Lawrence Berkeley National Laboratory

Recent Work

Title

Energy-Use Characteristics of Pakistani Prototypical Office Buildings and Single-Family Houses

Permalink

https://escholarship.org/uc/item/0z20p327

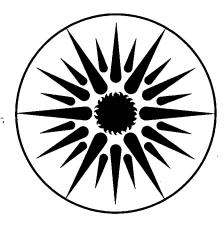
Authors

Akbari, H. Sezgen, O. Huang, J. et al.

Publication Date

1990-07-01

Lawrence Berkeley Laboratory


UNIVERSITY OF CALIFORNIA

ENERGY & ENVIRONMENT DIVISION

Energy-Use Characteristics of Pakistani Prototypical Office Buildings and Single-Family Houses

H. Akbari, O. Sezgen, J. Huang, S. Hakim, and R. Ritschard

July 1990

ENERGY & ENVIRONMENT DIVISION

|Circulates | |for 4 weeks| Bl

Copy 2 Bldg. 50 Library.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Energy-Use Characteristics of Pakistani Prototypical Office Buildings and Single-Family Houses

H. Akbari, O. Sezgen, J. Huang, S. Hakim, and R. Ritschard Energy Analysis Program Energy and Environment Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

July, 1990

Prepared for

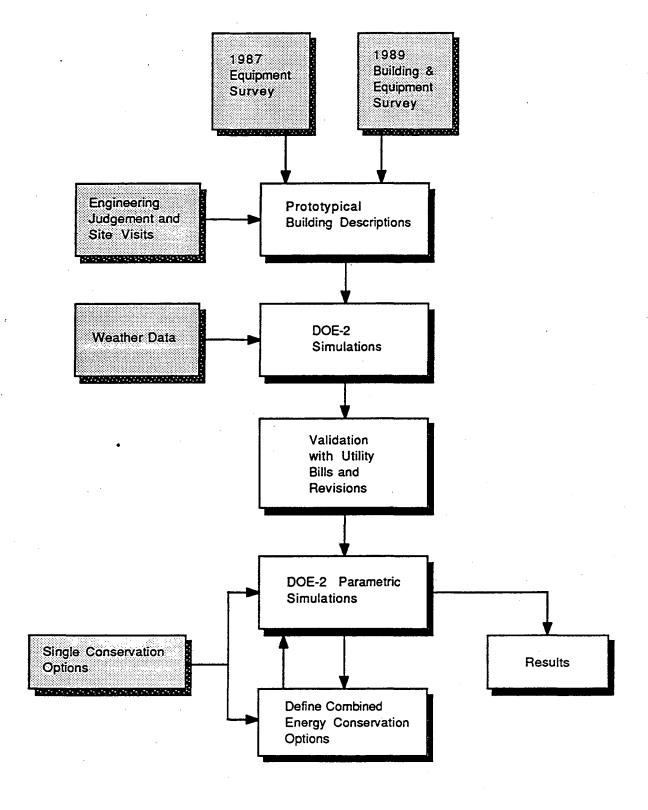
RCG/Hagler, Bailly, Inc.

This work was supported by RCG/Hagler, Bailly, Inc. through the U.S. Department of Energy, under contract number DE-ACO3-76SF00098.

Executive Summary and Conclusions

RCG/Hagler, Bailly, Inc. (RCG/HB) had contracted with the Lawrence Berkeley Laboratory (LBL) for the analysis of the energy conservation potential in residential and commercial (office) buildings in Pakistan. The major tasks performed and reported are as follows:

- preparation of survey forms for residential and commercial buildings and compilation of data to determine the characteristics of buildings in Pakistan,
- analysis of the weather data which was to be used for the simulations,
- construction of prototypical computer description models for residential buildings, office buildings converted from residential buildings and office buildings which reflect the major characteristics of these building types in Pakistan,
- determination of the promising energy conservation measures and base case parameter values for these measures,
- simple parametrics simulations where parameters are changed one by one,
- determination of promising and feasible combinations of conservation measures and simulations for these combined parametrics,
- examination of alternative HVAC systems for the office buildings,
- development of data manipulation methods for making use of the results to investigate unexplored combinations if the necessity arises in future.


The purpose of this report is to:

- 1. summarize work performed in this area at LBL,
- 2. provide DOE-2.1D simulation results of the prototypical buildings,
- 3. discuss the impact of a series of energy conservation options (ECO) on energy use of the prototypical buildings, and
- 4. provide a database on DOE-2 parametrics simulations for follow-up research in Pakistan.

This report focuses on the development and discussion of simulation results for three prototypical buildings: a single-family detached house, a converted office from a single-family detached house, and an office building. Prototypes were developed for both individual offices (rooms) with window air conditioning units and large offices with central air conditioning units.

Figure EX.1 outlines our general methodology for analyzing the impact of conservation measures for the selected building types in Pakistan. This effort included the description of the prototype buildings as well as the identification of energy conservation options for parametric simulations, and analysis of the DOE-2 results. A systematic series of DOE-2.1D simulations were performed and validated with monthly utility bills.

Figure EX.1: Methodology

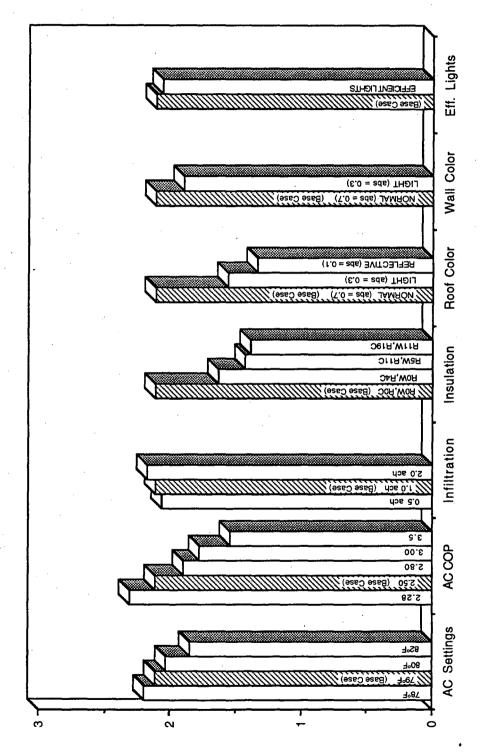
The data used to develop the base case prototype was obtained from:

- 1. Two ENERCON reports: a 1987 survey of buildings and equipment (ENERCON 1987) and a proposed building energy code for Pakistan (ENERCON 1990),
- 2. Recently completed detailed surveys of buildings in Karachi, Islamabad, and Lahore, and
- 3. On-site visits to Karachi, Lahore, and Islamabad to inspect building conditions and building stock. Once a base case prototype had been benchmarked against measured utility bills, we performed parametric simulations in order to investigate the energy saving potentials of various conservation measures. The conservation measures considered include wall and ceiling insulation, exterior color of roof and walls, infiltration control, shading modifications (solar screens, reflective films), high COP airconditioning units, and energy efficient fluorescent lamps.

The energy saving potentials of conservation measures were analyzed in two stages of simple and combined parametric simulations. With simple parametric simulations, we studied the relative saving potential of each conservation measure with respect to the same base case. Upon the completion of the single parametric DOE-2 simulations, we performed some complementary simulations on a combination of promising energy conservation options (ECOs).

Normally, when conservation potentials in buildings are analyzed, a least-cost approach is taken to rank the measures and select the most promising measures first. The general idea is to first select those measures which have the shortest payback time (or the highest rate of return) on the conservation investment. In our analysis, we were unable to perform detailed economic analysis because of the lack of cost data for ECOs as related to the Pakistan market. Instead, we used engineering judgement in selecting and ranking the conservation measures, based mostly on the potential energy savings of the ECOs.

The following highlights the major conclusions of the report.

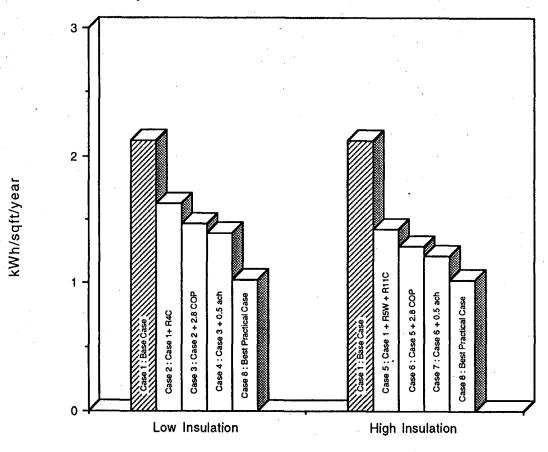

Single-Family Detached House

Figures EX.2a&b depict the impact of ECOs on cooling energy use for Karachi and heating energy use for Islamabad, respectively, for the prototypical single-family house. The cooling energy use is very sensitive to thermostat setting, air conditioning COP, roof and walls insulation, and roof color. The impacts of air change (infiltration), overhang length (distance from outside wall to the edge of the overhang furthest from the wall), and efficient lighting systems on air conditioning use are fairly low. Those measures that have the greatest impact on heating energy demand are roof and wall insulations (positive impact), roof color (negative impact), and control of infiltration (positive impact).

Figures EX.3a&b show the simulation results for a selected group of combined parametrics for Karachi and Islamabad houses. These parametrics include variation in wall and roof insulation, COP, and air infiltration. The highest relative savings are obtained by adding insulation to the

roofs and walls. The impact of roof insulation on reducing cooling and heating energy use is much higher than that of wall insulation. Our simulations indicate that savings of the order of 50% in both heating and cooling energy use in Pakistani houses are easily achievable through the use of simple and available conservation measures. For cooling such measures would include appropriate thermostat setting and use of higher COP airconditioning units while savings in the heating energy use is possible by controlling infiltration. Better insulation of roof and walls would result in considerable savings in both heating and cooling energy use; on the other hand coloring the roof white would decrease the cooling load but increase the heating load.

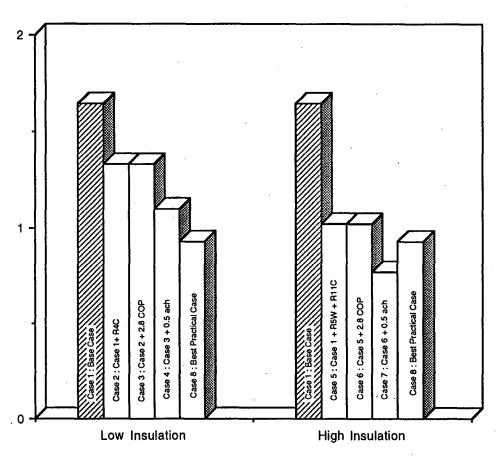
Figure EX.2a. Simple Parametrics of Cooling Energy Use for a Prototypical Single-Family House in Karachi.



kWh/sqft/year

Figure EX.2b. Simple Parametrics of Heating Energy Use for a Prototypical Single-Family Eff. Lights Wall Color (6.0 = 2ds) THDIJ Roof Color REFLECTIVE (abs = 0.1) LIGHT (abs = 0.3) Dera, Wria Insulation ROW, R4C How, Roc (Base Case) House in Islamabad. Infiltration 0.5 ach 7.0 ach 2.0 ach AC COP AC Settings 7

kWh/sqft/year


Figure EX.3a. Combined Parametrics of Cooling Energy Use for a Prototypical Single-Family House in Karachi.

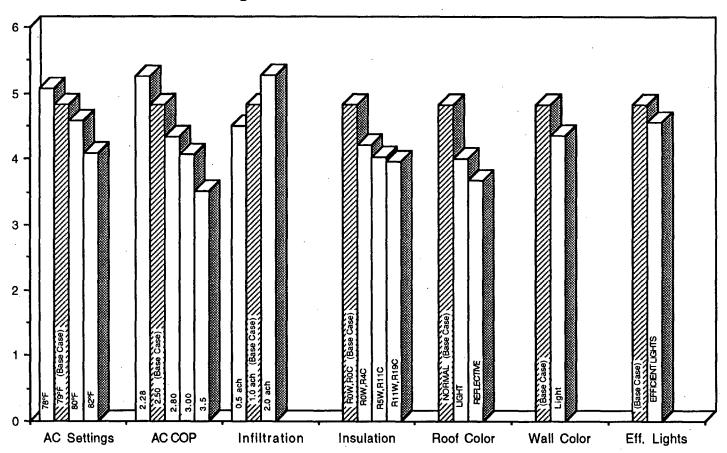
Best Practical Case: A/C temp 79F, A/C COP 3.0, 3-foot overhang, 0.5 ACH, roof colour absorptance 0.3, and for low insulation case R4 roof and for high insulation case R11 roof and R5 walls.

kWh/sqft/year

Figure EX.3b. Combined Parametrics of Heating Energy Use for a Prototypical Single-Family House in Islamabad.

Best Case: AC setting: 79F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Wall Colour: normal (0.7 absorbtance), Efficient Lighting: none, Insulation: R4 roof for low insulation case and R5 walls and R11 roof for high insulation case.

Converted Office


To a certain extend, the results of the parametric simulations for the converted office are comparable to those of the single-family houses. Figures EX.4a&b show some of the results of the simple parametric simulations for cooling energy use in Karachi and heating energy use in Islamabad. The cooling energy use is very sensitive to thermostat setting, air conditioning COP, infiltration, roof and walls insulation, and roof color. The impact of overhang length, and efficient lighting systems on air conditioning use is fairly low. Those measures that have the greatest impact on heating energy demand are roof and wall insulation (positive impact), roof color (negative impact), and control of infiltration (positive impact).

The combined parametrics include variation in walls and roof insulation, COP, and air infiltration. Based on these combined parametrics, we can identify ECOs for a "best practical case." Figures EX.5a&b show a selected group of combined parametrics for Karachi and Islamabad. As in the simple parametric simulations, the highest relative savings are still obtained by adding insulation on roofs and walls. The impact of roof insulation on reducing cooling energy use is much higher than that of wall insulation. Our DOE-2 simulations indicate that the ECOs that would achieve savings of the order of 50% in both heating and cooling energy use in Single-Family Detached Houses can produce similar results in Converted Office Buildings.

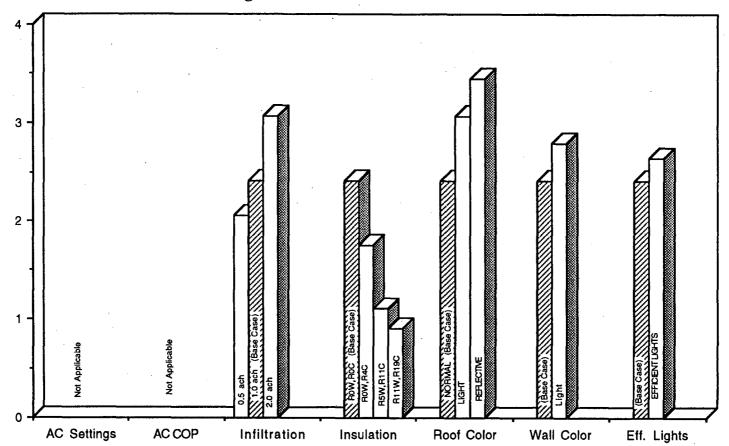
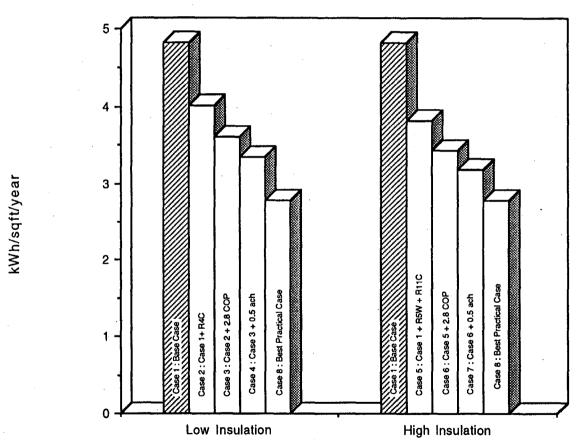
kWh/sqft/year

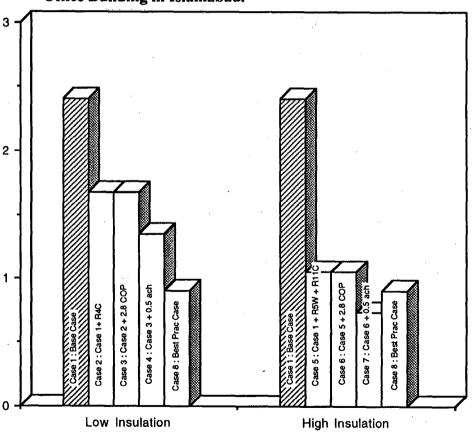
Executive Summary

Figure EX.4a. Simple Parametrics of Cooling Energy Use for a Prototypical Converted Office Building in Karachi.

kWh/sqft/year

Figure EX.4b. Simple Parametrics of Heating Energy Use for a Prototypical Converted Office Building in Islamabad.

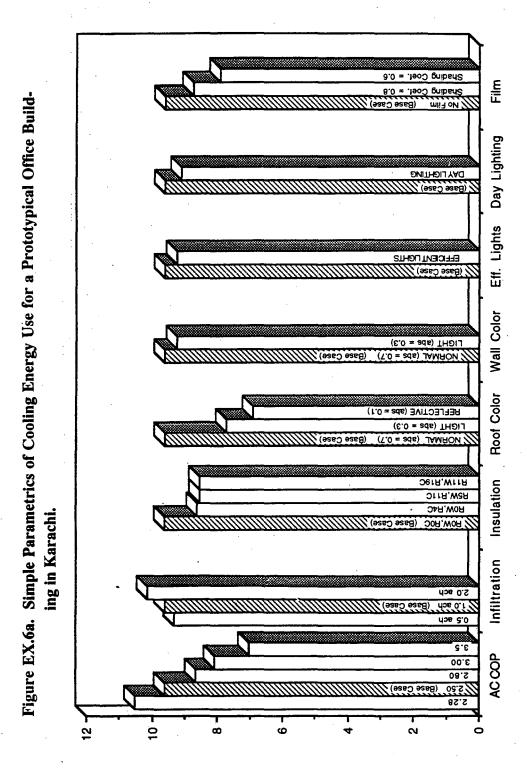




Figure EX.5a. Combined Parametrics of Cooling Energy Use for a Prototypical Converted Office Building in Karachi.

Best Practical Case: AC setting: 79F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 absorbtance), Roof Colour: light (0.3 absorbtance), Insul: R4 roof for low case and R11 roof and R5 walls for high case

kWh/sqft/year

Figure EX.5b. Combined Parametrics of Heating Energy Use for a Prototypical Converted Office Building in Islamabad.

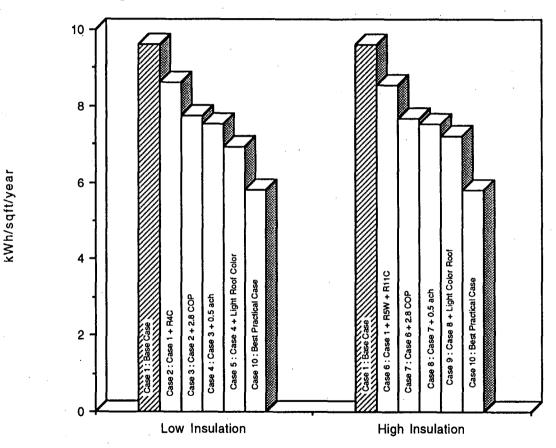


Best Practical Case: AC setting: 79F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ACH Wall Colour: normal (0.7 absorbtance), Roof Colour: light (0.3 absorbtance), Insulation: R4 roof for low case and R11 roof and R5 Walls for high case

Office

We have performed approximately 10,000 simulations to analyze energy conservation potentials in Pakistani office buildings. **Figures EX.6a&b** show the simulated cooling and heating energy use for Karachi and Islamabad office buildings, respectively. The factors effecting the cooling energy use most are air condition COP, window film, roof and walls insulation, and roof color whereas the impact of overhang length, wall color, efficient lighting systems, day lighting, and infiltration is fairly low. For the heating energy demand, better roof and wall insulations and infiltration control has positive impacts whereas a white roof has a negative impact.

The combined parametrics for office buildings include variation in walls and roof insulation, roof color, air conditioning COP, and air infiltration. Selected combined parametric results are presented in Figures EX.7a&b for Karachi and Islamabad, respectively. Like single family houses and converted offices, the highest relative savings are obtained by adding insulation on roof and walls. The impact of roof insulation on reducing cooling energy use is much larger than that of wall insulations. Again, our simulations indicate that savings of the order of 30 to 60% in both heating and cooling energy use in Pakistani Office Buildings are easily achievable by employing the same measures as those used in the case of Converted Offices and Single-Family Detached Houses.



kWh/sqft/year

Figure EX.6b. Simple Parametrics of Heating Energy Use for a Prototypical Office Build. Day Lighting (Base Case) Eff. Lights ETFICIENT LIGHTS Wall Color (T.0 = 8ds) JAMRON ; (E.0 = 8ds) THĐIJ Roof Color REFLECTIVE (abs = 0.1) (6.0 = eds) THƏIJ Deig,With Insulation DITH, WER HOW, RAC ing in Islamabad. Infiltration ACCOP Not Applicable Ŋ Q

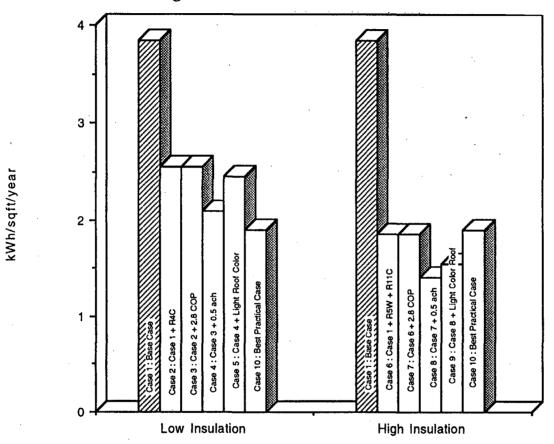

kWh/sqft/year

Figure EX.7a. Combined Parametrics of Cooling Energy Use for a Prototypical Office Building in Karachi.

Best Practical Case: AC setting:79F, AC COP:3.0, Overhang:3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: light (0.3 abs), Film Shading Coeff: 0.8, Insul: R4 roof for low case and R11 roof and R5 walls for high case

Figure EX.7b. Combined Parametrics of Heating Energy Use for a Prototypical Office Building in Islamabad.

Best Pracitcal Case: AC setting: 79F, AC COP, 3.0, Overhang: 3ft, Infilt:0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: light (0.3 abs), Film Shading Coeff: 0.8, Insul: R4 Roof for low case and R11 roof and R5 walls for the high case

Executive Summary

It should be noted that this report does not include any cost benefit analysis and it does not rank the ECOs in terms of return on investment. A detailed economic analysis involving the costs of certain measures, costs of available alternative energy sources (electricity, fuel etc.), and purchase, installation, and maintenance costs of equipment should be done to prioritize these measures in Pakistan.

Table of Contents

Executive Summary	EX-1
Table of Contents	i
List of Figures	iv
List of Tables	vi
1. Introduction, Purpose, and Overview	1
Introduction	1
Purpose	1
Overview of the Report	2
2. Input Data	3
1987 Building Survey	4
Current 1989 Survey	7
Weather Data	24
3. Methodology	55
DOE-2.1D Building Energy Simulation Program	57
Selection of Energy Conservation Options	57
Effects of Building Orientation	58
4. Single-Family Detached House	61
Prototypical Single-Family Detached House	61
DOE-2.1D Parametric Simulation	64
Results	66
5. Office Building Converted from a Single-Family House in Pakistan	89
Prototype Office Building Converted from a Single-Family Detached House	89
DOE-2.1D Parametric Simulation	92
Results	94
6. Office Building	117
Prototype Office Buildings	117
DOE-2.1D Parametric Simulation	121
Results	125
References	189

List of Figures

No.	Title	Page
Figure 2.1	Pakistan Locations	26
Figure 2.2	Annual Non-Zero Wind Data	27
Figure 2.3a	Weather Data for Islamabad (1986)	41
Figure 2.3b	Weather Data for Islamabad (1986)	42
Figure 2.4a	Weather Data for Karachi (1986)	43
Figure 2.4b	Weather Data for Karachi (1986)	44
Figure 2.5a	Weather Data for Lahore (1986)	45
Figure 2.5b	Weather Data for Lahore (1986)	46
Figure 2.6a	Weather Data for Multan (1986)	47
Figure 2.6b	Weather Data for Multan (1986)	48
Figure 2.7a	Weather Data for Peshawar (1986)	49
Figure 2.7b	Weather Data for Peshawar (1986)	50
Figure 2.8a	Weather Data for Quetta (1986)	51
Figure 2.8b	Weather Data for Quetta (1986)	52
Figure 3.1	Methodology	56
Figure 4.1a&b	General Floor Plan of the Prototype Single-Family House	62
Figure 4.2a	Simple Parametrics of Cooling Energy Use	
	for a Prototypical Single-Family House in Karachi	84
Figure 4.2b	Simple Parametrics of Heating Energy Use	
	for a Prototypical Single-Family House in Islamabad	85
Figure 4.3a	Combined Parametrics of Cooling Energy Use	
	for a Prototypical Single-Family House in Karachi	86
Figure 4.3b	Combined Parametrics of Heating Energy Use	
	for a Prototypical Single-Family House in Islamabad	87
Figure 5.1a&b	General Floor Plan of the Prototype Converted Office Building	90
Figure 5.2a	Simple Parametrics of Cooling Energy Use for a	
	Prototypical Converted Office Building In Karachi	112
Figure 5.2b	Simple Parametrics of Heating Energy Use for a	
	Prototypical Converted Office Building In Islamabad	113
Figure 5.3a	Combined Parametrics of Cooling Energy Use for a	
•	Prototypical Converted Office Building In Karachi	114
Figure 5.3b	Combined Parametrics of Heating Energy Use for a	
	Prototypical Converted Office Building In Islamabad	115

Figure 6.1	General Floor Plan of the Prototype Office Building	. 119
Figure 6.2a	The Impact of Orientation of Single Story Office	
	Building on Cooling and Heating Energy Use in Islamabad	. 132
Figure 6.2b	The Impact of Orientation of a Middle	
	Floor Office on Cooling and Heating Use in Islamabad	. 133
Figure 6.3a	Simple Parametrics of Cooling Energy Use for a	
	Prototypical Office Building in Karachi	134
Figure 6.3b	Simple Parametrics of Heating Energy Use for a	
	Prototypical Office Building in Islamabad	135
Figure 6.4a	Combined Parametrics of Cooling Energy Use for a	
•	Prototypical Office Building in Karachi	136
Figure 6.4b	Combined Parametrics of Heating Energy Use for a	
	Prototypical Office Building in Islamabad	137
Figure 6.5a	The impact of HVAC System Types on Electricity Consumption in Islamabad	180
Figure 6.5b	The impact of HVAC System Types on Electricity Consumption in Karachi	181
Figure 6.5c	The impact of HVAC System Types on Electricity Consumption in Lahore	182
Figure 6.5d	The impact of HVAC System Types on Electricity Consumption in Multan	183
Figure 6.5e	The impact of HVAC System Types on Electricity Consumption in Peshawar	184
Figure 6.5f	The impact of HVAC System Types on Electricity Consumption in Quetta	185
Figure 6.6	The impact of HVAC System Types on Gas Consumption in Pakistan	186

