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The Journal of Nutrition

Genomics, Proteomics, and Metabolomics

Habitual Physical Activity and Plasma
Metabolomic Patterns Distinguish Individuals
with Low vs. High Weight Loss during
Controlled Energy Restriction1–4

Brian D Piccolo,5,6 Nancy L Keim,5,7 Oliver Fiehn,6 Sean H Adams,5,7 Marta D Van Loan,5,7

and John W Newman5–7*

5Obesity and Metabolism Research Unit, USDA Agricultural Research Service Western Human Nutrition Research Center, Davis, CA;
6West Coast Metabolomics Center, University of California, Davis, Genome Center, Davis, CA; and 7Department of Nutrition, University

of California, Davis, Davis, CA

Abstract

Background: Total weight loss induced by energy restriction is highly variable even under tightly controlled conditions.

Identifyingweight-loss discriminantswould provide a valuableweightmanagement tool and insights into bodyweight regulation.

Objective: This study characterized responsiveness to energy restriction in adults from variables including the plasma

metabolome, endocrine and inflammatory markers, clinical indices, body composition, diet, and physical activity.

Methods: Data were derived from a controlled feeding trial investigating the effect of 3–4 dairy product servings in an

energy-restricted diet (2092 kJ/d reduction) over 12 wk. Partial least squares regression was used to identify weight-loss

discriminants in 67 overweight and obese adults. Linear mixed models were developed to identify discriminant variable

differences in high- vs. low-weight–loss responders.

Results: Both pre- and postintervention variables (n = 127) were identified as weight-loss discriminants (root mean squared

error of prediction = 1.85 kg; Q2 = 0.43). Compared with low-responders (LR), high-responders (HR) had greater decreases in

bodyweight (LR: 2.76 1.6 kg; HR: 9.46 1.8 kg,P < 0.01), BMI (in kg/m2; LR: 1.06 0.6; HR: 3.36 0.5, P < 0.01), and total fat

(LR: 2.2 6 1.1 kg; HR: 8.0 6 2.1 kg, P < 0.01). Significant group effects unaffected by the intervention were determined

for the respiratory exchange ratio (LR: 0.866 0.05; HR: 0.826 0.03, P < 0.01), moderate physical activity (LR: 1276 52 min;

HR: 167 6 68 min, P = 0.02), sedentary activity (LR: 1090 6 99 min; HR: 1017 6 110 min, P = 0.02), and plasma stearate

[LR: 102,000 6 21,000 quantifier ion peak height (QIPH); HR: 116,000 6 24,000 QIPH, P = 0.01].

Conclusions: Overweight and obese individuals highly responsive to energy restriction had accelerated reductions in

adiposity, likely supported in part by higher lipid mobilization and combustion. A novel observation was that person-to-person

differences in habitual physical activity andmagnitude ofweight losswere accompanied by unique bloodmetabolite signatures.

This trial was registered at clinicaltrials.gov as NCT00858312. J Nutr 2015;145:681–90.

Keywords: weight loss, metabolomics, obesity, physical activity, statistical modeling, body composition,

branched-chain amino acids, respiratory exchange ratio, calorie restriction

Introduction

Weight loss is the physical manifestation of a multifaceted
adaptation to negative energy balance, requiring a concert of

biological and behavioral factors. Indeed, there are substantial
differences in individual responses to energy restriction even
in tightly controlled interventions. Although this variability
is generally associated with genetic variation (1–4) or dietary
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compliance (5–7), results have been inconsistent, likely reflecting
diversity among studied populations, dietary treatments, and
outcome measurements (8). Clearly, differences in metabolic and
behavioral factors driving person-to-person variability in weight
loss remain to be fully elaborated.

Many behavioral and biological factors have been assessed
individually to examine their effect on energy balance and
cellular metabolism. For example, physical activity increases
energy expenditure and weight loss when combined with energy
restriction (9, 10). Resting metabolic rate and resting respiratory
exchange ratio (RER)8 are directly related to energy balance and
are associated with weight loss and gain (11–13). Other studies
have identified cellular (2, 14) and endocrine (15–17) markers
that affect energy metabolism. However, few studies have
integrated these factors in a unifying model to describe weight-
loss variability.

Based on these and other findings, weight loss is likely the
result of behavior (volitional or habitual physical activity), as
well as person-to-person differences in thermogenesis and
mitochondrial fuel partitioning. To better understand factors
underlying this complexity, and to unmask connections between
these factors, this study combined metabolomic, clinical, body
composition, endocrine, inflammatory, dietary, and physical
activity data to define a weight-loss ‘‘responder’’ phenotype in
overweight and obese adults consuming an energy-restricted,
controlled diet. Using multivariate statistical modeling, we
identified determinants of weight loss that provide insight into
potential mechanisms that could drive individual responsiveness
to energy restriction.

Methods

Subjects
Overweight and obese [BMI (in kg/m2): 28–37] men and women were

recruited (n = 71) from the Davis and Sacramento, California,
communities. Main inclusion criteria included age (women: 20–45 y;

men: 20–50 y), habitually low dairy consumption (#1 serving of dairy/d),
and typical calcium intake #600 mg/d. Detailed selection criteria and

consort diagrams are published elsewhere (18). The availability of paired

pre- and postintervention plasma aliquots limited the sample size to 67

subjects for this analysis.

