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Abstract
Objective: Biomechanics represents the common final output through which all biopsychosocial constructs of back pain must pass, making it a
rich target for phenotyping. To exploit this feature, several sites within the NIH Back Pain Consortium (BACPAC) have developed biomechanics
measurement and phenotyping tools. The overall aims of this article were to: 1) provide a narrative review of biomechanics as a phenotyping
tool; 2) describe the diverse array of tools and outcome measures that exist within BACPAC; and 3) highlight how leveraging these technologies
with the other data collected within BACPAC could elucidate the relationship between biomechanics and other metrics used to characterize low
back pain (LBP).

Methods: The narrative review highlights how biomechanical outcomes can discriminate between those with and without LBP, as well as
among levels of severity of LBP. It also addresses how biomechanical outcomes track with functional improvements in LBP. Additionally, we
present the clinical use case for biomechanical outcome measures that can be met via emerging technologies.

Results: To answer the need for measuring biomechanical performance, our “Results” section describes the spectrum of technologies that
have been developed and are being used within BACPAC.

Conclusion and Future Directions: The outcome measures collected by these technologies will be an integral part of longitudinal and cross-
sectional studies conducted in BACPAC. Linking these measures with other biopsychosocial data collected within BACPAC increases our poten-
tial to use biomechanics as a tool for understanding the mechanisms of LBP, phenotyping unique LBP subgroups, and matching these individuals
with an appropriate treatment paradigm.

Keywords: Low Back Pain; Low Back Disorders; Biomechanics; Human Movement; Motion Analysis Technology

Introduction
Low Back Pain

Low back pain (LBP) is a common condition experienced by
28–42% of individuals in middle adulthood [1, 2]. A hall-
mark of LBP is the often subjective nature of pain. For many,
symptoms of LBP resolve spontaneously; however, a history
of LBP is associated with recurrence [3]. In some, LBP symp-
toms do not resolve and present a chronic challenge. Pain is
influenced by a complex mixture of biopsychosocial factors
[4], and there has been increased interest in documenting how
pain negatively affects an individual’s objective function.
Periods of LBP can result in living with the burden of disabil-
ity [1, 5], hallmarked by activity limitations [6–8], which can
be objectively measured. These limitations are partially
explained by biopsychosocial changes in individuals with LBP
that modify how they interact with the world [4, 9–22].

The National Institutes of Health Back Pain

Consortium Research Program

In 2019, the National Institutes of Health (NIH) Helping to
End Addiction Long-term (HEAL) initiative formed the Back
Pain Consortium (BACPAC) with the primary objective of
informing a precision medicine approach to treating chronic
LBP (cLBP) [23]. Described in the anchor article, BACPAC
consists of 13 sites across the United States, all working
toward the primary objective of investigating an individual’s
experience of cLBP through the domains of biology, behavior,
and biomechanics [23]. To harmonize data collection and the
processing of biomechanical data, the BACPAC Biomechanics
Working Group developed a theoretical model (Figure 1), rec-
ognizing that all biopsychosocial changes associated with LBP
have the potential to modify how an individual tolerates, gen-
erates, balances, and responds to tissue loading, which in turn
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impacts how an individual with LBP executes a movement
[24]. Using this framework, we posit that biomechanical
measures are representative of a common final framework
through which multiple biopsychosocial constructs must
interact, potentially providing unique signatures on how indi-
viduals adapt to their biopsychosocial strengths and deficits
to maintain function.

The Biomechanics Working Group hypothesizes that bio-
mechanical measures provide inherently rich and unique
information to help phenotype individuals with LBP. For this
reason, many BACPAC research programs include one or
more patient-specific biomechanical outcome measures that
will be provided to the Data Integration, Algorithm
Development and Operations Management Center at the
University of North Carolina-Chapel Hill. The purpose of
this article is to 1) provide a narrative review of the current
understanding of biomechanical outcome measures as poten-
tial phenotypic tools and their use in the clinic, 2) describe the
technologies used in the consortium to quantify biome-
chanics, and 3) illuminate the future promise of expanding
the phenotypic capabilities of biomechanical outcomes when
linking these technologies to direct measurements of other rel-
evant biological, psychological, and sociological factors.

Methods

Consistent with our theoretical model (Figure 1), we antici-
pate that all biopsychosocial components of LBP can manifest
measurable biomechanical changes (i.e., biomechanical phe-
notypes). To populate this model, we provide a narrative
review of the scientific literature to 1) discuss the definition of
a biomechanical outcome measure, 2) provide current evi-
dence that these biomechanical measures can and do describe

LBP phenotypes, 3) discuss the factors to consider in the use
of biomechanics for phenotyping, and 4) describe the clinical
utility of biomechanical outcome measures. After this review,
we present the technologies used in BACPAC to address this
clinical use case. Finally, we discuss how these consortium-
wide measures can be used in an integrated way to improve
our understanding of LBP.