List of Tables

No.	Title	Page	
Table 2.1	1987 Survey Summary: Sample Size by Building Type	4	
Table 2.2	1987 Survey: Building and Equipment Characteristics Information	5	
Table 2.3	1987 Survey: Summary of Buildings & Equipment Characteristics		
	for Residences	6	
Table 2.4a	Characteristics of Islamabad Residences Surveyed in 1989	12	
Table 2.4b	Characteristics of Karachi Residences Surveyed in 1989	13	
Table 2.4c	Characteristics of Lahore Residences Surveyed in 1989	16	
Table 2.5a	Characteristics of Karachi Converted Office Buildings Surveyed in 1989	18	
Table 2.5b	Characteristics of Lahore Converted Office Buildings Surveyed in 1989	19	
Table 2.6a	Characteristics of Islamabad Office Buildings Surveyed in 1989	20	
Table 2.6b	Characteristics of Karachi Office Buildings Surveyed in 1989	21	
Table 2.6c	Characteristics of Lahore Office Buildings Surveyed in 1989	23	
Table 2.7	Comparison of Wind Speeds Recorded between Working & Nonworking Hours	25	
Table 2.8	Islamabad 1986 Weather Summary	28	
Table 2.9	Karachi 1986 Weather Data	30	
Table 2.10	Lahore 1986 Weather Data	32	
Table 2.11	2.11 Multan 1986 Weather Summary		
Table 2.12	Peshawar 1986 Weather Summary	36	
Table 2.13	Quetta 1986 Weather Summary	38	
Table 2.14	1986 Heating and Cooling Degree Days	40	
Table 2.15	Design Day Temperatures. Comparison of Pakistan 1986 Weather Data		
	with Other Sources	53	
Table 3.1	Methodology	56	
Table 4.1	Prototypical House Description in Pakistan	63	
Table 4.2	Residential Conservation Technologies	66	
Table 4.3	Energy Conservation Measures Identified in Single Family Houses		
	by ENERCON Study	67	
Table 4.4	DOE-2.1D Parametric Simulations for Single Family Residential		
	Prototype House	68	
Table 4.5a	Summary for Simple Parametric Simulations for Prototypical Single-Family		
	House in Islamabad (a=4014 ft ²)	72	
Table 4.5b	Summary of Simple Parametric Simulations for Prototypical Single-Family		
	House in Karachi (a=4014 ft ²)	73	
Table 4.5c	Summary of Simple Parametric Simulations for Prototypical Single-Family		
	House in Lahore (a=4014 ft ²)	74	

Table 4.5d	Summary of Simple Parametric Simulations for Prototypical Single-Family House in Multan (a=4014 ft ²)	76
Table 4.5a	Summary of Simple Parametric Simulations for Prototypical Single-Family	75
Table 4.5e	House in Peshawar (a=4014 ft ²)	76
Table 4 Sf	Summary of Simple Parametric Simulations for Prototypical Single-Family	70
1 4016 4.31	House in Quetta (a=4014 ft ²)	77
Table 4.6a	Summary of Combined Parametric Simulations for Prototypical Single-Family	,,
1 auge 4.0a	House in Islamabad (a=4014 ft ²)	78
Table 4 6b	Summary of Combined Parametric Simulations for Prototypical Single-Family	76
1 4016 4.00	House in Karachi (a=4014 ft ²)	79
Table 4 6c	Summary of Combined Parametric Simulations for Prototypical Single-Family	12
1 4010 4.00	House in Lahore (a=4014 ft ²)	80
Table 1 6d	Summary of Combined Parametric Simulations for Prototypical Single-Family	O.
1 4016 4.00	House in Multan (a=4014 ft ²)	81
Table 4 6e	Summary of Combined Parametric Simulations for Prototypical Single-Family	01
1 aute 4.00	House in Peshawar (a=4014 ft ²)	82
Table 4.6f	·	02
1 4010 4.01	House in Quetta (a=4014 ft ²)	83
Table 5.1	Prototypical Converted Office Description in Pakistan	91
Table 5.2 Comparison of Measured Electricity Consumption of the Three) .
14010 5.2	Karachi & Lahore Offices & the Prototype Converted Offices	93
Table 5.3	Converted Office Conservation Technologies	94
Table 5.4	Parametric Simulations for Converted Prototype Office Building	95
Table 5.5a	•	,,
14010 5154	Building in Islamabad (a=3816 ft ²)	100
Table 5.5b	· · · · · · · · · · · · · · · · · · ·	200
1 4010 5.50	Building in Karachi (a=3816 ft ²)	101
Table 5.5c	Summary of Simple Parametric Simulations for Prototypical Converted Office	101
	Building in Lahore (a=3816 ft ²)	102
Table 5.5d	Summary of Simple Parametric Simulations for Prototypical Converted Office	
	Building in Multan (a=3816 ft ²)	103
Table 5.5e	Summary of Simple Parametric Simulations for Prototypical Converted Office	
	Building in Peshawar (a=3816 ft ²)	104
Table 5.5f	Summary of Simple Parametric Simulations for Prototypical Converted Office	
	Building in Quetta (a=3816 ft ²)	105
Table 5.6a	Summary of Combined Parametric Simulations for Prototypical Converted Office	
	Building in Islamabad (a=3816 ft ²)	106
Table 5.6b	Summary of Combined Parametric Simulations for Prototypical Converted Office	
	Building in Karachi (a=3816 ft ²)	107

No.	Title	Pag
Table 5.6c	Summary of Combined Parametric Simulations for Prototypical Converted Office	Ū
	Building in Lahore (a=3816 ft ²)	108
Table 5.6d	Summary of Combined Parametric Simulations for Prototypical Converted Office	
	Building in Multan (a=3816 ft ²)	109
Table 5.6e	Summary of Combined Parametric Simulations for Prototypical Converted Office	
	Building in Peshawar (a=3816 ft ²)	110
Table 5.6f	Summary of Combined Parametric Simulations for Prototypical Converted Office	
	Building in Quetta (a=3816 ft ²)	111
Table 6.1	Prototypical Single Office Room Description in Pakistan	
Table 6.2	Prototypical Office Building Description in Pakistan	
Table 6.3	Comparison of Measured Electricity Consumption of the Offices in Karachi,	
	Lahore, and Islamabad and the Prototype Converted Offices	122
Table 6.4	Office Conservation Technologies	
Table 6.5	DOE-2.1D Parametric Simulations for Prototype Office Building	
Table 6.6a	The Impact of Office Orientation on Cooling and Heating Energy Use	
	for Islamabad	138
Table 6.6b	The Impact of Office Orientation on Cooling and Heating Energy Use	
	for Karachi	139
Table 6.6c	The Impact of Office Orientation on Cooling and Heating Energy Use	
	for Lahore	140
Table 6.6d	The Impact of Office Orientation on Cooling and Heating Energy Use	
	for Multan	141
Table 6.6e	The Impact of Office Orientation on Cooling and Heating Energy Use	
	for Peshawar	142
Table 6.6f	The Impact of Office Orientation on Cooling and Heating Energy Use	
	for Quetta	143
Table 6.7a(i	Summary of Simple Parametric Simulations for Prototypical Office	
,	in Islamabad on Top Floor (a=225 ft ²)	144
Table 6.7a(i	Summary of Simple Parametric Simulations for Prototypical Office	
	in Islamabad on Middle Floor (a=225 ft ²)	145
Table 6.7a(i	ii) Summary of Simple Parametric Simulations for Prototypical Office	
	in Islamabad in a Single-Story Building (a=225 ft ²)	146
Table 6.7b(i		
	in Karachi on Top Floor (a=225 ft ²)	147
Table 6.7b(i	Summary of Simple Parametric Simulations for Prototypical Office	
	in Karachi on Middle Floor (a=225 ft ²)	148
Table 6.7b(i		
,	in Karachi In a Single-Story Building (a=225 ft ²)	149
Table 6.7c(i	Summary of Simple Parametric Simulations for Prototypical Office	
•	in Lahore on Top Floor (a=225 ft ²)	150

No.	Title	Page
Table 6.7c(ii)	Summary of Simple Parametric Simulations for Prototypical Office in Lahore on Middle Floor (a=225 ft ²)	151
Table 6.7c(iii)	Summary of Simple Parametric Simulations for Prototypical Office	. 131
Table 6.7C(III)	in Lahore in a Single-Story Building (a=225 ft ²)	. 152
T-11- (74(::)		. 132
Table 6.7d(ii)	Summary of Simple Parametric Simulations for Prototypical Office in Multan on Middle Floor (a=225 ft ²)	. 154
Table 6 74(iii)	Summary of Simple Parametric Simulations for Prototypical Office	. 134
Table 6.7d(iii)	in Multan in a Single-Story Building (a=225 ft ²)	. 155
m.1.1. (7. ()		. 155
Table 6.7e(i)	Summary of Simple Parametric Simulations for Prototypical Office	4
	in Peshawar on Top Floor (a=225 ft ²)	. 156
Table 6.7e(ii)	Summary of Simple Parametric Simulations for Prototypical Office	
	in Peshawar on Middle Floor (a=225 ft ²)	. 157
Table 6.7e(iii)	Summary of Simple Parametric Simulations for Prototypical Office	
•	in Peshawar in a Single-Story Building (a=225 ft ²)	. 158
Table 6.7f(i)	Summary of Simple Parametric Simulations for Prototypical Office	
	in Quetta on Top Floor (a=225 ft ²)	. 159
Table 6.7f(ii)	Summary of Simple Parametric Simulations for Prototypical Office	
	in Quetta on Middle Floor (a=225 ft ²)	. 160
Table 6.7f(iii)	Summary of Simple Parametric Simulations for Prototypical Office	
	in Quetta in a Single-Story Building (a=225 ft ²)	. 161
Table 6.8a(i)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Islamabad on Top Floor (a=225 ft ²)	. 162
Table 6.8a(ii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Islamabad on Middle Floor (a=225 ft ²)	. 163
Table 6.8a(iii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Islamabad in a Single-Story Building (a=225 ft ²)	. 164
Table 6.8b(i)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Karachi on Top Floor (a=225 ft ²)	. 165
Table 6.8b(ii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Karachi on Middle Floor (a=225 ft ²)	. 166
Table 6.8b(iii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Karachi in a Single-Story Building (a=225 ft ²)	. 167
Table 6.8c(i)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Lahore on Top Floor (a=225 ft ²)	168
Table 6.8c(ii)	Summary of Combined Parametric Simulations for Prototypical Office	-00
2.0010 0.00()	in Lahore on Middle Floor (a=225 ft ²)	169
Table 6.8c(iii)	Summary of Combined Parametric Simulations for Prototypical Office	-07
	in Lahore in a Single-Story Building (a=225 ft ²)	170
Table 6.8d(i)	Summary of Combined Parametric Simulations for Prototypical Office	170
14010 0.04(1)	in Multan on Top Floor (a=225 ft ²)	171
	132 (VERNICALIE VIII 1 N. 1	

No.	Title	Page
Table 6.8d(ii)	Summary of Combined Parametric Simulations for Prototypical Office	
*	in Multan on Middle Floor (a=225 ft ²)	172
Table 6.8d(iii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Multan in a Single-Story Building (a=225 ft ²)	173
Table 6.8e(i)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Peshawar on Top Floor (a=225 ft ²)	174
Table 6.8e(ii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Peshawar on Middle Floor (a=225 ft ²)	175
Table 6.8e(iii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Peshawar in a Single-Story Building (a=225 ft ²)	176
Table 6.8f(i)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Quetta on Top Floor (a=225 ft ²)	177
Table 6.8f(ii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Quetta on Middle Floor (a=225 ft ²)	178
Table 6.8f(iii)	Summary of Combined Parametric Simulations for Prototypical Office	
	in Quetta in a Single-Story Building (a=225 ft ²)	179
Table 6.9	The Effect of the HVAC System Types on Electricity and Gas Consumption	
	in Pakistan	187

Chapter 1

Introduction, Purpose, and Overview

Introduction

RCG/Hagler, Bailly, Inc. (RCG/HB) had contracted with the Lawrence Berkeley Laboratory (LBL) to assist them with the analyses of the energy conservation potential in residential and commercial (office) buildings in Pakistan. The proposed methodology included developing prototypical building descriptions for offices and residences and then performing DOE-2.1D simulations of these buildings in six climate regions represented by Karachi, Lahore, Islamabad, Multan, Peshawar, and Quetta.

The aim of the prototype development was to characterize the Pakistani building stock in terms of construction, heating, ventilation, and air-conditioning (HVAC) systems, as well as their operational conditions. Following this characterization, DOE-2.1D simulations were used to determine the base case heating and cooling energy use of typical Pakistani office and residential buildings. Further DOE-2.1D simulations were performed to evaluate the energy saving potentials of various energy conservation options (ECOs) in both residential and commercial buildings.

Purpose

The purpose of this report is to:

- 1. summarize work performed in this area at LBL,
- provide DOE-2.1D simulation results of the prototypical buildings,
- discuss the impact of a series of energy conservation options (ECO) on energy use of the prototypical buildings, and
- 4. provide a database on DOE-2 parametrics simulations for follow-on research at Pakistan.

The DOE-2 simulation results provide a basis for energy efficient practices and options which can be incorporated in an upcoming course on energy efficient building design given by 2 LBL staff scientists to Pakistani researchers, architects and engineers.

The input data to the project consist of:

- Two ENERCON reports: a 1987 survey of buildings and equipment (ENERCON 1987) and a proposed building energy code for Pakistan (ENERCON 1990),
- 2. Recently completed detailed surveys of buildings in Karachi, Islamabad, and Lahore, and
- 3. On-site visits to Karachi, Lahore, and Islamabad to inspect building conditions and building stock.

This report will focus on the development and discussion of simulation results for three prototypical buildings: a Single-Family Detached (SFD) house, a Converted Office (CO) from a single-family detached house, and an Office (O) building. Prototypes were developed for both individual offices (rooms) with window air conditioning units and large offices with central air conditioning units.

Overview of the Report

This report is composed of seven chapters. In Chapter 2, we will review the available data to characterize Pakistani prototypical buildings, which was simulated with DOE-2.1D to obtain their major end-use characteristics. Subsequently, a variety of parametric simulations were performed to determine the effectiveness of typical energy conservation options.

The prototype building descriptions were developed using the following sources: 1) a survey done by ENERCOM in 1987 that provided aggregate information on building and equipment characteristics for 43 buildings including houses, offices, and hotels; 2) a recent survey of 48 houses and offices in Karachi, Islamabad, and Lahore; and 3) on-site visits to several buildings by both LBL and RCG/HB staff in Pakistan. In addition to discussing these data sources, Chapter 2 will also describe the development of the survey forms used in the 1989 survey.

Hourly weather data is required for performing building energy simulations. We obtained weather data for six locations in Pakistan: Islamabad, Karachi, Lahore, Multan, Peshawar, and Quetta. Chapter 2 will present summary tables of this hourly weather data and discuss their highlights.

Chapter 3 will discuss our methodology for developing the prototypical buildings and defining their characteristics. This effort includes the description of the prototype buildings as well as the identification of energy conservation options for parametric simulations, and analysis of the DOE-2 results.

Chapters 4, 5, and 6 are similar chapters describing the prototypical analysis for the single-family detached house, the converted office, and the office building, respectively. Each chapter will discuss the main characteristics of the prototype in terms of floor plan, zones, construction, internal loads and schedules, and cooling and heating systems and their schedules. Following the prototype descriptions, each chapter will discuss the DOE-2 simulations in three sections corresponding to "basecase", "energy conservation options", and "parametric simulations." Each chapter concludes with a presentation and discussion of the DOE-2 parametric results.

Chapter 2

Input Data

To estimate the energy use of any building, input information is needed on both the building characteristics and the local climate conditions. The input information for describing the prototypical building conditions were based on a 1987 survey of equipment and appliances in 43 buildings in Karachi and Lahore (ENERCON 1987) and a recent survey of 48 offices and houses in Karachi, Lahore, and Islamabad. These data were complemented by site visits to several buildings by both LBL and RCG/HB staff in Pakistan.

Single-Family Detached Houses

The input information available for developing the single-family detached prototype was limited to 1) aggregate building and equipment characteristics for 10 houses (ENERCON 1987) and 2) a survey of 28 houses in Karachi, Islamabad Lahore. Because of the limited size of the sample, one cannot claim that the resultant prototype descriptions and simulation results are statistically representative of all single-family houses in Pakistan. However we consider the prototypical single-family detached house in this report to be fairly representative of the newer, air-conditioned houses in Pakistan.

Converted Offices

The input information for developing the prototype of a converted office building came from the recent (1989) survey of six converted offices in Karachi and Lahore, and the ENERCON (1987) report on a survey of buildings and equipment. Although the sample of six buildings is very small to statistically determine the characteristics of the building stock of Pakistan in this category, there were substantial similarities between the six buildings in terms of layout, equipment requirements and use, lighting preferences etc. that justify such an effort. The data from the surveys of these six buildings was augmented with the data from the (ENERCON 1987) report to come up with a prototype model for office buildings converted from single family residences.

Office Buildings

The input information for developing the prototype of an office building came from the recent survey of 14 offices in Islamabad, Karachi, and Lahore, and the ENERCON (1987) report on buildings and equipment. Although the sample of 14 buildings is too small to statistically determine the characteristics of these type of buildings in Pakistan, there were significant similarities between the 14 buildings in terms of layout, equipment requirements and use, lighting preferences etc. that justified our development of prototypes based on such a small sample. The data from the surveys of these 14 buildings was augmented with the data from the (ENERCON 1987) report to develop prototype models for office buildings.

Once a prototypical building description was prepared, hourly weather data was used to simulate the energy consumption of the building, using a building energy simulation program such as DOE-2. The development of "typical" weather tapes is a fairly involved procedure based on historical data from many years or decades and the selection of monthly weather data, that have been judged most "typical" by a set of predefined criteria. Clarke (1985) provides prescriptions for developing "typical" weather tapes from historical data. Because of unavailability of long-term weather data, it was not possible within the limited scope of this project to develop such "typical" weather data. Instead, the analysis in this study was done using "actual" weather data for a single year (1986). Strictly speaking, therefore, the results from our building simulations are valid only for 1986. However we are confident that the conclusions of this study should be applicable to other years barring drastic changes in the regional climate.

In the following sections, we will discuss the ENERCON survey (1987), the recent 1989 surveys, and the weather data used in this project.

1987 Building Survey

In 1987, RCG/HB conducted a preliminary building energy survey to help ENERCON plan specific conservation programs. A total of 43 buildings in Karachi and Lahore were examined. (See **Table 2.1.**)

Table 2.1. 1987 Survey Summary: Sample Size by Building Type

Building Type	Karachi	Lahore
Single family detached residence Single family flat	4	6 2
Low-rise commercial building	9	6
High-rise commercial building	3	4
Hotel - Unitary air conditioning	2	1
Hotel - Central air conditioning	1	1

Source: ENERCON 1987.

We reviewed this data to extract building and equipment characteristics to complement our 1989 detailed building survey. The ENERCON (1987) report mainly documents the installed equipment and rated capacity found in the buildings. The report does not provide information on either the building characteristics or operation schedules. The type of information available

from the ENERCON report is outlined in Table 2.2.

Table 2.2. 1987 Survey: Building and Equipment Characteristics Information

Total sample size:	43 commercial and residential buildings
Residential sample:	16 single family residences
Office sample:	22 high rise and low-rise offices
Air conditioning units:	Number of units and types
Electrical appliances:	Number of units, types, and range of rated capacities
Gas appliances:	Number of units, types, and range of rated capacities
Lighting:	Number of lights, types, and rated wattages
Energy conservation measures:	Number and types of energy conservation measures

We used the building equipment information from this data base to characterize the installed equipment for the prototypical office and single-family house.

Single-Family Detached Houses

10 single-family detached residences (4 in Karachi, 6 in Lahore, see **Table 2.1**) were included in the survey. The information gathered is summarized in **Table 2.3**.

The following building equipment characteristics were incorporated in the prototype description for the single-family detached house.

- In the 10 houses, there were 22 window air conditioning units, and 5 evaporative coolers. In our prototype buildings, we have simulated window units to cool half of the space.
- The number of fans used in each house was quite high--14 ceiling and portable fans per house. This indicates that all rooms have at least one fan. The fans are assumed to run full time except in the sleeping quarters when airconditioners are running. Accordingly, we simulated our prototype building to take account of the effects of ventilative cooling on comfort conditions and to add the electrical consumption of the fans to that of the entire house.

Table 2.3 1987 Survey: Summary of Buildings and Equipment Characteristics for Residences

Total sample size:	43 commercial and residential buildings
Residential sample:	10 single family detached residences (4 in Karachi, 6 in Lahore)
Air conditioning units:	 - 60% of the 43 buildings have window units. - In the 10 residential buildings, there are 22 window units (1-2 tons; 5-10 kW), and 5 evaporative units. No other A/C units are used.
Electrical appliances:	In the 10 residential buildings, there are 140 fans (both ceiling and portable) (0.05-0.1 kW), 13 refrigerators (0.05-0.1 kW), 15 televisions (0.05-0.1 kW), 7 ovens (0.5-2 kW), and 7 irons (1.0-1.9 kW).
Gas appliances:	In the 10 residential buildings, there are 16 cookers (100-149 ft ³ /hr), 9 geysers (10-20 ft ³ /hr), and 9 heaters.
Lighting:	 Incandescent lights are preferred in dining rooms and living areas. Bulbs in living areas are 30% 50-60 watts, 70% 80-100 watts. Bulbs in dining areas are 100-200 watts.
Energy conservation measures:	Out of 10 buildings 2 have insulation and 8 have shaded A/C units.

- Other electrical equipment included refrigerators and televisions. The survey indicated existence of electrical ovens in seven houses. Since the survey also indicated that all houses have gas cookers, we simulated the prototypes with gas cooking only.
- Lighting was mostly incandescent with an intensity of 50 200 watts in each room.
- Most houses in the survey did not report any significant energy conserving options. In fact, no conservation measures besides the shading of A/C units was reported.

Converted Offices

Out of the ENERCON (1987) survey of 43 buildings, 15 were low rise commercial buildings. Out of 15 low rise commercial buildings, 12 were low rise offices (7 in Karachi and 5 in Lahore), excluding a single low rise government building. Although, none of the buildings surveyed in 1987 was a 'converted' office, we used the characteristics and patterns for low rise office buildings to supplement the survey data from the more recent surveys of the 10 buildings.

The following building equipment and characteristics were noted in the 1987 survey.

- In the 12 low rise office buildings, 108 window air conditioning units and 21 split air-cooled systems were counted.
- Window units were dominantly in the 1 2 ton, 5 10 kW range.
- In these 12 buildings there were

119 computers (0.2 - 0.3 kW) each,

304 fans (0.05 - 0.1 kW) each,

20 heaters (1 - 2 kW) each,

15 refrigerators (0.05 - 0.1 kW),

14 photocopiers (1 - 2 kW),

37 typewriters (0.05 - 0.1 kW),

19 water coolers (0.2 - 0.4 kW),

8 telephone exchanges (0.1 - 0.2 kW).

- The gas appliances consisted of: 24 cookers(100 150 cft/hr), 8 heaters and 1 geyser (10 20 cft/hr).
- In the office areas of the 43 buildings, there were 21,314 fluorescent lights (mostly in the 40 50 Watt range) and 1,865 incandescent lights (50% in the 80 100 Watt range and 40% in the 100 200 Watt range).
- Significant energy conservation measures included: reflective film (10 out of 12 buildings), roof insulation (6 out of 12 buildings), shaded A/C (6 out of 12 buildings), and reflectors for fluorescent lamps (4 out of 12 buildings). In 4 out of the 12 buildings, incandescent lights were replaced with fluorescent lights.

Office Buildings

The 1987 survey did not distinguish between converted offices and regular offices.

Current 1989 Survey

As part of the activities of this project, LBL designed two DOE-2 data sheet forms for collecting data on residential and office buildings. Copies of these forms are reproduced in the Appendix A1. These data sheets were completed by local consultants for 48 houses and offices in Lahore, Karachi, and Islamabad. The forms were used to define the building characteristics and operational conditions for both the residential (single family or duplex buildings) and commercial (office) buildings. The highlights of these survey instruments are discussed below.

Residential Form

The residential form was designed in 23 pages and in three major parts: general information, building characteristics, and energy use.

```
Part I: General Information. This section gathered information on:
name of building owner,
building address,
name of the auditor,
building type (single family detached or duplex),
number of floors,
various areas of the building required for the analysis (total,
```

conditioned, etc.),

energy sources and historical energy use, and

age of building.

For most buildings one year of monthly utility bills were collected.

<u>Part II: Building Characteristics.</u> This section asked for detailed information on building physical characteristics, equipment and appliances in the buildings, and the building operational characteristics and schedules. This part of the survey form asked specifically for the following:

photographs of the building exterior and its surrounding, access to sunlight and breeze, including information on density of nearby construction adjacent buildings other obstructions sketches of the building shape, dimensions, and orientation, interior and exterior lighting types, intensities, and schedules,

exterior walls interior walls roofs windows

building construction materials of

windows window shad

window shadings

doors

mechanical systems,

heating system (type, fuel, capacity, and schedule) cooling system (type, fuel, capacity, and schedule)

domestic hot water,

kitchen, washer/dryer, refrigerator, and other appliances, and occupancy and operational schedules of the building.

<u>Part III:</u> Energy Use. This part collected information on energy use changes of the residences over the last 10 years, changes in the building, addition of major appliances, and on energy conservation retrofits to the building. Information from this category allowed us to do a better characterization of the prototype buildings and their calibration with respect to utility bills.

Commercial Form

Since commercial buildings are much more complicated in terms of their design and operation, we devised a separate and thorough survey form for collecting information for these building categories. Building data for the commercial sector were collected in four parts: general information, building characteristics, energy use, and type of building ownership.

Part I: General Information. The information collected in this section included:

```
name of building (if any),
address,
name of building owner,
name of building tenant,
name of person interviewed including company and telephone number,
name of auditor,
building type,
number of floors,
floor(s) monitored (if any),
monitored area of building (if any),
energy sources and historical energy use, and
age of building
year of the construction completion
major renovations or additions within last year.
For most buildings one year of monthly utility bills were collected.
```

Part II: Building Characteristics. This section asked for detailed information on building physical characteristics, equipment and appliances in the buildings, and the building operational charac-

teristics and schedules. This part of the survey form asks specifically for the following:

stics and schedules. This part of the survey form asks specifically for to photos of entire building exterior, and the monitored area, access to sunlight and breeze, including information on density of nearby construction adjacent buildings other obstructions sketches of the building shape, dimensions and orientation, including general site and roof plan monitored floors interior and exterior lighting types, intensities, control, and schedules, building constructions materials, exterior walls interior walls roofs

windows

window shadings

doors
mechanical systems
heating systems (type, fuel, capacity, and schedule)
cooling systems (type, fuel, capacity, and schedule)
fan systems (air handling systems)
controls
domestic hot water,
type of DHW distribution and control system,
office equipment,
occupancy and operational schedules of the building, equipment, and systems.

<u>Part III:</u> Energy Use. This part collected information on energy use changes of the building over the last 10 years, changes in the building, addition of major equipment, and on energy conservation retrofits to the building. Information of this category allowed us to do a better characterization of the prototype buildings and their calibration with respect to utility bills.

Part IV: Type of Building Ownership. In this section, we were interested in the nature of the current ownership of the building, the size and type of organization that owns the building, and its experience with building energy conservation. We were also interested in the ownership of the building when it was constructed. This information can be very useful in understanding the energy consumption of the building.

Single-Family Detached Houses

The residential data sheets were completed for 5, 13 and 10 houses in Islamabad, Karachi, and Lahore, respectively. Appendix A3 shows an example of a completed data sheet for a two-story house.

We reviewed the completed data sheets for completeness and consistency. The building and schedule descriptions are outlined in **Table 2.4(a,b,c)** for Islamabad, Karachi, and Lahore. Besides differences in building size and fraction of air-conditioned area, most houses were inherently similar:

- they generally had two floors with the second story about half the size of the first;
- less than 50% of each house was usually air conditioned with a similar April to November schedule;
- gas space heaters were used in Islamabad and Lahore and there was no space heating in Karachi;
- the house constructions were fairly similar, all with concrete walls and roofs (some roofs are sloped) in Karachi, and brick walls and concrete roofs in Islamabad and Lahore;

- all windows were single pane and had some overhangs;
- cooking and water heating were done with gas;
- the electric appliances were fairly similar to those of the 1987 survey;
- standard incandescent lights in the range of 50-200 watts were used in all houses.

We incorporated these characteristics in the description of our prototypical house. House No. 50 in Karachi was used as the basis for the prototypical house.

Converted Offices

Out of the 20 office buildings surveyed recently, six were offices converted from single family residences. The characteristics of these six buildings are shown in **Table 2.5a** and **Table 2.5b**. Common characteristics of these buildings can be summarized as follows:

- they had two floors with the second story usually about half the size of the first;
- air conditioning was mainly done with window units;
- fluorescent lights were used in office areas (0.5 1 W/sqft);
- the constructions were fairly similar, all with concrete roofs, concrete walls in Karachi and brick walls in Lahore;
- all windows were single pane and had some overhangs, there was hardly any window operation;
- occupation schedules were very similar, with working hours roughly between 8 a.m. to 5 p.m. Sunday through Thursday.