Study design
This study constitutes a secondary analysis of a randomized control trial

originally designed to investigate the effect of 3–4 servings of dairy

products on weight loss during energy restriction. In-depth details
regarding the study design and results pertaining to the primary

intervention have been previously reported (18). Participants were

studied for a total of 15 wk with all foods provided. Weeks 1–3 of the
study were considered a run-in period and were designed to establish

each participant�s total energy requirements. Energy intake to maintain

body weight was initially estimated from gender-specific prediction

equations for overweight individuals adjusted for self-reported physical
activity (19, 20). Participants were then provided weighed foods based

on these estimates. Food consumption was observed during this period

by study personnel. Body weight was monitored daily during the run-in

period, and energy intake was adjusted based on increases or decreases
in total weight of 63% for 3 consecutive days. An individual was

considered in energy balance when body weight was stable for $5

consecutive days. The following 12 wk (study weeks 4–15) were
designed as the intervention period. During the intervention period, final

energy intake requirements established from the 3-wk run-in period were

reduced by 2092 kJ/d (500 kcal/d) and subjects were randomly assigned

to either an adequate dairy (3–4 servings of dairy/d) or a low dairy (#1
serving of dairy/d) group. One dairy serving was equal to a 240 mL

serving of milk or yogurt, a 56 g serving of processed cheese, or a

42 g serving of natural cheese. Preintervention data were collected near

the end of the run-in period (study week 3) and postintervention data
were collected near the end of the intervention period (study week 15),

except for physical activity. Physical activity measurements were

conducted during study weeks 4 and 14 because of study-related

commitments during weeks 3 and 15. All procedures were approved by
the Institutional Review Board for the Protection of Human Subjects at the

University of California, Davis. All subjects were informed of the study

requirements and provided written informed consent before participation.

Dietary intake and compliance
All run-in and intervention diets contained comparable amounts of

macronutrients and fiber (fat, carbohydrates, and protein at ;35%,
49%, and 16% of total energy, respectively, and fiber at 8–10 g/4186 kJ).

FIGURE 1 Schematic of multivariate statistical modeling approach of weight loss in overweight and obese subjects consuming an energy deficit of 2092

kJ/d (500 kcal/d) for 12 wk. PLSR, partial least squares regression; RMSEP, root mean square error of prediction; VIP, variable importance in projection.

8 Abbreviations used: AC, activity count; FDR, false discovery rate; PLSR, partial

least squares regression; RER, respiratory exchange ratio; RMSEP, root mean

square error of prediction; VCO2, carbon dioxide production; VIP, variable

importance in projection; VO2, oxygen consumption.
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Participants consumed 2 of the 3 meals/d at the USDA Agricultural

Research ServiceWestern HumanNutrition Research Center throughout

the run-in period and during weeks 1 and 2 of the intervention period.
Between intervention weeks 3 and 9, meals were ‘‘packaged to go’’ and

consumed off-site. During these weeks, all food was weighed and

measured before distribution and compliance was monitored by returned

food containers and food diary records twice weekly. Subjects agreed not
to use any dietary supplements during the course of the study. Each

individual�s caffeine intake was assessed at baseline and kept constant

throughout intervention. A priori compliance determinations included

adherence to diet treatment (consumption of low dairy or adequate dairy
servings), energy intake within 837 kJ of prescription, and consumption

by the adequate dairy group of 95% of the 295 total dairy servings

during the intervention. Only individuals who met all compliance
criteria in a given week were counted as compliant for the week. Total

study compliance was defined as meeting compliance for $10 interven-

tion weeks and all participants achieved this criterion.

Body composition measurements
Body weight was measured to the nearest 0.1 kg in light clothing (shoes

and jewelry removed). Height was measured with the use of a wall-

mounted stadiometer and recorded to the nearest 0.1 cm. BMI was
calculated as kilograms per meter squared. Waist circumference was

measured with ametal nonstretchable tapemeasure to the nearest 0.1 cm

in the standing position against bare skin with the abdomen relaxed and
arms at sides. Total and regional fat measurements were assessed with

the use of DXA (GE Lunar, Prodigy model). Daily calibration procedures

were performed according to manufacturer instructions. To reduce

variance in the data, DXA scans were analyzed by a single operator.

Intra-abdominal adipose tissue was measured with the use of computed

tomography transabdominal slices (Siemens, Somaton 16 CT Scanner) as
previously described (18).

Assessment of physical activity
Participants were instructed to maintain their typical physical activity
throughout the study. Physical activity was monitored with the use of an

omnidirectional accelerometer (Actical; Philips Electronics). This sensor

integrates motion amplitude and frequency, producing an electrical

current that increases with intensity of motion that is stored as activity
counts (ACs). Sedentary, light, moderate, and vigorous activity are

defined as <100 ACs, 100–1535 ACs, 1535–3962 ACs, and >3962 ACs,

respectively (21). Participants were instructed to wear the Actical
attached to a belt and worn over the left hip, except during bathing or

swimming, for 7 d. At the end of the week, participants returned the

Actical to the Western Human Nutrition Research Center, where the

data were downloaded and analyzed. A day was considered complete if
the Actical contained at least 12 h of data. Data are reported as physical

activity over a 24 h period averaged over all days worn. Physical activity

data were analyzed for sedentary, light, moderate, and vigorous activity

and expressed as energy expenditure for each level of activity and time
spent at each activity level.