Narrative Review Supporting Biomechanical
Phenotypes for LBP
Definition of Biomechanical Outcome Measures

Biomechanical outcome measures can be divided into three
broad categories: analysis of function, performance assess-
ments, and detailed biomechanical analysis (Tables 1 and 2).
Ultimately, these outcome measures are interrelated, describ-
ing the gross function of movement up to the tissue loads
underlying them.

Analysis of Function

Functional outcome measures capture global or composite
metrics of an individual’s overall function. Task protocols
that analyze function can challenge an individual’s strength,
balance, coordination, flexibility, aerobic capacity, or some
combination of these abilities. Functional task scores often
involve single outcome measures (i.e., time to complete, time
spent, hold time, maximum motion, or maximal strength)
that define cut points for categories of function [25–30].
However, various compensatory strategies might be used to
achieve high levels of function, which suggests that two indi-
viduals could obtain similar functional scores despite funda-
mentally different task performances. Composite LBP

Figure 1. BACPAC Biomechanics Working Group theoretical model of the role of biomechanics in low back pain. This framework posits that the

biopsychosocial elements of LBP (in orange) directly and indirectly (via cognition) influence and are influenced by tissue loading during static or dynamic

tasks, thereby changing how an individual moves. Knowledge of these interrelationships can assist in proposing targeted interventions (shown in blue).
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impairments can manifest as performance deficiency despite a
high functional outcome score having been achieved [31].

Performance Assessments

Performance outcome measures quantify more deeply how a
functional task was executed. Performance assessments can
include measuring the kinematics of the spine and other
whole-body motions. Many clinicians acknowledge the value
of performance assessments yet often rely on skilled observa-
tion to document them [32]. Historically, some combinations
of standardized protocols and measurement tools have been
synergized to measure static postures (goniometers, flex tape,
rulers) or maximum movement (inclinometers and dynamom-
eters) [33]. However, tools exist to measure performance with
higher precision and resolution than can be obtained with
well-trained observation. Researchers and clinicians are gain-
ing access to many tools that can describe dynamic perform-
ance in the clinic, accompanied by new promises and
challenges on how to use these data.

Detailed Biomechanical Analysis

Complementary to measuring dynamic performance, methods
exist to explore or estimate how the body produces or balan-
ces forces and moments at a joint to contribute to these move-
ments (kinetics). These detailed biomechanical outcomes use

kinetic measures, which can be obtained directly from force
plates, load cells, or dynamometers or can be predicted from
body segment parameters in synergy with direct kinetic
measures.

Higher-order biomechanical measurements describe or pre-
dict how tissues or tissue systems respond to or generate
forces at a joint level. Neurophysiological, radiological, mus-
culotendinous, or neuromuscular measurements can be used
as distinct descriptors or in tandem with measures of kine-
matics and kinetic tools to refine calculations of joint kinetics
[34, 35]. These measurements might even aid in understand-
ing the biomechanical impact of movement at a tissue level
[36] to explain mechanonociceptive [24] or inflammatory
[37] processes relevant to LBP. Despite considerable progress
in using detailed biomechanical analysis for phenotyping [38–
47], barriers remain to the clinical translation. Thus, subse-
quent sections will focus on functional and performance out-
come measures.

Evidence for Using Biomechanical Phenotyping for

LBP

Scientific literature covers multiple cross-sectional, longitudi-
nal, and prospective studies on biomechanics in individuals
with LBP. This section will evaluate the differences in biome-
chanical function and performance 1) between individuals
with and without LBP, 2) in those with more severe patient-
reported outcomes, 3) between different established mechani-
cal and psychological biomechanical phenotypes, and 4) as
individuals recover from LBP naturally or with therapy.

Differences Between Individuals With and Without LBP

Compared with asymptomatic controls, individuals with LBP
have different overall function. In large population studies,
overall physical activity levels in individuals with LBP follow
a U-shaped relationship; too much and too little activity can
increase LBP odds [25]. Given that LBP is hallmarked by
activity limitations and disability, it is not surprising that indi-
viduals with LBP have reduced function compared with
asymptomatic controls, as evidenced by 1) reduced static
reach [26]; 2) increased time to complete tasks, including Sit
to Stand (STS) [27, 28], Timed Up and Go [27], and walking
a standard distance [29]; 3) having decreased static balance

Table 2. Primary outcome measures

Site Tool Primary Outcome Measures

Stanford University Wrist and waist actigraphy Functional: activity level
Performance: whole-body activity

Ohio State University Pelvis- and torso-mounted inertial measurement
unit

Functional: lumbar range of motion, rate,
symmetry

Performance: 3D motion of the lumbar spine
Brigham Young University Skin-adhered wearable stretch sensor array Functional: lumbar segment range of motion,

rate, symmetry
Performance: 3D motion of individual lumbar

segmental angles
University of Pittsburgh Three torso-mounted inertial measurement units

and one thigh-mounted inertial measurement
unit

Functional: lumbar range of motion, rate,
symmetry, thigh compensation

Performance: 3D motion of lumbar and thoracic
spine

University of California, San Francisco Kinect and force mat Functional: body segment range of motion, rate,
symmetry

Performance: 3D motion of body segments,
including the torso

Table 1. Broad categories and description of common biomechanical

outcome measures

Outcome Measure Type Description

Analysis of function Measures of time to complete, maxi-
mum capacity, time spent, or other
outcome measures that might not
fully measure kinematic
performance.