Office Buildings

Out of the 20 office buildings surveyed, 14 were explicitly designed for use as offices. The characteristics of these 14 buildings are shown in **Tables 2.6(a,b,c)** and summarized as follows:

- most buildings had less than four floors (a majority of them had one or two floors); one had 9 and one 5;
- mainly window air conditioning units were used for cooling; only three buildings (two in Karachi, one in Islamabad) had central air conditioning;
- fluorescent lights were used in office areas (0.5 1.5 W/sqft, mostly ~1 W/sqft);
- the constructions were fairly similar, concrete walls in Karachi and brick walls in Islamabad and Lahore, concrete roofs in all three cities;
- all windows were single pane and had some overhangs, windows were not operated;
- occupancy schedules were very similar—the working hours were roughly between 8 a.m. to 5 p.m. Sunday through Thursday.

Table 2.4a. Characteristics of Islamabad Residences Surveyed in 1989.

House No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
80 (Islamabad)	3105 (1491)	2	Elec/Gas	GroundFL:Drawing, Dining,Kitchen,2BR, Lounge,2 Bath, 1stFL: 2BR, Lounge,2 Bath.	Mostly incandescent	Brick	Sloped concrete	Clear, wood frame, (2.75-4.25ft) Overhangs.	6WAC's (9 tons) 5 Rm.Gas 1 Elec. Radiative	Cooling Apr-Nov Heating Nov-Feb
81 (Islamabad)	1289 (495)	1	Elec/Gas	Drawing, Dining, Kitchen, 3BR 3 Bath, Lounge.	Fluorescent and incandescent used together.	Brick	Flat, sloped concrete	Clear, steel frame, 2.75ft. Overhangs.	3WAC's (4.5 tons) 2 Rm.Gas	Cooling Apr-Sep Heating Nov-Feb
82 (Islamabad)	2517 (1235)	2	Elec/Gas	GroundFL:Drawing, Dining,Kitchen, Lounge,1BR,1 Bath. 1stFL:3BR, Lounge, 3 Bath.	Incandescent	Brick, some exterior walls have stone facing	Flat, sloped concrete, air gap, tiles	Clear, mostly steel, frames, 2.13ft. Overhangs.	5WAC's (8.5 tons)	N/A
83 (Islamabad)	4600 (4560)	2+ Basement	Elec/Gas	GroundFL:Dining, Drawing,Kitchen, Lounge,3BR,3 Bath. 1stFL:4BR, 4 Bath, Lounge.	Fluorescent and incandescent used together.	Brick	Flat, sloped concrete	Clear, wood frame, 2.75 and 8.25ft. Overhangs.	5WAC's (5.5 tons) 8 Rm.Gas 1 Elec. Res.	Cooling May-Sep Heating Nov-Feb
84 (Islamabad)	3919 (995)	2	Elec/Gas	GroundFL:Dining, Drawing,Kitchen, 3BR,Lounge,3 Bath. 1stFL:3BR, Kitchen,2 Lounges, 3 Bath.	Mostly incandescent	Brick, marble facing	Flat concrete	Clear some ground, steel frame, 2.5ft. Overhangs.	4WAC's (7 tons) 2 Elec. Res. 9 Rm.Gas	Cooling Apr-Oct Heating Dec-Feb

Table 2.4b. Characteristics of Karachi Residences Surveyed in 1989.

House No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Sched.
50 (Karachi)	3484 (1122)	2	Elec/Gas	Ground:2BR,Dining, Drawing,Kitchen, Lounge. 1stFL:2BR, Lounge.	Standard incandescent	Solid concrete	Flat and sloped concrete.	Clear, wood frame. Overhangs.	5WAC's (7.5tons)	AC Apr- Nov
51 (Karachi)	2383 (852)	2	Elec/Gas	Ground:Dining, Drawing,Kitchen, 3BR,2 Bath. 1stFL:4BR, 3 Bath.	Standard incandescent	Solid concrete	Flat concrete	Clear, steel frame, (1-4.5ft). Overhangs.	6WAC's (9.5 tons)	AC Mar- Nov
52 (Karachi)	3294 (3294)	2	Elec/Gas	Ground:4BR,Dining, Drawing,Kitchen, Lounge.	N/A	Solid concrete	Flat concrete	Clear, wood frame. Overhangs.	2 central DX units (16 tons)	Apr- Nov
53 (Karachi)	6622 (5678)	1	Elec/Gas	Main Bldg:Dining, Drawing,Kitchen, Familyroom, 4 Bath,5BR. Guest House: Drawing,Dining, 2BR,2 Bath, Kitchen. Servant House: 5BR,Bath.	Fluorescent and incandescent mixed.	Solid concrete	Sloped concrete	Tinted, wood frame, (1.5-6ft). Overhangs.	1 central unit (25 tons)	AC Jan- Dec
55 (Karachi)	4512 (2550)	2	Elec.	Ground:Drawing, Dining,Kitchen, 3 extra rooms, Bath. 1stFl: 5BR,2 Bath.	Mostly incandescent, some fluorescent.	Solid concrete	Flat concrete	Clear, aluminum frame, 2ft. Overhangs.	6WAC's (9 tons)	AC Mar- Nov

Table 2.4b. Characteristics of Karachi Residences Surveyed in 1989. (cont.)

House No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
56 (Karachi)	2003 (1198)	1	Elec/Gas	N/A	Fluorescent and incandescent used together.	Solid concrete	Flat concrete	Tinted, wood frame, (1.5-3ft). Overhangs.	6WAC's (9.5 tons)	AC Mar-Nov
57 (Karachi)	6716 (4314)	2	Elec/Gas	N/A	Incandescent in living areas.	Solid concrete	Flat sloped concrete	Tinted, wood frame, 2ft. Overhangs.	9WAC's (13.5 tons) 4 Split Systems (11 tons)	AC Mar-Nov
60 (Karachi)	4023 (2212)	2	Elec.	Ground: Drawing, Dining, Kitchen Lounge, GuestBR, Hobby Room, Bath. 1stFloor: 4BR, Lounge, 4 Bath.	Incandescent	Concrete (Hollow core)	Flat concrete	Tinted, aluminum frame, (2-4ft). Overhangs.	9WAC's (14 tons) 2 Elec. Res.	AC Mar-Nov Heating Dec-Jan
61 (Karachi)	3941 (N/A)	2	Elec.	Ground:Drawing, Dining,Kitchen, 3 Rooms. 1stFloor:3BR, 3 Bath.	Incandescent	Solid Concrete	Flat concrete	Clear, wood frame, (2-4ft). Overhangs.	6WAC's (9.5 tons)	AC Mar-Nov
62 (Karachi)	5650 (4007)	2	Elec/Gas	Very peculiar layout	Mostly incandescent, some 1x4 fluorescent.	Solid concrete	Flat and sloped concrete	Clear, wood/alum. frame. Overhangs and some grill.	12WAC's (15.5 tons)	AC Apr-Nov

Table 2.4b. Characteristics of Karachi Residences Surveyed in 1989. (cont.)

House No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
63 (Karachi)	2950 (1461)	2	Elec/Gas	Ground:2BR, Dining,Drawing, Kitchen,Lounge, 1stFloor:2BR, Lounge.	Standard incandescent	Concrete (Hollow core)	Flat concrete	Tinted, wood frame, horiz., sliding. Overhangs.	2 split systems and WAC's (8.2 tons)	AC Apr-Nov
64 (Karachi)	4654 (3381)	2	Elec/Gas	Ground:2BR, Dining,Drawing, Kitchen. 1stFloor:4BR, 3 living spaces, kitchen.	Stardard incandescent	Solid concrete	Flat and sloped concrete	Clear, wood/alum., steel frame. Overhangs grill.	11WAC's (17 tons)	
65 (Karachi)	2700 (965)	1	Elec/Gas	3BR, Dining, Drawing, Kitchen, Study, 3 Bath.	Incandescent	Solid concrete	Flat Concrete	Clear, wood frame, mostly 2ft. Overhangs.	4WAC's (5.8tons)	AC Feb-Mar

Table 2.4c. Characteristics of Lahore Residences Surveyed in 1989

House No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
70 (Lahore)	3562 (3065)	1	Elec/Gas	Dining, Drawing 4BR, Kitchen, 4 Bath.	Incandescent	Brick	Flat concrete	Clear, steel/wood framing, (2-2.5ft). Overhangs.	3WAC's (4 tons) 2 Elec. Resis. 3 Rm.Gas 1 Elec. Radiative	Cooling June-Oct Heating Dec-Jan
71 (Lahore)	2794 (1906)	2	Elec/Gas	Ground:Drawing, Dining,Lounge, 1BR,Kitchen, Servant Room, 2 Bath. 1stFL:N/A	Incandescent	Brick	Sloped concrete	Clear, wood frame, (1-5ft). Overhangs.	4WAC's (6.5 tons) 2 Elec.Res. 2 Rm. Gas 1 Elec. Radiative	Cooling May-Oct Heating Dec-Jan
72 (Lahore)	2816 (1330)	2	Elec.	Ground:Dining, Drawing, Kitchen,2BR, 2 Bath. 1stFL:3BR, 3 Bath, Lounge.	Fluorescent and incandescent mixed.	Brick	Flat concrete	Clear, steel frame.	6WAC's (9.5 tons) 1 Rm Gas	Cooling Apr-Sep Heating Dec-Feb
73 (Lahore)	6065 (5023)	2	Elec/Gas	N/A	Incandescent	Brick	Flat and sloped concrete, insulation, tiles	Reflective, wood frame, (3-3.5ft). Overhangs.	1 Central System (10 tons) 4WAC's (4 tons) 6 Rm.Gas	Cooling Mar-Oct Heating Dec-Jan
74 (Lahore)	2481 (926)	2	Elec/Gas	Ground:4BR, Dining,Drawing, Kitchen,3 Bath. 1stFL:2BR, 2 Bath,1 common space.	Fluorescent and incandescent used together.	Brick -	Flat concrete, earthfill, tiles.	Clear, steel frame 2ft. Overhangs.	4WAC'S (6.5 tons) 4 Rm. Gas	Cooling Apr-Sep Heating Dec-Jan

۲

Table 2.4c. (contd.)

House No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
75 (Lahore)	3061 (1306)	2	Elec/Gas	Ground:Drawing, Dining,Lounge, Kitchen,2BR, 2 Bath. 1stFL:3BR, 2 Bath, 1 common rm.	Fluorescent and incandescent used together.	Brick	Flat concrete	Clear, steel/wood frame, (3-5ft). Overhangs.	6WAC's (9 tons) 3 Rm.Gas	Cooling Apr-Oct Heating Dec-Jan
76 (Lahore)	2460 (1808)	1	Elec/Gas	Drawing, Dining, Kitchen, 5BR,3 Bath.	Mostly incandescent	Brick, exterior walls with air gap of 1½"west side,dark color,east side light color.	Flat concrete, false ceiling, mud fill.	Clear, steel casing, (1.5-6ft). Overhangs.	2WAC's (3 tons) 1 Elec.Res. 1 Rm.Gas	Cooling Apr-Sep Heating Dec-Feb
77 (Lahore)	4200 (3205)	1	Elec/Gas	Drawing, Dining, Kitchen,2 Lounges, 4BR,5 Bath.	Mostly incandescent	Cavity exterior walls (Brick)	Flat, concrete, earthfill, tiles.	Tinted, wood frame, (1ft & 8ft). Overhangs.	9WAC's (11.5 tons) 5 Rm.Gas	Cooling Apr-Oct Heating Dec-Jan
78 (Lahore)	3024 (2680)	1	Elec/Gas	Drawing, Dining, Kitchen, 4BR, 4 Bath, 1 Lounge.	In some rooms, fluorescent, in some rooms incandescent lights are used.	Brick	Flat concrete	Film is used in living sections, wood frame, (2-18ft). Overhangs.	1 Central (10 tons) 6WAC's (10 tons) 5 Rm.Gas	Cooling Apr-Sep Heating Dec-Jan
79 (Lahore)	3203 (1233)	2	Elec/Gas	Ground: Dining, Drawing, Kitchen, 3BR, Lounge, 3 Bath. 1stFL: Lounge, 2BR, 3 Bath.	Mostly incandescent, some fluorescent.	Brick	Flat concrete earthfill, tiles	Clear, wood frame, 3ft. Overhangs.	4WAC's (6 tons) 2 Elec.Res. 1 Rm.Gas	Cooling Mar-Oct Heating Dec-Feb

Table 2.5a. Characteristics of Karachi Converted Office Buildings Surveyed in 1989

Building No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
10 (Karachi)	2160 (1693)	2	Elec.	Conversion	Fluorescent in offices, incandescent in common spaces.	Solid concrete	. Flat concrete	Mostly gound wood frame and casing	5WAC's (8.5 tons)	·
12 (Karachi)	4900 (3326)	2	Elec.	Conversion	Fluorescent lamps	Solid concrete	Flat concrete	Clear, wood frame casing	12WAC's (20 tons)	
17 (Karachi)	1800 (1389)	2	Elec/Gas	Conversion	Fluorescent in offices, incandescent in common spaces.	Solid concrete	Flat concrete	Ground wood frame casing	4WAC's (7.4 tons)	

Table 2.5b. Characteristics of Lahore Converted Office Buildings Surveyed in 1989

Building No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
22 (Lahore)	3521 (2433)	2	Elec/Gas	Detached. Resembles a conversion.	Incandescent and fluorescent mixed in the offices.	Brick	Flat concrete. Tilted concrete and tile.	Clear, wood frame, (½-2ft). Overhangs.	9WAC's (13.5 tons) 3 Elec.Res. Heaters 6 Rm.Gas Heaters	
23 (Lahore)	1996 (1182) (ALL)	2	Elec/Gas	Conversion	Fluorescent, and incandescent mixed. 1watt/sq.ft.	Brick	Flat concrete	Clear, steel frame, (1-4ft). Overhangs.	6WAC's (10.5 tons) 3 Elec.Res. 4 Rm.Gas	Cooling Apr-Sep Heating Dec-Feb
24 (Lahore)	2450 (1780)	2+ Basement	Elec/Gas	Detached. Resembles a conversion.	Fluorescent and incandescent used together.	Brick	Flat concrete	Clear, wood frame, 1.5ft. Overhangs.	6WAC's (9.4 tons) 1 Elec.Res. Heaters 6 Rm.Gas Heaters	Cooling Apr-Oct Heating Dec-Jan

19

Table 2.6a. Characteristics of Islamabad Office Buildings Surveyed in 1989

Building No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
30 (Islamabad)	15284 (8691)	2	Elec.	Standalone. Regular office bldg.	Fluorescent 1.15watts/sq.ft.	Brick	Flat concrete	Clear, alum. frame, 2.5ft. Overhangs.	4WAC's (7.4 tons) 2 Central systems (60 tons) 2 Elec.Res.	Cooling May-Sep Heating Nov-Mar
31 (Islamabad)	7462 (3120)	1	Elec/Gas	Standalone. Consists of two independent structures. Regular.	Mostly fluorescent 0.6 watts/sq.ft	Brick	Flat concrete	Clear, steel frame, 2.75ft. Overhangs.	1 Central system (7.4 tons) 1 Fan Coil.	Cooling Apr-Oct Heating Dec-Mar
32 (Islamabad)	4402 (3553)	2	Elec/Gas	Attached on two opposite sides.	Fluorescent and incandescent mixed	Brick	Flat concrete	Clear, steel frame, (1-2.5ft). Overhangs.	6WAC's (10.5 tons) 1 Elec.Res. 4 Rm.Gas	Cooling May-Sep Heating Nov-Feb
33 (Islamabad)	2829 (2391)	2	Elec/Gas	Standalone. Regular office bldg.	Mostly fluorescent 1.5watts/sq.ft.	Brick	Concrete, false ceiling	Clear, steel frame, 3.25ft. Overhangs.	6WAC's (17 tons) 5 Rm.Gas	Cooling May-Sep Heating Nov-Feb

Table 2.6b. Characteristics of Karachi Office Buildings Surveyed in 1989

Building No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
11 (Kararchi)	3200 (3200)	5	Elec.	Attached on two opposite sides	Fluorescent in offices. 1watt/sq.ft	Solid concrete	Flat concrete	Clear, alum. frame, 3ft. Overhangs.	Central system (15 tons)	Cooling Jan-Dec
13 (Karachi)	1432 (801)	1	Elec.	Semi detached. Irregular layout.	Fluorescent in offices. 0.8watts/sq.ft.	Solid concrete	Flat concrete	Clear, alum. frame	5WAC's (8 tons)	Cooling Feb-Nov
14 (Karachi)	2366 (1890)	1	Elec.	Semi detached. Regular layout.	Fluorescent in offices. 0.5watts/sq.ft.	Solid concrete	Sloped asbestos sheet, styropore	Clear, steel frame, 3ft. Overhangs.	10WAC's (10 tons)	Cooling Mar-Nov
15 (Karachi)	6911 (6200)	9	Elec.		Fluorescent 1.5watts/sq.ft.	Solid concrete	Flat concrete	Clear, alum. frame, 4ft. Overhangs.	Central system (19 tons)	Cooling Mar-Nov
16 (Karachi)	2200 (1444)	4	Elec.	Attached on two opposite sides.	Fluorescent in offices 0.8 watts/sq.ft.	Solid concrete	Flat concrete	Clear, alum. frame, 1.5ft. Overhangs.	4WAC's (6.5 tons)	Cooling Mar-Nov

Table 2.6b. (contd.)

Building No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
18 (Karachi)	2234 (955)	4	Elec.	Attached on one side, each floor has two units which were probably built as residences.	Mostly incandescent 0.8 watts/sq.ft.	Solid concrete	Flat concrete	Clear, wood frame, 2ft. Overhangs.	6WAC's (9 tons)	Cooling Mar-Nov
19 (Karachi)	3203 (2989)	3	Elec.	Standalone. Regular office bldg.	Mostly incandescent 1.5 watts/sq.ft. in office areas.	Solid concrete	Flat concrete	Clear, alum/wood frame, (1.25-1.50ft). Overhangs.	7WAC's (16.5 tons)	Cooling Mar-Nov

Table 2.6c. Characteristics of Lahore Office Buildings Surveyed in 1989

Building No.	Area (A/C Area)	No. of Floors	Energy Sources	Plan Characteristics	Lighting Characteristics	Wall Construction	Roof Construction	Windows	Equipment	Schedules
20 (Lahore)	2535 (2436) (ALL)	2	Elec.	Not an office, it is like a small manufacturing shop.	Fluorescent in offices 1watt/sq.ft.	Brick	Flat concrete	Clear, wood frame. Few overhangs.	3WAC's (4.5 tons)	Cooling May-Sep
21 (Lahore)	2363 (1929) (ALL)	1	Elec/Gas	Detached. Highly irregular, high exterior wall to area ratio.	Fluorescent 0.9watts/sq.ft.	Brick	Flat concrete	Tinted/ clear, wood/ alum/steel frame, (2-3ft). Overhangs.	8WAC's (14.5 tons) 6 Elec.Res. 1 Rm.Gas 1 Elec. Radiative	Cooling Apr-Oct Heating Dec-Feb
25 (Lahore)	2435 (2007) (Top Floor)	2+ Basement	Elec/Gas	Standalone. Regular office building.	Fluorescent 1watt/sq.ft.	Concrete	Flat concrete	Clear, wood frame, 8". Overhangs.	6WAC's (8 tons) 8 Elec.Res. Heaters	Cooling Apr-Dec Heating Dec-Feb

Weather Data

Hourly weather data is crucial to an accurate simulation of building heating and cooling energy loads. The DOE-2 building energy simulation code is an hourly program that calculates the heating and cooling energy of a building based on the building's description, building operational schedules, and hourly weather data including insulation.

The required hourly weather data include:

dry-bulb temperature
wet-bulb temperature *or* humidity ratio and air enthalpy
wind speed
total solar radiation or amount of cloud cover
direct solar radiation cloud type
atmospheric pressure
air density
air enthalpy
monthly cleamess number (optional)
monthly ground temperature (optional).

The above climate parameters are not all mutually independent, i.e. some can be calculated from the others. For instance, humidity ratio and air enthalpy can be calculated from the drybulb, wet-bulb temperature, at a given atmospheric pressure. Also, some data, such as direct and indirect solar, are not recorded at all weather stations. Using empirical equations, DOE-2 can estimate the direct and indirect solar radiation based on a weather station's latitude and reported cloud cover. The accuracy of the DOE-2 empirical equations for estimating the indirect solar radiation in humid climates is unknown. Extensive measured data are required to develop more accurate empirical equations for estimating indirect solar radiation.

We received hourly data for six locations in Pakistan for the year 1986: Islamabad, Karachi, Lahore, Multan, Peshawar, and Quetta. These locations are indicated on the map of Pakistan (Figure 2.1). The hourly data included:

dry-bulb temperature wet-bulb temperature wind speed atmospheric pressure amount of cloud cover cloud type

In addition, the data also included monthly ground temperatures, but the same clearness number was used for all months. We ran the DOE-2 weather utility program to estimate other weather variables.

Before generating a complete DOE-2 weather file, we plotted the raw data for a quick inspection of errors. Two types of errors where detected:

- 1. Out of range variables: Some temperature and wind data for a given hour were totally out of range of their adjacent hours. We interpreted these data as errors and replaced them with the average of the adjacent hours.
- 2. Wind speeds: We noticed that very little wind speeds were recorded for nonworking hours (Hours 0-8 and 18-24) (see Table 2.7).

Table 2.7. Comparison of Wind Speeds Recorded between Working and Nonworking Hours

	Average Wind S	peeds (mph)	Ratio
City	Hours 0-8,18-24	Hours 8-18	of Wind Speeds
Islamabad	0.0684	0.578	0.118
Karachi	0.382	4.472	0.086
Lahore	0.059	0.8981	0.066
Multan	0.102	1.843	0.056
Peshawar	0.112	1.181	0.095
Quetta	0.480	2.389	0.201

We further investigated the wind data by reviewing the frequency of non-zero wind speed for 24-hours of the day (Figure 2.2). These plots, however, did not show a possible and obvious recording error. Therefore, we use the available wind speed data with the explanation that wind speeds are lower during the night time (indicated with more zero-wind speeds during the night for most locations) than during the day.

We ran the raw weather data through a DOE-2 utility program and have summarized the results in Tables 2.8 - 2.13. These tables show the monthly statistics of temperatures (°F), wind speed (mph), cloud cover(%), solar intensity (Btu/ \hbar^2), heating and cooling degree days, and design-day temperatures. For comparison, we have also summarized the heating and cooling degree days summary in Table 2.14.

Figure 2.1 Pakistan Locations

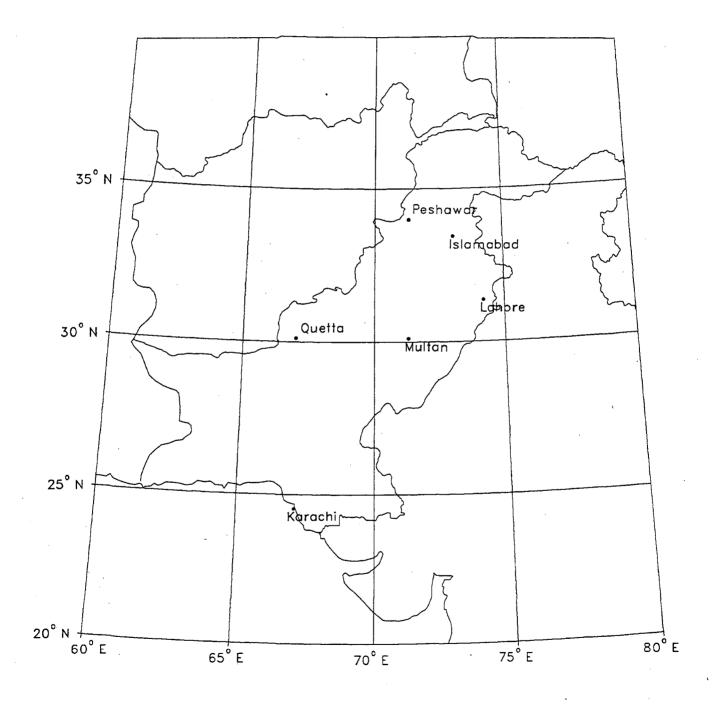


Fig 2.2
Annual Non-Zero Wind Data

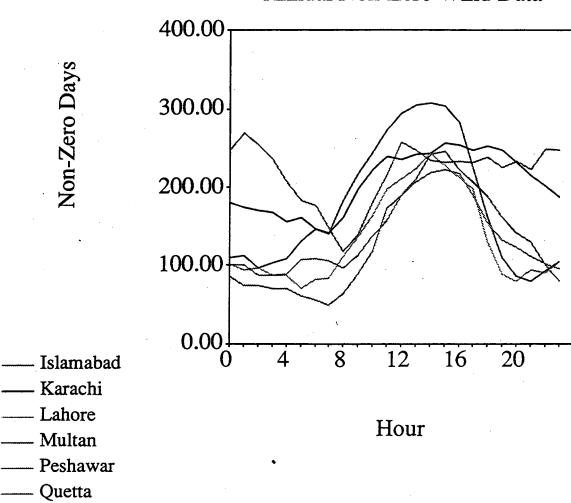


Table 2.8 Islamabad 1986 Weather Summary

TIME ZONE = -5 LATITUDE = 33.80 LONGITUDE = -73.00 APR JUL AUG SEP OCT NOV DEC FEB MAR MAY JUN YEAR JAN. AVG. TEMP. (F) (DRYBULB) 71.4 48.3 52.8 59.5 78.5 86.0 84.5 82.3 78.9 70.4 60.6 50.5 68.7 AVG. TEMP. (F) (WETBULB) 42.8 47.2 52.4 60.0 64.0 70.1 76.1 75.9 69.7 63.2 54.2 46.0 60.2 AVG. DAILY MAX. TEMP. 64.7 65.9 71.2 85.3 92.4 99.5 93.5 91.5 91.9 85 R 76.7 64 1 819 AVG. DAILY MIN. TEMP. 35.9 42.4 49.9 58.4 64.6 71.4 76.4 74.6 68.0 59.0 49.0 41.0 57.6 **HEATING DEG. DAYS** (BASE 65) 455.0 305.0 143.5 9.5 0.0 0.0 0.0 0.0 0.0 0.0 87.0 386.0 1386.0 (BASE 60) 300.0 170.0 44.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.5 234.0 767.5 (BASE 55) 145.0 48.5 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 106.0 302.5 0.5 (BASE 50) 16.5 0.5 0.0 00 0.0 37 N 0.0 0.0 00 0.0 00 0.0 20.0 **COOLING DEG. DAYS** (BASE 80) 0.0 0.0 0.0 4.5 39.5 172.5 158.5 107.0 56.5 0.0 0.0 0.0 538.5 (BASE 75) 0.0 0.0 0.0 27.0 128.5 313.5 309.0 250.5 41.5 0.0 0.0 1231.0 161.0 (BASE 70) 0.0 0.0 0.0 99.0 263.5 463.5 464.0 405.5 299.0 108.5 0.0 0.0 2103.0 0.0 (BASE 65) 0.0 6.0 215.0 418.5 613.5 619.0 560.5 449.0 230.5 22.5 0.0 3134.5 HEATING DEG. HRS./24 (BASE 65) 519.7 356.1 7.7 226.5 56.9 0.6 0.0 0.0 1.7 72.6 215.2 457.0 1913.9 (BASE 60) 384.4 241.5 124.2 21.3 0.9 0.0 0.0 0.0 0.0 30.9 120.4 321.1 1244.7 (BASE 55) 267.9 140.9 47.0 6.5 0.0 0.0 0.0 0.0 0.0 6.5 49.3 203.0 7212 (BASE 50) 167.2 62.0 7.8 0.7 0.0 0.0 0.0 108.8 357.0 0.0 0.0 0.0 10.4 COOLING DEG. HRS./24 (BASE 80) 0.0 04 47.6 126.8 243.8 173.5 122.7 105.6 36.2 0.3 5.1 0.0 862.1 (BASE 75) 0.0 0.5 8.0 92.9 203.2 353.5 301.1 234.4 178.6 80.9 20.1 0.0 1473.2 (BASE 70) 0.0 3.0 25.7 160.2 301.0 485.7 451.0 382.7 282.5 147.5 45.8 1.4 2286.5 (BASE 65) 3.1 15.4 56.4 247.9 426.5 629.2 605.9 537.1 417.8 241.2 83.3 8.3 3272.2 MAXIMUM TEMP. 71 88 83 98 102 111 103 99 98 93 85 75 111 MINIMUM TEMP. 31 37 44 47 57 62 69 68 62 49 44 33 31 NO. DAYS MAX, 90 AND ABOVE 0 0 0 6 21 27 24 22 21 7 0 0 128 NO. DAYS MAX. 32 AND BELOW 0 O n O 0 O O O n 0 O 0 o NO. DAYS MIN. 32 AND BELOW 3 0 0 0 0 0 ٥ 0 0 O O 0 3 NO. DAYS MIN. 0 AND BELOW n n Λ a n n n n n ٥ O n n AVG. WIND SPEED (MPH) 1.6 2.8 3.6 3.7 3.9 4.1 3.2 2.6 1.9 1.4 1.3 1.4 2.6 AVG. WIND SPEED (DAY) 2.6 4.0 4.2 4.7 5.0 2.9 4.7 3.5 2.3 1.8 1.8 2.0 3.4 AVG. WIND SPEED (NIGHT) 0.9 2.0 3.1 2.7 2.6 3.4 2.8 2.2 1.0 0.9 1.0 1.9 1.4 AVG. TEMP. (DAY) 547 57.6 63.7 76.8 83.7 90.7 87.0 849 83 5 76.4 672 55.6 75.0 AVG. TEMP. (NIGHT) 55.8 71.8 44.1 49.4 65.4 79.5 81.4 79.3 74.1 65.0 55.4 47.0 62.7 AVG. SKY COVER (DAY) 2.2 5.0 2.3 4.3 4.4 3.4 3.6 5.1 5.1 2.8 3.0 4.4 3.8 AVG. REL. HUM. AT 4AM 89.0 87.1 82.7 75.6 68.1 66.7 82.6 87.8 80.9 88.7 87.9 90.1 82.3 10AM 82.8 69.6 53.6 46.7 78.3 68.1 77.4 81.2 49.7 73.0 72.7 86.1 69.9 4PM 39.4 47.3 46.9 34.9 29.2 33.9 55.2 61.8 46.1 42.0 42.1 49.1 44.0 **10PM** 67.6 73.5 72.6 59.4 56.5 51.5 70.5 79.4 70.2 78.3 79.2 81.9 70.1 APR JUN JAN FEB MAR MAY JUL AUG SEP OCT NOV DEC YEAR AVG. DAILY SOLAR **DIRECT NORMAL** 1724.3 1405.3 1356.3 1549.4 1882.0 1787.9 1310.2 1292.7 1799.5 1845.2 1572.8 1189.4 1559.6 **TOTAL HORIZNTL** 948.0 1034.0 1439.1 1809.9 2053.2 2102.9 1975.3 1825.2 1654.6 1308.6 977.7 754.3 1492.4 MAX. DAILY SOLAR **DIRECT NORMAL** 2285.4 2368.2 2595.8 2779.0 2784.5 2785.3 2566.4 2444.6 2586.0 2386.2 2313.3 2109.8 2785.3 **TOTAL HORIZNTL** 1205.6 1419.1 1782.5 2197.5 2330.4 2429.3 2233.6 1971.0 2051.0 1482.1 1331.8 1037.2 2429.3 MIN. DAILY SOLAR **DIRECT NORMAL** 483.4 553.9 834.3 859.0 838.2 768.4 549.4 702.6 623 6 822.5 440.8 605.8 440.8 TOTAL HORIZNTL 694.8 755.6 1221.5 1572.7 1798.2 1901.4 1824.0 1671.1 1319.0 957.7 620.6 630.8 620.6 MAX HRLY SOLAR **DIRECT NORMAL** 253.3 280.2 283.6 283.4 268.9 261.9 250.0 257.5 264.5 273.1 283 6 273.2 272.3 **TOTAL HORIZNTL** 260.6 195.4 229.7 277.8 286.3 287.5 285.6 268.1 266.7 234.6 204.8 171.8 287.5 AVG MAX HRLY SOLAR DIRECT NORML 238.5 182.7 172.4 186.7 209.2 194.9 148.8 150.3 206.3 232.4 214.1 174.5 192.6 **TOTAL HORIZNTL** 170.0 227.1 253.9 269.1 271.1 258.3 159.7 249.8 241.7 211.2 161.4 126.9 216.9

