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High Dynamic Range Processing for Magnetic Resonance
Imaging
Andy H. Hung., Taiyang Liang., Preeti A. Sukerkar, Thomas J. Meade*

Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois, United States of

America

Abstract

Purpose: To minimize feature loss in T1- and T2-weighted MRI by merging multiple MR images acquired at different TR and
TE to generate an image with increased dynamic range.

Materials and Methods: High Dynamic Range (HDR) processing techniques from the field of photography were applied to a
series of acquired MR images. Specifically, a method to parameterize the algorithm for MRI data was developed and tested.
T1- and T2-weighted images of a number of contrast agent phantoms and a live mouse were acquired with varying TR and
TE parameters. The images were computationally merged to produce HDR-MR images. All acquisitions were performed on a
7.05 T Bruker PharmaScan with a multi-echo spin echo pulse sequence.

Results: HDR-MRI delineated bright and dark features that were either saturated or indistinguishable from background in
standard T1- and T2-weighted MRI. The increased dynamic range preserved intensity gradation over a larger range of T1 and
T2 in phantoms and revealed more anatomical features in vivo.

Conclusions: We have developed and tested a method to apply HDR processing to MR images. The increased dynamic
range of HDR-MR images as compared to standard T1- and T2-weighted images minimizes feature loss caused by
magnetization recovery or low SNR.
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Introduction

T1- and T2-weighted imaging are ubiquitous in clinical and

research MRI studies [1]. In these imaging methods, contrast can

be diminished due to complete magnetization recovery or low

signal-to-noise ratio (SNR) [1–5]. For MR images with a limited

range of T1 and T2, optimizing the acquisition parameters TR

(repetition time) and TE (echo time) circumvents the issue.

However, for MR images with a wide range of T1 and T2

originating from lesions, tissues, or contrast media, feature loss

cannot be avoided regardless of the choice of TR and TE [6]. This

scenario occurs, for example, when imaging the whole-animal

biodistribution of novel contrast agents [7] or labeled biomolecules

[8,9], and can be thought of as a limitation in the ‘‘dynamic

range’’ of the imaging method.

The formal definition of dynamic range is the ratio between the

maximum and the minimum measurable value above noise in an

acquisition system [10]. In MRI, T1 and T2 are not limited by the

hardware dynamic range per se because they are not directly

acquired. However, contrast from a limited range of T1 and T2

occupies a disproportionately large portion of the signal dynamic

range because magnetization recovers and decays nonlinearly

according to the two parameters [1]. In other words, voxels with

T1 and T2 values outside of a limited range either vanish into the

background noise or saturate the intensity scale (Figure 1) [1].

Therefore, a useful definition of ‘‘dynamic range’’ in T1- and T2-

weighted MRI is the range of T1 and T2 values that result in

detectable and differentiable signal. In an ideal image with

unlimited dynamic range as defined here, T1 or T2 is monoton-

ically represented by intensity. In some other fields of research,

dynamic range is defined in a similar way [11,12].

Dynamic range limitation is a well-recognized issue in the field

of photography [10,13–15]. When a scene has a large range of

illumination, the resulting photograph invariably has regions that

are either saturated or hidden in darkness regardless of the camera

exposure time setting. High Dynamic Range (HDR) photography

is a technique invented to overcome this challenge by capturing a
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scene with multiple exposure times and then computationally

merging the Low Dynamic Range (LDR) photographs together

[16–19]. Since the over- or under-exposed regions in any one

LDR picture are properly exposed in the other pictures in the set,

the merging process produces an HDR image that appears

properly exposed throughout. HDR processing is highly automat-

ed and has been applied widely to films and photography in the

last decade [10,20–25].

We applied HDR processing to merge MR images of different

TR and TE combinations in a technique we call High Dynamic

Range MRI (HDR-MRI). MR images acquired at different TR

and TE are analogous to photographs captured at different

exposure times because both produce a set of images with

increasing brightness. Similar to HDR photography, HDR-MRI

displays more bright and dark features from specimens with a large

range of T1 or T2 compared to standard MRI (Figure 1). This is

possible because each TR and TE combination produces an image

with complementary information that is then merged to minimize

feature loss.

HDR-MRI follows a long history of post-processing algorithms

that have been proposed since the 1980s to transform or combine

multiple MR images. These algorithms include principle compo-

nent analysis [26], eigen-images [27], weighted averaging [28],

image synthesis [6,29], and other linear filters [30–33]. The

processed images aid in diagnostic interpretation by increasing

contrast-to-noise ratio (CNR), suppressing interfering features, or

allowing dynamic viewing of images synthesized with arbitrary TR

and TE. HDR-MRI is most similar to image synthesis in that the

outputs are readily interpretable by experienced readers, as the

hyper- and hypo-intensity relationships of standard acquisitions

are preserved. Images produced by other more sophisticated

techniques are often more enhanced, but require additional

training to read [31]. Compared to image synthesis, HDR-MRI

exaggerates or diminishes contrast, is more resistant to uncertain-

ties in T1 and T2 fitting, and in theory, displays more information

simultaneously when shown on an HDR monitor to potentially

reduce reading time [34].