Performance assessments Characterization of the movement pat-
terns “kinematics” of an individual
performing a functional task at a sin-
gle joint or multiple joints.

Detailed biomechanical
analysis

Measures of force generators (muscle
or electrophysiology) or the effect of
forces applied to the body (inverse
kinetics, tissue stress and strain).
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performance [28]; and 4) trunk muscle weakness, evidenced
by decreased strength and increased fatigability [11, 27, 30].

Beyond functional differences, individuals with LBP exhibit
performance differences in dynamic movement tasks when
compared with asymptomatic controls, specifically: reduced
trunk range of motion [43, 48–52], reduced velocity and
acceleration [43, 49–58], increased hesitation to initiate
motion [59], and altered lumbopelvic coordination [43, 49,
52, 60] such that spine motion is more in phase with hip
motion in individuals with LBP than in asymptomatic con-
trols [57]. In addition to differences in lumbopelvic motion,
those with LBP have altered or compensatory motion at the
thigh, shank, or shoulder when completing complex tasks
such as the STS [54, 58, 61]. Ultimately, these functional and
performance differences can discriminate between popula-
tions with and without LBP with 80–100% accuracy [51, 55,
62–64].

Relationship to Patient-Reported Outcomes

Literature to date suggests that both functional and
performance-based biomechanical outcome measures are
related to an individual’s current level of pain or disability, as
captured by patient-reported outcomes and psychological
state-trait measures. In many cases, measures of perceived
pain, disability, fear, or catastrophizing are associated with
increased biomechanical differences within those with LBP,
which suggests that differences between those with and with-
out LBP fall along a continuum. Overall, functional outcomes
are reduced in individuals with higher levels of pain and dis-
ability [28, 65, 66]. Similarly, higher levels of fear-avoidance,
catastrophizing, kinesiophobia, anxiety, and depression are
also related to functional decrements, including delayed time
to complete tasks [65–67].

Performance is also different in populations with higher lev-
els of pain, disability, or fear. Similar to differences between
those with LBP and controls, reviews [68, 69] and individual
studies have identified that individuals with higher pain, dis-
ability, fear-avoidance, pain catastrophizing, and anxiety
have reductions in trunk range of motion and movement
speed [43, 48, 50, 70–75], increased movement variability
[57], delays in initiating movement [59], and more in-phase
motion [60, 71, 76, 77].

Differences Between Predetermined Biomechanical
Subgroups

Individuals with higher levels of pain, disability and fear rep-
resent a subpopulation of individuals with LBP. Meanwhile,
additional work has attempted to identify whether biome-
chanical outcomes can discriminate between other predefined
LBP subgroups. In general, functional outcome measures
have shown a mixed ability to discriminate between popula-
tions with different mechanical presentations of LBP [27],
including individuals with and without lumbar instability
[28]. Unlike mechanical subgroups, there has been some suc-
cess in discriminating between psychological subgroups. A
recent study showed that those with maladaptive responsive-
ness to pain [78] and magnified psychosocial manifestations
of LBP [79] take longer to complete tasks than do individuals
who have LBP without these maladaptive signs.

Performance outcome measures have demonstrated consid-
erable promise in identifying mechanical and psychological
LBP subgroups. Early literature revealed that low back kine-
matic measures could distinguish various combined Quebec

Task Force presentations of LBP with 56–77% accuracy [51,
55, 62], with higher accuracy for comparing structural vs
muscular types of LBP [55, 62]. More recent studies have
demonstrated that low back biomechanics can discriminate
between individuals with high or low scores through the use
of the Keele STarT Back Screening Tool with 65–75% accu-
racy [64, 80]. Of greatest promise are recent studies showing
that biomechanical performance can discriminate between
individuals classified as having a clinically observed move-
ment disorder consistent with flexor vs extensor pain patterns
with an accuracy of 90–98% [81, 82], which suggests that
these measures might enhance clinician objectivity to quantify
and classify motions.

Differences over Time

Biomechanical measures have been shown to change over
time. Overall, as individuals with LBP recover, either sponta-
neously or after therapeutic interventions, they exhibit
improvements in biomechanical functions [7, 29, 83–85] that
correlate with decreases in pain and disability [85]. Similarly,
biomechanical performance improves over time as individuals
with LBP recover [69, 86]. These improvements follow a
unique progression of increased trunk range of motion [7, 69,
75, 84, 87, 88], followed by increased movement speed [69,
88], which are related to decreases in pain and disability [69,
71, 86, 88].