Table 2.8 Islamabad 1986 Weather Summary (continued)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
AVG.	DAILY TO	TAL VEF	RTICAL SO	OLAR					-				
N	181.1	247.9	435.5	555.2	622.0	726.9	783.2	648.2	406.8	272.7	204.8	188.0	440.6
· E	630.2	683.4	955.0	1152.3	1248.6	1258.1	1253.9	1203.8	1029.5	836.3	645.1	502.0	951.3
S	1509.7	1251.1	1290.3	1137.8	916.4	851.1	971.4	1097.5	1225.8	1435.7	1388.6	1208.9	1190.3
W	602.8	653.4	912.9	1131.9	1186.8	1233.6	1254.4	1152.6	1011.0	800.6	607.6	493.3	921.4
MAX.	DAILY TO	TAL VEF	RTICAL S	OLAR									
N	258.9	376.0	608.0	747.6	846.5	909.4	942.7	815.1	600.6	501.1	268.1	238.1	942.7
Е	774.8	950.6	1098.2	1300.5	1438.5	1442.9	1403.1	1327.4	1342.7	1053.1	835.6	667.9	1442.9
S	1830.1	1823.5	1689.6	1234.7	1140.8	1048.1	1087.3	1151.7	1410.0	1762.3	1801.4	1805.8	1830.1
W	752.3	824.2	1096.7	1258.7	1330.4	1425.8	1424.9	1284.6	1193.9	1004.3	842.8	680.0	1425.8
MAX.	HRLY TO	TAL VER	TICAL SC	LAR					-				
N	41.7	79.6	94.1	101.2	104.0	104.9	104.5	104.2	94.3	86.4	41.4	38.2	104.9
Е	191.4	218.3	228.9	239.0	235.4	230.9	231.1	233.0	232.2	222.2	201.7	171.2	239.0
S	264.1	255.4	232.3	199.2	174.8	155.5	165.5	179.9	209.6	245.3	259.8	263.9	264.1
W	196.3	202.9	221.8	236.9	235.8	232.7	232.1	193.1	228.4	210.6	198.5	175.1	236.9
DESIG	N TEMP	PATURE	S	SUMMER	3 1	WINTER							
	PER CEN	T	T(DI	RY) T(\	WET)	T(DRY)							
	1.0			105	82	34							
:	2.5		•	102	81	35							
:	5.0			98	80								

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
HOUR				 -									
0	41.9	47.5	54.1	63.5	70.9	78.2	80.6	78.7	73.2	64.2	54.4	46.0	62.8
1	40.5	46.5	53.0	62.4	69.7	77.0	79.9	78.1	72.2	63.2	53.5	44.9	61.8
2	39.6	45.4	52.3	61.7	68.6	76.0	79.2	77.5	71.7	62.2	52.6	44.1	61.0
3	39.0	44.8	51.9	60.9	67.7	74.5	78.7	77.0	70.9	61.5	52.1	43.7	60.3
4	38.4	44.4	51.3	59.9	66.6	73.5	78.2	76.5	69.9	60.6	51.4	43.2	59.6
5	37.5	43.7	51.0	59.3	65.9	73.0	77.3	76.0	69.3	59.8	50.7	42.6	58.9
6	36.9	43.2	50.5	59.0	66.4	74.4	77.2	75.7	68.7	59.4	50.1	42.0	58.7
7	36.3	43.0	50.6	61.0	70.0	78.0	78.7	76.6	69.6	59.5	49.7	41.6	59.6
8	36.8	44.0	53.4	67.3	76.6	82.7	81.6	79.2	74.1	63.5	51.6	42.0	62.8
· 9	42.0	49.0	58.1	72.4	80.6	87.0	83.7	81.8	78.5	68.8	58.0	46.3	67.3
10	49.1	54.1	61.7	75.9	83.7	90.3	86.0	83.8	82.1	73.9	63. 9	51.1	71.4
11 .	54.9	58.3	65.0	79.3	86.5	92.9	88.0	85.5	85.0	77.8	69.3	55.9	74.9
12	59.9	61.5	67.7	81.5	88.6	95.4	89.1	87.1	87.3	81.3	72.9	59.4	77.7
13	62.7	63.6	69.4	83.0	90.1	97.2	90.6	88.8	88.8	83.1	74.9	61.6	79.5
14	63.9	64.5	69.8	84.0	91.4	98.2	92.0	89.5	89.8	84.8	75.8	62.9	80.6
15	64.1	65.2	70.2	84.2	91.9	99.0	92.5	89.6	90.7	85.5	75.7	63.1	81.0
16	62.9	63.7	69.3	83.9	91.5	98.7	92.2	90.1	91.0	84.4	74.1	61.8	80.4
17	60.0	62.0	68.3	82.9	89.7	97.4	91.5	89.1	89.2	80.9	70.2	59.0	78.4
18	56.2	59.5	66.1	80.1	87.0	95.6	90.2	87.0	85.0	75.9	64.7	55.5	75.3
19	52.5	57.1	63.5	76.3	82.7	91.6	87.9	84.9	80.5	71.8	61.1	52.4	71.9
20	49.3	54.8	60.6	72.3	77.8	87.0	86.0	82.8	78.9	69.4	59.0	50.2	69.1
21	47.0	52.4	58.8	69.3	75.2	83.6	84.1	80.9	76.7	67.7	57.3	48.8	66.9
22	45.2	50.5	56.7	67.3	73.4	81.8	82.5	80.2	75.4	66.4	56.1	47.9	65.4
23	43.4	49.2	55.1	65.4	71.9	79.9	81.5	79.3	74.3	65.0	55.1	46.7	64.0
GROUND TEMPERATURES	521.7	518.8	518.6	519.9	525.4	530.9	535.6	538.6	538.8	536.4	531.8	526.5	
CLEARNESS NUMBERS	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	

Table 2.9 Karachi 1986 Weather Summary

LATITUDE = 24.80 LONGITUDE = -67.10 TIME ZONE = -5 JUL AUG SEP OCT NOV DEC YEAR JAN FEB MAR APR MAY JUN AVG. TEMP. (F) (DRYBULB) 75.7 83.2 87.4 88.4 85.0 82.3 82.0 81.9 74.7 62.9 77.9 62.9 67.5 AVG. TEMP. (F) (WETBULB) 72.3 75.9 79.6 78.1 76.1 74.6 70.1 61.8 50.4 67.5 56.4 64.5 49.9 AVG. DAILY MAX. TEMP. 88.7 90.1 78.0 78.9 80.6 89 2 94.6 98.2 96.8 90.2 88.0 94.7 89.0 AVG. DAILY MIN. TEMP. 47.9 54.7 64.4 74.0 78.4 82.8 81.2 78.2 77.2 72.2 62.3 50.1 68.7 **HEATING DEG. DAYS** (BASE 65) 62.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 95.5 164.5 (BASE 60) 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.0 36.0 0.0 (BASE 55) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0 (BASE 50) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 COOLING DEG. DAYS (BASE 80) 0.0 0.0 6.0 129.0 259.0 294.5 176.0 96.5 88.0 110.0 10.0 0.0 1169.0 (BASE 75) 0.0 0.0 75.5 278.5 412.0 444.5 331.0 251.0 237.5 261.0 73.5 0.0 2364.5 (BASE 70) 0.0 5.0 211.0 428.5 567.0 594.5 486 0 406 0 387 5 416.0 188.0 15.5 3705.0 (BASE 65) 722.0 11.5 81.5 366.0 578.5 744.5 641.0 561.0 537.5 571.0 336.0 66.0 5216.5 HEATING DEG. HRS./24 (BASE 65) 179.8 74.8 9.7 0.0 0.2 0.0 0.0 0.0 0.0 0.5 21.8 179.3 466.1 (BASE 60) 102.6 28.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 101.6 237.2 (BASE 55) 43.4 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 47.3 94.5 (BASE 50) 0.3 იი .ი ი 0.0 0.0 0.0 0.0 0.0 0.0 18 1 30 O 11.6 0.0 COOLING DEG. HRS./24 (BASE 80) 7.1 63.2 143.0 235.2 252.8 157.1 84.9 81.2 132.9 66.8 10.1 1235.7 1.3 (BASE 75) 15.3 29.2 125.1 253.9 385.1 402.6 309.5 226.6 211.4 243.3 125.0 26.9 2354.0 75.4 215.7 395.4 539.9 552.6 464.5 381.6 361.3 375.1 206.7 (BASE 70) 54.5 59.3 3682.0 144.0 694.7 702.6 619.5 536.6 511.3 523.0 313.0 115.0 (BASE 65) 113.9 342.7 545.1 5161.5 MAXIMUM TEMP. 90 82 88 95 102 109 102 93 95 93 104 99 109 MINIMUM TEMP. 39 46 55 68 . 59 79 77 75 72 63 54 37 37 NO. DAYS MAX. 90 AND ABOVE 0 a 20 29 31 30 24 10 11 30 17 2 204 NO. DAYS MAX. 32 AND BELOW 0 0 0 0 0 O 0 0 0 0 n 0 0 NO. DAYS MIN. 32 AND BELOW O 0 O n 0 0 O O O O O O O NO. DAYS MIN. 0 AND BELOW 0 0 ۵ 0 0 0 0 0 O 0 0 0 0 AVG. WIND SPEED (MPH) 4.7 3.6 5.3 7.9 9.4 11.4 13.6 12.8 10.3 6.0 3.1 4.9 7.8 AVG. WIND SPEED (DAY) 6.6 5.3 6.8 9.3 10.9 12.4 14.5 14.5 11.6 7.5 4.3 7.2 9.5 AVG. WIND SPEED (NIGHT) 2.5 4.1 6.5 7.9 10.4 12.6 11.2 9.1 4.8 2.1 3.3 6.3 3.4 AVG. TEMP. (DAY) 68.6 87.1 72.3 80.5 87.9 91.5 91.7 84.5 84.5 86.2 80 4 67.9 827 AVG. TEMP. (NIGHT) 59.2 64.2 72.0 78.8 83.1 85.0 82.8 80.2 79.9 78.3 70.4 59.5 73.8 AVG. SKY COVER (DAY) 0.8 2.7 1.7 2.7 1.8 4.4 7.2 7.0 2.9 0.6 1.2 1.5 3.0 AVG. REL. HUM. AT 4AM 59.5 72.2 80.5 81.9 79.5 82.9 82.4 83.1 83.0 76.7 69.7 62.5 76.2 10AM 59.2 58.6 73 4 71.6 71.5 524 49.0 56.5 63.4 64 6 61.3 48 B 60.9 4PM 35.2 53.4 35.5 21.0 34.7 39.1 40.1 63.5 69.0 57.2 26.6 21.8 41.4 10PM 50.6 59.2 81.5 75.1 65.3 45.1 40.4 64.9 69.4 76.4 76.9 61.0 63.9 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YEAR AVG. DAILY SOLAR DIRECT NORMAL 2297.7 1936.5 2295.2 2005.0 2237.8 1506.5 738.5 763.3 1838.9 2417.7 2188.8 2036.3 1854.2 TOTAL HORIZNTL 1383,7 1475,1 1884,6 1994,3 2218,0 2066,0 1850,1 1759,3 1821,6 1736,6 1389,2 1198,0 1732,5 MAX. DAILY SOLAR **DIRECT NORMAL** 2576.2 2709.8 2780.4 2755.6 2744.6 2710.4 1483.2 1497.8 2561.9 2593.0 2529.8 2417.1 2780.4 TOTAL HORIZNTL 1579.1 1859.9 2138.6 2287.6 2369.9 2386.2 2031.3 1985.7 2096.2 1906.3 1650.1 1414.6 2386.2 MIN. DAILY SOLAR DIRECT NORMAL 1138.9 601.5 567.8 1126.8 984.9 535.5 524.2 494.1 1067.2 1953.9 1301.4 1054.5 494 1 **TOTAL HORIZNTL** 938.2 1140.5 1454.2 1779.3 1973.4 1795.8 1755.5 1617.5 1608.7 1491.5 1058.2 921.6 MAX HRLY SOLAR **DIRECT NORMAL** 291.0 289.6 277.9 265.4 255.6 225.7 237.9 272.3 290.1 282.0 283.81 285.4 291.0 296.1 TOTAL HORIZNTL 235.8 264.8 287.6 295.8 295.3 272.4 272.9 284.8 269.9 242.5 218.2 296.1 AVG MAX HRLY SOLAR DIRECT NORML 275.2 239.7 253.8 227.4 231.8 175.5 90.6 108.5 228.6 277.9 264.9 257.5 219.1 TOTAL HORIZNTL 216.4 236.9 267.6 278.0 286.8 271.1 247.8 247.8 265.6 255.7 223.4 188.4 248.8

Table 2.9 Karachi 1986 Weather Summary (continued)

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
AVG.	DAILY TO	OTAL VE	RTICAL	SOLAR			-	. "					*	
N	221.7	306.5	375.9	502.0	667.2	897.6	972.6	799.2	445.5	288.4	230.4	195.3	493.1	
Ε	816.5	900.3	1127.0	1132.6	1228.0	1249.9	1248.7	1180.8	997.8	940.7	837.5	710.8	1031.7	
S	1725.5	1436.4	1263.8	885.0	667.7	750.4	928.8	997.1	1085.3	1474.3	1598.1	1591.2	1199.7	
W	827.1	866.0	1095.5	1174.9	1281.2	1276.8	1255.0	1197.5	1132.0	1034.4	805.7	713.8	1056.1	
MAX.	DAILY TO	OTAL VE	RTICAL	SOLAR										
· N	295.4	530.1	657.1	725.5	975.8	1033.8	1044.9	915.2	627.2	382.0	285.6	262.1	1044.9	
E	929.6	1082.4	1414.0	1355.4	1344.5	1354.2	1328.9	1362.3	1343.9	1085.5	967.4	840.9	1414.0	
S	1864.7	1770.2	1530.8	1064.4	918.9	937.4	980.2	1040.5	1281.3	1683.6	1782.7	1866.3	1866.3	
W		1073.0		1385.5	1423.1	1561.6	1360.2	1337.2	1258.4	1148.6	961.6	836.4	1561.6	
	HALY TO	TAL VEF	RTICAL S	OLAR										
N	69.7	93.4	103.5	105.9	119.1	124.0	123.2	114.5	103.2	70.6	75.4	42.4	124.0	
. E	216.0	232.0	244.7	244.4	240.1	232.7	207.5	209.2	236.4	232.2	218.4	198.5	244.7	
S	250.1	232.3	207.8	172.3	143.5	133.7	143.7	169.0	197.1	222.2	244.6	251.1	251.1	
W	216.7	237.7	246.0	246.0	240.0	232.7	205.7	215.0	236.6	228.5	217.2	200.2	246.0	
DESIG	N TEMP	FRATIIR	ES	SUMM	FR	WINTE	D.							
	PER CEN			DRY)		T(DR)								
	1.0	•••	. (99	83	4	• .		•					
	2.5			95	82	4	-							
	5.0			93	82	7	•							

CLEARNESS NUMBERS 0.90 0.90

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
HOUR													
0	56.6	62.8	71.1	77.9	82.0	84.4	82.4	79.8	79.2	76.9	68.2	57.7	73.3
1	54.9	61.5	69.5	77.0	82.2	84.3	82.3	79.5	78.7	76.4	67.0	56.1	72.5
. 2	53.6	59.7	68.2	76.1	81.6	83.7	82.0	79.4	78.5	75.1	66.1	54.6	71.6
3	52.1	58.0	66.9	75.6	81.3	83.4	81.8	79.5	77.8	74.3	65.3	53.3	70.8
4	51.0	57.2	65.9	74.7	80.8	83.2	81.8	79.3	77.8	74.3	64.6	52.2	70.3
5	49.9	56.1	65.8	74.2	80.3	83.2	81.5	79.4	77.7	73.5	63.8	51.0	69.8
6	48.8	55.5	65.2	74.6	80.9	83.8	81.6	80.1	77.5	72.4	63.0	50.6	69.6
7	48.9	56.1	66.6	77.6	82.5	85.6	82.7	81.3	78.5	73.6	63.4	50.9	70.7
8	51.5	59.6	69.0	80.0	84.9	87.7	84.3	82.4	80.4	76.1	66.8	53.0	73.0
9	56.3	63.7	72.7	82.7	87.7	89.6	85.7	84.1	81.5	78.8	70.2	56.6	75.8
10	62.1	67.4	76.5	86.0	90.6	91.4	87.1	84.9	82.7	82.2	74.7	61.0	78.9
11	69.2	72.2	80.6	89.2	93.1	92.6	88.2	85.8	84.6	86.1	80.7	65.8	82.4
12	73.1	75.8	84.5	91.4	94.9	94.1	88.9	86.2	86.0	89.7	85.5	71.9	85.2
13	75.5	78.3	85.8	92.7	96.5	95.2	89.7	86.2	87.3	91.4	88.0	74.7	86.8
14	78.2	79.6	87.5	93.9	97.1	95.9	90.0	86.2	88.3	92.8	89.4	77.2	88.0
15	78.1	79.6	88.4	94.4	97.6	96.2	89.6	85.5	88.1	94.2	89.4	77.7	88.3
16	76.6	78.8	87.6	92.6	96.0	94.4	88.4	85.2	87.4	92.8	87.2	76.6	87.0
17	75.0	77.0	85.0	90.5	93.1	91.9	87.2	84.0	86.2	90.3	84.7	74.5	85.0
18	72.6	75.3	82.3	87.5	90.3	90.6	86.3	82.8	84.4	87.5	81.8	72.2	82.8
19	70.3	73.0	79.3	85.0	87.4	88.5	85.2	81.8	83.2	84.9	79.7	70.1	80.7
20	67.1	70.9	77.4	82.7	85.5	86.6	83.7	81.1	81.7	82.5	77.1	66.7	78.6
21	64.7	68.9	75.2	81.0	84.5	86.1	83.5	80.6	80.8	80.7	74.3	63.8	77.0
22	62.9	67.1	74.0	79.7	83.6	85.1	83.3	80.3	80.5	79.7	72.5	62.3	75.9
23	60.0	65.2	72.8	78.9	83.1	84.7	82.5	80.0	80.1	78.2	69.4	59.8	74.6
										-			
GROUND TEMPERATURES	533.1	531.1	531.0	531.9	535.6	539.3	542.5	544.6	544.7	543.1	539.9	536.4	

0.90 0.90 0.90 0.90

Table 2.10 Lahore 1986 Weather Summary

LATITUDE = 31.50 LONGITUDE = -74.30 TIME ZONE = -5 OCT NOV APR SEP DEC YEAR JUN JUL AUG JAN FEB MAR MAY 74.7 AVG. TEMP. (F) (DRYBULB) 59.6 68.4 79.5 84.9 92.3 86.7 87.2 83.7 76.4 66.8 55.4 54.3 AVG. TEMP. (F) (WETBULB) 48.7 53.1 59.8 65.0 68.6 76.1 79.5 79.2 74.1 67.9 59.5 50.0 65.2 AVG. DAILY MAX. TEMP. 71.5 79.8 92.8 97.9 103.7 95.2 94.9 94.4 89.3 81.2 69.0 86.5 68.2 80.1 AVG. DAILY MIN. TEMP. 43.0 49.8 57.8 66.9 724 81.2 78.9 75.2 65.9 56.2 45.0 64 4 698.0 **HEATING DEG. DAYS** (BASE 65) 291.5 124.5 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21.0 248.5 (BASE 60) 136.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 123.5 275.0 15.0 0.0 (BASE 55) 16.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.0 50 O (BASE 50) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 **COOLING DEG. DAYS** (BASE 80) 0.0 0.0 0.0 68.5 173.0 377.5 219.5 232.5 162.5 29 0 0.0 0.0 1262.5 (BASE 75) 0.0 0.0 1.5 166.0 314.0 524.0 374.0 387.5 294.5 102.0 0.0 0.0 2163.5 (BASE 70) 0.0 0.0 36.5 296.5 469.0 674.0 529.0 542.5 444.0 237.5 440 0.0 3273.0 (BASE 65) 0.0 2.5 129.5 446.0 624.0 824.0 684.0 697.5 594.0 391.0 133.0 0.0 4525.5 HEATING DEG. HRS./24 (BASE 65) 343.8 1046.6 194.5 63.1 9.0 0.8 0.0 0.0 0.0 0.0 15.0 95.6 324.8 (BASE 60) 228.5 102.5 18.7 0.0 0.0 0.0 0.0 0.0 0.6 34.3 210.2 596.3 1.4 295.4 (BASE 55) 130.9 36.5 12 0.0 იი 0.0 0.0 0.0 0.0 0.0 68 120.0 (BASE 50) 56.7 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.8 119.5 COOLING DEG. HRS./24 (BASE 80) 0.0 11.4 127.0 218.1 382.5 223.1 228.9 164.7 78.2 0.0 1450.8 0.0 17.0 39.9 207.4 330.3 522.2 366.9 377.8 276.2 (BASE 75) 0.0 1.8 147.8 45.7 0.5 2316.5 (BASE 70) 90.2 314.9 466,7 669.2 518.6 532.7 411.7 246.0 89.4 7.3 3360.0 0.1 13.1 (BASE 65) 13.5 42.8 169.1 445.0 616.8 819.2 673.5 687.7 560.6 366.8 150.2 27.7 4573.1 MAXIMUM TEMP. 71 80 89 107 109 115 103 99 100 94 89 78 115 MINIMUM TEMP. 38 42 52 55 61 70 69 74 67 58 50 37 37 NO. DAYS MAX. 90 AND ABOVE 0 0 0 20 26 28 29 29 24 14 0 0 170 NO. DAYS MAX. 32 AND BELOW 0 0 0 0 ٥ 0 ٥ 0 0 0 0 0 0 NO. DAYS MIN. 32 AND BELOW 0 0 0 0 0 ٥ 0 0 0 0 0 0 O NO. DAYS MIN. 0 AND BELOW 0 O 0 O Ω 0 ٥ O O 0 0 O 0 AVG. WIND SPEED (MPH) 0.6 2.0 2.5 2.5 3.1 3.3 2.6 2.3 1.7 1.0 1.0 0:9 2.0 AVG. WIND SPEED (DAY) 1.3 2.9 3,1 3.2 3.4 3.7 2.8 2.9 2.1 1.4 1.5 1.5 2.6 AVG. WIND SPEED (NIGHT) 0.1 1.3 1.9 1.6 2.8 2.8 24 1.6 1.1 0.6 0.6 0.5 1.4 AVG. TEMP. (DAY) 72.5 81.6 60.2 84.4 89.2 95.5 88.7 89.4 87.6 72.9 61.1 80.3 64 1 AVG. TEMP. (NIGHT) 50.2 56.1 64.7 74.1 79.2 88.0 71.4 51.2 84.2 84.6 79.6 61.7 69.1 AVG. SKY COVER (DAY) 1.6 3.1 3.3 2.8 2.4 2.3 4.6 4.3 2.3 2.8 1.3 1.6 3.1 AVG. REL. HUM. AT 4AM 87.2 84.2 80.0 65.9 63.0 617 84.6 82.5 80.8 86.3 85.2 89.5 79.3 **10AM** 732 72.4 64.8 46.7 442 51.9 76.0 72.6 67.3 66 4 68.6 75.2 65.0 4PM 42.5 30.6 32.0 37.9 59.5 45.0 43.9 45.2 61.6 50.1 45.0 43.8 44 8 **10PM** 78.4 73.8 66.9 53.5 49.4 54.3 76.6 73.3 69.9 73.2 76.6 78.6 68.7 JAN APR JUN NOV FEB MAR MAY JUL AUG SEP OCT DEC YEAR AVG. DAILY SOLAR DIRECT NORMAL 1931.7 1729.4 1814.7 2002.7 2124.5 2095.1 1433.0 1497.5 1972.1 2151.5 1928.7 1521.9 1849.6 TOTAL HORIZNTL 1067.6 1206.1 1601.2 1968.1 2132.9 2209.3 1991.7 1894.9 1764.3 1491.1 1138.7 896.9 1615.2 MAX. DAILY SOLAR **DIRECT NORMAL** 2386.3 2599.1 2748.2 2778.1 2774.0 2758.9 2702.0 2574.6 2595.2 2465.3 2377.8 2203.5 2778.1 **TOTAL HORIZNTL** 1324.6 1630.9 2030.4 2276.3 2385.4 2430.0 2395.6 2099.6 2087.1 1705.9 1424.2 1130.1 2430.0 MIN. DAILY SOLAR DIRECT NORMAL 1011.9 496.6 632.9 861.7 735.0 767.6 553.8 534.2 657.3 909.6 618.5 607.8 496.6 **TOTAL HORIZNTL** 801.6 802.6 1346.8 1686.9 1772.7 1829.7 1709.5 1689.3 1385.2 1152.8 703.3 656.5 656.5 MAX HRLY SOLAR **DIRECT NORMAL** 285.6 285.2 276.0 262.5 254.7 250.5 258.4 267.2 275.9 276.2 TOTAL HORIZNTL 205.8 239.8 271.2 284.4 288.6 289.2 288.5 275.9 271.4 247.4 215.4 186.4 289.2 AVG MAX HRLY SOLAR DIRECT NORML 257.7 218.3 230.0 230.7 230.9 224.4 169.9 180.2 232.0 266.7 242.5 211.3 224.5 **TOTAL HORIZNTL** 175.9 194.1 242.8 266.4 276.2 276.0 263.0 258.4 252.6 229.0 180.0 148.3 230.4

