Lawrence Berkeley National Laboratory

Recent Work

Title

MEASUREMENTS ON K-PARTICLES FROM THE BEVATRON

Permalink

https://escholarship.org/uc/item/0z19s4b9

Authors

Chupp, Warren W. Goldhaber, Gerson Goldhaber, Sulamith et al.

Publication Date

1955-04-22

UCRL 2963 UNCLASSIFIED

UNIVERSITY OF CALIFORNIA

Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNCLASSIFIED

UNIVERSITY OF CALIFORNIA

Radiation Laboratory Berkeley, California Contract No. W-7405-eng-48

MEASUREMENTS ON K-PARTICLES FROM THE BEVATRON

Warren W. Chupp, Gerson Goldhaber, Sulamith Goldhaber, Stephen J. Goldsack, Joseph E. Lannutti, Frances M. Smith and Francis H. Webb

April 22, 1955

MEASUREMENTS ON K-PARTICLES FROM THE BEVATRON

Warren W. Chupp, Gerson Goldhaber, Sulamith Goldhaber, Stephen J. Goldsack, * Joseph E. Lannutti, Frances M. Smith, and Francis H. Webb

> Radiation Laboratory, Department of Physics University of California, Berkeley, California

April 22, 1955

As an initial step in the study of K-particles, stacks of nuclear emulsions have been exposed at the Bevatron in two positions. (a) Exposure in the direct proton beam (proton energies 4.8 and 5.7 Bev): For this purpose the stacks were mounted on a plunging probe with a "lip target." This probe assembly was plunged into the vacuum chamber during the last part of the accelerating cycle. (b) Exposure to secondaries emitted at 90° to the target (proton energies 4.8 and 6.1 Bev): Stacks were placed in a re-entrant well at a distance of about 10 inches from the target. (Time of flight for K-particles observed is about 10^{-9} sec.) A 0.1-inch aluminum wall was the only intervening material.

In 2.5 cm³ of emulsion scanned to date, 35 K-particles and 5τ -mesons have been found. In Table I mass measurements on 22 of these K-particles and 3 τ -mesons are given. The mass measurements were obtained (a) by grain count vs range in the region of 1 to 3 cm residual range, 2 and (b) by "opacity" measurements for short K-particle track lengths in the region of 0.5 to 1.5 cm residual range. Each of the above measurements was directly calibrated against protons. For quick identification of K-particles a constant sagitta measurement was carried out over the last 7 mm residual range using the Pl cell scheme of Biswas et al. 4 with the cell scheme fed automatically into the microscope. 5 The weighted average of all mass measurements gives

Assisted by the Office of Naval Research; now at the Phys. Dept., Univ. of Birmingham, Birmingham, England.

E. McMillan, Rev. Sci. Instr. 22, 117 (1951).

M. Tchang-Fong Huang, Comptes rendus 238, 1790 (1954).

The "opacity" A is given by A = 1-G where G is the integral gap length.

⁴⁽Private communication H. H. Heckman).
5Biswas, George, and Peters, Proc. Indian Acad. Sci. 38, 418, (1953). S. J. Goldsack and G. Goldhaber, Bull. Am. Phys. Soc. Paper Ull, Berkeley Meeting 1954. Further details on the cell-scheme mechanism will be published elsewhere.

Table I

<u> </u>							
	Mass		Secondary				
Particle	I-R	Const. Sagitta	Dip Angle	рβ	b/b _p	I/I _o	
K _l a	1010 ± 30 °	895 ± 230	28 ⁰		<u>-</u>		
K ₂		700 ± 180	0	189 ± 25	0.89 ± 0.04		
	815 ± 70 ^c	940 ± 250	44 ⁰	-	-		
	934 ± 30 °	880 ± 230	4.5 ⁰	185 ± 20	1.14 ± 0.06		
1 7 1	962 ± 30 °	880 ± 200	26°	150 ± 30	~1	. , , , , , , , , , , , , , , , , , , ,	
	947 ± 100 ^C	1460 ± 370	56 ⁰	. <u>.</u>	.		
	820 ± 60 ^c	· · · · · · · · · · · · · · · · · · ·	17 ⁰	. 2 2 € 1 2 2	-	j e e njemet t	
1 ~X. 1	$375 \pm 40^{\circ}$	1010 ± 280	0°	56 ± 8	0.968 ± 0.04		
1 9 1	$975 \pm 50^{\circ}$	1320 ± 350		dary foun	\mathbf{d}		
1 1:0 1	988 ± 45 ^d	1 1	7 ⁰	135 ± 22		1.16 ± 0.05	
111	938 ± 125 d		, ,	. •			
1 **12	, ×	795 ± 190				- ,•1	
I 13	846 ± 75 ^d		18 ⁰				
1 14	$1035 \pm 70^{\text{d}}$	690 ± 170	17 ⁰			2.48 ± 0.05	
1 115	1035, ± 80 ^d		43°			Same Same	
1 7716	941 ± 40^{d}	*	15 ⁰		, , , , , , , , , , , , , , , , , , ,	13	
1 117	$836 \pm 65 ^{d}$	• •	83 ⁰			e r	
1 18	875 ± 70 ^d	,	63 ⁰				
119	$927 \pm 45 \stackrel{\mathrm{d}}{\cdot}$	Y., 6	26°		is in the second		
1 20,	891 ± 45 ^d	, ,	2,40				
K ₂₁ b	881 ± 65 d		3°.	160 ± 20		1.19 ± 0.03	
К ₂₂ в	ev (₹ 1) Ev	1280 ± 330		135 ± 24		1.17 ± 0.07	
			Q value	,			
$ au_1^{ a}$	-	_	82.8±6				
τ_2 a	-	1220 ± 420	75.1 ± 3				
$\begin{bmatrix} \tau_3 & \mathbf{b} \\ \tau_4 & \mathbf{b} \end{bmatrix}$	952 ± 45 ^d	1 · · · · · · · · · · · ·	78.0 ± 5				
$ au_4^{\mathrm{b}}$	932 ± 45 ^d	. 					
τ ₅ a	- 		71.3 ± 3	er in de la companya di seriesa d Seriesa di seriesa di s	and the second of the second o		

