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Brain Tumor Segmentation and Tractographic
Feature Extraction from Structural MR Images for

Overall Survival Prediction

Po-Yu Kao1, Thuyen Ngo1, Angela Zhang1,
Jefferson W. Chen2, and B.S. Manjunath1

1 Vision Research Lab, University of California, Santa Barbara, CA, USA
{poyu kao, manj}@ece.ucsb.edu

2 UC Irvine Health, University of California, Irvine, CA, USA

Abstract. This paper introduces a novel methodology to integrate hu-
man brain connectomics and parcellation for brain tumor segmentation
and survival prediction. For segmentation, we utilize an existing brain
parcellation atlas in the MNI152 1mm space and map this parcellation to
each individual subject data. We use deep neural network architectures
together with hard negative mining to achieve the final voxel level clas-
sification. For survival prediction, we present a new method for combin-
ing features from connectomics data, brain parcellation information, and
the brain tumor mask. We leverage the average connectome information
from the Human Connectome Project and map each subject brain vol-
ume onto this common connectome space. From this, we compute trac-
tographic features that describe potential neural disruptions due to the
brain tumor. These features are then used to predict the overall survival
of the subjects. The main novelty in the proposed methods is the use of
normalized brain parcellation data and tractography data from the hu-
man connectome project for analyzing MR images for segmentation and
survival prediction. Experimental results are reported on the BraTS2018
dataset.

Keywords: Brain Tumor Segmentation · Brain Parcellation · Group Nor-
malization · Hard Negative Mining · Ensemble Modeling · Overall Sur-
vival Prediction · Tractographic Feature

1 Introduction

Glioblastomas, or Gliomas, are one of the most common types of brain tumor.
They have a highly heterogeneous appearance and shape and may happen at
any location in the brain. High-grade glioma (HGG) is one of the most aggres-
sive types of brain tumor with median survival of 15 months [17]. There is a sig-
nificant amount of recent work on brain tumor segmentation and survival pre-
diction. Kamnitsas et al. [11] integrate seven different 3D neural network mod-
els with different parameters and average the output probability maps from
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each model to obtain the final brain tumor mask. Wang et al. [20] design a hier-
archical pipeline to segment the different types of tumor compartments using
anisotropic convolutional neural networks. The network architecture of Isensee
et al. [8] is derived from a 3D U-Net with additional residual connections on
context pathway and additional multi-scale aggregation on localization path-
ways, using the Dice loss in the training phase to circumvent class imbalance.
For the brain tumor segmentation task, we propose a methodology to integrate
multiple DeepMedics [12] and patch-based 3D U-Nets adjusted from [5] with
different parameters and different training strategies in order to get a robust
brain tumor segmentation from multi-modal structural MR images. We also
utilize the existing brain parcellation to bring location information to the patch-
based neural networks. In order to increase the diversity of our ensemble, 3D
U-Nets with dice loss and cross-entropy loss are included. The final segmenta-
tion mask of the brain tumor is calculated by taking the average of the output
probability maps from each model in our ensemble.

For the overall survival (OS) prediction task, Shboul et al. [16] extract 40
features from the predicted brain tumor mask and use a random forest regres-
sion to predict the glioma patient’s OS. Jungo et al. [10] extract four features
from each subject and use a support vector machine (SVM) with radial basis
function (RBF) kernel to classify glioma patients into three different OS groups.
In this paper, we propose a novel method to extract the tractographic features
from the lesion regions on structural MR images via an average diffusion MR
image which is from a total of 1021 HCP subjects [19] (Q1-Q4, 2017). We then
use these tractographic features to predict the patient’s OS with a SVM classifier
with linear kernel.

2 Glioma Segmentation

2.1 Materials

The Brain Tumor Segmentation (BraTS) 2018 dataset [1,2,3,14] provides 285
training subjects with four different types of MR images (MR-T1, MR-T1ce,
MR-T2 and MR-FLAIR) and expert-labeled ground-truth of lesions, including
necrosis & non-enhancing tumor, edema, and enhancing tumor. The dataset
consists of 66 validation subjects and 191 test subjects with four different types
of MR images. These MR images are co-registered to the same anatomical tem-
plate, interpolated to the same resolution (1mm3) and skull-stripped. For each
subject, a standard z-score normalization is applied within the brain region as
our pre-processing step for brain tumor segmentaion.