It is essential to acknowledge that biomechanical measure-
ments are distinct from changes in patient-reported outcomes.
A recent case study has identified that although most (54%)
individuals experience improvements in pain, disability, and
biomechanical performance simultaneously, a good propor-
tion of individuals also experience biomechanical changes
after changes in perceived pain and function (31%) [86]. A
longitudinal study demonstrated that by 3 months, objectively
measured biomechanical changes lag behind perceived
changes in pain and disability [88, 89]. This unique biome-
chanical recovery can be of considerable importance, as pro-
spective studies have demonstrated that individuals with less
biomechanical recovery had increased odds of experiencing
low back re-injuries after returning to work [90]. This sug-
gests that biomechanical performance can be an objective
measure that might capture lingering vulnerabilities that
could lead to higher spinal loading [36].

Factors to Consider for Biomechanical Phenotyping

Consistent with our theoretical model, biomechanical meas-
ures have the face and criterion validity to characterize indi-
viduals with LBP. However, our group acknowledges
controversial findings, often explained by methodological
issues that threaten the criterion, content, and construct valid-
ity of the biomechanical measurement and subsequent
postprocessing.

Description of Study Groups That Threaten Criterion
Validity

To date, most biomechanical studies have made observations
across small sample sizes (n¼ 10–30 per group) between LBP
and control populations [42, 52, 54, 91], which limits study
generalizability and the ability to detect differences between
heterogenous control and LBP populations. Asymptomatic
control groups can include individuals who have reduced
trunk velocity who are more likely to develop future LBP
[39], a finding that might be explained by the fact that
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asymptomatic control participants who have had a history of
LBP not only are more likely to experience recurrent LBP
(recurrence) but are also more likely to present biomechanical
features similar to those with LBP [38, 52, 92, 93]. LBP also
represents a heterogenous spectrum, and those with lower lev-
els of pain and disability are potentially less likely to differ
from asymptomatic controls [48, 52]. More interesting is cur-
rent evidence to suggest that there are LBP subgroups that can
exhibit nearly opposing biomechanical performance, which, if
not accounted for, could diminish the ability to discriminate
between those with LBP and those without [69, 72, 76, 91].
These confounders can be reduced by tighter exclusion crite-
ria or description of LBP history and type in larger studies.

Selection of Experimental Task Threatens Content Validity

Considerable variation exists in experimental protocols or
tasks [42, 94]. However, nearly 50% of experiments do not
report the goals or design of their biomechanical tasks [42].
To identify differences between LBP groups or subgroups, it is
important to understand whether a task can sufficiently chal-
lenge the biopsychosocial elements of LBP. In the literature, it
appears that tasks that require greater range of motion [49,
52–54] are more likely to discern differences between individ-
uals with and without LBP than are tasks without (e.g., walk-
ing). Challenge also comes from movement speed, where
static tasks [72] appear to be less discriminatory than are
dynamic tasks, which encourage movement speed [55, 75].
Recently, Wernli et al. demonstrated that a challenging task
might be patient specific, showing that perceptual and biome-
chanical improvements are most likely to occur in the tasks
the patient finds most challenging [69, 86]. The most sensitive
and specific task protocols remain unknown, but there might
be an optimal battery to improve discriminative power [43,
54].

Consideration of Construct Validity

Growing technology offers the exciting potential of new
measurement tools that can capture dynamic biomechanical
performances with low cost, complexity, and training to pro-
mote clinical usability. However, the construct validity of
measurement tools and postprocessing varies in precision,
reliability, and complexity, offering avenues for refinement.
Emerging technologies must have sufficient criterion validity
to reliably capture their measurements of interest [26, 95, 96].
However, fewer than 25% of experiments demonstrate reli-
ability, and fewer still consider test-retest reliability [42].

To date, with regard to developing a tool for LBP pheno-
typing, the power of many biomechanical performance meth-
ods has been achieved with limited spatial complexity by
measuring torso segment angles and lumbopelvic motion
[54]. However, tools exist to resolve motion at a vertebral
level and/or quantify the performance of other joints that
could compensate to maintain function, which could provide
promising information. The temporal complexity of tools is
equally important, as outcome measures with higher temporal
complexity, e.g., velocity and acceleration, have better dis-
criminative power than do discrete values of angular displace-
ment [43, 54, 55, 62]. This capacity to capture higher
temporal complexity is possible only because of postprocess-
ing techniques, which can also change the discriminative
power of performance-based biomechanics [64]. Knowledge
is limited with regard to the spatial, temporal, and processing
complexity needed to enhance the discriminative power of

performance-based biomechanical outcome measures [42, 54,
69]. Nevertheless, with growing complexity in tools, as well
as artificial intelligence and machine learning (ML)–guided
signal processing, we anticipate considerable growth toward
developing accurate measures that are interpretable for clini-
cians (e.g., uses of ML are described in the “University of
Pittsburgh: Wearable Sensors” and “Brigham Young
University: Multisegmented Vertebral Body Level Motion”
sections later in this article).