Resting metabolic rate
Subject resting metabolic rate was measured in the morning after a 12 h

fast. Before the measurement, subjects were made comfortable in a

hospital bed and instructed to rest quietly in a reclined position for 15min.

Oxygen consumption (VO2) and carbon dioxide production (VCO2) were
measured in reclining subjects with the use of an automated metabolic

measuring cart (TrueMax 2400 Metabolic Measurement System,

ParvoMedics). The RER (VCO2:VO2) was determined from the resting

steady-state VCO2 and VO2 values, whereas energy expenditure was

FIGURE 3 Pre- and postintervention changes in selected clinical,

adiposity, and endocrine indices including total fat mass (A), body fat

(B), android fat (C), gynoid fat (D), total:HDL cholesterol ratio (E), and

plasma leptin (F) in high- and low-weight–loss responders. Variables

presented in the figure had a significant interaction term in linear

mixed model analyses. High-responder (circles) and low-responder

(triangles) represent high- and low-weight–loss tertiles, respectively.

Serum cholesterol, HDL cholesterol, and leptin were measured after

an overnight fast. Values are means 6 SEMs, n = 22 for both groups.

Post-, postintervention; Pre-, preintervention.

FIGURE 2 Distribution histogram (A) and Q-Q plot (B) of total weight

loss in overweight and obese subjects (n = 67) after consuming an

energy deficit of 2092 kJ/d (500 kcal/d) for 12 wk. Q, quantile.

Clinical and metabolomic weight-loss determinants 683



calculated with the use of the Weir equation (22) and converted to

kilojoules per day as previously described (18).

Blood collection and analytical analyses
Blood was collected by venipuncture after an overnight fast, and serum

and plasma were stored at 280�C until analyzed. Clinical assessment of

serum total cholesterol, HDL cholesterol, LDL cholesterol, glucose,
hematocrit, and hemoglobin were performed at the University of

California, Davis, Medical Center. Serum insulin, leptin, IL-1b, IL-6,

IL-8, and TNF-a were measured with multiplex technology (Millipore;

Bio-Plex, Bio-Rad). Serum C-reactive protein was measured with a
chemiluminescence analyzer and high-sensitivity C-reactive protein kit

(Immulite, Siemens Diagnostics). Serum 25-hydroxycholecalciferol and

1,25-dihydroxycholecalciferol were measured by RIA (DiaSorin and
Immunodiagnostics Systems, respectively) as previously described (23).

As reported previously (24), the following variables were measured by

commercial ELISAs: bone-specific alkaline phosphatase (Metra BAP,

Quidel); pyridinoline (Metra PYD, Quidel); osteocalcin (Metra Osteo-
calcin, Quidel); C-terminal telopeptide of type I collagen (CrossLaps,

Nordic Bioscience Diagnostics); plasma plasminogen activator inhibitor-

1 (Technozym Actibind PAI-1, Technoclone). Heparin plasma zinc was

assessed on a Varian Vista inductively coupled plasma atomic emission
spectrophotometer.

Plasma metabolite analysis
Plasma samples were extracted and derivatized by silylation/

methyloximation before analysis by GC/time-of-flightMS for untargeted
metabolomics (25). The resulting data were processed with the use of the

BinBase database (26) to match metabolic feature retention indices and

mass spectral data against the Fiehn mass spectral library of 1200

authentic metabolite spectra and the 2005 National Institute of
Standards and Technology/Environmental Protection Agency/National

Institutes of Health Mass Spectral Library. Metabolites were reported if

present within at least 50% of each study design group (27). Metabolite

quantifier ion peak heights were normalized to the sum intensities of all
known metabolites and used for statistical analyses.

Statistics
All statistical analyses were conducted in R version 3.0.1 (28). Data are

presented as means 6 SDs in text. a was set at 0.05 for all analyses.

Pre- and postintervention comparisons.Mann-WhitneyU tests were
used to compare pre- and postintervention differences in all measure-

ments. This nonparametric test was conducted on untransformed data

because of the prevalence of data that were unable to achieve a normal

distribution after log transformations. Based on Anderson-Darling tests
(29) at a = 0.05, 80% of the data were not normally distributed. False

TABLE 1 Clinical, serum endocrine, and energy balance characteristics of overweight and obese subjects responsive or
nonresponsive to energy restriction before and after a 12 wk weight-loss intervention1

Variable

High-responder Low-responder Linear mixed model analysis2

Preintervention Postintervention Preintervention Postintervention Responder Group Week Interaction

Clinical variables

Total body weight, kg 91.8 6 12 82.5 6 12 91.4 6 11 88.7 6 11 0.90 ,0.01* ,0.01*

BMI, kg/m2 32.5 6 2.9 29.2 6 3.0 32.4 6 2.5 31.4 6 2.3 0.89 ,0.01* ,0.01*

Total cholesterol, mg/dL 157 6 27 155 6 29 162 6 33 164 6 40 0.67 0.55 0.40

HDL cholesterol, mg/dL 37.7 6 13 38.6 6 10 34.8 6 9.9 32.6 6 10 0.37 0.64 0.253

LDL cholesterol, mg/dL 101 6 24 97.4 6 22 108 6 23 112 6 32 0.42 0.27 0.123

Total:HDL cholesterol ratio 4.50 6 1.4 4.30 6 1.4 4.90 6 1.2 5.30 6 1.4 0.42 0.08 ,0.01*