2.2 Brain Parcellation Atlas as a Prior for Tumor Segmentation

Current state-of-the-art deep network architectures [8,11,20] for brain tumor
segmentation do not consider location information. However, from Figure 1, it
is clear that the lesions are not uniformly distributed in different brain regions.
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This distribution is computed by dividing the total volume of the lesions by
the total volume of the corresponding brain parcellation region. Our proposed
method (Figure 2) explicitly includes the location information as input into a
patch-based neural network. First, we register the brain parcellation atlas to the
subject space using FLIRT[9] from FSL. This registration enables associating
each subject voxel with a structure label indicating the voxel location normal-
ized across all subjects. Thus, the input to the neural network will include both
the image data and the corresponding parcellation labels.

Fig. 1. The percent of brain lesion types observed in different parcellation regions of the
Harvard-Oxford subcortical atlas [6]. The x-axis indicates the parcellation label. Regions
not covered by the Harvard-Oxford subcortical atlas are in label 0.

2.3 Network Architecture and Training

We integrate multiple state-of-the-art neural networks in our ensemble 1 for ro-
bustness. Our ensemble combines 26 neural networks adapted from [5,12]. The
detailed network architecture and training method for each model is shown
in Table 1. Each 3D U-Net uses group normalization [21] and each DeepMedic
uses batch normalization in our ensemble. We utilize a hard negative mining
strategy to solve the class imbalance problem while we train a 3D U-Net with
cross-entropy loss. Finally, we take the average of the output probability maps
from each neural network and get the final brain tumor segmentation. The av-
erage training time for each DeepMedic is approximately 3 hours and for each

1 The ensemble is publicly available at https://hub.docker.com/r/pykao/brats2018/

https://hub.docker.com/r/pykao/brats2018/
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Fig. 2. Incorporating brain parcellation atlas into a patch-based neural network. First,
Harvard-Oxford subcortical atlas is registered to the subject space, and the parcellation
label is binarized into a 21-dimension vector. This vector is concatenated with the origi-
nal MR images as input to a patch-based neural network.

3D U-Net is approximately 12 hours, and the average testing time for a subject
is approximately 20 minutes on a NVIDIA GTX Titan X and a Intel Xeon CPU
E5-2696 v4 @ 2.20GHz.

Group Normalization The deep network architectures used for segmentation
are computationally demanding. For the 3D U-Nets, our GPU resources enable
us to use only 2 samples (of dimensions 128ˆ 128ˆ 128 voxels) per iteration.
With this small batch size of 2 samples, batch statistics collected during con-
ventional batch normalization method [7] are unstable and thus not suitable
for training. In batch normalization, statistics are computed for each feature di-
mension. Recently Wu et al. [21] propose to group several feature dimensions
together while computing batch statistics. This so-called group normalization
helps to stabilize the computed statistics. In our implementation, the number
of groups is set to 4.

Hard Negative Mining We train a 3D U-Net with 128ˆ 128ˆ 128 patches ran-
domly cropped from the original data. With such large dimensions, the majority
of voxels are not classified as lesion and the standard cross-entropy loss would
encourage the model to favor the background class. To cope with this prob-
lem, we only select negative voxels with the largest losses (hard negative) to
back-propagate the gradients. In our implementation, the number of selected
negative voxels is at most three times the number of positive voxels. Hard neg-
ative mining not only improves the tumor segmentation performance of our
model but also decreases its false positive rate.
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Table 1. The network architecture of 26 models in our ensemble. Models #1 to #6, #18 and
# 19 have the same architecture but different initializations, and models #21 to #26 have
the same architecture but different initializations. DeepMedic uses batch normalization
and 3D U-Net uses group normalization. DeepMedic and models #23 to #26 are trained
with the cross-entropy loss. The batch size for #3 to #19 is 50 and for 3D U-Net is 2.
The input patch size for model #1 to #17 is 25 ˆ 25 ˆ 25 and for 3D U-Net is 128 ˆ