To apply HDR processing to MRI, we derived a mathematical

expression to transform the MR parameters TR and TE into the

HDR parameter exposure value (EV). The performance of HDR-

MRI on solution phantoms doped with contrast agents and a live

mouse was investigated. Compared to standard MRI, HDR-MRI

differentiated signals from a larger range of contrast agent

concentrations in phantoms and revealed more anatomical

features in vivo.

Materials and Methods

Ethics Statement
Animal studies were conducted in accordance with the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals. The protocol was approved by the Northwestern

Institutional Animal Care and Use Committee (Permit Number:

2010–2027).

Theory
A limitation in optical image capture technology is the low

dynamic range of films and sensors relative to the human eye

Figure 1. Simulation of intensity scale of T1- and T2-weighted imaging compared to HDR-MRI. T1 and T2 values cover the physiological
range. For comparative purposes, dynamic range was defined to span from 10% to 90% of each intensity scale. Regions of an image with T1 and T2

outside this range would appear featureless as either completely white or black. HDR-MRI improved the dynamic range compared to T1- and T2-
weighted imaging. Furthermore, in conventional imaging, dynamic range was sacrificed to visualize short T1 and T2 features whereas HDR-MRI did
not suffer from this limitation.
doi:10.1371/journal.pone.0077883.g001

High Dynamic Range Magnetic Resonance Imaging

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e77883



[14,15]. As a result, some features are obscured in darkness while

others appear saturated. HDR processing overcomes this limita-

tion by merging multiple LDR photos with varying exposure times

to capture the full range of features observed naturally by the

human eye. There are a number of algorithms for HDR

processing [16,17,35–37]. The commercial package utilized here

(HDR Pro built into Adobe Photoshop CS5) implements the

algorithm developed by Debevec and Malik [16].

The Debevec algorithm estimates the physical illumination (I) of

an object based on the principles of digital image capture systems.

An image is captured through light sensor exposures (E) that scale

with object illumination and exposure time (t) (Equation 1).

E~I :t ð1Þ

The light sensor converts the exposure (E) to a finite range of pixel

brightness through a digital conversion function f, otherwise

known as the characteristic curve (Figure 2A) (Equation 2).

Zij~f (Eij)~f (Ii
:tj) ð2Þ

Zij denotes the brightness of pixel i at exposure time tj. With the

reasonable assumption of f as a monotonically increasing function,

an inverse function, f21, exists (Equation 3).

f {1(Zij)~Ii
:tj ð3Þ

Taking the natural logarithm defines the function g (Equation 4)

ln½f {1(Zij)�~g(Zij)~ln Iizln tj ð4Þ

In Equation 4, g and Ii are the unknowns and can be estimated by

minimizing a quadratic error function (Equation 5).

Error~

XN

i~1

XP

j~1

w(Zij):½g(Zij){ln Ii{ln tj �2zl
XZmax{1

Z~Zminz1

w(Z):g00(Z)2

8<
:

9=
;
ð5Þ

N is the number of pixels per picture and P is the number of

pictures to be merged. When N and P are sufficiently large, the

error function can be seen as an over-determined system of

equations that is solved readily using available algorithms [16].

The first term of the error function ensures fidelity of Equation 4.

The second term ensures smoothness of g. The strength of the

second term is controlled by the choice of l. The second derivative

g0(Z) is defined in discrete form (Equation 6).

g00(Z)~g(Z{1){2:g(Z)zg(Zz1) ð6Þ

The weighing function, w, emphasizes pixels closer to the center of

the light sensor dynamic range so that pixels without signal or that

are saturated weigh less in the determination of g (Equations 7 and

8).

Zmid~
1

2
(ZminzZmax) ð7Þ

w(Z)~Zmid{ Zmid{Zj j ð8Þ

Once g has been computed, the estimation of physical illumination

Ii can be further improved by a weighted average (Equation 9).

ln Ii~

PP
j~1

w(Zij):½g(Zij){ln tj �

PP
j~1

w(Zij)

ð9Þ

In this equation, the determination of Ii is weighted toward pixels

with proper exposure because the weighing function approaches

zero when the pixel is under- or over-exposed (i.e. Zij approaches

Zmin or Zmax). The re-constructed HDR image presents the

calculated physical illumination (I) of the scene and consequently

spans over a wider dynamic range than any of the source images

(Figure 2B).