TGs, mg/dL 91.4 6 39 93.0 6 60 96.1 6 44 100 6 40 0.74 0.82 0.81

Glucose, mg/dL 83.5 6 7.0 84.7 6 7.1 82.2 6 8.4 85.7 6 9.2 0.60 0.40 0.28

Total fat mass, kg 37.9 6 7.8 29.9 6 8.6 40.3 6 6.1 38.1 6 6.0 0.28 ,0.01* ,0.013*

Body fat, % 41.7 6 6.8 36.4 6 8.7 44.8 6 6.0 43.8 6 6.5 0.16 ,0.01* ,0.013*

Android fat, kg 3.80 6 1.1 2.90 6 1.1 4.00 6 0.80 3.70 6 0.80 0.52 ,0.01* ,0.013*

Gynoid fat, kg 6.80 6 1.4 5.50 6 1.5 7.20 6 1.5 6.80 6 1.5 0.38 ,0.01* ,0.013*

Total lean mass, kg 49.9 6 9.3 49.0 6 9.7 47.1 6 9.4 46.5 6 9.7 0.33 0.01 0.54

Endocrine variables

Insulin, pmol/L 38.7 6 1.0 32.1 6 18 46.4 6 26 46.1 6 22 0.26 0.06 0.20

HOMA-IR 2.60 6 1.4 2.20 6 1.3 3.00 6 1.6 3.20 6 1.6 0.32 0.10 0.11

Leptin, μg/L 33.2 6 26 23.8 6 0.20 34.2 6 23 32.5 6 24 0.89 ,0.01* 0.013*

25-hydroxycholecalciferol, nmol/L 36.6 6 19 42.5 6 18 32.3 6 13 36.5 6 10 0.36 0.01 0.563

1,25-dihydroxycholecalciferol, pmol/L 126 6 22 118 6 32 120 6 27 111 6 26 0.51 0.19 0.883

Energy balance variables

Energy intake, kJ/d 10,700 6 1900 8620 6 1900 11,100 6 1700 9070 6 1700 0.36 ,0.01* 0.04

Energy restriction, % 20.1 6 3.5 24.3 6 5.8 19.1 6 2.7 23.0 6 4.6 0.45 ,0.01* 0.76

Total PA-EE, kJ/d 3650 6 1400a 3260 6 1400a,b 2910 6 100a,b 2610 6 910b 0.05 0.02 0.60

Average PA-EE, kJ/min 2.60 6 1.2a 2.30 6 1.0a,b 2.10 6 0.70a,b 1.80 6 0.7b 0.04 0.02 0.59

Total activity, ACs/d 22,000 6 15,000 20,100 6 14,000 17,500 6 8300 13,700 6 6000 0.19 0.29 0.51

Average activity, ACs/min 160 6 110 144 6 99 124.5 6 58 97.0 6 43 0.16 0.25 0.56

RER 0.81 6 0.03b 0.82 6 0.03b 0.86 6 0.06a 0.86 6 0.05a ,0.01* 0.79 0.943

RMR-EE, kJ/d 6780 6 1100 7450 6 1300 7280 6 1500 7470 6 1100 0.37 0.01* 0.24

1 Values are means 6 SDs, n = 22 per group. High-responder and low-responder represent high- and low-weight–loss tertiles, respectively. Pairwise comparisons of means were

conducted on variables with a significant responder group fixed effect. Serum glucose and all serum endocrine measurements were conducted after an overnight fast. Means

without a common letter differ with the use of Tukey�s honestly significant difference tests (P , 0.05). AC, activity count; PA-EE, physical activity energy expenditure; RER,

respiratory exchange ratio; RMR-EE, resting metabolic rate energy expenditure; VIP, variable importance in projection.
2 Subject identification was input as a random effect. Statistical significance was set at P# 0.05. *Statistically significant (Padjusted # 0.05) after false discovery rate correction (38).
3 Featured in partial least squares regression modeling weight loss at a VIP cutoff of 1.5.
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discovery rates (FDR) for Mann-Whitney U tests were assessed with the

use of Storey�s q-value (30). A q-value of 0.2 (i.e., 20% false discovery

at a = 0.05) was selected as the FDR control level.

Partial least squares regression. Before analysis, pre- and post-

intervention data were separated, missing data points were imputed with

a singular value decomposition-based method (31, 32), and the resulting
data were condensed into a single data frame. Missing data accounted

for 0.22% of all data and were never >3.7% for a single variable.

Variables that did not have a normal distribution were log transformed.

Principal component analyses were used to identify potential con-
founders, including measurement time (pre- and postintervention), treat-

ment (low and adequate dairy), gender (male and female), and season of

intervention (winter, spring, summer, and fall). Gender-specific clusters
were identified in the nonmetabolomics data (e.g., body composition,

serum endocrine and inflammation markers, and physical activity)

(Supplemental Figure 1A). Therefore, nonmetabolomics variables were

gender-adjusted with the use of multiple linear regressions, and subsequent
principal component analyses of residuals verified adjustment success

(Supplemental Figure 1B). Gender-adjusted residuals were used in further

multivariate analyses. The metabolomics data did not require adjustment.