Table 2.10 Lahore 1986 Weather Summary (continued)

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
AVG.	DAILY TO	OTAL VE	RTICAL	SOLAR							<u> </u>		· · ·	
N	185.1	256.3	389.7	505.4	599.4	730.2	764.4	625.0	405.7	276.5	203.2	192.7	428.8	
E	691.1	786.7	1008.2	1209.0	1233.9	1263.5	1242.0	1229.1	1096.6	951.1	713.4	597.9	1002.9	
S	1604.1	1394.6	1321.0	1080.2	823.7	763.2	887.5	1033.5	1213.8	1529.7	1554.7	1399.1	1216.3	
W	651.5	744.6	986.7	1180.5	1219.3	1307.1	1224.9	1157.2	1031.7	850.1	713.9	580.0	971.5	
MAX.	DAILY TO	OTAL VE	RTICAL	SOLAR										
N	246.4	420.7	578.2	747.8	832.0	937.5	930.5	825.5	624.4	433.6	269.4	256.1	937.5	
Ε	830.2	992.5	1184.7	1408.4	1516.3	1515.0	1388.8	1354.4	1221.9	1168.0	871.5	719.6	1516.3	
S	1847.4	1821.6	1662.5	1203.1	1098.0	1001.6	1041.6	1109.3	1342.2	1751.2	1808.7	1838.8	1847.4	
W	824.4	989.3	1242.2	1404.3	1457.5	1510.9	1433.5	1316.3	1211.2	1018.9	881.5	724.5	1510.9	
MAX.	HRLY TO	TAL VE	RTICAL S	OLAR										
N	42.6	84.8	96.2	103.9	105.4	111.3	110.0	105.2	96.6	85.0	43.4	41.5	111.3	
E	198.6	226.9	240.5	240.3	234.6	230.7	229.8	233.0	232.6	224.6	206.2	186.4	240.5	
S	261.3	252.5	225.1	191.7	169.1	148.8	159.8	174.6	207.0	240.7	257.7	261.2	261.3	
W	202.3	223.5	236.7	237.5	234.7	231.1	230.5	231.0	231.4	224.6	203.9	181.9	237.5	
		r									,			
		ERATUR		SUMM		WINTE	R							
	PER CE	NT	Τ(DRY)	T(WET)	T(DR)	()							
	1.0			110	86	3	9							
	2.5			107	85	. 4	0							
	5.0			102	83							•		

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
HOUR													
0	48.6	54.7	63.4	73.2	78.3	87.2	83.5	84.0	78.8	70.4	60.4	49.7	69.4
1	47.7	53.6	62.5	71.8	77.1	86.1	82.9	83.4	78.1	69.3	59.5	48.8	68.5
2	46.7	52.8	61.5	70.7	75.9	85.1	82.2	82.8	77.2	68.3	58.8	47.9	67.6
3	46.1	52.0	60.6	69.5	74.6	84.2	81.8	82.3	76.8	67.7	58.2	47.1	66.8
4	45.5	51.4	59.7	68.3	73.7	83.2	81.6	81.8	76.3	67.0	57.7	46.5	66.1
5	44.8	50.7	59.1	67.6	72.8	82.1	81.3	81.5	75.8	66.5	57.3	46.1	65.5
6	43.8	50.2	58.6	68.2	74.0	82.9	81.4	81.6	76.2	66.3	56.8	45.5	65.5
7	43.3	50.2	59.1	69.9	76.2	84.5	81.9	82.5	77.3	67.2	57.2	45.4	66.3
8 .	44.1	51.4	61.7	73.6	79.8	86.7	82.9	84.0	79.0	69.7	58.5	46.2	68.2
9	51.3	56.6	66.7	79.7	85.9	91.3	85.2	87.2	83.6	75.7	65.6	52.8	73.5
10	57.8	61.5	70.8	84.1	90.0	93.9	87.5	89.2	86.9	80.7	71.2	58.6	77.8
. 11	62.2	65.4	74.3	87.1	92.6	96.6	89.4	90.8	90.0	84.3	75.2	62.9	80.9
12	64.9	67.7	. 76.1	89.3	94.3	99.0	91.3	92.2	91.8	86.8	78.0	65.4	83.1
13	66.2	69.2	77.5	90.4	95.3	100.9	92.4	92.6	92.7	88.0	79.5	67.2	84.4
14	67.7	70.6	78.8	91.6	96.4	102.0	93.0	92.8	92.9	88.8	80.9	68.4	85.4
15	67.3	71.0	79.4	91.9	96.3	102.9	92.5	93.1	92.4	88.2	80.3	68.2	85.3
16	66.3	70.4	78.8	91.6	95.6	103.2	92.8	92.9	92.0	87.4	78.8	67.1	84.8
17	64.5	68.6	77.7	90.2	95.3	102.3	93.2	92.5	91.1	85.3	76.2	65.2	83.6
18	60.3	65.4	74.8	86.8	93.0	100.1	91.4	90.8	88.2	81.8	72.3	61.1	80.6
19	57.0	63.0	71.9	83.2	89.5	97.4	89.2	89.5	85.6	78.6	68.4	58.2	77.7
20	54.5	60.9	69.8	80.5	86.2	94.6	87.8	87.9	83.7	76.2	65.7	55.1	75.3
21	52.8	59.2	67.9	78.3	83.5	91.5	86.6	86.7	82.2	74.5	63.8	53.7	. 73.5
22	51.1	57.5	66.2	76.4	81.3	89.6	85.5	85.5	80.7	72.6	62.4	52.2	71.8
23	49.6	56.0	64.8	74.9	79.4	88.1	84.4	84.6	79.3	71.1	61.0	50.7	70.4
GROUND TEMPERATURES	527.5	524.6	524.4	525.8	531.3	536.8	541.6	544.6	544.9	542.4	537.8	532.4	
CLEARNESS NUMBERS	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	

Table 2.11 Multan 1986 Weather Summary

LATITUDE = 30.20 LONGITUDE = -71.50TIME ZONE = -5 JUL AUG SEP OCT NOV DEC MAR APR MAY JUN YEAR JAN FEB AVG. TEMP. (F) (DRYBULB) 59.6 68.7 81.3 89.3 95.0 90.1 88.2 85.5 78.8 66.1 54.3 75.9 AVG. TEMP. (F) (WETBULB) 51.8 59.2 65.6 70.1 77.3 79.8 79.3 74.8 68.6 58.5 48.1 65.1 46.8 AVG. DAILY MAX. TEMP. 80.7 94.5 102.7 107.0 98.9 97.1 97.2 92.2 82.3 70.0 88.8 69.5 73.1 AVG. DAILY MIN. TEMP. 39.2 47.3 56.9 67.7 75.9 83.8 81.5 80.3 74.9 67.9 53.8 41.8 64.3 **HEATING DEG. DAYS** (BASE 65) 330.0 144.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.5 281.5 799.5 (BASE 60) 175.0 0.0 351.5 36.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 140.0 (BASE 55) 31.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.0 70.5 (BASE 50) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 **COOLING DEG. DAYS** (BASE 80) 0.0 0.0 0.0 89.0 289.0 462.5 315.0 269.0 180.5 88.5 0.0 0.0 1693.5 (BASE 75) 0.0 0.0 0.5 200.5 442.5 612.5 470.0 424.0 330.5 166.5 0.0 0.0 2647.0 (BASE 70) 0.0 0.0 35.0 334.0 597.5 762.5 625.0 579.0 480.5 312.0 36.5 0.0 3762.0 (BASE 65) 130.5 483.5 0.0 9.0 752.5 912.5 780.0 734.0 630.5 467.0 123.0 0.0 5022.5 0.0 HEATING DEG. HRS./24 (BASE 65) 385.8 208.2 63.5 117.5 364.9 1156.7 7.4 0.0 0.0 0.0 0.0 9.4 (BASE 60) 273.7 122.1 18.9 2.0 0.0 0.0 0.0 0.0 0.0 51.8 249.0 717.8 0.5 (BASE 55) 173.9 55.4 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.9 150.8 398 8 (BASE 50) 92.5 02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27 79 2 193.5 19.0 COOLING DEG. HRS./24 (BASE 80) 16.1 149.5 316.0 456.8 321.1 258.0 195.3 113.3 0.0 1848.5 0.0 0.9 21.4 (BASE 75) 0.0 6.1 47.4 243.0 451.3 600.7 469.9 410.7 318.5 200.8 51.0 1.9 2801.0 22.5 100.6 360.8 599.7 749.9 624.5 565.6 464.7 310.6 (BASE 70) 1.6 93.0 11.0 3904.3 178.5 496.5 753.9 899.9 779.5 720.6 614.6 437.1 151.8 33.0 5146.7 (BASE 65) 23.2 58.1 MAXIMUM TEMP. 73 107 101 100 79 83 88 109 113 118 101 90 118 MINIMUM TEMP. 37 38 47 54 65 70 72 73 68 57 46 35 35 NO. DAYS MAX. 90 AND ABOVE 0 0 0 22 30 29 30 31 30 20 1 0 193 NO. DAYS MAX. 32 AND BELOW 0 0 0 0 0 0 0 0 0 ٥ 0 0 0 NO. DAYS MIN. 32 AND BELOW ٥ n 0 0 0 0 . 0 n 0 0 O 0 O NO. DAYS MIN. 0 AND BELOW O 0 ٥ a Ω O O ٥ n O O 0 0 AVG. WIND SPEED (MPH) 0.8 1.9 2.9 2.6 3.3 3.6 3.3 4.0 2.7 1.7 1.4 0.9 2.4 AVG. WIND SPEED (DAY) 1.8 3.3 3.6 3.4 3.8 4.5 3.9 5.7 3.9 2.8 2.7 2.0 3.5 AVG. WIND SPEED (NIGHT) 0.1 0.9 2.4 1.7 2.7 2.5 2.7 2.2 1.5 0.7 0.4 0.2 1.4 AVG. TEMP. (DAY) 64.7 72.8 98.3 92.2 90.8 72.9 61.0 81.9 59 9 85.6 93.4 89.9 84.0 AVG. TEMP. (NIGHT) 65.2 87.7 85.5 48.9 56.0 76.9 84.5 90.8 81.2 74.1 60.8 49.6 70,4 AVG. SKY COVER (DAY) 2.8 2.9 0.8 2.0 2.7 0.4 1.3 2.7 2.6 1.0 1.2 2.6 1.9 AVG. REL. HUM. AT 4AM 83.8 77.1 72.0 55.8 48.5 56.0 72.5 77.9 74.6 76.4 84.0 83.4 71.8 **10AM** 76.2 74.9 66.9 497 42.7 53.7 70.7 73.5 67.0 65.0 69.3 76.5 65.5 4PM 38.8 25.9 53.5 36.5 35.5 39.6 29.5 34.3 52.1 44.6 38.9 38.0 39.0 10PM 75.1 67.1 63.2 51.3 46.5 50.3 66.0 69.6 66.8 69.5 79.4 79.5 65.4 JAN SEP FEB APR JUN JUL **AUG** MAR MAY OCT NOV DEC YEAR AVG. DAILY SOLAR **DIRECT NORMAL** 2010.8 1836.2 1923.8 2031.4 2546.0 2220.2 1982.0 1925.9 2310.9 2385.7 2059.7 1666.0 2076.0 TOTAL HORIZNTL 1111.8 1272.2 1646.0 1964.1 2275.6 2247.2 2185.0 2005.1 1857.4 1605.2 1225.8 959.5 1698.3 MAX. DAILY SOLAR **DIRECT NORMAL** 2420.5 2635.5 2713.2 2777.9 2771.1 2753.2 2713.5 2609.1 2593.6 2524.4 2406.8 2241.7 2777.9 TOTAL HORIZNTL 1372.9 1672.8 1964.9 2229.6 2398.7 2426.3 2413.4 2184.1 2112.2 1800.7 1470.3 1222.1 2426.3 MIN. DAILY SOLAR **DIRECT NORMAL** 952.9 533.9 980.3 849.5 1218.2 769.8 694.8 757.8 1305.8 1243.0 517.4 224.3 224.3 **TOTAL HORIZNTL** 876.7 1330.4 1697.0 1867.6 1909.7 1864.3 1836.7 1502.3 1139.1 710.2 MAX HRLY SOLAR **DIRECT NORMAL** 284.7 286.9 286.3 276.8 263.7 254.9 251.4 258.8 268.8 276.9 277.4 278.3 286.9 **TOTAL HORIZNTL** 275.7 287.7 212.2 242.9 291.1 291.4 290.6 281.6 275.5 251.1 219.5 193.8 291.4 AVG MAX HRLY SOLAR DIRECT NORML 239.9 232.8 230.8 250.4 230.2 213.3 210.9 255.0 270.9 253.7 230.9 240.1 **TOTAL HORIZNTL** 210.2 248.5 271.0 287.0 283.5 276.0 268.3 260.2 234.8 188.5 159.5 239.0

Table 2.11 Multan 1986 Weather Summary (continued)

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
AVG.	DAILY TO	OTAL VE	RTICAL S	SOLAR										
N	183.2	255.7	371.6	485.3	563.4	701.3	726.2	549.6	354.7	268.1	214.0	185.6	405.8	
Ε	694.8	784.1	1002.6	1168.8	1259.3	1268.3	1264.5	1202.0	1082.9	957.6	769.8	590.4	1004.8	
S	1618.9	1425.4	1296.1	1027.7	743.4	697.4	793.9	949.7	1202.1	1579.6	1626.5	1457.8	1200.4	
W	686.0	777.7	984.1	1156.2	1262.9	1237.5	1297.0	1176.2	1087.4	953.9	758.5	627.2	1001.6	,
MAX.	DAILY TO	OTAL VE	RTICAL	SOLAR										
N	254.6	446.1	573.8	732.1	831.1	971.2	977.9	867.6	558.7	338.0	287.1	268.0	977.9	
Ε	841.8	1046.7	1177.0	1317.3	1318.0	1375.2	1479.6	1326.5	1220.7	1058.9	893.8	741.4	1479.6	
S	1851.2	1814.3	1643.0	1183.7	1035.3	1007.5	1053.4	1060.6	1363.8	1741.9	1835.2	1846.2	1851.2	
W	840.1	1007.0	1154.0	1253.3	1383.2	1383.1	1510.5	1311.4	1207.2	1060.5	895.9	770.1	1510.5	
MAX.	HRLY TO	TAL VEF	RTICAL S	OLAR										
N	40.1	86.4	96.9	103.2	109.4	111.8	113.7	104.3	91.7	76.4	44.4	42.5	113.7	
E	200.5	224.7	242.7	242.9	237.7	232.2	232.1	235.0	234.8	227.5	209.5	187.8	242.9	
S	260.5	248.5	221.3	187.5	167.3	148.2	157.3	164.1	203.9	236.5	254.8	260.6	260.6	
W	202.4	222.5	239.9	240.2	237.6	232.9	232.5	233.1	230.6	226.5	209.3	189.5	240.2	
DESIG	N TEMP	ERATUR	ES	SUMM	ER	WINTE	R						-	
	PER CEN	NT.	T(1		r(WET)	T(DR)	0							
	1.0			113	` 85	` 3	•							
	2.5			109	84	3	7							
	5.0			104	83									

•	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
HOUR													
0	47.3	54.2	63.9	76.0	83.5	90.1	87.2	85.3	80.5	73.6	59.8	48.6	70.9
1	46.1	53.2	62.9	75.0	82.7	89.2	86.5	84.2	79.5	72.5	58.9	47.7	70.0
2	44.8	52.1	61.8	74.1	81.9	87.9	85.1	83.1	78.4	71.7	58.1	46.9	68.9
3	43.7	51.0	60.9	73.2	81.0	86.9	84.3	82.3	77.2	71.0	57.1	46.1	68.0
4	42.5	49.8	60.0	71.9	79.4	85.5	83.6	81.3	76.1	70.3	56.0	45.3	66.9
5	41.3	49.6	58.8	69.9	77.4	84.7	83.2	82.1	76.4	69.7	55.6	43.5	66.1
6	40.3	48.9	57.8	68.2	76.6	84.3	82.5	81.5	75.7	68.9	54.7	42.7	65.3
7	39.6	48.1	57.7	68.9	78.1	85.8	83.3	82.0	76.3	68.4	54.4	42.3	65.5
8	40.4	48.9	60.3	74.1	83.1	88.6	85.3	83.8	79.5	71.1	56.3	42.7	67.9
9	47.0	54.4	65.4	79.3	87.3	92.4	87.9	86.0	83.6	76.5	63.4	49.6	72.8
10	55.3	61.0	70.0	83.9	91.5	96.0	90.2	88.6	88.4	82.1	69.6	57.2	77.9
11	61.5	66.0	73.9	87.5	95.3	99.5	92.1	91.5	91.6	85.9	74.4	62.7	81.9
12	64.9	69.1	76.6	90.0	97.5	102.3	94.0	93.0	94.0	88.3	77.3	65.6	84.4
13	67.1	70.8	78.6	91.7	99.7	104.4	95.9	94.8	96.0	90.4	80.4	68.3	86.6
1.14	68.8	72.1	79.6	92.7	101.2	105.6	97.3	96.0	96.7	91.5	82.0	69.5	87.8
15	69.3	72.4	79.9	93.6	102.1	106.4	98.0	96.6	96.9	91.9	82.1	69.6	88.3
16	69.0	72.2	80.4	93.6	102.1	106.5	98.0	96.4	96.4	91.1	81.4	69.4	88.1
17	67.2	71.4	79.5	92.6	101.3	105.5	98.1	95.3	94.8	89.0	77.8	66.7	86.7
18	62.7	68.1	77.2	90,5	99.3	103.9	96.5	93.6	91.6	84.4	71.3	59.9	83.3
19	57.0	64.3	73.5	86.2	95.1	99.9	94.5	90.9	88.3	80.1	67.6	55.9	79.5
20	53.9	61.5	70.5	82.5	90.9	96.7	91.9	88.9	85.9	78.1	65.0	53.2	76.6
21	51.4	59.2	68.3	80.2	87.4	94.0	90.3	87.9	84.0	76.2	62.8	51.1	74.5
22	49.8	57.2	66.5	78.6	85.2	92.5	89.2	86.8	82.5	74.7	61.3	49.8	72.9
23	48.3	55.8	65.2	77.2	84.1	91.3	88.5	86.0	81.3	73.8	60.2	48.9	71.8
												_	
GROUND TEMPERATURES	528.1	524.9	524.7	526.2	532.2	538.3	543.5	546.9	547.1	544.4	539.3	533.5	
CLEARNESS NUMBERS	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	

Table 2.12 Peshawar 1986 Weather Summary

LATITUDE = 34.00 LONGITUDE = -71.60TIME ZONE = -5 NOV DEC YEAR APR JUN JUL AUG SEP OCT JAN FEB MAR MAY 54.7 60.5 83.2 90.9 82.6 52.3 71.5 AVG. TEMP. (F) (DRYBULB) 49.8 72.7 89.2 86.1 73.9 61.6 48.2 62.1 AVG. TEMP. (F) (WETBULB) 48.3 54.4 62.5 66.3 72.8 77.8 77.4 72.3 65.1 55.3 43.9 83.8 AVG. DAILY MAX. TEMP. 65.2 66.5 71:0 85.4 96.1 103.9 99.0 95.7 94.5 87.7 75.5 64.4 AVG. DAILY MIN. TEMP. 38.7 44.7 51.5 60.8 70.2 78.2 80.5 78.4 72.8 63.6 52.3 44.0 61.4 **HEATING DEG. DAYS** (BASE 65) 404.0 264.0 129.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 81.0 334.0 1220.0 (BASE 60) 249.0 126.0 39.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.0 186.0 626.5 2.5 (BASE 55) 94.0 27.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 69.0 197.0 (BASE 50) 6.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.5 14.5 COOLING DEG. DAYS (BASE 80) 0.0 0.0 0.0 9.0 130.5 331.0 302.0 221.5 115.0 18.0 0.0 0.0 1127.0 (BASE 75) 0.0 0.0 0.0 44.5 261.0 480.5 457.0 373.0 259.5 81.5 0.0 0.0 1957.0 2.5 0.0 2890.5 (BASE 70) 0.0 0.0 0.0 124.0 406.5 630.5 612.0 528.0 409.5 177.5 (BASE 65) 0.0 12.5 251.0 561.5 780.5 330.5 48.0 0.0 3993.5 0.0 767.0 683.0 559.5 **HEATING DEG. HRS./24** (BASE 65) 476.0 307.6 196.8 38.4 0.0 0.0 0.0 0.0 32.0 175.9 403.6 1631.8 1.6 (BASE 60) 343.0 196.5 96.1 13.5 0.0 0.0 0.0 0.0 0.0 6.2 87.0 268.5 1010.7 103.2 0.0 0.0 0.0 0.0 0.0 29.9 152.5 545.8 (BASE 55) 226.5 29.8 39 0.0 64.6 (BASE 50) 126.1 38.6 0.1 0.0 0.0 0.0 0.0 5.3 238.2 34 0.0 0.0 COOLING DEG. HRS./24 (BASE 80) 0.0 1292.1 0.0 0.0 0.5 48.3 191.9 351.3 294.2 205.1 144.4 54.0 2.4 97.9 294.0 484.9 441.7 345.6 244.8 0.1 2043.6 (BASE 75) 0.0 0.1 112.1 14.1 (BASE 70) 0.0 26.6 170.2 421.0 628.1 595.5 499.9 380.8 198.9 36.6 1.5 2963.1 3.9 56.2 269.0 565.5 777.5 750.5 654.9 529.0 74.2 9.6 4018.7 (BASE 65) 4.3 19.7 308.1 MAXIMUM TEMP. 70 76 84 100 106 118 106 103 102 96 85 77 118 MINIMUM TEMP. 37 44 48 60 67 71 72 65 55 44 37 35 35 NO. DAYS MAX. 90 AND ABOVE 0 ٥ 0 8 25 30 30 26 27 12 0 0 158 NO. DAYS MAX, 32 AND BELOW 0 0 O 0 0 O 0 0 0 O O a ٥ 0 0 0 NO. DAYS MIN. 32 AND BELOW O ٥ 0 O O O O 0 O 0 NO. DAYS MIN. 0 AND BELOW 0 0 0 0 0 0 ٥ 0 0 0 n 0 O AVG. WIND SPEED (MPH) 0.9 2.4 2.2 2.9 6.0 4.1 4.0 3.3 2.3 1.3 0.9 1.2 2.6 AVG. WIND SPEED (DAY) 1.0 2.7 3.0 3.6 6.2 4.5 5.2 44 3.3 2.1 0.9 1.4 3.4 AVG. WIND SPEED (NIGHT) 1.5 2.1 5.7 3.6 2.4 2.1 0.6 0.9 1.2 1.9 0.8 22 1.3 87.1 86.4 77 1 AVG. TEMP. (DAY) 55.3 59.2 63.8 76.8 94.8 91.2 88.5 78.6 66.2 56.2 AVG. TEMP. (NIGHT) 46.3 51.6 57.6 68.3 78.3 85.8 86.8 83.5 78.9 69.8 58.1 49.7 66.4 AVG. SKY COVER (DAY) 2.0 4.2 4.7 3.8 2.6 2.8 3.0 4.2 2.2 1.1 2.9 4.5 3.2 AVG. REL. HUM. AT 4AM 75.8 58.6 78.4 81.9 87.1 75.8 80.4 81 2 84 4 56.2 70.8 76 2 78.0 82.5 **10AM** 71.3 75.8 58.5 45.3 65.3 65.6 70.2 78.9 66.9 71.6 43.7 73.7 4PM 40.6 45.7 53.5 41.5 31.0 30.8 49.7 55.7 44.4 42.4 47.0 55.7 44.9 **10PM** 74.6 72.3 75.5 65.5 48.1 45.9 62.1 70.1 68.4 70.7 76.8 83.2 67:8 JAN **FEB** MAR APR MAY JUN JUL **AUG** SEP OCT NOV DEC YEAR AVG. DAILY SOLAR DIRECT NORMAL 1741.2 1422.4 1427.0 1720.1 2100.7 2027.6 1911.5 1554.8 1994.3 2184.5 1559.8 1166.3 1735.7 **TOTAL HORIZNTL** 942.3 1030.0 1449.4 1838.3 2104.4 2178.1 2123.6 1870.2 1705.3 1412.3 959.7 743.3 1532.3 MAX. DAILY SOLAR **DIRECT NORMAL** 2303.6 2426.8 2598.0 2716.5 2786.8 2777.0 2751.9 2435.0 2567.3 2447.0 2308.8 2105.8 2786.8 TOTAL HORIZNTL 1229.9 1436.3 1704.1 2115.5 2305.1 2439.4 2425.1 2009.6 2032.0 1636.1 1325.0 1031.7 2439.4 MIN. DAILY SOLAR **DIRECT NORMAL** 710.0 496.0 582.3 801.7 835.6 1038.5 815.5 638.6 949.2 1202.2 433.3 530.2 433.3 TOTAL HORIZNTL 776.5 1207.3 1589.9 1788.6 1961.8 1887.6 1717.4 1367.2 1086.6 619.3 609.2 MAX HRLY SOLAR **DIRECT NORMAL** 280.0 283.5 283.3 275.4 262.7 253.1 250.4 257.5 264.9 272.7 272.7 272.1 283.5 278.0 266.8 TOTAL HORIZNTL 194.6 227.8 247.8 286.8 287.8 287.1 270.6 239.3 203.2 171.3 287.8 AVG MAX HRLY SOLAR DIRECT NORML 237.1 189.7 175.8 197.8 227.1 227.0 202.2 182.5 233.6 259.8 214.9 170.0 209.9 TOTAL HORIZNTL 157.5 170.8 227.5 255.9 273.9 277.0 270.3 254.7 246.5 217.7 152.8 124.6

Table 2.12 Peshawar 1986 Weather Summary (continued)

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
AVG.	DAILY TO	OTAL VE	RTICAL	SOLAR										
N	176.2	241.7	423.6	519.5	587.4	689.8	678.4	581.1	373.0	239.7	204.7	189.3	409.7	
Ε	621.4	674.4	958.6	1178.6	1275.7	1290.0	1244.3	1185.3	1021.9	885.8	641.2	506.3	958.5	
S	1514.0	1251.5	1298.6	1132.7	888.6	819.1	874.5	1057.8	1257.7	1543.6	1378.0	1197.0	1184.3	
W	601.9	647.4	914.1	1093.5	1160.5	1193.1	1246.4	1097.8	1008.3	822.2	627.5	488.7	909.8	
MAX.	DAILY TO	OTAL VE	RTICAL	SOLAR										
N	255.8	388.4	615.8	748.6	857.8	907.6	930.6	813.3	585.0	329.2	266.6	238.0	930.6	
E	778.8	928.6	1174.6	1342.1	1462.0	1445.9	1399.5	1323.2	1188.4	1003.1	836.0	667.1	1462.0	
· S	1829.9	1763.8	1703.0	1300.8	1144.9	1046.2	1098.6	1152.2	1410.8	1750.0	1802.0	1806.8	1829.9	
W	778.3	803.1	1026.1	1226.1	1349.3	1408.6	1393.8	1328.3	1159.3	993.6	838.7	675.5	1408.6	
MAX.	HRLY TO	TAL VEF	RTICAL S	OLAR						•				
N	40.6	78.9	95.8	101.4	104.2	103.8	104.3	104.1	95.5	68.7	42.4	38.6	104.3	
E	193.0	216.9	235.9	240.5	237.2	232.2	232.8	233.7	232.7	222.5	201.1	172.6	240.5	
S	264.6	255.9	233.1	198.2	175.7	155.1	165.2	179.0	209.5	245.0	255.3	264.6	264.6	
W	194.7	200.2	219.2	238.6	237.3	233.6	232.8	226.2	228.1	221.0	199.4	175.4	238.6	
DESIG	N TEMP	FRATUR	ES	SUMM	FR	WINTE	R							
	PER CEN		-		r(WET)	T(DR)								
	1.0		• (109	85	3	•							•
	2.5			105	84	_	8							
	5.0			102	83	_	-			•				