128 ˆ 128. 3D U-Nets and DeepMedics without additional brain parcellation channels
are trained with 300 epochs, DeepMedic with additional brain parcellation channels are
trained with 500 epochs, and models #18 and #19 are trained with 600 epochs. Adam
[13] is used with 0.001 learning rate in the optimization step for all models. (# : model
number, BP: input Harvard-Oxford subcortical atlas with MR images to the model, Aug.:
data augmentations including random flipping in x-, y- and z-dimension.)

# BP Aug. Note
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1 Batch size: 36
2
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4
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5
‘

6
‘ ‘

7
‘

1.5 times 3D convolutional kernels
8

‘ ‘

9
Double 3D convolutional kernels10

‘

11
‘ ‘

12
2.5 times 3D convolutional kernels13

‘

14
‘ ‘

15
Triple 3D convolutional kernels16

‘

17
‘ ‘

18
‘

Input patch size: 22 ˆ 22 ˆ 22
19

‘

Input patch size: 28 ˆ 28 ˆ 28
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20 From [8] with Dice loss
21 Dice loss
22

‘

23 hard negative mining within one batch
24

‘

25 hard negative mining within one image
26

‘
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2.4 Experimental Results

We first examine the brain tumor segmentation performance using MR im-
ages and the Harvard-Oxford subcortical brain parcellation masks as input to
DeepMedic and 3D U-Net. The quantitative results are shown in Table 2. This
table demonstrates that adding brain parcellation masks as additional inputs
to a patch-based neural network improves its performance. For segmentation
of the enhancing tumor, whole tumor and tumor core, the average Hausdorff 95
scores for DeepMedic-based models improve from 5.205 to 3.922, from 11.536 to
8.507 and from 11.215 to 8.957, respectively. The average Dice scores for models
based on 3D U-Net also improve from 0.753 to 0.764, from 0.889 to 0.894 and
from 0.766 to 0.775, respectively, for each of the three tumor compartments.

Table 2. Quantitative results of the performance of adding additional brain parcella-
tion masks with MR images to DeepMedic and 3D U-Net on the BraTS2018 validation
dataset. Bold numbers highlight the improved results with additional brain parcellation
masks. Models with BP use binary brain parcellation masks and MR images as input,
while models without BP use only MR images as input. For comparison, each model
without brain parcellation (BP) is paired with the same model using BP, the pair having
the same parameters and weights initially. The scores for DeepMedic without BP is the
average scores from model #3, #5, #7, #10, #13 and #16, and the scores for DeepMedic
with BP is the average scores from model #4, #6, #8, #11, #14 and #17. The scores for 3D
U-Net without BP is the average scores from model #21, #23 and #25, and the scores for
3D U-Net with BP is the average scores from model #22, #24 and #26. Tumor core (TC)
is the union of necrosis & non-enhancing tumor and enhancing tumor (ET). Whole tu-
mor (WT) is the union of necrosis & non-enhancing tumor, edema and enhancing tumor.
Results are reported as mean.

Description ET WT TC

Dice

DeepMedic without BP 0.758 0.892 0.804
DeepMedic with BP 0.766 0.894 0.804
3D U-Net without BP 0.753 0.889 0.766
3D U-Net with BP 0.764 0.894 0.775

Hausdorff 95
(in mm)

DeepMedic without BP 5.205 11.536 11.215
DeepMedic with BP 3.992 8.507 8.957
3D U-Net without BP 4.851 5.337 10.550
3D U-Net with BP 5.216 5.544 10.442

We then evaluate the brain tumor segmentation performance of our pro-
posed ensemble on the BraTS2018 training, validation and test datasets. The
quantitative results are shown in Table 3. This table shows the robustness of our
ensemble on the brain tumor segmentation task. Our ensemble has consistent
brain tumor segmentation performance on the BraTS2018 training, validation
and test datasets.
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Table 3. Quantitative results of the tumor segmentation performance of our ensemble
on BraTS2018 training dataset with 5-fold cross-validation, validation dataset and test
dataset. Tumor core (TC) is the union of necrosis & non-enhancing tumor and enhancing
tumor (ET). Whole tumor (WT) is the union of necrosis & non-enhancing tumor, edema
and enhancing tumor. Results are reported as mean.