Because of the high dimensionality and collinear nature of the data,
partial least squares regression (PLSR) was used to identify variables

associated with participant change in weight. We used a development/

validation scheme to evaluate PLSR models and selected discriminant
variables using a filter approach with the development dataset. A diagram

of the model development and validation is presented in Figure 1. In short,

data were stratified by week, and one-third of row-wise samples were

randomly removed as an independent external validation dataset to assess
model performance. The orthogonal scores algorithm was implemented

with the use of the R ‘‘pls’’ package (33). Model performance and quality

assessment was determined with the use of root mean square error of

prediction (RMSEP) and the Q2 statistic. Development data were scaled
and centered to unit variance before model development. Validation data

were scaled and centered with development scales and centered values.

Because our objective was to evaluate the simultaneous interac-

tions and influences of multiple physiologic systems on weight loss, all
variables were included in an initial PLSR model with weight change as

the dependent variable. Variable importance in projection (VIP) scores, a

weighted measure of the contribution of each variable according to the
variance explained in the dependent variable, were assessed for all

variables (34, 35). Subsequent PLSRmodels were fitted based on selected

VIP cutoffs and assessed for model performance. Final model selection

minimized complexity (i.e., low number of explanatory variable), while
maintaining model performance.

Analysis of high- and low-weight–loss responders. Total weight

loss was assessed as pre-intervention minus postintervention weight loss

and was assessed for normal distribution. ANOVA was used to
determine if weight loss differed by treatment, season, or gender. Total

weight loss was visually assessed for normality with a frequency

distribution plot and a Q-Q plot and also tested via the Anderson-

Darling test. Study data were then stratified based on weight-loss tertiles
with ‘‘high-responders’’ (i.e., individuals with the greatest weight loss)

defined as those with weight loss $7.2 kg and ‘‘low-responders’’ (i.e.,

individuals with the least weight loss) defined as those with weight loss

<5.2 kg. Individuals who lost between 5.2 and 7.2 kg were considered
‘‘responders.’’ Weight-loss cutoffs were determined to allow equal

populations among tertiles (n = 22, 23, and 22 for high-responder,

responder, and low-responder tertiles, respectively). Responders were
removed from further analyses to highlight the differences between high-

and low-responders.

Linear mixed model analysis was used to assess differences in pre-

and postintervention time points and high- and low-responder classes
with subject identification as a random effect (36). Post hoc analysis of

fixed effects used pairwise contrast analysis (37) adjusted by FDR

correction (38). Significant interactions were further assessed for pre-

and postintervention differences within high- and low-responder classes
by linear mixed model analysis.

Variables selected in the final PLSR model and determined to have

either a significant group fixed effect or interaction were evaluated with
the use of Spearman correlations and hierarchical cluster analysis.

Miscellaneous.Other R packages essential for manuscript preparation,
graphics, and additional analyses in no particular order of importance

include reshape2 (39), plyr (40), ggplot2 (41), ggthemes (42), ReporteRs

(43), multcompView (44), and Hmisc (45).

Results

Participant and variable characteristics. The majority of
participants were women (71.6%) aged 19–49 y (32.9 6 9.2 y).
A total of 940 pre- and postintervention variables were assessed
and all changes from pre- to postintervention are provided in
Supplemental Table 1.

Differences in clinical, endocrine, and energy balance
variables. Total weight loss ranged from 20.5 to 14.9 kg and
was normally distributed (Figure 2). No differences in weight

TABLE 2 Physical activity characteristics of overweight and obese subjects responsive or nonresponsive to energy restriction before
and after a 12 wk weight-loss intervention1

Variable

High-responder Low-responder Linear mixed model analysis2

Preintervention Postintervention Preintervention Postintervention Responder group Week Interaction

Time sedentary, min/d 1000 6 120b 1030 6 110a,b 1080 6 99a 1100 6 100a 0.02 0.10 0.46

Time sedentary, % 71.8 6 8.7 73.2 6 7.6 77.0 6 6.4 77.1 6 6.4 0.02 0.21 0.39

Sedentary activity, ACs/d 3660 6 820 3680 6 930 3840 6 810 400 6 960 0.47 0.85 0.65

Time light, % 15.8 6 4.5 15.4 6 3.6 13.6 6 4.0 14.1 6 3.8 0.08 0.65 0.38

Time light, min/d 219 6 63 215 6 49 189 6 56 199 6 52 0.09 0.78 0.38

Light activity, ACs/d 19,700 6 7000 19,200 6 5400 16,600 6 6200 17,800 6 6000 0.12 0.76 0.32

Light energy expenditure activity, kJ/d 933 6 28 858 6 205 816 6 290 828 6 250 0.13 0.06 0.14

Time moderate, % 12.2 6 5.1a 11.9 6 4.8a,b 9.3 6 3.8a,b 8.8 6 3.8b 0.03 0.49 0.98

Time moderate, min/d 169 6 71a 166 6 67a,b 130 6 52a,b 123 6 53b 0.04 0.59 0.95

Average moderate activity, ACs/d 954 6 320 895 6 270 1050 6 320 900 6 180 0.26 0.28 0.25

Active days, n/wk 6.9 6 0.9 6.7 6 0.8 6.8 6 0.5 6.2 6 1 0.72 0.58 0.19

1 Values are means6 SDs, n = 22 per group. Physical activity indices featured in partial least squares regression modeling weight loss at a VIP cutoff of 1.5. Pairwise comparisons

of means were conducted on variables with a significant responder group fixed effect. Means without a common letter differ with the use of Tukey�s honestly significant

difference tests. AC, activity count; VIP, variable importance in projection.
2 Subject identification was input as a random effect. Statistical significance was set at P # 0.05. No physical activity indices were found to be significant at a = 0.05 after false

discovery rate correction (38).
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loss were detected by treatment, season, gender, or initial BMI
classification.