Clinical Translation

Clinicians express a need to measure biomechanics, identify
unique phenotypes, and improve therapy [46, 97, 98]. To
date, “quantifying” function has been defined by the func-
tional outcome measure, whereas “quantifying” the perform-
ance has been left to the clinician’s skilled observations of the
patient’s performance within the functional outcome measure
[97, 99, 100]. Clinicians use functional outcomes to guide
clinical decision-making and to provide indicators of
improvement or plateau to Centers for Medicare and
Medicaid and third-party payers for reimbursement of serv-
ices. To improve the reliability and validity of skilled observa-
tions, clinicians typically rely on clinical classification systems
in attempts to subgroup homogenous characteristics of
patients with cLBP [94, 99, 101, 102]. However, these sys-
tems require immersive training and numerous clinical expo-
sures [103] to recognize various functional limitation
situations [97], and clinical inexperience can lead to misdiag-
nosis and impaired LBP recovery [104, 105].

In BACPAC baseline data collection, clinical and biome-
chanical harmonization allows clinical functional outcomes to
be measured in parallel with biomechanical outcomes to
potentially provide future clinical analyses with real-time
objective data. Objective biomechanical performance meas-
ures could act in tandem with clinicians’ observations of bio-
mechanical performance for phenotyping [26]. This
synergistic approach might reduce inter-clinician variability,
implicit biases, and burdens of reevaluations and variations in
patients’ care plans. It could also improve abilities to track
kinematic records of patients with LBP throughout their ther-
apeutic progressions.

Results
Technology Used Within BACPAC

With the growth of reliable, low-cost, valid, and easy-to-use
tools that can be rapidly processed, many of the research sites
within BACPAC aim to achieve the reality of integrating
objective biomechanics into clinical practice to exploit its
potential as a diagnostic, prognostic, and phenotyping tool to
aid in precision medicine. Despite each site taking a unique
approach, (Figure 2), the overarching aim that guides all sites
is to improve the capacity of biomechanics to become a phe-
notypic tool, especially in analyzing cLBP. This section
intends to provide a high-level description of each technology
used within BACPAC, along with the goal of the site.

University of California, San Francisco: Markerless Motion
Capture

University of California, San Francisco, the site of the
REACH Interdisciplinary Mechanistic Research Center, has
created a markerless motion capture-based biomechanical
assessment of the STS functional test for LBP. Full-body 3D
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skeletal tracking motion data are collected with an Azure
Kinect depth camera (Microsoft Corp., Redmond, WA, USA)
and a custom floor mat for enhanced ankle placement estima-
tion (Figure 3D, 3E). Subjects are coached through a five-
times STS task from a user interface application on a laptop.
Although many studies have confirmed that LBP significantly
increases the STS time, few have explored the compensatory
biomechanics adopted by patients with LBP during the STS
test. Capturing the 3D motion patterns of multiple joints
throughout the body and applying limb length algorithms to
generate accurate joint kinematics enables us to apply skeletal
and biomechanical models and estimate 1) individual joint
and overall postural trajectories, 2) velocities and accelera-
tions of joints and body segments, and 3) joint forces and
total mechanical energy estimates. These data types provide a
more inclusive view into compensatory movement patterns,
beyond spinal kinematics alone. Using a platform that has
been validated to gold standard motion capture in a control
cohort [95, 106], with high concordance and correlation for
joint positions and angles (Lin’s concordance correlation coef-
ficient [CCC]: 0.82–0.99, interclass correlation coefficient
[ICC(3,1)]: 0.82–0.99), with low mean absolute error (3–
6 degrees, 6.5–13.7 degrees/second). Concordance and corre-
lation in measuring body forces and torques were high (CCC:
0.76–0.95, ICC(3,1): 0.76–0.95).

As with data provided by marker-based motion capture,
this approach offers time-series outcomes for kinematics,
kinetics, and dynamics of each joint tracked (Figure 4D).
From that, we can use conventional analysis approaches by
extracting peak measures of individual variables. However,
we can also use the complete time-series data outputs for
advanced analytics to capture the complete movement profile
and movement quality. We can compare potential differences
in compensatory strategies between spine patient groups by
using methods like nonlinear principal-components analysis
to identify clusters of specific biomechanical variables that

correspond with different patient groups. Additionally, we
can reduce multi-joint time-series data into full-body postural
trajectories comparing features of these trajectories among
spine patients.

Stanford University: Actigraphy

In partnership with the Mechanistic Research Center at
University of California, San Francisco, Stanford University is
leveraging the Actigraph (Pensacola, FL, USA) triaxial accel-
erometer (and other activity trackers) that can capture 3D
acceleration (and rotation and orientation in some sensors).
Such advancements in sensor integration, combined with
advanced data processing algorithms, now allow more insight
into the real-life monitoring of whole-body movement, in
addition to the standard daily step count estimation. Through
their evolution in physical activity monitoring, criteria for
standardized methods of accelerometry data collection and
processing were established to extract the “gravity unit” and
“activity count” that represent accelerations due to body
movement [107]. Physical activity metrics (duration, intensity,
frequency, pattern) derived from activity count have been
widely used over the past two decades, whereas metrics
derived from raw acceleration data by open-access algorithms
[108] have recently gained popularity for their cross-device
comparability. Such measures can be used to further quantify
the amount of daily physical activity stratified into standard
intervals, including sedentary, light physical activity, and
moderate-to-vigorous physical activity.