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	YEAR
HOUR													
0	44.5	49.9	56.5	67.5	77.4	84.1	86.1	83.0	78.3	69.0	57.5	49.1	67.0
1	43.5	49.2	55.5	66.1	76.5	83.0	85.1	82.3	77.3	68.1	56.7	48.4	66.1
2	42.6	48.3	54.9	64.9	75.7	82.2	83.9	81.5	76.4	67.2	55.9	47.7	65.2
3	41.8	47.5	54.4	63.8	73.9	81.3	83.6	81.0	75.6	66.4	55.2	47.0	64.4
4	40.9	46.7	53.6	63.1	72.4	79.6	82.3	80.4	74.3	65.6	54.4	46.2	63.4
5	40.2	46.3	52.9	61.9	71.2	79.2	81.7	79.9	73.7	65.3	53.7	45.3	62.7
. * 6	39.7	45.8	52.4	61.3	70.5	79.1	81.4	79.6	73.2	64.3	53.1	44.8	62.2
7	39.3	45.7	51.9	61.7	72.8	81.1	82.5	80.1	73.4	63.7	52.8	44.5	62.5
8 ·	39.5	46.6	53.6	65.2	77.4	85.4	84.5	81.7	76.2	65.2	53.1	44.5	64.5
9	43.1	50.8	57.8	72.0	83.2	91.1	86.8	84.2	79.9	69.5	56.0	46.8	68.5
10	49.2	56.8	62.0	76.9	87.5	95.3	89.0	86.8	84.0	74.6	61.0	50.5	72.8
11	54.5	60.2	65.1	79.7	89.7	97.3	91.4	89.0	86.9	79.1	65.5	54.8	76.2
12	58.7	62.5	67.0	80.9	92.2	99.9	93.7	91.2	89.7	83.1	69.7	58.9	79.0
13	62.2	63.6	68.1	82.3	93.5	100.9	95.3	93.0	92.0	85.3	72.6	61.9	81.0
14	63.3	64.9	69.1	83.1	94.6	101.5	95.8	93.9	93.4	86.6	74.2	63.3	82.0
15	64.6	65.5	69.5	84.1	94.5	102.2	97.4	93.9	93.9	87.3	75.1	64.1	82.7
16	64.7	65.6	69.7	84.1	94.2	101.6	97.5	93.6	93.4	86.5	74.5	63.3	82.5
17	62.8	64.3	69.0	82.8	93.4	101.3	96.5	92.2	91.7	84.5	70.9	60.1	80.9
18	56.9	61.2	66.8	80.4	91.8	100.1	95.1	90.2	89.2	79.6	65.7	56.3	77.8
19	52.5	58.3	64.1	77.5	88.4	97.6	93.9	88.8	85.9	76.3	62.9	53.9	75.1
. 20	50.0	55.7	61.6	74.0	84.8	93.8	91.8	86.9	83.7	74.0	61.4	52.3	72.6
21	48.2	54.1	59.8	71.7	82.0	90.4	89.9	85.7	81.8	72.1	60.1	51.3	70.7
22	46.8	52.4	58.6	70.3	80.2	88.1	88.5	84.5	80.4	70.8	58.9	50.5	69.2
23	45.5	51.2	57.3	69.2	78.7	86.0	87.5	83.6	79.2	69.7	57.8	49.6	68.0
GROUND TEMPERATURES	523.8	520.7	520.4	521.9	527.9	533.9	539.0	542.3	542.6	539.9	534.9	529.1	
CLEARNESS NUMBERS	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	

Table 2.13 Quetta 1986 Weather Summary

LATITUDE = 30.20 LONGITUDE = -67.00 TIME ZONE = -5 DEC JUN JUL AUG SEP OCT NOV YEAR JAN FEB MAR APR MAY AVG. TEMP. (F) (DRYBULB) 49.7 65.1 73.6 81.6 81.8 77.8 62.5 50.3 40.0 61.1 38.0 42.3 69.5 AVG. TEMP. (F) (WETBULB) 47.2 40.3 33.0 47.4 37.3 43.4 55.0 58.7 59.1 59.6 51.8 32.0 50.5 78.6 AVG. DAILY MAX. TEMP. 50.2 52.0 59.9 78.1 87.0 95.1 94.6 90.7 85.5 65.5 54.0 744 AVG. DAILY MIN. TEMP. 25.5 32.1 39.3 50.0 55.3 65.0 66.8 64.7 52.2 45.1 35.5 26.7 46.6 **HEATING DEG. DAYS** (BASE 65) 842.0 641.5 478.0 70.0 1.5 0.0 0.0 0.0 0.0 138.0 435.5 764.0 3370.5 (BASE 60) 687.0 501.5 323.0 21.0 0.0 0.0 0.0 0.0 0.0 66.0 285.5 609.0 2493.0 (BASE 55) 532.0 361.5 184.5 6.0 0.0 0.0 0.0 0.0 0.0 17.0 155.0 459.5 1715.5 (BASE 50) 377.0 226.0 91.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 72.5 324.5 1092.0 COOLING DEG. DAYS (BASE 80) 0.0 0.0 0.0 0.0 0.0 63.0 47.0 25.5 0.0 0.0 0.0 0.0 135.5 (BASE 75) 0.0 0.0 0.0 0.0 2.5 165.0 181.0 104.5 0.0 0.0 0.0 0.0 453 0 0.5 0.0 0.0 962.0 (BASE 70) 0.0 0.0 0.0 4.5 72.0 300.5 333.0 241.5 10.0 0.0 (BASE 65) 0.0 192.0 450.5 488.0 115.5 40.0 0.0 1722.0 0.0 0.0 42.0 394.0 HEATING DEG. HRS J24 (BASE 65) 836.8 635.0 477.5 131.4 53.7 7.0 2.5 10.1 91.3 211.4 465.9 779.2 3701.8 (BASE 60) 681.8 496.2 337.9 69.5 19.9 1.5 0.1 1.4 40.2 131.2 345.3 631.5 2756.4 (BASE 55) 527.2 361.7 216.7 0.2 0.0 0.0 10.5 70.6 236.8 491.2 1950.5 31.3 42 nq 32 4 144 8 364 3 1295 0 (BASE 50) 381.5 237.5 121 04 0.0 0.0 0.0 121.2 COOLING DEG. HRS./24 (BASE 80) 66.0 169.8 157.8 101.2 15.5 0.0 0.0 550.6 0.0 0.0 0.0 7.5 32.8 (BASE 75) 0.0 27.8 131.1 263.7 255.4 178.6 82.5 40.0 0.2 0.2 979.2 0.0 0.0 (BASE 70) 0.0 0.0 0.0 71.0 217.2 375.3 378.3 279.5 146.2 78.0 6.0 0.5 1552.0 25.0 3.2 2282.2 (BASE 65) 135.3 321.8 503.9 522.6 406.5 226.4 133.8 0.0 0.1 3.6 MAXIMUM TEMP. 57 66 71 89 93 105 100 99 89 87 77 79 105 MINIMUM TEMP. 25 47 52 58 54 46 32 26 11 11 15 26 34 NO. DAYS MAX. 90 AND ABOVE O 0 Ω 0 13 23 26 21 ۵ 0 ٥ 0 83 NO. DAYS MAX. 32 AND BELOW 0 0 0 0 0 0 0 0 0 0 O 2 2 NO. DAYS MIN. 32 AND BELOW 27 17 4 O 0 O O O ۵ 2 10 22 82 NO. DAYS MIN. 0 AND BELOW 0 0 O O n 0 O 0 0 ۵ 0 0 0 AVG. WIND SPEED (MPH) 7.9 8.4 9.8 10.0 142 10.9 11.4 9.4 6.8 7.7 5.5 6.1 9.0 AVG. WIND SPEED (DAY) 7.4 7.2 10.5 11.3 16.9 12.0 11.1 9.3 7.4 96 6.0 5.4 9.8 AVG. WIND SPEED (NIGHT) 9.5 5.1 6.6 8.2 9.2 8.7 11.3 9.7 118 6.2 6.2 8.4 9.1 52.6 AVG. TEMP. (DAY) 78.4 85.9 82.0 75.7 68.9 56.6 45.7 67.5 41.4 44.6 69.6 86.4 AVG. TEMP. (NIGHT) 36.0 40.9 47.5 60.9 68.5 76.1 77.4 73.7 64.0 57.3 45.8 36.3 55.7 AVG. SKY COVER (DAY) 1.8 4.1 4.2 3.3 1.4 2.3 2.1 2.4 0.3 0.5 2.0 2.5 2.2 AVG. REL. HUM. AT 76.8 39.7 55.0 54.5 70.9 63.5 58.8 4AM 75.8 74 9 55.2 47 O 41 0 51.7 **10AM** 80.7 72.4 29.9 35.7 48.3 43.5 53.8 37.3 70.7 44.4 33.7 38.8 48 9 4PM 41.4 54.1 53.2 27.2 24.2 18.7 18.0 23.6 18.6 19.5 30.0 58.3 32.2 10PM 70.5 66.9 37.3 32.7 27.5 28.4 37.9 30.7 34.4 47.9 75.1 45.5 JAN **FEB** MAR APR MAY JUN JUL **AUG** SEP OCT NOV DEC YEAR AVG. DAILY SOLAR DIRECT NORMAL 1902.4 1484.2 1552.7 1862.3 2378.3 2110.6 2137.2 2006.1 2481.6 2366.6 1873.1 1675.4 1988.9 TOTAL HORIZNTL 1110.9 1203.0 1591.7 1910.2 2219.1 2217.9 2207.1 2025.6 1916.9 1585.1 1137.0 965.7 1676.7 MAX. DAILY SOLAR **DIRECT NORMAL** 2426.7 2602.3 2754.1 2772.0 2779.2 2757.8 2715.7 2616.7 2582.7 2535.6 2410.0 2225.6 2779.2 TOTAL HORIZNTL 1373.9 1635.1 2054.8 2226.7 2394.1 2428.6 2414.3 2218.7 2093.9 1814.7 1469.4 1179.1 2428.6 MIN. DAILY SOLAR DIRECT NORMAL 704.4 507.8 545.3 856.6 1399.4 971.9 822.2 526.9 1940.0 1328.4 480.4 675.4 480.4 **TOTAL HORIZNTL** 871.7 1294.6 1649.2 2022.7 1981.1 1894.3 1659.4 1717.1 1149.3 704.5 729.9 704.5 MAX HRLY SOLAR **DIRECT NORMAL** 286.7 283.0 254.1 284.6 277.2 263.5 251.5 277.2 278.0 259.2 270.1 277.8 286.7 TOTAL HORIZNTL 242.2 275.3 288.4 291.8 292.0 290.8 283.2 253.8 221.1 211.6 276.1 191.8 292.0 AVG MAX HRLY SOLAR DIRECT NORML 250.7 204.3 189.3 216.8 247.9 222.4 226.8 218.2 262.3 269.5 237.5 233.1 231.8 **TOTAL HORIZNTL** 179.5 202.5 240.4 266.6 283.1 279.6 278.6 270.9 264.0 236.1 178.5 161.1 236.9

Table 2.13 Quetta 1986 Weather Summary (continued)

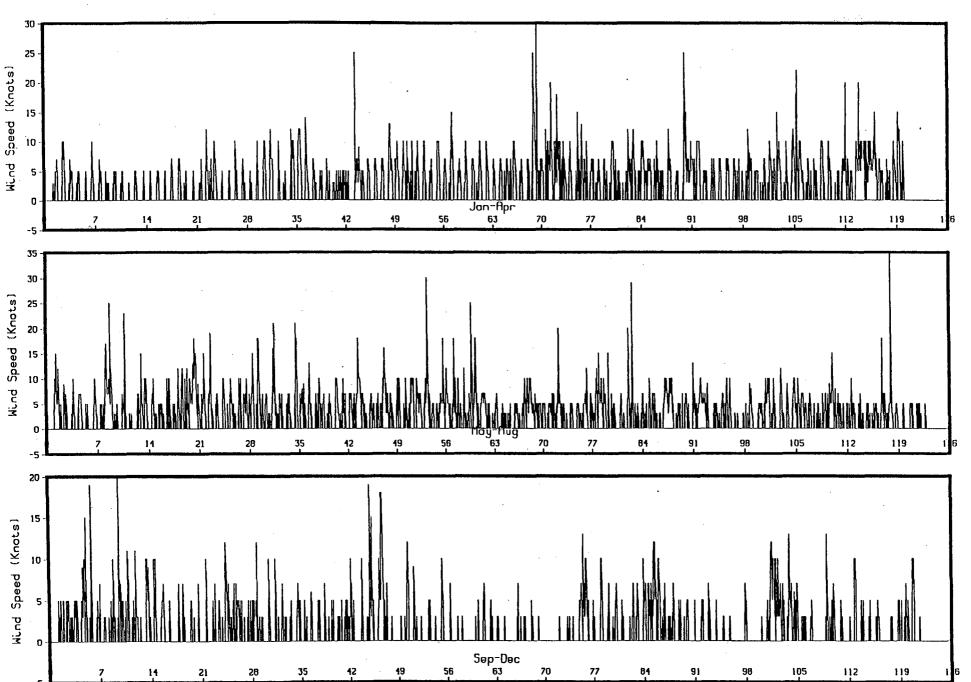
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
AVG.	DAILY TO	OTAL VE	RTICAL	SOLAR		7	******							
N	206.3	304.8	448.0	507.5	593.9	733.6	690.2	532.1	334.1	262.5	204.5	183.6	417.4	
E	717.0	807.0	1038.7	1181.8	1280.1	1284.0	1308.4	1205.4	1112.9	948.4	710.7	608.9	1018.0	
S	1599.5	1335.4	1283.0	1033.2	769.8	724.8	754.8	938.3	1228.3	1553.5	1496.8	1463.8	1181.2	
W	679.2	730.1	977.0	1102.0	1224.6	1253.4	1224.6	1149.9	1078.1	935.3	697.8	587.0	971.2	
MAX.	DAILY TO	OTAL VE	RTICAL S	SOLAR										
N	288.3	450.1	627.2	673.9	881.0	976.7	969.3	859.0	379.7	302.7	287.6	265.6	976.7	
Ε	845.1	1039.0	1254.6	1372.5	1488.7	1487.5	1508.2	1369.0	1185.7	1062.3	899.3	728.7	1508.2	
S	1851.7	1817.1	1494.6	1183.7	988.7	1011.0	1061.0	1073.1	1455.9	1742.3	1827.0	1843.0	1851.7	
W	854.1	987.8	1177.5	1251.6	1485.3	1444.9	1359.2	1267.0	1185.8	1069.1	889.2	729.4	1485.3	
	HRLY TO	TAL VE	RTICAL S	OLAR										
N	44.2	86.1	97.6	103.2	109.0	112.2	111.5	105.2	73.5	51.9	44.9	42.2	112.2	
Ε	205.3	226.0	241.3	242.6	240.1	233.6	233.1	234.3	234.1	227.1	206.5	186.1	242.6	
S	260.8	248.0	216.8	189.4	159.0	150.1	156.2	163.5	198.8	237.7	255.9	261.0	261.0	
W	202.1	225.2	242.7	243.1	239.7	233.5	232.9	235.1	234.4	221.6	208.3	185.5	243.1	
DESIGN TEMPERATURES SUMMER WINTER														
	PER CEN	VT.	T(1		T(WET)	T(DR)	()							
	1.0		`	100	72	. 1	•							
;	2.5			98	69	2	1							
	5.0			96	67									

GROUND

CLEARNESS NUMBERS

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
HOUR				.									
0	35.7	40.6	47.0	59.9	67.7	75.0	76.6	73.2	62.5	56.6	45.0	32.9	56.1
1	34.3	39.7	45.9	58.4	66.3	72.9	74.9	71.4	60.5	54.6	43.3	32.3	54.6
2	32.9	38.6	44.7	56.4	63.6	70.7	73.2	70.0	58.9	52.7	41.6	33.0	53.1
3	31.4	37.8	43.8	54.5	61.7	69.2	71.6	68.5	57.3	50.8	40.0	33.9	51.8
4	29.8	36.0	42.9	53.0	59.6	67.6	69.9	67.2	55.5	48.9	38.5	34.7	50.4
5	28.4	34.6	41.5	51.6	57.2	66.5	68.5	66.3	53.9	47.1	37.6	35.4	49.1
6	27.1	33.7	40.7	50.7	56.1	66.0	67.2	65.3	52.6	46.1	37.0	35.9	48.3
7	26.3	33.3	40.7	52.2	59.3	69.6	69.4	66.1	53.1	45.9	37.4	36.7	49.2
8	27.2	33.9	42.5	57.2	67.8	76.5	74.6	70.6	59.8	51.8	41.3	38.3	53.6
9	31.4	37.1	46.7	63.2	74.1	82.4	80.7	75.6	67.9	59.3	47.3	42.0	59.1
10	37.1	40.5	51.1	67.7	78.4	86.2	84.7	. 79.4	73.2	65.7	52.7	45.6	63.7
11	40.6	44.1	53.5	71.4	81.7	89.3	88.0	83.1	77.9	70.5	57.5	46.8	67.2
12	43.8	46.5	55.4	74.1	83.5	91.2	90.7	86.1	81.5	74.6	61.0	, 47.5	69.8
13	46.3	48.6	56.8	76.0	8 5.0	92.8	92.5	87.7	83.4	76.8	63.6	48.2	71.6
14	48.0	49.7	57.5	77.1	85.7	93.7	93.0	89.2	84.5	78.0	64.5	48.6	72.6
15	49.2	50.9	57.8	77.8	86.4	94.2	93.7	89.9	85.1	78.1	64.5	48.6	73.1
16	49.7	51.1	58.1	77.5	86.2	94.5	93.6	89.7	85.1	77.8	63.4	47.3	72.9
17	48.7	50.3	57.5	76.1	85.8	93.0	92.8	89.0	84.2	76.8	61.6	45.4	71.9
18	46.0	48.7	55.9	74.3	84.5	92.2	91.4	87.2	81.9	73.5	58.0	42.3	69.7
19	43.3	46.4	53.6	71.3	81.6	90.1	89.3	83.9	76.6	67.7	54.5	39.8	66.6
20	41.0	45.1	52.0	69.0	78.7	85.4	84.9	79.5	72.1	64.9	52.0	38.2	63.7
21	39.4	43.6	50.5	66.4	74.5	81.8	82.2	77.6	69.2	62.5	50.0	36.6	61.3
22	38.0	42.8	49.1	64.5	72.1	79.6	80.5	75.9	66.8	60.8	48.2	35.2	59.5
23	36.6	42.1	47.8	62.7	70.0	77.2	78.7	74.5	64.5	58.3	46.6	34.2	57.8
TEMPERATURES	512.9	509.5	509.3	510.9	517.2	523.6	529.1	532.6	532.9	530.0	524.7	518.5	

Table 2.14. 1986 Heating and Cooling Degree Days


	Islamabad	Karachi	Lahore	Multan	Peshawar	Quetta
Heating Deg. Days						
(Base 65)	1386	164	698	799	1220	3370
(Base 60)	767	36	275	351	626	2493
(Base 55)	302	4	50	70	197	1715
(Base 50)	37	o	0	· 0	14	1092
Cooling Deg. Days						
(Base 80)	538	1169	1262	1693	1127	135
(Base 75)	1231	2364	2163	2647	1957	453
(Base 70)	2103	3705	3273	3762	2890	962
(Base 65)	3134	5216	4525	5022	3993	1722
				l		

Also plotted are the hourly temperature and wind data in Figures 2.3 - 2.8 (a&b) respectively. In Figures 2.3-2.8a, the solid line is drybulb temperature and the dashed line is wetbulb temperature. Note that the reported night time wind data on the figures seem to be missing in all cities except Karachi.

We have compared the 1986 design-day temperature data with ASHRAE data, ENERCON data, and U.S. Air Force data in **Table 2.15.** Note that not all data were available from all sources. In general, there is a good agreement between the wetbulb temperature data from all sources. Variations between 1986 drybulb temperature data and other sources are considered statistically insignificant.

We used the modified 1986 hourly weather data for simulating the Pakistani prototypical buildings with DOE-2.

j.

42

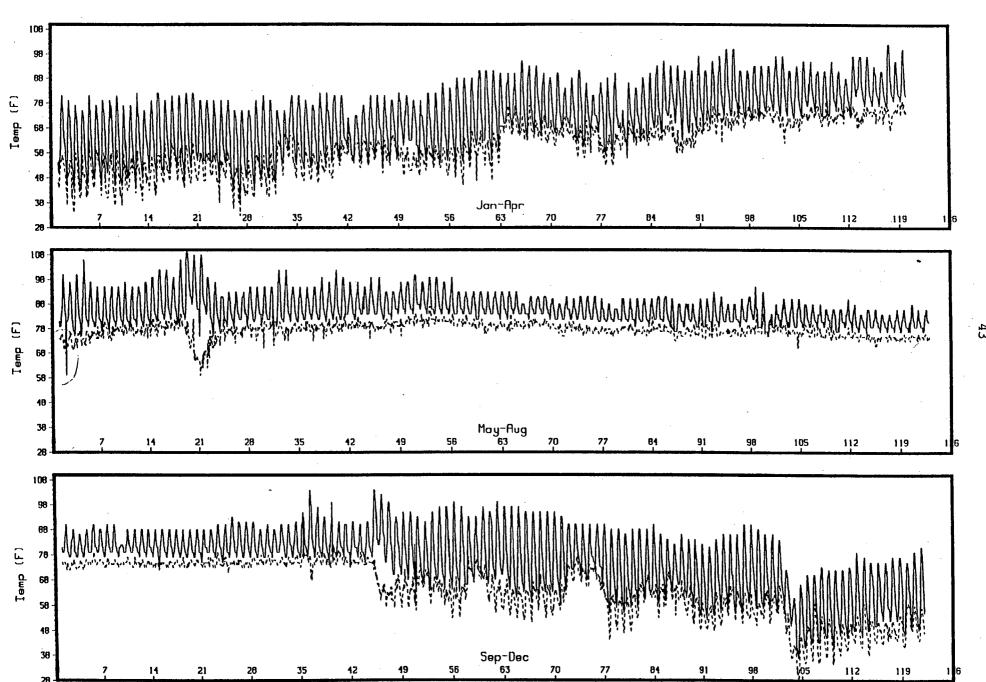


Figure 2.4 b Weather Data for Karachi (1986)

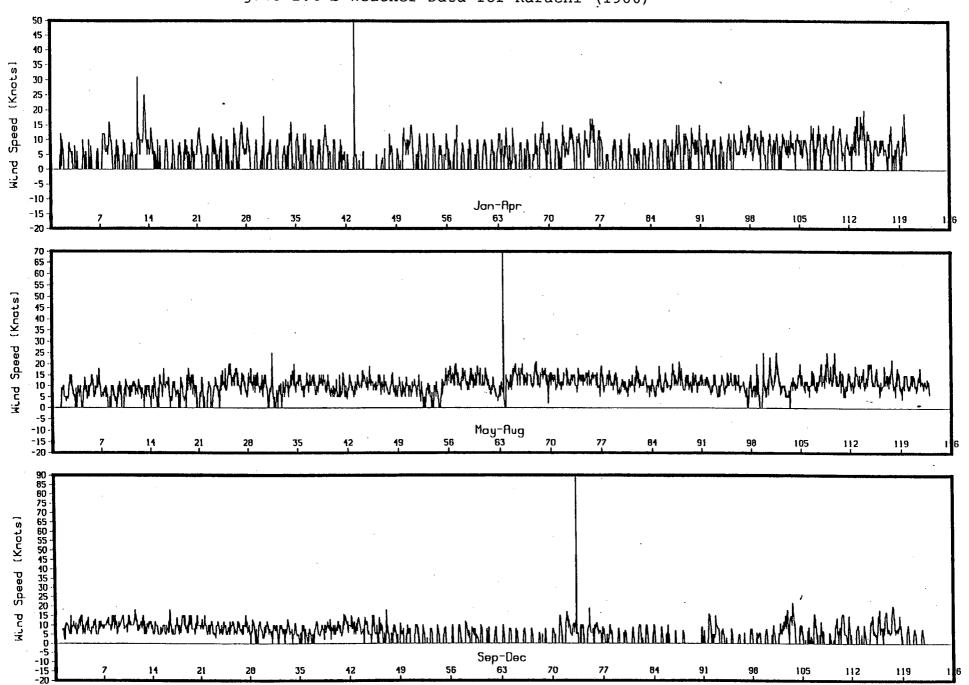


Figure 2.5 a Weather Data for Lahore (1986)

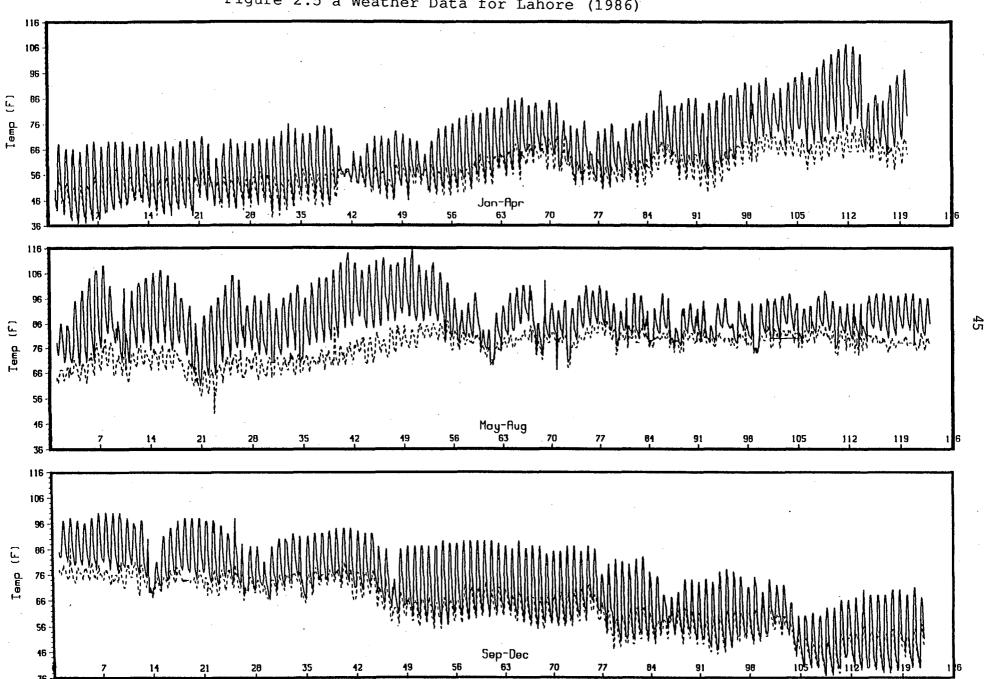
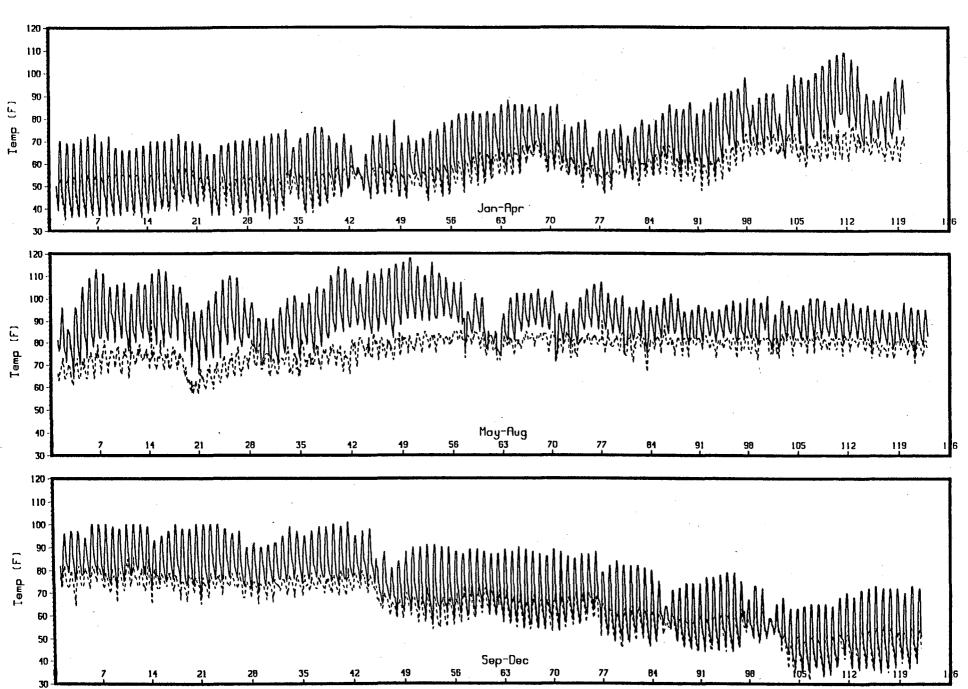