aFound in well exposure giving a time of flight of about 10^{-9} sec.

Found in the direct proton beam. Time of flight is 1×10^{-10} -3 x 10^{-10} sec.

Grain count vs range.

Opacity vs range.

Multiple-scattering and ionization measurements were carried out on secondaries with dip angles less than $10^{\,0}$. The secondary of $K_{\scriptscriptstyle Q}$ was identified to be an electron of 60 ± 6 Mev. ⁷ Table II gives the results of the blob count and multiple-scattering measurements on the secondary of K_{o} . Column 6, Table II gives the measured blob density for the secondary. For comparison we give in Column 7 the expected grain density for a μ-meson corresponding to the measured p\u00e3. From this comparison it is clear that a much lighter particle (i.e., electron) is present. The secondary of K_{14} can be interpreted as being either a π from the alternate decay of the τ -meson ($\tau^+ \rightarrow 2\pi^0 + \pi^+$) or a slow μ from the decay of a $K_{\mu 3}$. K_{9} is a case where no secondary was found. All the other secondaries are consistent with L-mesons or electrons. K, (see Fig. 1) undergoes an elastic scattering from a light nucleus (with visible recoil) in the emulsion. The scattering angle is $79^{\circ} \pm 1^{\circ}$ and the recoil angle is $55^{\circ} \pm 5^{\circ}$ with the incident direction. The residual range of the K_1 particle after the scattering is 960 μ , corresponding to an energy of about 10.5 MeV, which is well above the Coulomb barrier.

Of the 35 K-particles found to date, 34 (presumably positive) decayed into single charged secondaries. Only one, K_9 , can be interpreted to be negative since no secondary has been found. No K-particles giving rise to stars at the end of the range have been found in this survey.

Le Prince-Ringuet, Proceedings of the Fifth Rochester Conference on High-Energy Physics, 1955.

The first example of this type of decay was found by Friedlander, Keef, Menon, and Van Rossum Phil. Mag. 45, 1043 (1954). From this and further cases reported at the 1955 Rochester High-Energy Conference, a three-body decay process can be inferred.

 $\label{eq:table_II} {\tt MEASUREMENTS\ ON\ K_8\ SECONDARY}$

Plate	Length per plate (mm)	Distance from decay point (mm)	Average dip angle	pβ Mev/C	b/b _p	Expected g/gp for µ-meson
8-18	8.9	2.2	~0°	56 ± 8	0.968 ± 0.04	1.50
8-18	-	6.7	5. ⁰	37 ± 5	0.960 ± 0.04	1.97
8-17	2.6	9.5	13°	38 ± 8	0.947 ± 0.05	1.93
8-16	1.9	1 12.5	17.5°	31 ± 7	0.88 ± 0.05	2.24
8-15	1.5	. 14.1	22 ⁰	38 ± 10	1.01 ± 0.09	1.93
8-14	1,1	15.4	29 ⁰	28 ± 8	1.05 ± 0.10	2.42
8-13	0.9	16.4	32.5°	29 ± 10	. * ~1 # 1 #	2.34
8-12	0.4	17.0	55 ⁰	10 ± 4	~13:	

We are greatly indebted to Edward J. Lofgren and the Bevatron crew for their help and patience in carrying out the exposures. We also wish to thank Miss S. Livingston, Mrs. L. Shaw and Mrs. C. Toche for their help and painstaking work in scanning the emulsions.

This work was done under the auspices of the U. S. Atomic Energy Commission.

e regulation of the first production of the second

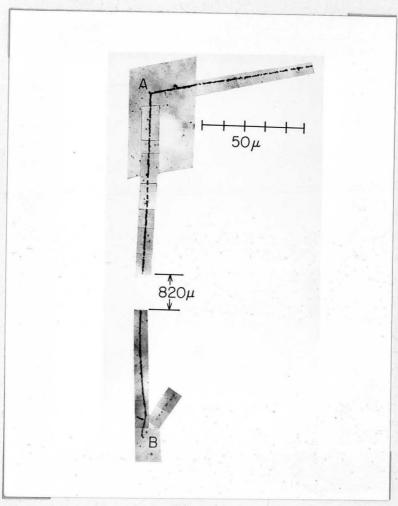


Fig. 1 Elastic scattering of K_1 from light element. K_1 scatters at A and decays at B into lightly ionizing secondary.