To utilize HDR processing for MR images, it is necessary to

transform the MRI parameters TR and TE into the photography

parameter exposure time (t). TR and TE in MRI are analogous to

exposure time in photography because they are acquisition

parameters that affect voxel intensity just as exposure time affects

pixel intensity. For a Multi-Echo Spin Echo (MESE) pulse

sequence, the voxel signal intensity is governed by Equation 10

[1,38].

S!MO 1{exp {TR=T1ð Þ½ �exp {TE=T2ð Þ ð10Þ

Mo is the equilibrium magnetization, TR is the repetition time, TE

is the echo time, and T1 and T2 are the longitudinal and transverse

relaxation time, respectively. In this equation, TR and TE have

monotonic relationships with the MR signal (S), analogous to the

relationship between exposure time (t) and film exposure (E) in

photography (Equation 1) [39].

By setting equations 1 and 10 equal to each other, Equation 11

is obtained:

t~x: 1{exp {TR=T1ð Þ½ �:exp {TE=T2ð Þ ð11Þ

x is a constant consisting of Mo and I. The calculated t can be used

to solve Equation 5, with the index for tj running from 1 to 4 to

represent images acquired at 4 different TRs or TEs used in the

experiments. In practice, t is further transformed into exposure

values (EV) by Equation 12 for input into the HDR software

[16,39].

EV~log2 F2:t
� �

ð12Þ

F refers to the relative aperture. Since EV is a relative value in

HDR processing, F and, to a first order approximation of constant

Mo, x can be arbitrarily chosen. We set F to 4 because it is a

commonly used setting in photography and x to 1 for simplicity. It

is important to note that the T1, T2, and Mo chosen to calculate t

affect processing. This complication should not significantly

impact the qualitative interpretation of HDR-MR images because

it does not alter the hyper- and hypo-intensity relationships in the

image. The effect of non-uniform T1, T2, and Mo on HDR

processing is examined more closely in the discussion section.

High Dynamic Range Processing
For T1-weighted image series with varying TR, the RecoSeries

macro in ParaVision software (version 5.1, Bruker BioSpin,

Billerica, MA) was used to reconstruct all 4 images on the same

intensity scale. This pre-processing was not required for images in

(5)
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TE series because they were acquired in a single scan. All images

were converted from signed 16-bit integer encoding to unsigned

16-bit integer encoding in ImageJ (NIH, Bethesda, MD).

T1 and T2 of solution phantoms were fitted using the built-in

Image Sequence Analysis tool in ParaVision or a custom program

written in Matlab (ver. R2010b, MathWorks, Natick, MA). HDR

processing was performed using HDR Pro built into Adobe

Photoshop CS5. The only input parameters for processing were

EV and the choice of white point. The EV of each source image

was calculated using Equations 11 and 12 based on T1 and T2

values specified in Table S1. The T1 and T2 used represent

intermediate values within the estimated range for each figure.

The white point of the intensity scale was always set to the

brightest pixel of the image. No additional adjustments, such as

tone mapping or detail enhancement, were performed. The output

was saved in 32-bit TIFF format. For the phantom results, each

HDR image was normalized using ImageJ such that the intensity

of the water signal is equivalent to the water signal of the brightest

input image. All images were displayed on the same intensity scale

within each figure except for the in vivo images. For pseudo-

coloring, Fire LUT in ImageJ was applied.

Simulation of Dynamic Range of T1-weighted, T2-
weighted, and High Dynamic Range MRI

The T1- and T2-weighted intensity scales were created by

simulation in Matlab using equation 10. TE = 0 and TR = ‘ was

used for T1- and T2-weighted simulation, respectively. Each scale

is displayed between pixel values 0 and 65535. The HDR intensity

scale was generated by merging the LDR scales using HDR

processing as described previously.

Gd(III)HPN3DO3A and Iron Oxide Nanoflower Phantom
MRI

The MR contrast agents used in these studies were synthesized as

previously described [40,41]. Solution phantoms were prepared by

placing 25 mL of Gd(III)HPN3DO3A or iron oxide Nanoflower (NF)

samples in flame-sealed 0.6 mm ID 90 glass Pasteur pipettes. The

stock concentrations of Gd(III)HPN3DO3A and NF were 0.5 M and

4.8 mg/mL, respectively. Serial dilutions of 10 fold were performed 6

times for each agent. All images were acquired using a 7.05 T Bruker

PharmaScan fitted with a RF RES 300 1H 089/023 quadrature

transceiver volume coil (Bruker BioSpin, Billerica, MA). The MESE

pulse sequence was used in all acquisitions. For T1-weighted HDR,

the imaging parameters were TR = 200, 400, 800, 1600 ms,

TE = 10.635 ms, NEX = 1, Bandwidth = 195 Hz/pixel, FOV = 236
23 mm2, slice thickness = 1 mm, and matrix size = 2566256. For

T2-weighted HDR, the imaging parameters were TR = 4000 ms,

TE = 10.635…531.75 ms in 10.635 ms increments, NEX = 1, Band-

width = 391 Hz/pixel, FOV = 23623 mm2, slice thickness = 1 mm,

and matrix size = 1286128.