Dataset ET WT TC

Dice
BraTS2018 training 0.735 0.902 0.813
BraTS2018 validation 0.788 0.905 0.813
BraTS2018 test 0.749 0.875 0.793

Hausdorff 95
(in mm)

BraTS2018 training 5.433 5.398 6.932
BraTS2018 validation 3.812 4.323 7.555
BraTS2018 test 4.219 6.479 6.522

3 Overall Survival Prediction for Brain Tumor Patients

3.1 Material

The BraTS2018 dataset also includes the age (in years), survival (in days) and
resection status for each of 163 subjects in the training dataset, and 59 of them
have the resection status of Gross Total Resection (GTR). The validation dataset
has 53 subjects with the age (in years) and resection status, and 28 of them have
the resection status of GTR. The test dataset has 131 subjects with the age (in
years) and resection status, and 77 of them have the resection status of GTR.
For this task, we only predict the overall survival (OS) for glioma patients with
resection status of GTR.

3.2 Methodology

Our proposed training pipeline, shown in Figure 3, includes three stages: In the
first stage, we use the proposed ensemble from the section 2 to obtain the pre-
dicted tumor mask for each subject. In the second stage, We extract the tracto-
graphic features explained in section below from each subject. We then perform
feature normalization and selection. In the final stage, we train a SVM classifier
with linear kernel using the tractographic features extracted from the training
subjects. We evaluate the overall survival classification performance of tracto-
graphic features on the BraTS2018 training dataset with the 1000-time repeated
stratified 5-fold cross-validation, valdiation datset and test dataset.

Glioma Segmentation: To segment the glioma, we use the proposed ensemble
in the previous section to obtain the prediction of three different types of tissue
including necrosis & non-enhancing tumor, edema, and enhancing tumor.

Tractographic Feature Extraction from the Glioma Segmentation: After we
obtain the predicted lesion mask, we extract the tractographic features from the
whole tumor region which is the union of all different lesions for each subject.



8 P. Kao et al.

Fig. 3. Training pipeline for overall survival prediction.

Fig. 4. Workflow for building a connectivity matrix for each subject. The fiber tracts are
created by DSI Studio (http://dsi-studio.labsolver.org/), and ITK-SNAP [24] is used for
visualizing the 3D MR images and 3D labels.

http://dsi-studio.labsolver.org/
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Tractographic Features: Tractographic features describe the potentially damaged
parcellation regions impacted by the brain tumor through fiber tracking. Fig-
ure 4 shows the workflow for building a connectivity matrix for each subject.
First, the predicted whole tumor mask and the average diffusion orientation
distribution function from HCP-1021, created by QSDR [22], are obtained for
each subject. FLIRT is used to map the whole tumor mask from subject space
to MNI152 1mm space. Second, we use a deterministic diffusion fiber track-
ing method [23] to create approximately 1,000,000 tracts from the whole tumor
region. Finally, a structural brain atlas is used to create a connectivity matrix
~Wori for each subject. This matrix contains information about whether a fiber
connecting one region to another passed through or ended at those regions, as
shown:

~Wori is a N ˆ N matrix, and N is the number of parcellation in a structural
brain atlas.

~Wori =


wori,11 wori,12 . . . wori,1N
wori,21 wori,22 . . . wori,2N

...
...

. . .
...

wori,N1 wori,N2 . . . wori,NN

 (1)

If wij is pass-type, it shows the number of tracts passing through region j and
region i. if wij is end-type, it shows the number of tracts starting from a region i
and ending in a region j. From the original connectivity matrix ~Wori, we create
a normalized version ~Wnrm and a binarized version ~Wbin.