Figure 2.5 b Weather Data for Lahore (1986)

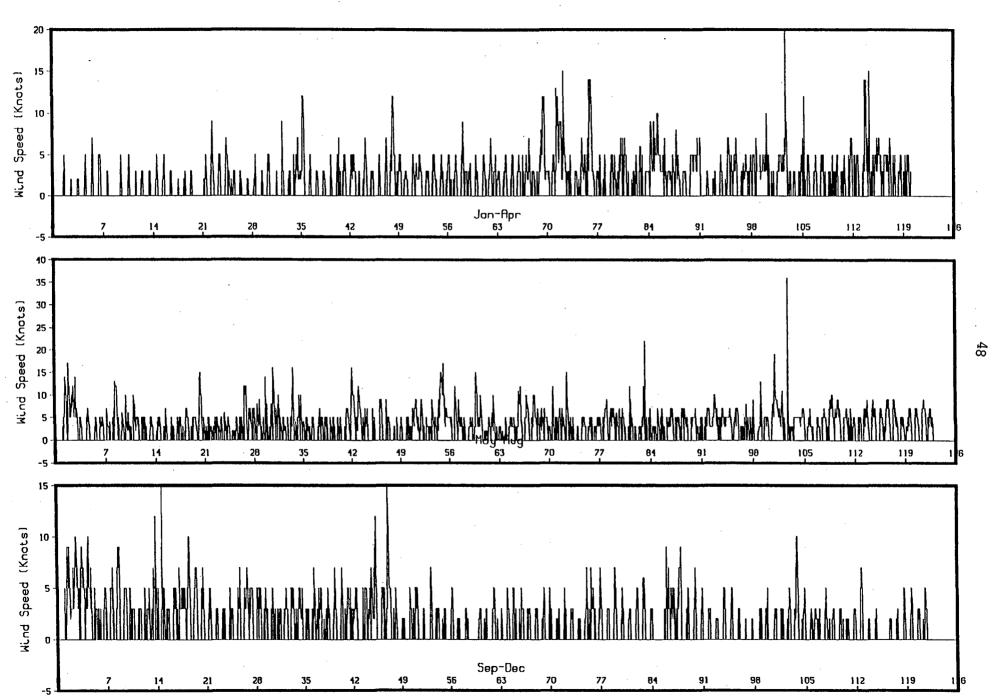


Figure 2.7 a Weather Data for Peshawar (1986)

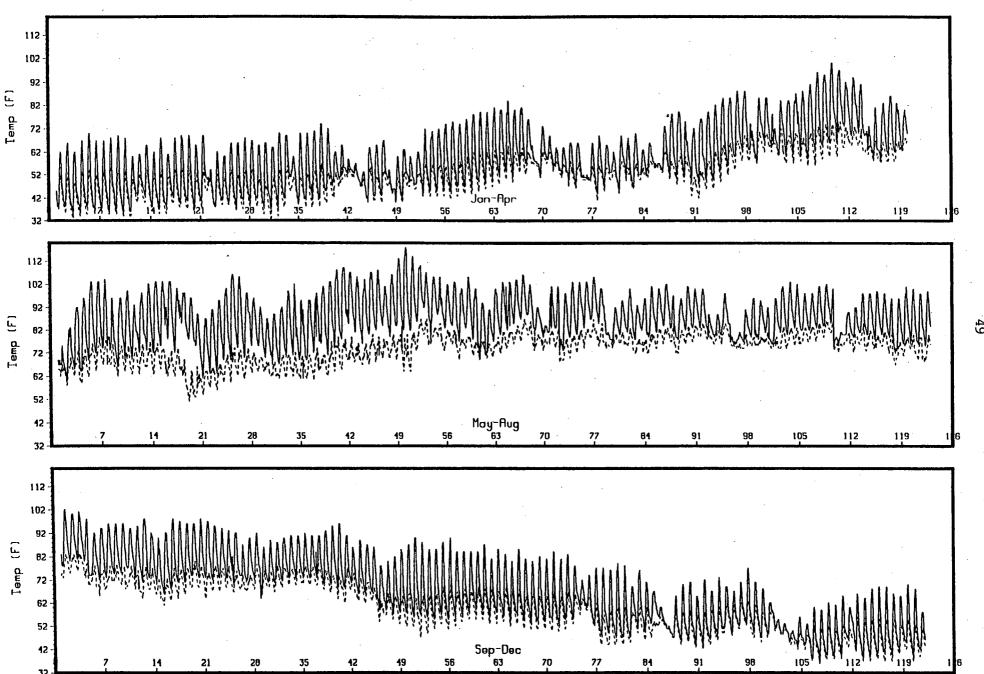


Figure 2.7 b Weather Data for Peshawar (1986)

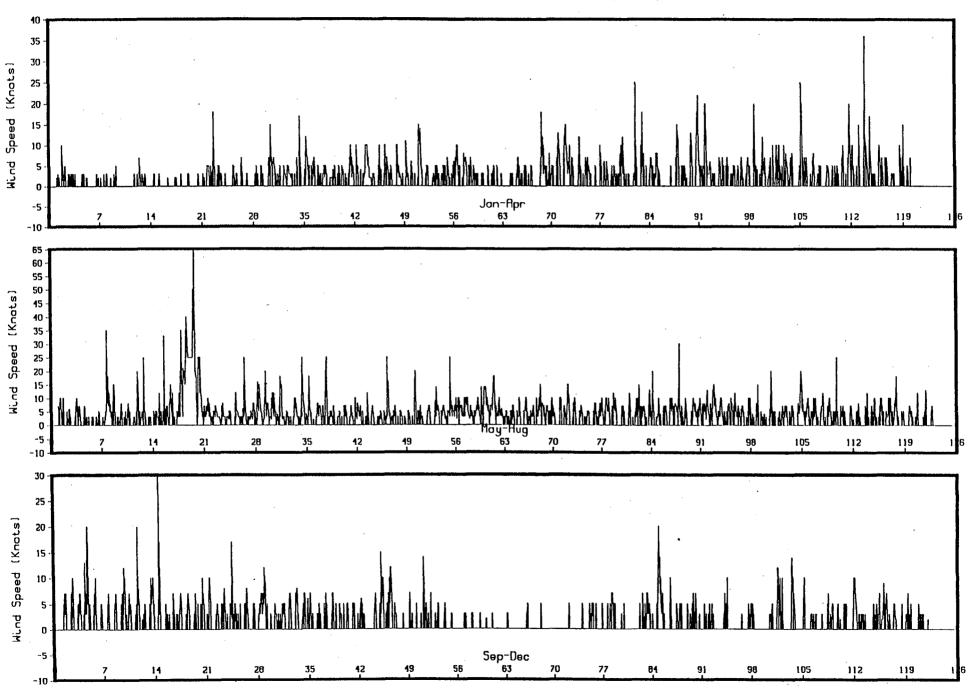
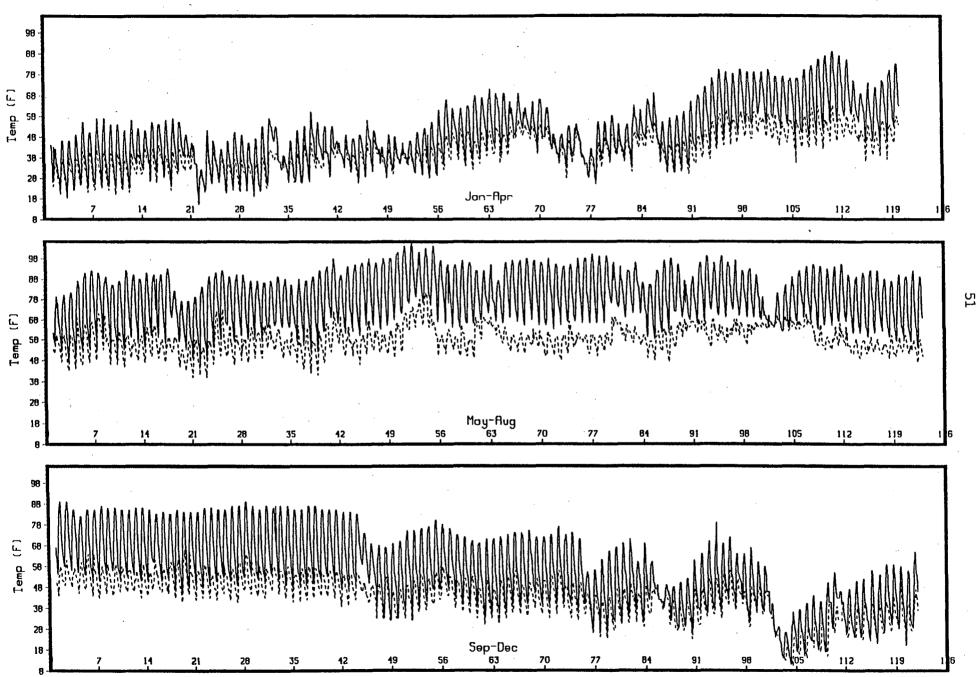



Figure 2.8 a Weather Data for Quetta (1986)

Ĺ

Table 2.15. Design Day Temperatures.

Comparison of Pakistan 1986 weather data with other sources.

				Summer				Winter		
		DB	[°F]			WB [°F]		DE	3 [°F]	
	1%	2.5%	5%	Range	1%	2.5%	5%	1%	2.5%	
Islamabad										
ENERCON ^a	111	107	103	24	83	81	79	33	37	
1986 Data	105	102	98	!	82	81	80	34	35	
Karachi										
ASHRAE ^b	100	98	95	14	82	82	81	49	51	
ENERCON	106	104	95	20	85	83	82	44	49	
1986 Data	99	95	93		83	82	82	43	45	
Air Force ^c	102	99	95		84	83	82	48	50	
Lahore								·		
ASHRAE	109	107	105	27	83	82	81	35	37	
ENERCON	112	108	105	22	84	82	81	35	37	
1986 Data	110	107	102		86	85	83	39	40	
Air Force	107	104	102		84	84	83	34	36	
Multan										
ENERCON	115	111	107	28	82	81	79	40	42	
1986 Data	113	109	104		85	84	83	37	37	
Peshawar										
ASHRAE	109	106	103	29	- 81	80	79	35	37	
ENERCON	112	108	104	23	83	82	80	31	33.	
1986 Data	109	105	102		85	84	83	37	38	
Air Force	106	104	101		82	82	81	31	34	
Quetta				,						
ENERCON	100	95	93	23	74 ^d	71	69	14	20	
1986 Data	100	98	96		72	69	67	17	21	

a. Source: Building Energy Code of Pakistan (ENERCON), 5th Draft, 1990.

b. Source: 1985 ASHRAE Fundamentals.

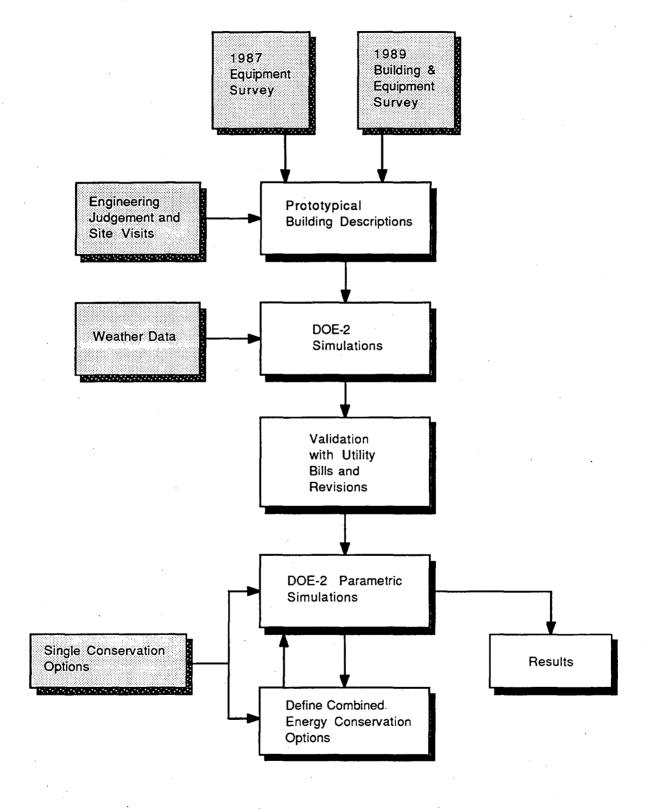
c. Source: Engineering Weather Data, U.S. Air Force, July 1, 1978.

d. Pakistan Building Code reports 83°F; we have corrected to 74°F.

Chapter 3

Methodology

We used computer simulation as a methodology for estimating energy conservation potentials of a variety of Energy Conservation Options (ECOs) in Pakistani buildings. The building energy simulation code used for these analyses was DOE-2.1D (see following section). DOE-2.1D basically requires two sets of input data to simulate the energy performance of a building: 1) an input file describing the physical and operational characteristics of the building and its systems, and 2) an hourly weather data file. We discussed weather data in Chapter 2. For prototypical building and system description, we used other data sources discussed in Chapter 2. Building and equipment description data are supplemented with engineering judgement and site visits of a few buildings. Also, in order to simulate the energy saving characteristics of ECOs, we needed data on applicable ECOs on Pakistani buildings. Information on ECOs were obtained from ENERCOM reports and general data bases at LBL.


Figure 3.1 summarizes our overall methodology. The "1987 ENERCON Building Equipment Survey" and "1989 Building and Equipment On-Site Survey" constitute the major input data for prototype building descriptions. The prototype buildings were simulated with DOE-2.1D using 1986 hourly weather data discussed in Chapter 2. Preliminary DOE-2 simulation results were then compared with available measured data (from utility bills) and based on the results of these comparisons, the inputs for the prototypical building characteristics, equipment and appliance energy use, or operational schedules were modified.

Once the prototypes were validated, we performed parametric simulations for single conservation options to estimate the energy saving potential of each ECO. The promising ECOs were combined together for more detailed DOE-2 parametric simulations. This process was repeated to identify the combination measures which offer the highest saving potentials. The output of the simulations were sent to Pakistan in the electronic form and the same are summarized in this report in the form of tables.

We have used our experience and engineering judgement in defining combined ECOs for parametric simulations. While we anticipate that this way of selecting ECOs, will provide satisfactory results, a more rigorous approach would additionally utilize economic analysis considering the cost, rate of return, and payback period of each ECO. Because of the absence of cost data, we were unable to do such an economic analysis of the selected ECO's. However, the simulations have been performed and results presented in such a way that an economic analysis of the ECOs can be performed later.

It is important to notice that the DOE-2 simulations are usually performed to estimate the characteristics of heating, ventilation, and air conditioning (HVAC) end uses. In addition to HVAC end-use analysis, DOE-2 can be used to estimate the impact of daylighting on reducing

Figure 3.1 METHODOLOGY

lighting energy use.

Our focus in this report is on reducing the energy use of space heating and cooling (HVAC) systems. We pursued this objective by modifying the characteristics, operations, and internal loads of the prototype buildings. We did not have enough statistical data to analyze energy conservation options for non-HVAC end uses such as refrigerators, interior lights, or water heaters. Analyzing the energy conservation potentials for non-HVAC end uses should be the subject of a detailed follow-on study.

In the remainder of this chapter the highlights of the DOE-2 simulation code, selection of energy conservation options, and the methodology for developing prototypes for the single family detached house, the converted office building, and the multi-story office building will be discussed.

DOE-2.1D Building Energy Simulation Program

DOE-2 is a public-domain computer program developed by LBL to simulate the energy performance of a building hour-by-hour depending on its climate, building construction, equipment characteristics and operating schedules. The development of the DOE-2 program was a major technical effort sponsored by the U.S. Department of Energy for over ten years. An overview of the DOE-2 program is given in an LBL Report (BESG 1985). The DOE-2 program has been continually upgraded and enhanced, with the latest version being DOE-2.1D released in early 1989. The DOE-2 program is well documented with a 2-volume User's Manual (BESG 1984), and numerous supplements for later releases, the latest for Version 2.1D (Simulation Research Group 1989). The technical basis of the DOE-2 program is given in a separate Engineers Manual (BESG 1982). Both the DOE-2 program and documentation are available from the U.S. National Technical Information Center in Springfield, Virginia. A PC-based version of the DOE-2 program is also available from a private company, Micro-DOE, in Colorado.

Selection of Energy Conservation Options

The initial energy conservation options for residential and office buildings were prepared, based on LBL experience. These options were reviewed with RCG/HB staff in Pakistan and final lists of conservation options for DOE-2 simulations were prepared. Typical conservation measures usually considered for residential applications include envelope retrofit measures to control heating and cooling loads of the building, energy efficient lighting, energy efficient appliances (refrigerators, air conditioners, washers and driers, etc.), and retrofit to domestic water heating tanks. For commercial applications, many measures ranging from envelope retrofit to systems and lighting modifications and to computerized controls are frequently considered. **Table 3.1** shows a list of technologies that may be applicable to Pakistani buildings. Those technologies considered for our parametric analyses are printed in **boldface**. We will discuss the

conservation options for each prototype in subsequent chapters.

Table 3.1.

Conservation Technologies for Residential and Office Buildings

(The impact of boldfaced ECOs were simulated in this study)

Cooling/Heating

- 1. Ceiling insulation
- 2. Floor insulation
- 3. Wall insulation
- 4. Exterior color of roofs and walls
- 4. Multiple glazing
- 5. Reduce infiltration (weather stripping and caulking)
- 6. Movable window insulation
- 7. Shading modifications (solar screens, reflective films)
- 8. Insulate ductwork
- 9. Auto night setback (heating only)
- 10. Whole-house fan/night time cooling
- 11. High COP air conditioning units
- 12. Evaporative coolers

Lighting

- 13. Energy efficient fluorescent lamps
- 14. Lighting controls
- 15. Selective switching

Domestic Water Heating

- 16. Insulate hot water tanks
- 17. Solar water heater
- 18. Local water heaters (Geysers)

Effects of Building Orientation

The methodology we used for developing the single family house and converted office prototypes differs slightly from that of the multi-story office building in the way the building orientation is treated. In residential buildings, the air-conditioned rooms can be located on any side of a building. The orientation will affect the room's cooling load because of differences in the amount of solar gain. Since our objective is to develop prototypes which describe the average characteristics of buildings, we need to estimate the energy use characteristics of an average room. One way to do this is to simulate a typical building in various orientations and then average their energy use. An alternate and simpler approach is to define a physically meaningless average condition that yields the same average energy use characteristics. This is done by assuming that all the thermal zones of the building have walls and windows equally distributed in all four cardinal directions.

This averaging technique is suitable when the **non-directional** energy conservation options (e.g., high COP window units) are studied. Obviously, for directional ECOs such as window overhang or window reflective films, it is trivial that the analysis should be performed using the proper direction for the zone. For that reason, we developed directional prototype office rooms in multi-story buildings for analyzing the effect of the exterior walls, windows, and window shades.

Chapter 4

Single-Family Detached House

In this chapter the prototype single-family detached house is simulated with DOE-2.1D to obtain its major end-use characteristics. Subsequently, a variety of parametric simulations are performed to determine the effectiveness of typical conservation measures.

Prototypical Single-Family Detached House

The prototype for the single-family detached house was developed from data bases described in chapter 2; in this section we discuss its highlights.

Three major factors were considered in developing the prototype:

- 1. the physical layout of the house, floor plan, zones, and construction materials;
- 2. the internal loads and schedules for each zone; and
- 3. cooling and heating (not applicable to Karachi) systems and schedules.

Floor plan, zones, and construction

Data for the description of the floor plans and zones were obtained from the recent survey of buildings in Pakistan. Data for construction materials were obtained from Pakistan building codes (ENERCON 1990).

The simulated prototype building for Pakistan is a two-story single-family detached house of concrete construction for Karachi and brick construction for Islamabad and Lahore. **Figure 4.1a&b** show sketches of the floor plan for our prototype house. The total area of the house was 4014 ft² (373 m²) of which 700 ft² (65 m²) was air conditioned. A total area of 3314 ft² was air conditioned during June and July from 6 p.m. to 10 p.m. The total window area of the building was 760 ft² (71 m²). All windows were single-pane glass and had 1.5-3.5 ft overhangs. In Karachi, walls

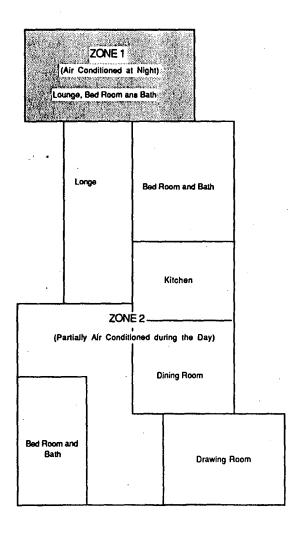


Figure 4.1 a General Floor Plan of the Prototype Single Family House (Ground Floor)

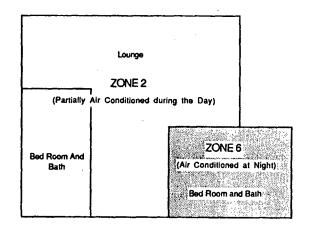


Figure 4.1 b General Floor Plan of the Prototype Single Familiy House (First Floor)

were 6 inches of concrete with $\frac{1}{2}$ " of plaster on both sides. In Lahore and Islamabad, the walls were made of $9\frac{1}{2}$ " thick bricks. The roofs in all three cities were made of 6 inches of concrete slab with $\frac{1}{2}$ " of roofing and $\frac{1}{2}$ " of plaster inside. The house had four bedrooms, a drawing room, a kitchen, and a lounge. The house construction was assumed to be fairly loose with an infiltration rate of 1 ACH (air-change per hour). **Table 4.1** summarizes the highlights of the prototype.

Table 4.1.

Prototypical House Description in Pakistan

Number of stories: 2 Total floor area: 4014 ft² 700 ft² Total conditioned area: 760 ft² Total window area: Window construction: single-pane glass, with 1.5-3.5 ft overhangs In Karachi, 6" concrete with 1/2" Wall construction: plaster on either side In Islamabad and Lahore, 91/2 " brick with 1/2 " plater on either 6" concrete with ½" plaster in-Roof construction: side. ½ " roofing outside Number of occupants: Lighting: Incandescent, 600 watt peak Lighting schedule: 18.00 - 24.00 Internal loads: a refrigerator, a freezer, a television, gas stove and oven, and 200 watt of miscellaneous Air conditioning: Three 1.5 tons window units with 2.5 COP six 100-watt fans Fans: Heating: Electric resistance and gas Cooling 79°F, Heating 65°F Thermostat setting: Others: Roofs and walls have absorptivity of 0.7

To avoid any directional bias in the simulation results, the external walls and windows were distributed equally in the four cardinal directions.

Internal loads and schedules

Data for the characteristics of the prototypical internal loads and schedules were obtained from the recent survey of 28 houses in Pakistan and ENERCON (1987).

The prototype house was simulated with a refrigerator with an average usage of 150 watts (~1300 kWh per year), a freezer with an average usage of 150 watts, a 150-watt television used about six hours per day, and other miscellaneous electric usage of 200 watts. The cooking was

done with gas. A 36 gallon gas water heater was located outside the house. Lighting was all incandescent with a peak usage of about 600 watts and a daily average usage of about 4 kWh. The occupancy of the prototype house was 7 people at night and 3 people during the day. **Table 4.1** also summarizes the internal loads of the house.

Cooling and heating systems and schedules

Data for cooling and heating equipment are obtained from the ENERCOM reports (1987, 1990) and the recent survey.

The prototype building was simulated with two air conditioned and one partially-conditioned zones. The air conditioning was used mainly in the bedrooms and the drawing rooms during the hot evening and night time hours. 1.5 tons window air conditioners with a COP of ~2.5 are the typical units used in homes in Pakistan. Although, most newer houses are equipped with more than two window units, the additional units are only used during the extreme hot conditions. For more moderate conditions, fans (both ceilings and portables) only are used to provide comfort. The house is simulated with six 100-watt fans operated up to 18 hours per day during March through November. The air conditioning season is April through November.

The recent survey showed that no heating is done in the residential buildings in Karachi. However, ENERCON (1987) noted that some electrical heating appliances are present in Karachi. In our simulations for Karachi, we use electric resistance heating for the for the few days of heating. For other climates convective/radiative room gas unit are more common.¹

DOE-2.1D Parametric Simulation

A systematic series of DOE-2.1D simulations were performed and validated with monthly utility bills. Once the base case prototype has been benchmarked against measured utility bills, parametric simulations were performed in order to investigate the energy saving potentials of various conservation measures.

Base Case

The base case simulations were performed with the heating thermostat at 65°F between 7 pm and 9 a.m., and the cooling thermostat at 79°F from 10 p.m. to 7 a.m. During the heating season, window venting was assumed when indoor temperatures rise above 78°F, while in the cooling season, venting was assumed down to 72°F if the following criteria were met: (1) the outdoor temperature was lower than that indoor and not higher than 78°F, (2) the enthalpy of outside air was lower than that indoor, and (3) the air conditioning load that hour could be met totally through natural ventilation. Since occupants typically do not adjust windows after going to bed, window conditions were assumed to be fixed (either open or closed) from 11:00 p.m. to

¹ The DOE-2 simulations are performed with electric resistance heating and the results may be divided by the efficiency of the in-room gas space heater to obtain the gas consumption rates.

5:00 a.m.

Based on the recent surveys, the window air-conditioners were assumed to have COPs of 2.5. The roofs and walls were assumed to be uninsulated, and the windows were assumed to have single-pane clear glass, with moderately dense drapes closed during the cooling season giving a net shading-coefficient of 0.60. Shading from adjoining buildings was ignored in the base case, but analyzed in the parametric analysis.

Energy conserving measures

Once the base case prototype was simulated and validated, a series of parametric simulations to estimate the energy saving potentials of conservation options were performed. Typical conservation measures usually considered for residential buildings include envelope retrofit measures to control heating and cooling loads of the building, energy efficient lighting, energy efficient appliances (refrigerators, air conditioners, washers and driers, etc.), and retrofit to domestic hot water tanks. **Table 4.2** shows a list of technologies that may be applicable to Pakistan buildings. Those technologies considered for our parametric analyses are printed in **bold-face**.

Our focus on residential conservation technologies agrees with those recommeded in ENER-CON (1987) (see **Table 4.3**).

Parametic Simulations

Our parametric simulations were focused on three subjects: envelope modification, efficient window air conditioners, and improved operational strategies. These parametrics include four levels of insulation in walls and roofs, two levels of infiltration, four levels of air conditioning COPs, three cooling thermostat settings, one level of wall color and two levels of roof colors, and two levels of overhang size. In addition, we investigated the effects of adjoining houses on energy consumption. (See **Table 4.4** for details.)

Upon the completion of the single parametric DOE-2 simulations, some complementary simulations on a combination of promising ECOs were performed. Normally, when conservation potentials in buildings are analyzed, a least-cost approach is taken to rank the measures and select the promising measures first. The general idea is to select first those measures which have the shortest payback time (or the highest rate of return) on the conservation investment. In our analysis, we were not able to perform detailed economic analysis because of the lack of cost data for ECOs as related to the Pakistan market. Instead, we used our engineering judgement in selecting and ranking the conservation measures, based mostly on the potential energy savings of the ECOs. The combined parametric simulations include simultaneous variations of insulation levels on walls and roofs, change in infiltration rate, and change in coefficient of performance of air conditioning unit.

Table 4.2.

Residential Conservation Technologies

(The impact of boldfaced ECOs were simulated in this study)

Cooling/Heating

- 1. Ceiling insulation
- 2. Floor insulation
- 3. Wall insulation
- 4. Building color
- 5. Multiple glazing
- 6. Reduce infiltration (weather stripping and caulking)
- 7. Movable window insulation
- 8. Shading modifications (solar screens, reflective films)
- 9. Insulate ductwork
- 10. Auto night setback (heating only)
- 11. Whole-house fan/night time cooling
- 12. High COP air conditioning units
- 13. Evaporative coolers

Lighting

- 14. Energy efficient fluorescent lamps
- 15. Lighting controls
- 16. Selective switching

Domestic Water Heating

- 16. Insulate hot water tanks
- 17. Solar water heater
- 18. Local water heaters (Geysers)

Results

Tables 4.6a-f, respectively. Parametrics for climate regions of Islamabad, Karachi, Lahore, Multan, Peshawar, and Quetta are denoted with letters a through f. Table 4.5 presents simulation results for total household, and cooling and heating end uses; both household energy use and normalized energy use (kWh/ft²) are presented. This table also provides data on peak

Table 4.3.