Quantification
Image intensity quantification was done using ImageJ with the

Measure function on ROIs. Normalized contrast was defined by

Equation 13.

Ix,y~ Ix{Iy

� �
=Iwater ð13Þ

Ix,y is the normalized contrast between samples x and y. It is

calculated by subtracting the intensity of sample y (Iy) from that of

sample x (Ix), followed by normalization with the intensity of water

(Iwater). To calculate SNR, water signal was divided by noise either

in the void region or within the water signal as indicated in the

figures. Noise in the void is calculated as s~sm=0:65, where s is

the physical noise and sm is the measured standard deviation, to

account for the Rician distribution of noise in MR magnitude

images [42]. Noise within water is approximated as s = sm and

requires no correction because the noise distribution is largely

Gaussian at high SNR. Error bars represent s that were

propagated from the source images according to the arithmetic

operations performed. For example, the s of Ix - Iy is calculated as

s2
Ix

zs2
Iy

� �1=2

.

Figure 2. HDR processing in photography. (A) LDR photos taken
at varying exposure times produce shifted characteristic curves
(otherwise known as the digital conversion function f) that cover
different ranges of irradiance. HDR processing merges the LDR
characteristic curves to produce an HDR characteristic curve that
covers a larger range of irradiance. The HDR characteristic curve is used
to calculate object illumination to alleviate the issues of over- and
under-exposure associated with conventional LDR photography. (B) An
example showing the merger of 4 LDR photos (smaller photos) to a
HDR photo (larger photo). In the HDR photo, the front wall showed no
saturation from over-exposure while the poorly lit hallway remained
visible. This was not achieved in any single LDR photo due to the
limited dynamic range.
doi:10.1371/journal.pone.0077883.g002
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In vivo Imaging
A female Balb/C athymic nude mouse was acquired from

Harlan (Indianapolis, IN) and housed under pathogen-free

conditions. The mouse was maintained under anesthesia (1–3%

isoflurane) and respiration monitor. Tubing containing heated

water was positioned under the mouse to maintain constant body

temperature. Imaging was performed on an 89 mm bore

PharmaScan 7.05 T MR imager fitted with shielded gradient

coils (Bruker BioSpin, Billerica, MA, USA) using a RF RES 300

1H 089/038 quadrature transceiver volume coil (Bruker BioSpin,

Billerica, MA, USA). Respiration-gated MESE scans with fat

suppression were used: TR = 5632 ms, TE = 10.635…212.7 ms in

10.635 ms increments, NEX = 1, Bandwidth = 391 Hz/pixel,

FOV = 35635 mm2, slice thickness = 1 mm, and matrix

size = 1286128. HDR processing was performed as described

previously. The T2 map was generated by fitting every voxel in the

TE series to A?exp(2TE/T2)+C using Matlab. Masking was done

by manually thresholding the TE 21 LDR image at 1500 such that

the voxels below and above the threshold were set to 0 and 1,

respectively. The intensity scale of each image was adjusted

individually for visibility.

Results

To assess the applicability of HDR processing to MR images,

we prepared solution phantoms consisting of T1 (Gd(III)HPN3-

DO3A) [41] and T2 (NF) [40] contrast agents (Figure 3). This

assortment of phantoms simulated scenarios when many different

tissues or a large range of contrast agent concentrations are

imaged in the same view. The concentrations, T1, and T2 values of

each phantom are listed in Figure 3. For samples with high

concentrations of contrast agents (samples 1, 2, 7, and 8), the T2

was short compared to the shortest TE available for the pulse

sequence used. As a result, these samples were invisible in most of

the MR images acquired [1,38].

HDR Processing of MR Images
HDR-MR images were generated and compared to conven-

tional images. For T1-weighted HDR-MRI, images were taken at

constant TE and varying TR. The result showed that a TR of

200 ms gave the highest contrast among samples 3–5, while longer

TRs better distinguished the lower concentration samples from

background (Figure 4A–D). By merging the LDR images, HDR

processing combined the advantage of pronounced contrast at

short TR and improved delineation of weak signals at longer TR

(Figure 4E, F).

Similarly, for T2-weighted HDR-MRI using images with

varying TE, each image spanned a different dynamic range and

provided the optimal contrast between different pairs of samples

(Figure 5A–D). For example, the TE used in Figure 5A and 5D are

best at differentiating sample 9 from 10 and sample 10 from 11,

respectively. The HDR image had an extended dynamic range

and was capable of differentiating samples 9, 10, and 11, on the

same image (Figure 5E, F). However, this wider dynamic range

sacrificed quantitative contrast between samples since the absolute

range of pixel intensities is fixed by the display device and file

encoding capability.