Although objective physical activity monitoring has been
used for mortality prediction and phenotyping of various
pathologies, its clinical utility for LBP digital phenotyping has
not yet been fully established. Furthermore, because individu-
als with spine disease often spend most of their nonsedentary
time doing light-range physical activity, with little to no
moderate-to-vigorous physical activity, traditional accelerom-
etry activity cut points derived from healthy populations to

Figure 2. Basic overview and comparison of technologies used by BACPAC sites. In this figure, rows indicate the tool used by each site and the tool’s

general spatial complexity. Three factors were considered for columns. Measures determined whether the tool acts regionally or describes whole-body

motion. Outcomes provide a general overview of the anticipated process and deliver outcome measures to a patient or clinician. Validation provides

whether the tool has successfully demonstrated suitable criterion and construct validity.
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estimate energy expenditure might not be sensitive enough to
evaluate the physical activity patterns in LBP populations. To
address this issue, a set of activity cut points has been devel-
oped (for hip-worn devices) that are tailored to individuals
with musculoskeletal pain (called the Physical Performance
Intervals) [109] and produce a more granular assessment of
light-intensity activity. Stanford’s recent work investigated the
potential for physical activity phenotyping in an LBP cohort
and identified that sedentary and light physical activity,
instead of moderate-to-vigorous physical activity, were sensi-
tive for distinguishing patients with LBP from healthy con-
trols with an 88% accuracy [110].

Recently, wrist-worn devices have gained popularity in
both commercial and research use because of improved wear
time compliance [111], whereas accelerometers placed on the
hip/waist were originally preferred and extensively used, given
this location’s proximity to the center of mass and its ability
to better estimate physical activity intensity and metabolic
energy expenditure [112]. However, it is important to note
that data derived from the wrist-worn device cannot be
directly compared with legacy findings derived from the hip-
worn device, as arm movement often does not involve whole-
body movement, which can lead to misclassification of activ-
ity. To address this issue, both the wrist-worn and hip-worn
devices will be used to derive the physical activity profiles
(amount/intensity/distribution) of populations with LBP
(Figure 3J) to improve the accuracy of wrist-based physical
activity estimates.

University of Pittsburgh: Wearable Sensors

The University of Pittsburgh LB3P Mechanistic Research
Center has developed an inertial measurement unit system
comprised of two components: 1) a clinic component to
gather hip-spine kinematic data during structured functional
testing and 2) an at-home component to capture ecological

momentary assessments and lumbar spine kinematics over an
unstructured at-home test period. Altogether, the entire sys-
tem is created to seamlessly fit into common clinical practice
with minimal disruption to provide actionable objective meas-
ures of lumbopelvic motion to inform therapeutic practice.

Clinicians prepare four validated commercially available
wireless Bluetooth LE IMUs (Lifeware Labs, LLC, Pittsburgh,
PA, USA) (Figure 3F), positioning them on the spine and right
lateral thigh (Figure 3G). Clinicians interact with an
AndroidTM smart device (Samsung, Seoul, South Korea)
loaded with custom mobile app software (LB3P Clinical
Toolbox, HARI Labs, University of Pittsburgh, Pittsburgh,
PA, USA) to reliably capture participants’ biomechanical per-
formance data across a series of common functional tests.
Clinicians select standardized functional tests (e.g., five-times
STS), follow protocol instructions, and video tests, while sen-
sors simultaneously capture raw data and transmit to the
AndroidTM smart device (Figure 4A). Digitally packaged sen-
sor data are sent to a secure cloud platform for data process-
ing. As development progresses, processed data will be readily
viewable in a secure clinician portal, showing participants’
spine and lumbopelvic ranges and velocities of motion, nor-
mative comparisons, and unique biomechanical markers cap-
tured with kinematics, computer vision, and ML. Specifically,
efforts are ongoing to develop deep ML algorithms that can
correctly identify and characterize motions of the lumbar
spine during both clinical and field assessments via supervised
ML approaches using video and motion sensor data. Upon
verification, these tools have the potential to streamline the
phenotyping process, resulting in more objective and clinically
translatable metrics.

