 0.333 (0.025) 0.331 (0.080)
M(D) 0.995 0.947 0.997 0.944 0.998 0.953
M(DA) 0.999 0.915 0.999 0.930 0.999 0.945
Power 0.916 0.917 0.903 0.901 0.883 0.881

TD (SD) 39 (4) 37 (4) 50 (4) 48 (5) 75 (5) 71 (6)
TH (SD) 305 (107) 281 (104) 283 (70) 258 (68) 295 (49) 274 (48)
TT (SD) 1331 (178) 1375 (153) 1797 (167) 1874 (185) 2757 (220) 2841 (241)

Note. M(D), median D-efficiency; M(DA), median DA-efficiency; TD, total number of deaths; TH, total hazard;
TT, total time; SD, standard deviation.

∗ Target allocation is (0.203, 0.551, 0.246).
† Target allocation is (0.211, 0.526, 0.262).
§ Target allocation is (0.224, 0.495, 0.281).

allocation designs that provide a trade-off between study objectives. For the first approach,
the trade-off is achieved by taking a mixture of several optimal allocations that reflect the
objectives of inferential efficiency and ethical considerations. For the second approach,
a compound optimal allocation is obtained by solving a convex optimization problem
that includes selected optimality criteria. While optimal allocation designs in this article
are based on D-optimality (which may not be optimal for inference using treatment con-
trasts), our numerical studies show that the proposed designs also achieve high values of
DA-efficiency and power, comparable to those of the balanced allocation design. Finding
the DA-optimal allocation and the allocation maximizing power for Weibull models are
important open problems.

The designs proposed in this article depend on the user-defined parameter α ∈ [0, 1]
that weighs the importance of the study objectives. How to judiciously select α is an open
problem. In this article we used a graphical approach to determine the value of α to achieve
desired trade-off among selected competing criteria. This is essentially the approach pro-
posed by Cook and Wong (1994). Another possibility is to use an adaptive weight α = α(θ ),
as Baldi Antognini and Giovagnoli (2010) did. One may require that the weight is more
skewed toward the inferential objective (D-optimality) at initial stages of the trial, and it
becomes skewed in favor of the ethical objective as the trial progresses. This approach
requires more calibration, and this is a topic for future research.

In our study we used simulation under various experimental scenarios to demon-
strate that the proposed optimal allocation designs can be successfully implemented
using RAR. For the considered setups, optimal RAR designs outperform balanced
randomization designs when multiple considerations, including selected inferential effi-
ciency criteria and ethical concerns, are incorporated at the study onset. We also
presented an application of our methodology using a Phase III survival trial in head
and neck cancer as an example. The MATLAB code for finding optimal allocations
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750 SVERDLOV ET AL.

and performing simulation studies in this article is fully documented and is avail-
able upon request. We are currently developing a user-friendly software interface
for simulating and implementing optimal RAR procedures in multi-arm time-to-event
trials.

APPENDIX: PROOFS

A.1. Derivation of the Fisher Information Matrix in Equation (2)

The log-likelihood for θ = (μ1, . . . ,μK , b) given data from the patients in the K
treatment groups is

log L(θ ) =
K∑

k=1

nk∑
i=1

(−δik log b + δikzik − ezik) . (A1)

The maximum likelihood estimator θ̂ = (μ̂1, . . . , μ̂K , b̂) is found by solving the system of
score equations

0 = ∂ log L(θ )

∂μk
=

nk∑
i=1

(δik−ezik)

(
−1

b

)
, k = 1, . . . , K,

0 = ∂ log L(θ )

∂b
= −1

b

K∑
k=1

nk∑
i=1

δik +
K∑

k=1

nk∑
i=1

(δik−ezik)
(
− zik

b

)
. (A2)

Since E
(
∂ log L(θ )

∂θ

)
= 0, from equation (A2) it follows that

E

(
nk∑

i=1

δik

)
= E

(
nk∑

i=1

ezik

)
, k = 1, . . . , K, (A3)

and

E

(
K∑

k=1

nk∑
i=1

δik

)
= −E

(
K∑

k=1

nk∑
i=1

(δik − ezik) zik

)
. (A4)

For any subject i = 1, . . . , nk in group k (where k = 1, . . . , K) define the following
parameters:

εk = Pr(δik = 1), ak = E (zikezik) , ck = E
(
z2

ikezik
)

. (A5)

Note that each of the εk, ak, and ck in equation (A5) is a function of θ and the censoring

mechanism used in the trial. The Fisher information matrix is E
(
− ∂2 log L(θ )

∂θ∂θT

)
with elements

E

(
−∂

2 log L(θ )

∂μ2
k

)
= 1

b2
nkεk, k = 1, . . . , K,
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E

(
−∂

2 log L(θ )

∂μk∂b

)
= 1

b2
nkak, k = 1, . . . , K,

and

E

(
−∂

2 log L(θ )

∂b2

)
= 1

b2

K∑
k=1

nk(εk + ck).

For an allocation ρ = (ρ1, . . . , ρK)T, the Fisher information matrix for θ = (μ1, . . . ,μK , b)
is

M(ρ, θ ) = n

b2

⎛
⎝ diag{ρ1ε1, . . . , ρKεK} x

xT
K∑

k=1
ρk(εk + ck)

⎞
⎠ , (A6)

where x = (ρ1a1, . . . , ρKaK)T, and εk, ak, and ck are as in equation (A5). When treatment
k is considered alone, the Fisher information matrix for (μk, b) is

Mk(μk, b) = nρk

b2

(
εk ak

ak εk + ck

)
,

and the asymptotic covariance matrix of (μ̂k, b̂) is

M−1
k (μk, b) = b2

nρk

(
(εk + ck)/(εkdk) −ak/(εkdk)

−ak/(εkdk) 1/dk

)
,

where dk = εk + ck − a2
k/εk, k = 1, . . . , K. Clearly, dk > 0 for k = 1, . . . , K, because dk is

inversely proportional to the asymptotic variance of the maximum likelihood estimator b̂
of b, computed using data from treatment k alone.

To derive |M(ρ, θ )|, we use the following result from matrix algebra. Let A be a
nonsingular K × K matrix, y be a K × 1 column vector, xT be a 1 × K row vector, and c be
a constant. Then

∣∣∣ ( A y
xT c

) ∣∣∣ = |A|(c − xTA−1y).

It follows from (A6) that |M(ρ, θ )| = (
n/b2

)K+1∏K
k=1 ρkεk

∑K
k=1 ρkdk. �

A.2. Justification of Equation (4)

To minimize |M−1(ρ, θ )|, we can equivalently minimize log |M−1(ρ, θ )|. Letting λ
be the Lagrange multiplier, we have

∂

∂ρk

{
log |M−1(ρ, θ )| + λ

(
K∑

k=1

ρk − 1

)}
= − 1

ρk
− dk∑K

k=1 ρkdk

+ λ, k = 1, . . . , K.

Setting the derivatives to zero gives
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1

ρk
+ dk∑K

k=1 ρkdk

= λ, k = 1, . . . , K.

Multiplying both sides of the above identity by ρk and summing over k = 1, . . . , K, we
obtain λ = K + 1 and equation (4) follows.

Let us show that the obtained solution ρ∗ = (ρ∗
1 , . . . , ρ∗

K) is indeed the point of mini-
mum. Let diag(1/ρ∗2) be the K × K diagonal matrix with the jth diagonal element equal to

1/ρ∗2
j , j = 1, . . . , K, let d = (d1, . . . , dK)T, and let	∗ =

K∑
j=1
ρ∗

j dj. To show that the matrix

J = ∂2 log |M−1(ρ,θ )|
∂ρ∂ρT evaluated at ρ∗ is positive definite, we observe that

J(ρ∗, d) =

⎛
⎜⎜⎜⎜⎜⎝

1
ρ∗2

1
+ d2

1
	∗2

d1d2
	∗2 · · · d1dK

	∗2

d1d2
	∗2

1
ρ∗2

2
+ d2

2
	∗2 · · · d2dK

	∗2

· · · · · · · · · · · ·
d1dK
	∗2

d2dK
	∗2 · · · 1

ρ∗2
K

+ d2
K

	∗2

⎞
⎟⎟⎟⎟⎟⎠ = diag(1/ρ∗2) + 1

	∗2
ddT. (A7)