EV Interval Selection
The EV interval of the source LDR images has a significant

impact on the quality of the final HDR image. In the extreme, a

selection of LDR images with identical EV produces a HDR

image without any enhancement. In photography, the optimal EV

interval is typically between 1 and 2 to ensure overlap of the

characteristic curves at different exposure times (Equation 2,

Figure 2A) and a wide dynamic range [16,43]. To investigate

whether MR images have similar optimal EV gaps, a series of

images with constant TR and varying TE were acquired; selections

of 4 single LDR images with EV intervals of 0, 0.5, 1, and 1.4 were

utilized for HDR processing. Each selection had a different TE

range that centered around TE = 270 ms, with the largest

spanning from 11 ms to 521 ms (Table S1). In addition, simple

averaging of 4 LDR images with TE 11 ms and 521 ms were

performed to compare with HDR processing.

As previously discussed, HDR improves the dynamic range of

an image to include dark and bright features by the sacrifice of

relative contrast, and this is further illustrated in Figure 6A. The

curves shown can be interpreted as rough representations of

characteristic curves (pixel intensity vs. film exposure) because iron

concentration is correlated to T2. The two LDR curves had similar

slopes, but were shifted horizontally relative to each other,

indicating similar dynamic ranges that cover different regions.

With HDR processing using EV interval 0, the slope was similar to

the LDR images, consistent with expectation; as the EV interval

increased, the curve flattened to span through a wider range of

concentrations, indicating an increase in dynamic range with a

concomitant decrease in relative contrast. The same conclusion

regarding EV intervals could be drawn visually from the acquired

images (Figure 6B). Wider EV intervals generated images with

greater dynamic range that better delineated low signal features

Figure 3. Legends and characterizations of solution phantom
samples 1–12.
doi:10.1371/journal.pone.0077883.g003
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from background while retaining differential contrast in the high

signal features. It is evident that an EV gap of 1–2 yielded the best

combination of range and contrast, similar to the guidelines used

in photography. Functionally, the increased dynamic range of

HDR-MRI as compared to conventional imaging allowed for the

capture of contrast enhancement from a larger range of contrast

agent concentrations.

In Vivo Imaging and HDR
Based on the in vitro findings, a live mouse was scanned using a

carefully selected TE series that was merged into a T2-weighted

HDR image (Figure 7). The HDR image contains features that

one or more of the individual LDR images lack. For example, the

red highlight shows the low signal features present when

TE = 21 ms but not at longer TEs, and the yellow highlight

outlines the contrast between features that were only evident when

TE$74 ms. For comparison, a T2 map was generated using the

same dataset. The T2 map generally captures the same features,

but required manual masking and is noisier in the regions with low

SNR due to insufficient signal for fitting at long TE. A similar

result was obtained when T2 was mapped using images acquired at

TE = 21, 43, 64, and 85 ms to improve accuracy (Figure S1). In

contrast, HDR processing is able to capture low signal features

accurately even in the case when they are only visible in a single

source image.

Discussion

Our results demonstrate a method of applying HDR processing

to MRI. HDR-MRI exchanges relative contrast for dynamic range

to minimize feature loss caused by complete magnetization

recovery and low SNR. The improved dynamic range captured

contrast agent enhancements over a larger concentration range

and preserved more anatomical details in vivo. These properties

make HDR-MRI suitable for imaging a large number of tissue

types and contrast agent concentrations simultaneously, such as

when performing small animal biodistribution studies by MRI.

Figure 4. T1-weighted HDR-MRI. A series of images were acquired with constant TE at 10.635 ms and varying TR at (A) 200 ms (B) 400 ms (C)
800 ms and (D) 1600 ms. Images A–D were computationally merged by the HDR algorithm to generate the (E) HDR-MR image. The HDR image
accentuated the contrast between samples 3 and 4 without suppressing samples 5 and 6 into the background. None of the LDR images, A–D,
captured both features simultaneously. While image A had the largest normalized contrast, it also had the poorest SNR. Conversely, images with
better SNR had worse normalized contrast, most notably between samples 3 and 4. HDR-MRI combined the complementary features of each image.
(F) Quantification of contrast normalized against water. Error bars represent standard deviation.
doi:10.1371/journal.pone.0077883.g004
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The Effect of T1, T2, and Mo on HDR Processing
When EV is calculated using Equations 11 and 12, the analogy