High- and low-responders did not differ by plasma insulin,
glucose, TGs, or total cholesterol (Table 1). Compared with low-
responders, high-responders had greater decreases over time in total
body weight, BMI, total and percentage body fat, gynoid and
android fat, and serum leptin concentrations (Table 1 and Figure 3).
The total-to-HDL cholesterol ratio decreased in high-responders
but increased in low-responders (Table 1 and Figure 3).

High-responders had a significantly lower RER at both pre-
and postintervention than did low-responders, but had no
differences in energy intake, percentage restriction of energy
intake, or resting energy expenditure (Table 1). Total physical
activity energy expenditure was greater in high-responders over
the entire study than in low-responders. Both groups had an
;10% decline in total physical activity after the intervention.

Identification of weight-loss discriminants. Important dis-
criminants of weight loss were ranked based on VIP scores
calculated from the initial PLSR model (Supplemental Table 2).
Subsequent PLSR models were fitted based on VIP cutoffs and

assessed for model performance (Supplemental Table 3). PLSR
models fitted with VIP cutoffs of 1 and 1.25 resulted in models
with the lowest RMSEP of weight loss in participants in the
validation set (1.62 kg and 1.63 kg for VIP score = 1 and VIP
score = 1.25, respectively). However, these models still retained
33% and 23% of all variables measured, respectively. Restrict-
ing the VIP cutoff to 1.5 resulted in a PLSR model with a slightly
higher RMSEP of 1.81 kg, but retained only 13% of measured
variables; this was thus the model with the lowest complexity
with performance statistics comparable to the inclusive PLSR
model (Supplemental Table 3). This model was chosen as the
optimal model.

The optimal PLSRmodel discriminated total weight loss with
127 variables. Many of the clinical, endocrine, and energy balance
variables described above were featured in this model (e.g., total
body weight, BMI, adiposity measurements, serum leptin, total-
to-HDL cholesterol ratio, and RER). HDL and LDL cholesterol,
25-hydroxycholecalciferol and 1,25-dihydroxycholecalciferol
were also included. Conversely, whereas total physical activity
energy expenditure differed between high- and low-responders,
they were not featured in the PLSR model. Physical activity

TABLE 3 Plasma metabolite characteristics of overweight and obese subjects responsive or nonresponsive to energy restriction
before and after a 12 wk weight-loss intervention1

Variable

High-responder Low-responder Linear mixed model analysis2

Preintervention Postintervention Preintervention Postintervention Responder loss group Week Interaction

Stearic acid, QIPH 121,000 6 22,000a 111,000 6 25,000a,b 102,000 6 23,000b 101,000 6 20,000b 0.01 0.09 0.28

Oleic acid, QIPH 10,700 6 5200a 9080 6 3700a,b 7970 6 3000 b 7390 6 3300b 0.02 0.14 0.50

2-ketoisocaproic acid, QIPH 1960 6 1100b,c 1880 6 990c 3450 6 2600a,b 3940 6 2700a 0.02 0.87 0.41

Myo-inositol, QIPH 13,400 6 2700a 13,300 6 3200a 11,700 6 2400a,b 10,600 6 1900b 0.03 0.86 0.30

Palmitic acid, QIPH 26,900 6 5500a 24,700 6 5500a,b 23,100 6 6000b 22,300 6 6400b 0.04 0.16 0.51

Citric acid, QIPH 39,800 6 8900 46,700 6 13,000 35,400 6 9800 33,200 6 8400 0.17 0.01 0.01

Dihydro-3-coumaric acid, QIPH 259 6 110 267 6 100 304 6 98 229 6 88 0.15 0.78 0.02

Dodecanol, QIPH 234 6 50 266 6 59 272 6 73 251 6 71 0.05 0.06 0.03

Arachidic acid, QIPH 3440 6 790 3160 6 1500 3500 6 760 4380 6 1600 0.87 0.46 0.03

Succinic acid, QIPH 767 6 170 844 6 200 805 6 170 725 6 190 0.50 0.16 0.04

Threonic acid, QIPH 8710 6 2700 9990 6 3300 9350 6 3600 8320 6 2700 0.50 0.12 0.05

Glycerol-a-phosphate, QIPH 402 6 120 419 6 100 350 6 65 374 6 77 0.07 0.53 0.86

Conduritol-b-epoxide, QIPH 1960 6 1100 1780 6 1100 1470 6 700 1260 6 590 0.07 0.44 0.94

4-deoxythreonic acid/

4-deoxyerythronic acid, QIPH

1650 6 600 1830 6 1000 1260 6 510 1420 6 700 0.09 0.26 0.92

Isoheptadecanoic acid, QIPH 2310 6 500 2100 6 440 2060 6 540 1910 6 480 0.10 0.10 0.73

1-monopalmitin, QIPH 169 6 33 185 6 44 188 6 47 210 6 52 0.14 0.22 0.78

Cholesterol, QIPH 402,000 6 220,000 351,000 6 180,000 308,000 6 230,000 303,000 6 240,000 0.16 0.07 0.25