~Wnrm = ~Wori/max(~Wori) (2)

/ is the element-wise division operator, and max(~Wori) is the maximum value
of the original connectivity matrix ~Wori.

~Wbin =


wbin,11 wbin,12 . . . wbin,1N
wbin,21 wbin,22 . . . wbin,2N

...
...

. . .
...

wbin,N1 wbin,N2 . . . wbin,NN

 (3)

wbin,ij = 0 if wori,ij = 0, and wbin,ij = 1 if wori,ij ą 0. Then, we sum up each
column in a connectivity matrix to form a unweighted tractographic feature
vector.

~V =
N

ÿ

i=1

wij =
[
v1, v2, . . . , vN

]
(4)

Furthermore, we weight every element in the unweighted tractographic feature
vector with respect to the ratio of the lesion in a brain parcellation region to the
volume of this brain parcellation region.

~Vwei =~αd ~V,~α =
[
t1/b1, t2/b2, . . . , tN/bN

]
(5)
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d is the element-wise multiplication operator, ti is the volume of the whole
brain tumor in the i-th brain parcellation, and bi is the volume of the i-th brain
parcellation. This vector ~Vwei is the tractographic feature extracted from brain
tumor.

In this paper, automated anatomical labeling (AAL) [18] is used for building
the connectivity matrix. AAL has 116 brain parcellation regions, so the dimen-
sion of the connectivity matrix ~W is 116ˆ 116 and the dimension of each tracto-
graphic feature ~Vwei is 1ˆ 116. In the end, we extract six types of tractographic
features for each subject. Six types of tractographic features are computed from:
1) the pass-type of the original connectivity matrix, 2) the pass-type of the nor-
malized connectivity matrix, 3) the pass-type of the binarized connectivity ma-
trix, 4) the end-type of the original connectivity matrix, 5) the end-type of the
normalized connectivity matrix and 6) the end-type of the binarized connectiv-
ity matrix.

Feature Normalization and Selection: First, we remove features with low vari-
ance between subjects, and then apply a standard z-score normalization on the
remaining features. In the feature selection step, we combine recursive feature
elimination with the 1000-time repeated stratified 5-fold cross-validation and
a SVM classifier with linear kernel. These feature processing steps are imple-
mented by using scikit-learn [15].

Overall Survival Prediction: We first divide all 59 training subjects into three
groups: long-survivors (e.g., >15 months), short-survivors (e.g., <10 months),
and mid-survivors (e.g., between 10 and 15 months). Then, we train a SVM
classifier with linear kernel on all training subjects with 1000-time repeated
stratified 5-fold cross-validation in order to evaluate the performance of the
proposed tractographic feature on overall survival prediction for brain tumor
patients. We also evaluate the OS prediction performance of tractographic fea-
tures on the BraTS2018 validation and test dataset.

3.3 Experimental Results

In this task, we first examine the overall survival classification performance of
our proposed tractographic feature compared to other types of features includ-
ing age, volumetric features, spatial features, volumetric spatial features and
morphological features.

Volumetric Features: The volumetric features include the volume and the ratio
of brain to the different types of lesions, as well as the tumor compartments. 19
volumetric features are extracted from each subject.

Spatial Features: The spatial features describe the location of the tumor in the
brain. The lesions are first registered to the MNI152 1mm space by using FLIRT,
and then the centroids of whole tumor, tumor core and enhancing tumor are
extracted as our spatial features. For each subject, we extract 9 spatial features.
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Volumetric Spatial Features: The volumetric spatial features describe the volume
of different tumor lesions in different brain regions. First, the Harvard-Oxford
subcortical structural atlas brain parcellation regions are registered to the sub-
ject space by using FLIRT. The volumes of different types of tumor lesions in
each of parcellation regions, left brain region, middle brain region, right brain
region and other brain region are extracted as volumetric spatial features. For
each subject, we extract 78 volumetric spatial features.

Morphological Features: The morphological features include the length of the
major axis of the lesion, the length of the minor axis of the lesion and the sur-
face irregularity of the lesions. We extract 19 morphological features from each
subject.