After clinic testing, the second system component is
deployed. Two water-resistant inertial measurement unit sen-
sors (size: 4 cm� 6 cm� 1 cm) with onboard data logging are
placed on T12/L1 and L5/S1, while a secure cross-platform

Figure 3. Visual of the technology to measure biomechanical performance included in BACPAC. Plot (A) depicts the SPINE Sense System developed by

Brigham Young University that (B) is adhered onto a participant’s skin to track localized lumbar skin strain fields, which correlate with underlying motion of

lumbar functional spinal units. The University of California, San Francisco, has leveraged markerless-based kinect cameras (C) to estimate joint centers,

thus capturing whole-body sagittal plane motion (D), which can be combined with pressure mats (E) to calculate whole-body kinetics. The University of

Pittsburgh adheres off-the-shelf Lifeware IMUs (F) to the skin over the right thigh and various spinous processes (G) to measure both hip and

lumbopelvic kinematics. Ohio State University has miniaturized their existing lumbar motion monitor mounting accelerometers to a chest-mounted

harness (H) and pelvis belt (I) to quantify lumbopelvic motion with a system that can be worn over the clothes. Using accelerometers to characterize

general activity levels, Stanford University uses a dual-mounted accelerometer system (J) to determine the best accelerometer placement and activity

thresholding to improve the phenotyping capabilities of existing actigraphy.
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ecological momentary assessment app is loaded to partici-
pants’ smartphones. At home, sensors continuously log data
as participants wear them for up to 7 days and move unstruc-
tured throughout their days. Participants interact three times
a day via the ecological momentary assessment app for a 10-
to 15-second survey to capture subjective sleep times, activity
intensity, pain intensity, and interference. Participants may
enter diary notes and connect with study representatives via
secure in-app messaging during the at-home testing period.
Future development aims to align at-home kinematic data
using ML with subjective ecological momentary assessment
and clinic data to establish education on pain-reproducing
habitual patterns and plan-of-care development.

Brigham Young University: Multisegmented Vertebral Body
Level Motion

The Technology Research Site (Tech Site) at Brigham Young
University has developed the Spinal Nanosensor Environment
(SPINE Sense System; Figure 3A), which is a passive, wearable
array of 16 nanocomposite stretch-sensors that provides
detailed, quantitative information on the kinematic motion of
each lumbar functional spinal unit and wirelessly transmits
that information to a nearby smartphone. The system lever-
ages an ML paradigm to identify motion phenotypes and
cLBP subphenotypes associated with structural and neurolog-
ical deficits of the spine. We anticipate that the diagnostic
accuracy of the system will be augmented through inclusion
of demographic information, as well as annotations of struc-
tural information obtained through magnetic resonance

imaging. Such a tool is relevant to the diagnosis, monitoring,
and follow-up assessment of cLBP.

The nanocomposite stretch sensors used in the SPINE Sense
System are comprised of a silicone matrix with dispersed
nickel nanostrands and nickel-coated carbon fibers, and they
exhibit an inverse piezoresistive response (i.e., the electrical
resistance drops dramatically as the sensor is stretched) [113].
The stretch sensors are attached to a kinesiology tape sub-
strate, which is subsequently adhered to the skin of the lum-
bar region (Figure 3B). The stretch sensor array is attached
via a micro–high-definition multimedia interface (HDMI)
connection to a custom printed circuit board / battery system
that communicates via Bluetooth with a nearby smartphone.
The raw material cost of the entire system (not including the
reusable printed circuit board or smartphone) is approxi-
mately $8.

The sensor arrangement was obtained through an optimi-
zation process [114], and a vertebral bone pin cadaver study
was used to validate that the skin strains measured by the sys-
tem correlated with underlying spinal segment motions,
achieving root mean square error rates less than 10% [115].
The system was then used to phenotype the lumbar kine-
matics of a small trial cohort of subjects (12 healthy controls
and 10 subjects with cLBP), with a K-nearest-neighbors ML
algorithm, and it achieved a 99% classification accuracy.

The SPINE Sense System is designed to be both clinically
accessible and immediately useful. Placement of the device
requires identification of a single anatomic location (spinous
process of the L5 vertebra) (Figure 3B). After the device has

Figure 4. Example of system interfaces. Many system interfaces, such as the LB3P developed by University of Pittsburgh, provide an interface to

clinicians to select specific tasks (top left). The interface provides a brief task description that can be expanded to include specific instructions to coach

participants and therapists through a series of specific exercises (A). Furthermore, many of these systems immediately display measures to the clinician

and participant in real time. The interface from Ohio State University (B) displays discrete measures of low back motion characteristics of a patient and

how they change over time. Brigham Young University captures motion at each lumbar spine segment (C), with the capability to break a complex task

such as a timed Up and Go into phases to display how vertebral bodies move when a patient returns to a relaxed position. Systems such as that used by

the University of California, San Francisco, provide a technology to allow clinicians to evaluate comprehensive temporal complexity at multiple joints (D),
which can be compared between different populations.
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been placed on the lumbar skin, an associated smartphone
app is used to trigger data collection and subsequent transfer
back to the smartphone during a series of repeated diagnostic
functional movements. The diagnostic functional movements
consist of both single-plane movements (e.g., flexion-
extension) and functional movements (e.g., “Up and Go”
from a seated position) (Figure 4B). The total time required to
both place the sensor array and collect the biomechanics data
from the series of diagnostic functional movements is approx-
imately 15 minutes. Usability of the SPINE Sense System pro-
totype (along with its associated smartphone app) was
evaluated by 32 panelists (19 clinicians and 13 patients with
cLBP) using a standard, validated system design evaluation
tool, the System Usability Scale [116], and it demonstrated an
“above-average” usability rating.