between photography and MR imaging is complicated by the fact

that each voxel has a different T1, T2, and Mo. One way to

understand the effect of this complication is to think of the

inputted EV as under- and over-estimating the EV of different

voxels. Consequently, their physical illuminations become miscal-

culated according to Equations 4 and 9. In the case when

T1,voxel,T1,input, T2,voxel.T2,input, or Mo,voxel.Mo,median, the

HDR algorithm overestimates the illumination of the voxel

(Figure S2). Incidentally, shorter T1, longer T2, and larger Mo

all lead to higher signals on an MR image to coincide with the

overestimated illumination (Equation 10). Similarly, when T1,vox-

el.T1,input, T2,voxel,T2,input, or Mo,voxel,Mo,median, the HDR

algorithm underestimates the voxel illumination. In other words,

the effect of voxel-dependent T1, T2, and Mo can be understood as

a brightening of high signal features and a darkening of low signal

features. The result is the exaggeration and diminishment of

quantitative contrast without alteration to the hyper- and hypo-

intensity relationships between the different features.

To validate the theoretical expectations and quantify the

contrast modifications, HDR processing was performed on the

same set of source images using EVs calculated from different T1

and T2 combinations (Figures S3 and S4). Only the choice of T1

affected the processing of T1-weighted HDR-MRI because

TE%T2 and was fixed across the TR series (Equation 11 and

Figure S3). Similarly, only the choice of T2 was important in T2-

weighted HDR-MRI (Figure S4). The result showed that in both

cases, the quantitative contrast varied, but the relative feature

brightness remained the same regardless of the EV used, consistent

with the theoretical predications.

A further assessment showed that the degree of intensity

variation depended on the choice of T1 or T2 in calculating the

input EV. When extreme values of T1 or T2 were used, the

contrast modification can be significant. For example, when

T2 = 43 ms was used to calculate EV in the T2-weighted HDR-

MR image, the water illumination (T2 = 400 ms) was overestimat-

Figure 5. T2-weighted HDR-MRI. A series of images were acquired with constant TR at 4000 ms and TE at (A) 63.81 ms (B) 127.62 ms (C) 255.24 ms
and (D) 531.75 ms. Images A–D were computationally merged by the HDR algorithm to generate the (E) HDR image. HDR-MRI accurately captured
the intensity difference between samples 9, 10, 11, and 12, which was not achieved in any of the source images. This was shown quantitatively by
contrasts normalized against water (F). Image A was poor at differentiating samples 10–12, B and C were poor at differentiating samples 11 and 12,
and D was poor at differentiating samples 9 and 10. Error bars represent standard deviation.
doi:10.1371/journal.pone.0077883.g005
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ed to such a degree that the darker features became invisible in

comparison (Figure S4). However, when intermediate T1 or T2

was chosen, the variations were mitigated. For example, in the T2-

weighted HDR-MR image (T2 range = 43–400 ms), EVs calcu-

lated using a T2 anywhere between 170–370 ms resulted in

intensity variations of no more than 17% relative to water (Figure

S4). This degree of variation is commonly experienced in

conventional T2-weighted imaging as a result of operator

differences in choosing TE (Figure S4). A similar conclusion can

be drawn for T1-weighted HDR-MRI (Figure S3).

In HDR-MRI, voxel-dependent T1, T2, and Mo results in the

exaggeration or diminishment of quantitative contrast while

conserving hyper- and hypo-intensity relationships in accordance

with the source images. When intermediate T1 or T2 is used to

calculate the input EV, the contrast modifications introduced are

no greater than the variations introduced by operator differences

in conventional imaging due to TR and TE choices. Similar

outputs can be obtained using a range of T1 or T2 in the

calculation of EV, making the method somewhat robust. Based on

these observations, we expect the effect of voxel-dependent EV to

only minimally interfere with qualitative interpretation, especially

on viewing software with dynamic brightness and contrast

adjustments. If quantitative information is desired, a more

sophisticated approach could be taken in the future to modify

the HDR algorithm based on the MR signal equation.

The Effect of TR and TE Choice on HDR Processing
In HDR photography, the choice of exposure times affects the

resulting HDR image. Similarly, the choice of TRs or TEs is an

important consideration in HDR-MRI. The choice of TRs in T1-

weighted HDR-MRI and TEs in T2-weighted HDR-MRI

determines the EVs and, in turn, the dynamic range of the output

(Figure 6). For an MR image set that covers a fixed dynamic

range, variations in TR or TE change the calculated EV for each

image (Equation 11); as a result, the feature intensities in the

HDR-MR image would vary in a manner similar to when the

choice of T1 or T2 is varied in the calculation of EV. As discussed

previously, this degree of variation is not expected to hinder

qualitative interpretation. To obtain unique HDR-MR images for

quantitative purposes, the underlying HDR algorithm would need

to be modified.