In the first experiment, the ground-truth lesion is used to extract different
types of features, and the pass-type of the binarized connectivity matrix is built
to compute the tractographic feature. Recursive feature elimination with cross-
validation (RFECV) is used in the feature selection step to shrink the feature. A
SVM classifier with linear kernel is trained with each feature type, and strati-
fied 5-fold cross-validation is conducted 1000 times in order to achieve a reli-
able metric. The average and standard deviation of overall survival classifica-
tion accuracy for different types of features on the BraTS2018 training dataset
is shown in Figure 5. This figure demonstrates that the proposed tractographic
features have the best overall survival classification performance compared to
age, volumetric features, spatial features, volumetric spatial features and mor-
phological features. Initial analysis based on feature selection indicate that 12
out of 116 AAL regions are more influential in affecting overall survival of the
brain tumor patient.

Next, the pass-type of the binarized connectivity matrix is built from the
predicted lesion and the tractographic feature is computed from this connectiv-
ity matrix. The overall survival classification performance of this tractographic
feature is compared with the tractographic feature from our first experiment.
In this experiment, we follow the same feature selection method and training
strategy, using the same SVM classifier with linear kernel. The average and
standard deviation of overall survival classification accuracy on the BraTS2018
training dataset is reported in Table 4. From this table, the average classification
accuracy drops to 63 % when we use predicted lesions instead of ground-truth
lesions to generate the tractographic features. This drop is likely caused by the
imperfection of our tumor segmentation tool.

The source of tractographic features Classification accuracy (mean˘std)
Ground-truth Lesions 0.70 ˘ 0.12

Predicted Lesions 0.63 ˘ 0.13
Table 4. The overall survival classification performance of the proposed tractographic
features from the ground-truth lesions and from the predicted lesions on the BraTS2018
training dataset with 1000-time repeated stratified 5-fold cross-validation.
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Fig. 5. Overall survival classification accuracy between different types of features on
BraTS2018 training dataset. 1000-time repeated stratified 5-fold cross-validation is used
to obtain the average classification accuracy.

For the training data, the tractographic features are computed using the
ground-truth whole tumor, and a linear SVM classifier trained on these fea-
tures. We used stratified 5-fold cross validation on the training dataset, aver-
aged over 1000 independent trials. The average OS classification accuracy using
the tractographic features was 0.892 on the training set and 0.697 on the cross-
validation set. However, when applied to the BraTS2018 validation and test
datasets, the accuracy dropped to 0.357 and 0.416, respectively [4]. Note that for
the validation and test data, there is no ground-truth segmentation available. So
we first predicted the whole tumor and then the tractography features are ex-
tracted from these predicted tumors, followed by the OS classification using the
previously trained linear SVM. We speculate that the automated segmentation
to predict the whole tumor is one possible reason for the significant variation
in performance between the training and validation/test data, in addition any
data specific variations.

4 Discussion

For brain tumor segmentation, our proposed method, which combines the le-
sion occurrence probabilities in structural regions with MR images as inputs
to a patch-based neural network, improves the patch-based neural network’s
performance. The proposed ensemble results in a more robust tumor segmen-
tation. For overall survival prediction, the novel use of tractographic features
appears to be promising for aiding brain tumor patients. To the best of our
knowledge, this is the first paper to integrate brain parcellation and human
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brain connectomics for brain tumor segmentation and overall survival predic-
tion.
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5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3d u-net: learn-
ing dense volumetric segmentation from sparse annotation. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. pp.
424–432. Springer (2016)

6. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buck-
ner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling sys-
tem for subdividing the human cerebral cortex on mri scans into gyral based regions
of interest. Neuroimage 31(3), 968–980 (2006)

7. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

8. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tu-
mor segmentation and radiomics survival prediction: Contribution to the brats 2017
challenge. In: International MICCAI Brainlesion Workshop. pp. 287–297. Springer
(2017)

9. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration
of brain images. Medical image analysis 5(2), 143–156 (2001)

10. Jungo, A., McKinley, R., Meier, R., Knecht, U., Vera, L., Pérez-Beteta, J., Molina-
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