Ohio State University: Spinal Motion Assessment Monitor

The Ohio State University Spine Research Institute (OSUSRI)
Tech Site has worked for decades on the innovative use of an
individual’s motion characteristics captured by wearable
motion sensors to quantify functional spine health. The devel-
opment, validation, and innovative use of wearable motion
technologies at OSUSRI to assess spine function have been
extensively described in dozens of scientific peer-reviewed
journals [36, 55, 56, 62, 88]. Research and development
efforts supported by the NIH have allowed OSUSRI to trans-
late decades of research into an integrated cloud-based Spine
Health Platform that leverages motion-based metrics, patient-
reported outcomes, and other meta biomarkers to facilitate
deep patient phenotyping, predict treatment probabilities, and
personalize spine care.

Subsequent development has resulted in the creation of a
functional low back health assessment system that enables
central dashboard access to patient-specific variables that
span the biopsychosocial spectrum, including novel measure-
ments of lumbar spine function through wearable motion sen-
sors. The low back motion assessment hardware system
consists of two 9-axis inertial measurement unit sensors
mounted on the upper back and pelvic harnesses (Figure 3H
and 3I, respectively), which are worn over clothing. This sys-
tem is designed to specifically measure the motion of the lum-
bar spine in all three axes, with advanced algorithms
correcting sensor drift to provide a resolution within 100
microns. The custom harnesses were optimized for comfort,
form-fit, and easy sensor placement.

Through the use of a technology platform built on an
enterprise-grade Amazon Web Services server, individuals are
coached through eight standardized motion tests to assess the
extent of an individual’s low back impairment. Six of these
motions require participants to 1) move to their maximum
positions and 2) move as fast as they comfortably can within
each of the three cardinal planes of the body. The final two
trials evaluate coupled motions and require participants to
flex and extend their trunks as fast as they can comfortably
while they are twisted to the right or left as far as they are
able. The motion tests typically take 10 minutes or less to per-
form the tasks.

The software is designed to verbally and visually use intui-
tive graphics and animated videos to guide users and patients
through the data collection process step by step, and it
includes automatic updates. The system is assisted by a rigor-
ous set of U.S. Food and Drug Administration design controls
to ensure patient safety and data quality. Questionnaires can

be completed in person or emailed automatically via built-in
scheduling functions. Finally, training modules built directly
into the software prevent users from collecting data before
they have been appropriately trained.

Collected data is automatically processed, analyzed, and
available for reporting immediately after collection.
Standardized questionnaires are scored, and motion assess-
ment results are compared with those of normative popula-
tions for intuitive interpretation of results. The software
automatically evaluates the spine motions and extracts
numerous features of interest. These can include flexibility,
velocity, acceleration, symmetry, consistency, etc., in the
axial, sagittal, and lateral planes of the body. Data can be
viewed for an individual patient (Figure 4C), a population
within a project, or across an organization for users with
appropriate permissions. Data are stored in an access-
controlled Open Web Application Security Project and
National Institutes of Standards and Technology–compliant
web portal, where various portions of collected and processed
data can be evaluated with artificial intelligence or ML proce-
dures to capture advanced interactions and provide input into
biomechanical predictions of tissue-level forces.

The kinematic information derived from this motion cap-
ture system will also be used to inform a biomechanical model
that predicts spine forces at the various levels of the lumbar
spine. An ancillary study has been able to derive muscle activ-
ities from the trunk muscles, and this information is used in
conjunction with spine imaging to predict patient-specific
spine forces imposed on the discs.

Future Directions and Conclusion

Biomechanical changes are intimately connected with LBP,
regardless of the etiology of the pain. There is a concerted
effort within BACPAC to characterize these changes at multi-
ple scales of interest (whole-body motion, spinal kinematics,
segmental kinematics, tissue-level biomechanical changes).
The goals of this effort include developing mechanistic pheno-
types for classifying and treating cLBP and tracking changes
in functional biomechanics over time. Several novel technolo-
gies are being implemented in the consortium that have the
potential to move biomechanical phenotyping of cLBP from
the laboratory to the clinic and even to the home or
workplace.

The comprehensive biomechanics data resource created
through BACPAC will be shared broadly through a central-
ized data repository being developed by the Data Integration,
Algorithm Development, and Operations Management
Center. Consequently, the present work provides a helpful
context for the spine research and clinical communities in
interpreting and developing plans to use that resource as it
becomes available. Additionally, we anticipate that the data
and results from these studies will provide additional power
in the context of the other deep phenotyping methods, such as
spinal imaging, biospecimen analysis, and biobehavioral anal-
ysis, which are being advanced as part of the BACPAC effort.
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