Recommendations
Based on the findings presented, a recommended protocol for

HDR-MRI is summarized in a flowchart (Figure 8). Choosing an

intermediate T1 or T2 value for EV calculation and a TR/TE

Figure 6. EV interval analysis. (A) Signal intensities normalized against water at various NF concentrations. Sigmoidal curves illustrate trends in
the data and can be thought of as characteristic curves. As the EV interval increased, the characteristic curve slope flattened to span over a wider
dynamic range. The characteristic curves of the two averaged LDR images (TE11 and TE521) had the steepest slopes and were analogous to the EV
interval 0 condition. (B) Comparison between averaged LDR images and HDR images. The HDR image with EV interval 1.4 showed contrast between
every sample from 8 to 12, indicating its large dynamic range. N = 4 was used for the averaged images. Error bars represent standard deviation.
doi:10.1371/journal.pone.0077883.g006
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series with EV intervals between 1–2 have been shown to work

well with the commercial package utilized here. Although no

precise method is prescribed for choosing T1 or T2 in calculating

EV and some operator differences cannot be avoided, similar

results are obtained within a range. Consequently, the choice

should not significantly impact qualitative interpretation based on

hyper- and hypo-intensity relationships. Once the EV interval has

been determined, the number of images to acquire depends on the

estimated range of T1 or T2 in the image. For best results, the

shortest and the longest TR or TE in the sequence should

approximate the shortest and the longest estimated T1 or T2,

respectively. In our experience, four images comfortably cover

many scenarios.

Cost Benefit Analysis
HDR-MRI preserves features with extreme T1 or T2 values at

the expense of relative contrast and imaging time compared to

standard T1- and T2-weighted imaging. Relative contrast in HDR-

MRI is decreased due to flattening of the characteristic curve such

that an expanded portion of the intensity scale is used to represent

T1 and T2 contrast. With the advent of HDR displays, this

limitation of HDR-MRI may be alleviated. HDR displays exhibit

a contrast ratio of 50000:1 and a maximum intensity of 8500 cd/

m2, compared to a typical desktop display with a contrast ratio of

300:1 and a maximum intensity of 300 cd/m2 [34]. Trading

contrast for feature visibility using HDR-MRI would be advan-

tageous on an HDR display due to the ample availability of

contrast.

Compared to single image acquisitions, T1-weighted HDR-

MRI lengthens imaging time by 7 to 8 fold while T2-weighted

HDR-MRI has no additional cost. The reason is that T1-weighted

HDR-MRI uses long TRs while T2-weighted HDR-MRI uses a

multi-echo sequence that acquires in a single TR. Therefore, the

time cost of HDR-MRI is the same as in T1 and T2 mapping.

For the same amount of imaging time or with the same set of

source images, many algorithms can be applied to generate

synthetic images of higher quality. A simple way to improve

quality is by averaging multiple images to obtain increased SNR

and CNR (contrast-to-noise ratio). A direct comparison between

averaging and HDR-MRI in terms of SNR is difficult because of

the complex SNR behavior produced by the HDR algorithm

(Figure S5). However, HDR-MRI likely depicts features at the

extremes of the T1/T2 scale with higher contrast due to the use of

different TR and TE combinations.

Figure 7. In vivo HDR-MRI. A series of images were acquired with constant TR at 5632 ms and varying TE as indicated. The same four LDR images
were used to generate both the T2 map and the HDR-MR image. Masking of the T2 map was done by manual thresholding. In the HDR image, red and
yellow outlines highlight features that were not captured in one or more of the individual LDR images. HDR-MRI captures the same features as T2

mapping, but is less noisy in the low signal regions. Low signal features can be accurately depicted in HDR-MRI even when the features are only
visible in a single LDR image.
doi:10.1371/journal.pone.0077883.g007

Figure 8. Recommended protocol for HDR-MRI when utilizing a
commercial package.
doi:10.1371/journal.pone.0077883.g008

High Dynamic Range Magnetic Resonance Imaging

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e77883



Compared to T1 and T2 mapping, HDR-MRI is more resistant

to noise but does not provide quantitative parameters. Uncertainty

in the fitting of voxel T1 or T2 does not affect HDR processing

because the individual voxel relaxation times are not used as

parameters. In addition, Equation 4 guarantees that the low SNR

voxels that are problematic for relaxation time fitting would always

remain dark in the HDR-MR image.

Transformations based on component analysis are another

method of combining MR images [26,27,30,31,33]. These

algorithms enhance the CNR of the features of interest and can

additionally suppress the intensities of other interfering features.

HDR-MRI does not achieve the CNR improvement of these

methods. Instead, HDR-MRI produces outputs similar to T1- and

T2-weighted images that are familiar to experienced readers and is

suitable when the appearance of the feature of interest is not

known a priori. In this regard, HDR-MRI is closely related to

image synthesis [6,29]. Image synthesis is a method to dynamically

generate synthetic T1 or T2-weighted images at arbitrary TR and

TE using a map of relaxation times. In theory, HDR-MRI

compresses the information of all possible synthetic images into

one image at the expense of relative contrast. On an HDR display,

the higher information content of HDR-MR images may reduce

reading time without sacrificing accuracy.