3-hydroxybutanoic acid, QIPH 12,400 6 7200 18,700 6 17,000 10,800 6 9500 11,500 6 8200 0.64 0.03 0.17

Uric acid, QIPH 37,100 6 15,000 33,300 6 14,000 31,400 6 12,000 31,300 6 15,000 0.19 0.11 0.27

Proline, QIPH 91,700 6 37,000 85,900 6 39,000 111,000 6 77,000 114,000 6 41,000 0.22 0.70 0.66

N-acetylmannosamine, QIPH 320 6 96 336 6 86 351 6 68 349 6 70 0.22 0.52 0.62

Methionine sulfoxide, QIPH 5870 6 2600 6440 6 2600 4900 6 3100 4180 6 2400 0.24 0.46 0.24

Urea, QIPH 158,000 6 77,000 200,000 6 100,000 198,000 6 120,000 206,000 6 150,000 0.27 0.16 0.42

Phosphoric acid, QIPH 91,500 6 17,000 90,700 6 23,000 86,200 6 25,000 94,700 6 31,000 0.48 0.90 0.33

Behenic acid, QIPH 468 6 190 471 6 170 588 6 240 673 6 770 0.35 0.98 0.64

3-methoxytyrosine, QIPH 226 6 49 247 6 46 217 6 53 215 6 80 0.62 0.22 0.35

5-b-cholestanol, QIPH 180 6 92 188 6 71 213 6 200 176 6 130 0.41 0.81 0.36

5-methoxytryptamine, QIPH 466 6 200 553 6 500 580 6 680 565 6 340 0.42 0.54 0.61

b-alanine, QIPH 944 6 360 833 6 310 927 6 410 893 6 240 0.87 0.24 0.57

Taurine, QIPH 3980 6 1800 4110 6 1800 4020 6 3400 3810 6 2000 0.96 0.84 0.72

1 Values are means6 SDs, n = 22 per group. Annotated metabolites featured in partial least squares regression modeling weight loss at a VIP cutoff of 1.5. Pairwise comparisons

of means were conducted on variables with a significant responder group fixed effect. All plasma metabolite measurements were conducted after an overnight fast. Means

without a common letter differ with the use of Tukey�s honestly significant difference tests. QIPH, quantifier ion peak height; VIP, variable importance in projection.
2 Subject identification was input as a random effect. Statistical significance was set at P # 0.05. No metabolites were found to be significant at a = 0.05 after false discovery rate

correction (38).
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variables selected in the PLSR model are provided in Table 2.
Based on linear mixed model analyses, only time and percent-
age time in sedentary and moderate activity were significantly
different between high- and low-responders, with high-
responders engaging in less sedentary and greater moderate
activity (Table 2).

Several metabolites were found to be differentially affected in
high- and low-responder groups and retained in the discriminant
model. Annotated metabolites featured in the PLSR model are
provided in Table 3, whereas nonannotated metabolites are
provided in Supplemental Table 4. Plasma stearic (18:0), oleic
(18:1n–9), and palmitic (16:0) acids were significantly greater in
high- than in low-responders, likely indicative of the enhanced
adiposity loss and lower RER. Additionally, the product of
leucine catabolism, 2-ketoisocaproic acid, was lower, whereas
myo-inositol was greater in high- than in low-responders.
Threonic acid, succinic acid, citric acid, dodecanol, and
dihydro-3-coumaric acid either increased or were unchanged
in high-responders, whereas they generally decreased in low-
responders (Figure 4). In contrast, arachidic acid (20:0) was
unchanged in high-responders and increased in low-responders.

Variables featured in the final model that were significantly
different between high- and low-responders were combined into
a Spearman correlation matrix to assess factor inter-relations
(Figure 5). Body fat indices, physical activity variables, tricar-
boxylic acids, and many nonannotated metabolites were highly
correlated. In high- but not low-responders, oleic and palmitic
acids were positively correlated to percentage body fat, whereas
palmitic acid was also correlated to total fat and leptin in high-
responders. Conversely, oleic and palmitic acids were positively

correlated with succinic and citric acids in low- but not high-
responders. The total-to-HDL cholesterol ratio was negatively
correlated to percentage body fat and gynoid fat in low-
responders, but not in high-responders and, although not
apparent in low-responders, the ratio was positively correlated
to sedentary activity and negatively correlated to moderate
activity in high-responders.

Discussion

An integrative approach allowed us to identify multiple physio-
logic and behavioral factors associated with higher weight loss in
overweight and obese subjects consuming a 2092 kJ/d (500 kcal/d)
energy deficit over 12 wk. We observed distinct differences
in factors associated with lipid distribution and oxidation in
subjects losing the greatest amount of weight as compared with
those who lost the least. As expected, subjects with the greatest
weight loss had accelerated losses in regional and total
adiposity. The observation that high-responders have a lower
RER and elevated serum FAs is consistent with other reports
of increased FA oxidation in individuals more responsive to
dietary energy restriction (2, 14, 46). The difference in RER is
particularly interesting because the preintervention RER was
measured during the weight maintenance phase of the study,
and thus before energy restriction–associated changes in RER.

Individual differences in habitual activity may be a key factor
in determining an individual�s response to weight-loss interven-
tion. We suspect that engagement in moderate activity as
opposed to sedentary activity was the driving force behind the
high-responders� apparent ability to better mobilize and utilize
their lipid reserves compared with low-responders. It is well
known that physical activity leads to weight loss with energy
restriction (47–49) and is a key treatment option for metabolic
syndrome and insulin resistance (50, 51). Our results suggest
that physical activity results in a beneficial metabolic phenotype,
possibly manifested through improved skeletal muscle lipid
oxidation (52).