Therefore, we have |J(ρ∗, d)| = (
∏K

j=1 ρ
∗2
j )−1

(
1 + 1

	∗2

∑K
j=1(ρ∗

j dj)2
)
> 0, and replacing

K by an arbitrary integer s = 1, . . . , (K − 1) we see that all main minors of J(ρ∗, d) are
positive definite. Hence, J(ρ∗, d) is positive definite and ρ∗ is the point of local minimum.
Since the criterion log |M−1(ρ, θ )| is strictly convex, any local optimal solution is also a
global optimal solution, and this completes the proof. �

A.3. Justification of Property (i) in Section 3.1

Without censoring, zik = (log tik − μk)/b follow a standard extreme value distribution
Z with density f (z) = ez exp(−ez). Its moment-generating-function is MZ(t) = E

(
etZ
) =

�(t + 1), t > −1, where �(t) = ∫∞
0 xt−1e−xdx is the gamma function. This implies that for

k = 1, . . . , K we have

ak = E
(
ZeZ

) = d

dt
MZ(t)|t=1 = 1 − γ ,

ck = E
(
Z2eZ

) = d2

dt2
MZ(t)|t=1 = π2

6
− 1 + (1 − γ )2,

and since εk = 1 for k = 1, . . . , K, it follows that dk = π2/6 for k = 1, . . . , K. Therefore,
|M(ρ, θ )| = π2/6

∏K
k=1 ρk and the optimization problem (3) simplifies to minimizing

(
∏K

k=1 ρk)−1 subject to
∑K

k=1 ρk = 1. By the arithmetic–geometric mean inequality, the
optimal solution is ρ∗ = (1/K, . . . , 1/K). �

A.4. Justification of Property (ii) in Section 3.1

When K = 2, we let ρ∗
1 = ρ = 1 − ρ∗

2 and from equation (4) we have
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3(d1 − d2)ρ2 − 2(d1 − 2d2)ρ − d2 = 0.

If d1 = d2, the preceding equation is linear with the single root ρ = 1
2 . If d1 �= d2, we have

two roots given by

ρ± = d1 − 2d2 ± (d2
1 − d1d2 + d2

2)1/2

3(d1 − d2)
.

If d1 > d2, we have ρ+ > ρ− and the parabola Q(ρ) = 3(d1 − d2)ρ2 − 2(d1 − 2d2)ρ − d2

at ρ = ρ+ changes its sign from “–” to “+”, which implies that ρ+ is the point of minimum
of the D-optimal criterion. Similarly, if d1 < d2, we have ρ+ < ρ− and the parabola Q(ρ)
at ρ = ρ+ changes its sign from “–” to “+,” which again implies that ρ+ is the point of
minimum. Further algebra shows that ρ+ ∈ (0, 1) (in fact, 1

3 ≤ ρ+ ≤ 2
3 ) and, therefore, ρ+

is the optimal solution in the case when d1 �= d2. �

A.5. Justification of Property (iii) in Section 3.1

From equation (4) it follows that

(K + 1)ρ∗
k − 1 = ρ∗

k dk∑K
j=1 ρ

∗
j dj

, k = 1, . . . , K. (A8)

Since dk > 0 for k = 1, . . . , K, we have 0 ≤ ρ∗
k dk∑K

j=1 ρ
∗
j dj

≤ 1, which, together with equation

(A8), implies that 1
K+1 ≤ ρ∗

k ≤ 2
K+1 for k = 1, . . . , K. �

A.6. Justification of Property (iv) in Section 3.1

From the ordering d1 ≥ d2 ≥ . . . ≥ dK and the facts that dj > 0 and 1
K+1 ≤ ρ∗

j ≤
2

K+1 for j = 1, . . . , K, it follows that

ρ∗
2

ρ∗
1

= d1

d2 + (K + 1)(d1 − d2)ρ∗
2

≤ 1,

and

ρ∗
j+1

ρ∗
j

= dj + (K + 1)(d1 − dj)ρ∗
1

dj+1 + (K + 1)(d1 − dj+1)ρ∗
1

≤ 1.

The limiting values of 1/(K + 1) and 2/(K + 1) are achieved as dj/dk → ∞ for all j �= k,
and dj/dk → 0 for all j �= k, respectively. �
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