HDR processing can be easily built into viewing software to

provide an alternative way of visualizing multi-image data

alongside other algorithms. If the images have already been

acquired for a different purpose such as relaxation time mapping,

the cost of HDR-MRI is purely computational. In addition to the

use of HDR processing with the MESE pulse sequence used here,

it is possible to apply the same principle to other contrast

parameters or pulse sequences such as flip angle, inversion time,

phase-based flow imaging, or diffusion-weighted imaging.

Conclusions

HDR processing is a powerful technique in photography used to

simultaneously capture dark and bright features. In MRI, having a

large range of T1 or T2 results in diminished feature visibility,

analogous to the challenge faced in photography. We have applied

the fundamental principles of HDR photography to MR imaging

and provided both phantom and in vivo examples showing the

comparisons between standard T1- or T2-weighted images and

HDR-MR images. HDR-MRI provides an alternative to standard

imaging by merging multiple non-optimal images highlighting

different features into a single image that displays all features

simultaneously. This technique may increase contrast agent

visibility in whole-animal biodistribution studies and reduce

diagnostic workload by maximizing the information content of

an image.

Supporting Information

Figure S1 Additional comparison between T2 mapping
and T2-weighted HDR-MRI. T2 mapping and HDR-MRI

based on the same source images display similar features, with the

T2 map appearing noisier in the low signal regions. A similar result

was obtained when a more accurate T2 map was produced using

shorter TEs.

(TIF)

Figure S2 Qualitative picture for the effect of T1, T2,
and Mo on HDR Processing. In the presented scenario, there

are only two voxels. The inputted exposure times tj, j = 1–5 (or

more strictly, EVs) are accurate for voxel A. Voxel B is physically

brighter. (A–C) The g function before HDR processing when

illumination (I) is arbitrarily assumed to be 1 by the algorithm at

both voxel A and B. (A) In photography, voxels A and B share the

same set of five exposure times. Therefore, the inputted tj are

accurate for both A and B. Voxel B is physically brighter, resulting

in its larger voxel intensities. IB can be accurately estimated by the

algorithm. (B) If the input overestimates the true exposure times of

voxel B, as when T1,voxel.T1,input, T2,voxel,T2,input, or Mo,vox-

el,Mo,median (Equation 11), IB is underestimated (Equations 4 and

9). (C) Conversely, if the input underestimates the true exposure

times of voxel B, as when T1,voxel,T1,input, T2,voxel.T2,input, or

Mo,voxel.Mo,median, IB is overestimated. (D) In all three cases,

HDR processing calculates IB to obtain the identical final

monotonically increasing g function (Equations 4 and 5).

(TIF)

Figure S3 Effects of the choice of T1 and T2 in
calculating EV on T1-weighted HDR processing. The

values tested are the T1 and T2 of the samples imaged. The choice

of T2 has almost no effect while the choice of T1 has moderate

effect. In general, the quantitative contrast changes, but the

relative order of the feature intensities is preserved regardless of

the T1 chosen for EV calculation. The variations caused by the

different choices of T1 are similar to variations seen in

conventional T1-weighted imaging due to different TR settings.

Water signal has been normalized to 100 across all images.

(TIF)

Figure S4 Effects of the choice of T1 and T2 in
calculating EV on T2-weighted HDR processing. The

values tested are the T1 and T2 of the samples imaged. The choice

of T1 has almost no effect while the choice of T2 has moderate

effect. In general, the conclusion is the same as for T1-weighted

HDR processing. The quantitative contrast changes, but the

relative order of the feature intensities is preserved regardless of

the T2 chosen for EV calculation. The variations caused by the

different choices of T2 are similar to variations seen in

conventional T2-weighted imaging due to different TE settings.

Water signal has been normalized to 100 across all images.

(TIF)

Figure S5 SNR comparison between image averaging
and HDR-MRI. Data from Figure 6 was used for the analysis.

Dashed line (----) and dotted line (????) represent the SNR of the

averaged LDR images with TE 11 ms and TE 521 ms,

respectively. (A) When calculated against void noise, HDR-MRI

SNR improved with increasing EV interval and outperformed

averaging. (B) When calculated against noise in the water signal,

HDR-MRI SNR remained constant across EV intervals and

underperformed averaging. SNR is inhomogeneous in HDR-MRI

because the characteristic curve is nonlinear and each voxel is

processed by the algorithm independently. N = 4 was used for the

averaged images. Error bars represent standard deviation.

(TIF)

Table S1 T1 and T2 used in the calculation of EV
parameters for HDR processing.

(DOCX)
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