By leveraging metabolomics, we observed several plasma
metabolites that were significantly different between high- and
low-responders, indicating that this phenotype has an impact
on metabolism beyond lipids. For example, high-responders
had lower 2-ketoisocaproic acid abundance than did low-
responders. This metabolite is a direct product of leucine
catabolism and may suggest higher mitochondrial flux of this
amino acid through the rate-limiting branched chain ketoacid
dehydrogenase complex in branched-chain amino acid–consuming
tissues. Intriguingly, higher plasma concentrations of leucine,
other branched-chain amino acids, and branched-chain ketoa-
cids have been correlated with insulin resistance in humans (25,
53, 54) and reduced activity of the branched chain ketoacid
dehydrogenase complex associated with the insulin-resistant
state may be the mechanism behind these observations (55).

Tricarboxylic acids succinate and citrate were disparately
regulated in high- and low-responders and negatively correlated
to oleic and palmitic acid in low-responders. Increases in citrate
and succinate oxidation have been noted in skeletal muscle
biopsies from sedentary obese adults after a 16 wk moderate-
exercise intervention (56); thus, these observations may suggest
alterations in tricarboxylic acid cycle dynamics related to FA
oxidation. Still, it is difficult to conclusively relate plasma
changes of carboxylic acids to changes in tissue mitochondria,
and a targeted analysis of muscle biopsies would be required to
confirm this interpretation.

FIGURE 4 Pre- and postintervention changes in selected plasma

metabolites, including citric acid (A), succinic acid (B), dodecanol (C),

arachidic acid (D), threonic acid (E), and dihydro-3-coumaric acid (F) in

high- and low-weight–loss responders. Metabolites presented in the

figure had a significant interaction term in linear mixed model

analyses. High-responder (circles) and low-responder (triangles) rep-

resent high- and low-weight–loss tertiles, respectively. Plasma

metabolites were measured after an overnight fast. Values are means

6 SEMs, n = 22 for both groups. Post-, postintervention; Pre-,

preintervention; QIPH, quantifier ion peak height.
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Although metabolomics allowed us to link biological deter-
minants of weight loss to behavioral and clinical outcomes, it is
also accompanied by additional study limitations. The statistical
analysis of such large datasets is subject to over-fitting and over-
interpretation because of the ‘‘small n/large P’’ paradigm. We
have attempted to minimize model over-fitting through data

training/test splits. Furthermore, global metabolomic results
should be considered to be hypothesis-generating until con-
firmed with more targeted approaches. Additionally, this study
was a secondary study from a tightly controlled feeding study
and, although biological variation is likely reduced, we may
not have enough power to assess true high-responders from

FIGURE 5 Spearman correlation matrix of variables associated with weight-loss responsiveness in overweight and obese men and women

(n = 67) consuming an energy deficit of 2092 kJ/d (500 kcal/d) for 12 wk. Variables were selected by partial least squares regression as

discriminant of weight loss and found to be significantly different between high- and low-responders in linear mixed model analyses. High-

responder and low-responder represent high- and low-weight–loss tertiles (n = 22 for both groups), respectively. Direction or color of ellipses

represent positive or negative correlation, respectively. Darker color and thinner ellipses represent strength (Spearman�s r) of correlations. Only

significant correlations at a = 0.05 are displayed. BB, BinBase identification numbers; QIPH, quantifier ion peak height.
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low-responders. Moreover, these subjects were overweight and
obese, but still considered metabolically healthy. Therefore,
our results may not extend to overweight and obese individuals
with metabolic disorders. Lastly, we did not have access to daily
physical activity data and report measurements over a 24 h period
(including activity associated with sleeping). Therefore, when
considering physical activity associated with waking hours,
sedentary activity measurements reported herein are overesti-
mated whereas time-adjusted light, moderate, and vigorous
physical activity indices are underestimated.

One exciting, yet challenging outcome of the current researchwas
the observation that the majority of determinants of weight loss
were metabolites that do not have full structural identification
and annotation. Uniform correlations among these metabolites
suggest they are either associated with similar metabolic processes
or partially derivatized products of a single or highly-related com-
pounds. Additionally, many of these unknown metabolites had
strong correlationswith body compositionmarkers and other known
metabolites, making their identification a priority for future studies.

In summary, we assessed blood metabolomics and clinical
chemistry, along with hormonal and inflammatory biomarkers,
body composition, and dietary and physical activity measure-
ments to identify a broad range of variables that characterize
weight loss in overweight and obese adults consuming a 12 wk
energy-restricted diet in a controlled feeding intervention. With
the use of multivariate analyses,;13% of the measured pre- and
postintervention variables could be used to accurately model
weight loss. Our findings suggest that overweight and obese
individuals highly responsive to energy restriction are charac-
terized by greater losses in total and regional adiposity that are
supported by a lower RER and characterized by greater lipid
mobilization. Person-to-person differences in habitual moderate
physical activity and sedentary behavior are associated with this
phenotype. The current research supports the idea that persons
who incorporate regular light-to-moderate physical activity into
daily activity will benefit most in terms of total weight and
adipose reduction achieved by dietary interventions.
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