Energy Conservation Measures Identified in Single Family Houses
by ENERCON study

Measure	No. of Cases
Reduce Outside Air Infiltration	1
Reflective Film/Shade	1
Reflective Paint	1
Insulate Roof	2
Shade A/C	8

Source: ENERCON 87.

electric demand on the building. For illustration and discussion purposes, we have also plotted the parametric results for Karachi (cooling dominated) and Islamabad (both cooling and heating are needed) in **Figures 4.2** and **4.3**, respectively.

Simple Parametrics

Cooling

The total simulated electricity use for the base-case building in Karachi was 20,562 kWh per year of which 8504 kWh was for cooling and 933 kWh for heating (See Table 4.5b and **Figure 4.2a**). Lighting, fans, refrigerators, and other miscellaneous end uses account for the remaining 11,125 kWh of electricity use.

We discuss the impact of ECOs on cooling energy use only for Karachi. The conclusions made for Karachi buildings can be extended to other climate zones. As Figure 4.2a indicates, the cooling energy use is very sensitive to thermostat setting, air conditioning COP, roof and walls insulation, and roof color. The impacts of air change (infiltration), overhang length, and efficient lighting systems on air conditioning use are fairly low. Increasing the air conditioning temperature setpoint from 79°F to 82°F decreases the cooling energy use by 13% (~4% per °F) or 1,075 kWh per year.

The base case prototype house was simulated with no added insulation on walls and roofs. Insulating the roofs of the building to meet the Pakistani proposed standards (no insulation on walls and R4 total resistance of the roofs) decreases the cooling energy use of the building by 1,952 kWh per year (23%). Further increase in wall and roof insulation to R5 on walls combined with R11 on roof decreased the cooling energy use from the base case by 2,747 kwh (32%) and

Table 4.4: DOE-2.1D Parametric Simulations for Single Family Residential Prototype House

Parametric simulation	Description					
Base Case	R0 in walls and roofs; 1 ACH; A/C COP of 2.5 cooling thermostat setting of 79°F; 2-ft overhangs on windows; walls and roof have absorptivity of 0.7 no shading from adjoining buildings.					
Simple Parametrics						
Insulation	Four cases: walls R0, roofs R4; walls R5, roof R11; walls R11 roofs R19; walls R11 roofs R19 (insulation inside).					
Infiltration	Two cases: 0.5, and 2.0 ACH					
A/C COP	Four cases: 2.28, 2.8, 3.0, and 3.5					
Cooling thermostat setting	Three cases: 78, 80, and 82 °F					
Overhangs	Two cases: 1-ft and 3-ft					
Shading from adjoining buildings	Two Cases: two and three buildings					
Wall color	One case: light (absorptivity 0.3)					
Roof color	Two cases: light (abs 0.3), very light (abs 0.1)					
Energy efficient lighting and fans	One case: consumption is reduced by 50%					

R11 on walls combined with R19 on roof decreased the cooling energy use from the base case by 2,941 kWh (35%).

In all the simulations it is assumed that the insulation on the walls and roof are placed on the outside surface of the building to take advantage of the thermal mass of walls and ceilings. To analyze the impact of insulation location (either on the inside or outside), we repeated the R11 walls combined with R19 roof simulation with interior insulation. The results show moderate increases in both heating and cooling energy demand.

The cooling energy use, as it might be expected, was also very sensitive to the efficiency of the window air conditioning units. Increasing the COP of the window units from the base case of 2.5 to 3.5 resulted in a decrease of 2,306 kWh per year (27%). The Pakistani code suggests a minimum COP of 2.28 for window units. Changing the standards to the most efficient system in the market will result in energy savings of 3,085 kWh per year per house or 36%.

Changing the dark roof color with absorptivity of 0.7 to a lighter one with an absorptivity of 0.3 resulted in a 2,260 kWh (27%) reduction in air conditioning use. A further decrease in the roof absorptivity to 0.1 increased these savings to 3125 kWh (37%). A change in wall color to an effective absorptivity of 0.3 had a lower impact on cooling energy use, only 881 kWh (10%). It should be noticed that lightening the color of the roofs will have a negative impact on heating energy use. In Karachi, where the heating energy demand is fairly low, this change in color only increased the heating energy use by less than 500 kWh per year. But, as will be discussed later, the DOE-2 results for Islamabad indicated that the impact of roof color on heating energy requirement may be fairly significant (up to 2252 kWh).

It is important to notice that horizontal surfaces (and to a certain extent, vertical surfaces) tend to collect dust. Dusty white roofs have lower reflectance than clean white roofs. Consequently, the energy saving potentials of the white color roofs might decrease with time. However, the reflectivity of a dusty white surface is still high and of the order of 40 to 50%. Absorptances of various surface types are given in Appendix C.

The cooling energy use of the building was less sensitive to infiltration than we was expected. This was probably because of the fact that the air conditioners were assumed to be operating only from 10 p.m to 7 a.m. when outdoor air temperatures are not very high. Increasing the infiltration rate from 1 ACH (base case) to 2 ACH increased the cooling energy use by only 259 kWh per year; about 3%. Decreasing infiltration to 0.5 ACH reduced cooling energy use by 239 kWh. The effect of infiltration significantly increases as the hours of air conditioning expand to include daytime hours. This effect is clearly manifested in the DOE-2 simulations of the converted office buildings (see Chapter 5).

The base case prototype was a single family house not shaded by any adjacent building. This is a characteristic of low density suburban neighborhoods. In the denser urban environment, houses are typically shaded by adjacent buildings. To estimate the shading impacts of adjacent buildings, simulations were performed with adjacent buildings on **two** and **three** sides of the prototype house. Shading the building on two sides reduced the cooling energy use by 617 kWh per year (7%). The impact of the shading on the third side was an additional reduction of 211 kWh (2%).

Cooling energy use was found to be fairly insensitive to the overhang length. Increasing the overhang length from 2 feet to 3 feet reduced the cooling energy use by 239 kWh, while decreasing the length to 1 foot increased the cooling use by 366 kWh.

Also, the effects of efficient lighting and other appliances on cooling energy demand were fairly low. This is mainly because of the fact that during the air conditioning periods (mainly at nights) the lights are out and also because most appliances are located in non-conditioned areas.

Heating

As we discussed in the preceding section, some of the measures considered for reducing cooling energy use may have a negative impact on heating energy use (e.g., roof color). Other measures may produce savings in both heating and cooling (e.g., roof and wall insulations) or may have no effect on heating energy use (e.g., air conditioning set point temperature). We will review the impact of the proposed ECOs on heating energy use in Islamabad (Figure 4.2b). Data for all climate zones are presented in Tables 4.5.

Measures which had the greatest impact on heating energy demand were roof and wall insulation (positive impact), roof color (negative impact), and control of infiltration (positive impact). The total household energy use for the Islamabad house was 24,742 kWh of that 6,978 kWh was for cooling and 6,640 kWh for heating.²

The effect of added insulation on roofs [R4] was to decrease heating energy use by 1,321 kWh (20%). Further increase in insulation of walls and roofs [R11 in walls, R19 in roofs] increased the energy savings to 3,047 kWh (46%).

The impact of an increase in infiltration from 1.0 ACH to 2.0 ACH was an increase of 1,034 kWh (0.16%) in heating energy need. Decreasing infiltration from 1.0 ACH to 0.5 ACH resulted in a decrease of 1,321 kWh (20%) in energy use.

Changing the dark roof color to white or reflective colors increased heating energy use by 1,447 (22%) and 2,252 kWh (34%), respectively. The effect of wall colors on heating energy use was also significant (607 kWH or 9%).

Efficient appliances such as lights also slightly increased the heating energy use of the building (173 KWh).

Combined Parametrics

Through the simple parametric simulations those measures that have the highest impact on both heating and cooling energy requirements of prototypical houses in all climate regions were identified. The combined parametrics include variation in walls and roof insulation, COP, and air infiltration. Based on these combined parametrics, ECOs for a "best practical case" have been identified. **Tables 4.6a-f** present the results of 31 parametric simulations for each climate zones.

² Consumption data for heating are obtained with electric resistance heating. To estimate the heating energy use by in-room gas convective heater, divide the electric heating demands by the efficiency of the gas heater, usually in the range of 55 to 75%.

A selected groups of combined parametrics for Karachi is plotted in **Figure 4.3a**. Two series of cases are presented: low insulation (Case 1) and high insulation (Case 5). The low insulation case considers R4 insulation on roofs and the high insulation case considers R11 insulation on roofs and R5 insulation on walls. To each case has progressively been added the impact of COP increase from 2.5 to 2.8 (Cases 3 and 6) and reduced infiltration (Cases 4 and 7). Finally, simulation results for the "best practical case" (Case 8), defined as an A/C temperature setting of 79°F, A/C COP of 3.0, 3-foot overhang, 0.5 ACH, R5 insulation of walls, R11 insulation on roof, light roof color (abs 0.3), and efficient lighting, have been shown.

As in the simple parametric simulations, the highest relative savings are obtained by adding insulation to the roofs and walls. The impact of roof insulation on reducing cooling energy use was much higher that the wall insulations. The cooling energy difference between the base case and the "best case" was 4,421 kWh per year (52%). In other words, 52% of cooling energy use in single-family houses in Karachi can be saved through simple, practical, and readily available measures and technologies in Pakistan.

In analysis of heating energy use for Islamabad (**Figure 4.3b**) similar results were obtained. The difference between the base case and the "best case" heating energy use was 2,925 kWh per year (44%). Most of heating energy savings were realized through roof and wall insulation and infiltration control.

In summary, the DOE-2 parametrics show that savings of the order of 50% in both heating and cooling energy use in Pakistani houses are achievable through the use of simple and available conservation measures such as insulating roofs and walls, control of infiltration, use of high COP air conditioning units, and coloring the roofs white. An economic analysis is needed to evaluate the cost effectiveness of the proposed measures. This we could not perform due to the lack of cost data.

Table 4.5a. Summary of Simple Parametric Simulations for Prototypical Single-Family House in Islamabad (a=4014 ft²)

		E	nergy (kWh)			KWh/ft²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		24742	6978	6640	6.16	1.74	1.65	9.66
AC Setting	78	24929	7165	6640	6.21	1.79	1.65	9.89
-	80	24568	6803	6640	6.12	1.69	1.65	9.40
	82	24222	6458	6640	6.03	1.61	1.65	8.93
AC COP	2.28	25328	7562	6640	6.31	1.88	1.65	10.37
	2.8	24092	6327	6640	6.00	1.58	1.65	8.86
6	3.0	23730	5965	6640	5.91	1.49	1.65	8.59
	3.5	23008	5244	6640	5.73	1.31	1.65	8.59
Adj.	2 Houses	24757	6578	7053	6.17	1.64	1.76	9.60
Shade	3 Houses	24762	6426	7211	6.17	1.60	1.80	9.58
Overhang	1 ft	24792	7222	6444	6.18	1.80	1.61	9.68
_	3 ft	24761	6834	6801	6.17	1.70	1.69	9.64
Infilt.	0.5 ach	24039	6929	5985	5.99	1.73	1.49	9.34
	2.0 ach	25823	7024	7674	6.43	1.75	1.91	9.88
Insul.	R0W,R4C	21219	4775	5319	5.29	1.19	1.33	8.96
	R5W,R11C	19188	3980	4083	4.78	0.99	1.02	8.48
	R11W,R19C	18460	3742	3593	4.60	0.93	0.90	8.28
	R11W,R19C**	18792	4048	3620	4.68	1.01	0.90	8.28
Roof	Light	23506	4294	8087	5.86	1.07	2.01	9.17
Color	Reflec.	23461	3444	8892	5.84	0.86	2.22	8.92
Wall C.	Light	24698	6326	7247	6.15	1.58	1.81	9.51
Eff. Lights		20535	6845	6813	5.12	1.71	1.70	9.10

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 4.5b. Summary of Simple Parametric Simulations for Prototypical Single-Family House in Karachi (a=4014 ft²)

		E	nergy (kWh)			KWh/ft²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		20562	8504	933	5.12	2.12	0.23	9.16
AC Setting	78	20907	8847	933	5.21	2.20	0.23	9.30
	80	20217	8156	933	5.04	2.03	0.23	9.05
•	82	19487	7429	933	4.85	1.85	0.23	8.66
AC COP	2.28	21341	9283	933	5.32	2.31	0.23	9.82
•	2.8	19698	7639	933	4.91	1.90	0.23	8.42
	3.0	19217	7159	933	4.79	1.78	0.23	8.01
	3.5	18258	6198	933	4.55	1.54	0.23	7.62
Adj.	2 Houses	20057	7921	1009	5.00	1.97	0.25	9.09
Shade	3 Houses	19876	7710	1042	4.95	1.92	0.26	9.10
Overhang	1 ft	20888	8870	892	5.20	2.21	0.22	9.18
•	3 ft	20362	8265	972	5.07	2.06	0.24	9.14
Infilt.	0.5 ach	20205	8265	815	5.03	2.06	0.20	9.03
* *	2.0 ach	21038	8763	1149	5.24	2.18	0.29	9.30
Insul.	R0W,R4C	18224	6552	545	4.54	1.63	0.14	8.79
•	R5W,R11C	17064	5757	183	4.25	1.43	0.05	8.02
	R11W,R19C	16796	5563	108	4.18	1.39	0.03	7.88
	R11W,R19C**	17227	5921	180	4.29	1.48	0.04	7.90
Roof	Light	18573	6244	1205	4.63	1.56	0.30	9.04
Color	Reflec.	17899	5379	1394	4.46	1.34	0.35	8.91
Wall C.	Light	19814	7623	1066	4.94	1.90	0.27	9.09
Eff. Lights	,	16180	8329	975	4.03	2.07	0.24	8.59

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 4.5c. Summary of Simple Parametric Simulations for Prototypical Single-Family House in Lahore (a=4014 ft²)

			Energy (kWh)			KWh/ft ²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		25549	11741	2681	6.36	2.93	0.67	9.50
AC Setting	78	25757	11949	2681	6.42	2.98	0.67	9.53
	80	25349	1.1541	2681	6.32	2.88	0.67	9.39
	82	24952	11145	2681	6.22	2.78	0.67	8.99
AC COP	· 2.28	26608	12801	2681	6.63	3.19	0.67	10.20
	2.8	24370	10565	2681	6.07	2.63	0.67	8.73
	3.0	23716	9910	2681	5.91	2.47	0.67	8.30
	3.5	22410	8603	2681	5.58	2.14	0.67	7.62
Adj.	2 Houses	25400	11203	3071	6.33	2.79	0.77	9.52
Shade	3 Houses	25347	10986	3237	6.31	2.74	0.81	9.56
Overhang	1 ft	25701	12048	2529	6.40	3.00	0.63	9.50
_	3 ft	25472	11526	2820	6.35	2.87	0.70	9.50
Infilt.	0.5 ach	24946	11564	2257	6.21	2.88	0.56	9.35
	2.0 ach	26418	11916	3377	6.58	2.97	0.84	9.56
Insul.	R0W,R4C	21858	8767	1966	5.45	2.18	0.49	9.70
	R5W,R11C	19538	7114	1301	4.87	1.77	0.32	9.05
	R11W,R19C	18691	6537	1031	4.66	1.63	0.26	8.79
	R11W,R19C**	19206	7058	1023	4.78	1.76	0.25	8.68
Roof	Light	22938	7836	3979	5.71	1.95	0.99	9.79
Color	Reflec.	21753	5973	4656	5.42	1.49	1.16	9.60
Wall C.	Light	25096	10820	3152	6.25	2.70	0.79	9.47
Eff. Lights		21272	11552	2844	5.30	2.88	0.71	8.96

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 4.5d. Summary of Simple Parametric Simulations for Prototypical Single-Family House in Multan (a=4014 ft²)

			Energy (kWh)			KWh/ft ²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		28143	13906	3111	7.01	3.46	0.78	9.95
AC Setting	78	28338	14101	3111	7.06	3.51	0.78	9.99
	80	27951	13715	3111	6.96	3.42	0.78	9.73
	82	27572	13336	3111	6.87	3.32	0.78	9.34
AC COP	2.28	29406	15170	3111	7.33	3.78	0.78	10.69
	2.8	26738	12502	3111	6.66	3.11	0.78	9.13
	3.0	25960	11723	3111	6.47	2.92	0.78	8.67
i	3.5	24401	10165	3111	6.08	2.53	0.78	7.76
Adj.	2 Houses	28021	13411	3487	6.98	3.34	0.87	9.95
Shade	3 Houses	27978	13212	3643	6.97	3.29	0.91	9.94
Overhang	1 ft	28306	14232	2949	7.05	3.55	0.73	9.93
	3 ft	28066	13686	3256	6.99	3.41	0.81	9.95
Infilt.	0.5 ach	27351	13568	2659	6.81	3.38	0.66	9.60
	2.0 ach	29316	14355	3836	7.30	3.58	0.96	10.00
Insul.	R0W,R4C	24310	10822	2361	6.06	2.70	0.59	9.90
	R5W,R11C	21757	9009	1622	5.42	2.24	0.40	9.19
	R11W,R19C	20812	8376	1311	5.18-	2.09	0.33	8.94
	R11W,R19C**	21453	9045	1283	5.34	2.25	0.32	8.82
Roof	Light	25620	10095	4400	6.38	2.51	1.10	9.98
Color	Reflec.	24256	8054	5077	6.04	2.01	1.26	9.93
Wall C.	Light	27767	13063	3578	6.92	3.25	0.89	9.86
Eff. Lights		23845	13705	3263	5.94	3.41	0.81	9.37

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 4.5e. Summary of Simple Parametric Simulations for Prototypical Single-Family House in Peshawar (a=4014 ft²)

			nergy (kWh)			KWh/ft ²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat-	Elec(kW)
Base Case*		26948	10326	5496	6.71	2.57	1.37	10.03
AC Setting	78	27121	10499	5496	6.76	2.62	1.37	10.01
_	80	26770	10149	5496	6.67	2.53	1.37	9.91
	82	26420	9798	5496	6.58	2.44	1.37	9.59
AC COP	2.28	27855	11233	5496	6.94	2.80	1.37	10.77
	2.8	25939	9317	5496	6.46	2.32	1.37	9.20
	3.0	25379	8757	5496	6.32	2.18	1,.37	8.73
	3.5	24259	7638	5496	6.04	1.90	1.37	8.54
Adj.	2 Houses	26913	9864	5925	6.70	2.46	1.48	9.99
Shade	3 Houses	26904	9688	6091	6.70	2.41	1.52	9.98
Overhang	1 ft	27075	10636	5313	6.75	2.65	1.32	10.04
	3 ft	26901	10128	5650	6.70	2.52	1.41	10.01
Infilt.	0.5 ach	26152	10112	4915	6.52	2.52	1.22	9.81
	2.0 ach	28152	10605	6422	7.01	2.64	1.60	10.25
Insul.	R0W,R4C	23180	7690	4365	5.77	1.92	1.09	9.78
	R5W,R11C	20854	6364	3365	5.20	1.59	0.84	9.19
	R11W,R19C	20006	5914	2967	4.98	1.47	0.74	8.96
	R11W,R19C**	20395	6389	2882	5.08	1.59	0.72	9.01
Roof	Light	25197	7073	6997	6.28	1.76	1.74	10.05
Color	Reflec.	24665	5685	7853	6.14	1.42	1.96	9.82
Wall C.	Light	26815	9584	6105	6.68	2.39	1.52	9.91
Eff. Lights		22676	10130	5670	5.65	2.52	1.41	9.43

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 4.5f. Summary of Simple Parametric Simulations for Prototypical Single-Family House in Quetta (a=4014 ft²)

		E	nergy (kWh)			KWh/ft ²		Peak
Measure	Case	Total	Cool.	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		27950	3055	13768	6.96	0.76	3.43	9.07
AC Setting	78	28079	3186	13768	7.00	0.79	3.43	9.31
	80	27822	2929	13768	6.93	0.73	3.43	8.84
	82	27580	2685	13768	6.87	0.67	3.43	8.67
AC COP	2.28	28127	3231	13768	7.01	0.80	3.43	9.73
	2.8	27754	2858	13768	6.91	0.71	3.43	8.67
	3.0	27644	2751	13768	6.89	0.69	3.43	8.67
	3.5	27428	2532	13768	6.83	0.63	3.43	8.67
Adj.	2 Houses	28312	2997	14188	7.05	0.75	3.53	9.03
Shade	3 Houses	28457	2974	14358	7.09	0.74	3.58	9.01
Overhang	1 ft	27713	3099	13487	6.90	0.77	3.36	9.09
_	3 ft	28150	3033	13992	7.01	0.76	3.49	9.06
Infilt.	0.5 ach	. 27074	2993	12954	6.74	0.75	3.23	8.71
•	2.0 ach	29386	3155	15104	7.32	0.79	3.76	9.68
insul.	R0W,R4C	25469	2574	11770	6.35	0.64	2.93	8.67
	R5W,R11C	22900	2343	9430	5.71	0.58	2.35	8.59
	R11W,R19C	21996	2263	8606	5.48	0.56	2.14	8.59
	R11W,R19C**	22306	2370	8809	5.56	0.59	2.19	8.59
Roof	Light	29326	2561	15639	7.31	0.64	3.90	8.67
Color	Reflec.	30116	2375	16614	7.50	0.59	4.14	8.67
Wall C.	Light	28516	2924	14466	7.10	0.73	3.60	8.93
Eff. Lights		23807	3069	13861	5.93	0.76	3.45	8.52

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 4.6a. Summary of Combined Parametric Simulations for Prototypical Single-Family House in Islamabad (a=4014 ft²)

_				E	nergy (kWh)			KWh/ft ²		Peak
	ulation						Ì			
Walls	Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	20522	4981	4418	5.11	1.24	1.10	9.31
			2.5	20154	4612	4418	5.02	1.15	1.10	8.69
			2.8	19743	4202	. 4418	4.92	1.05	1.10	8.00
			3.0	19517	3976	4418	4.86	0.99	1.10	7.62
			3.5	19062	3521	4418	4.75	0.88	1.10	7.62
R0	R4	1.0 ach	2.28	21600	5157	5319	5.38	1.28	1.33	9.61
	•		2.5	21219	4775	5319	5.29	1.19	1.33	8.96
			2.8	20794	4351	5319	5.18	1.08	1.33	8.24
			3.0	20560	4115	5319	5.12	1.03	1.33	8.00
	·		3.5	20088	3645	5319	5.00	0.91	1.33	8.00
R0 .	R4	2.0 ach	2.28	23168	5421	6621	5.77	1.35	1.65	10.10
			2.5	22768	5020	6621	5.67	1.25	1.65	9.41
	•		2.8	22321	4574	6621	5.56	1.14	1.65	8.65
			3.0	22073	4327	6621	5.50	1.08	1.65	8.59
			3.5	21578	3831	6621	5.38	0.95	1.65	8.59
R5	R11	0.5 ach	2.28	18312	4107	3081	4.56	1.02	0.77	8.78
			2.5	18015	3809	3081	4.49	0.95	0.77	8.21
			2.8	17685	3479	3081	4.41	0.87	0.77	7.57
		•	3.0	17501	3296	3081	4.36	0.82	0.77	7.22
			3.5	17135	2929	3081	4.27	0.73	0.77	6.51
R5	R11	1.0 ach	2.28	19498	4290	4083	4.86	1.07	1.02	9.08
			2.5	19188	3980	4083	4.78	0.99	1.02	8.48
			2.8	18842	3635	4083	4.69	0.91	1.02	7.81
			3.0	18651	3443	4083	4.65	0.86	1.02	7.62
			3.5	18268	3060	4083	4.55	0.76	1.02	7.62
R5	R11	2.0 ach	2.28	21479	4583	5771	5.35	1.14	1.44	9.62
			2.5	21147	4251	5771	5.27	1.06	1.44	8.98
			2.8	20780	3884	5771	5.18	0.97	1.44	8.59
			3.0	20575	3679	5771	5.13	0.92	1.44	8.59
			3.5	20167	3270	5771	5.02	0.81	1.44	8.59
Best	Case*			17661	2821	3715	4.40	0.70	0.93	7.08

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 4.6b. Summary of Combined Parametric Simulations for Prototypical Single-Family House in Karachi (a=4014 ft²)

			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -) <u>(</u>	nergy (kWh)				Peak	
Ins	ulation		•	1	,					1
Walls	Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	18299	6784	391	4.56	1.69	0.10	9.23
Ì			2.5	17734	6219	391	4.42	1.55	0.10	8.61
,			2.8	17107	5592	391	4.26	1.39	0.10	7.93
			3.0	16759	5244	391	4.18	1.31	0.10	7.56
			3.5	16063	4548	391	4.00	1.13	0.10	6.80
R0	R4	1.0 ach	2.28	18819	7149	545	4.69	1.78	0.14	9.42
ļ			2.5	18224	6552	545	4.54	1.63	0.14	8.79
			2.8	17561	5890	545	4.37	1.47	0.14	8.09
			3.0	17194	5523	545	4.28	1.38	0.14	7.70
			3.5	16459	4789	545	4.10	1.19	0.14	7.39
R0	R4	2.0 ach	2.28	19546	7613	808	4.87	1.90	0.20	9.74
			2.5	18910	6977	808	4.71	1.74	0.20	9.08
			2.8	18204	6272	808	4.54	1.56	0.20	8.35
			3.0	17813	5880	808	4.44	1.46	0.20	7.95
			3.5	17029	5098	808	4.24	1.27	0.20	7.62
R5	R11	0.5 ach	2.28	17126	5932	69	4.27	1.48	0.02	8.37
		•	2.5	16634	5440	69	4.14	1.36	0.02	7.84
Ì		÷	2.8	16087	4894	69	4.01	1.22	0.02	7.24
ļ			3.0	15784	4591	69	3.93	1.14	0.02	6.91
<u>'</u>		•	3.5	15177	3983	69	3.78	0.99	0.02	6.25
R5	R11	1.0 ach	2.28	17586	6279	183	4.38	1.56	0.05	8.57
			2.5	17064	5757	183	4.25	1.43	0.05	8.02
ļ.,	•		2.8	16485	5177	183	4.11	1.29	0.05	7.40
			3.0	16163	4855	183	4.03	1.21	0.05	7.05
			3.5	15519	4212	183	3.87	1.05	0.05	6.37
R5	R11	2.0 ach	2.28	18361	6776	459	4.57	1.69	0.11	8.97
			2.5	17796	6212	459	4.43	1.55	0.11	8.38
}			2.8	17170	5584	459	4.28	1.39	0.11	7.72
			3.0	16822	5237	459	4.19	1.30	0.11	7.36
}			3.5	16126	4542	459	4.02	1.13	0.11	6.90
Best	Case*			15335	4083	127	3.82	1.02	0.03	6.78

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 4.6c. Summary of Combined Parametric Simulations for Prototypical Single-Family House in Lahore (a=4014 ft²)

ــــــــــــــــــــــــــــــــــــــ	lotion		-	E	nergy (kWh)			KWh/ft²	· · · · · · · · · · · · · · · · · · ·	Peak
Walls	ulation Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
RO .	R4	0.5 ach	2.28	21764	9169	1470	5.42	2.28	0.37	10.07
110	,	0.0 4011	2.5	21013	8419	1470	5.23	2.10	0.37	9.38
			2.8	20177	7584	1470	5.03	1.89	0.37	8.62
			3.0	19715	7121	1470	4.91	1.77	0.37	8.20
	•		3.5	18790	6196	1470	4.68	1.54	0.37	7.35
R0	R4	1.0 ach	2.28	22641	9549	1966	5.64	2.38	0.49	10.41
	•••		2.5	21858	8767	1966	5.45	2.18	0.49	9.70
			2.8	20989	7898	1966	5.23	1.97	0.49	8.90
			3.0	20506	7415	1966	5.11	1.85	0.49	8.46
			3.5	19542	6450	1966	4.87	1.61	0.49	7.62
R0	R4	2.0 ach	2.28	23954	10022	2809	5.97	2.50	0.70	10.63
			2.5	23135	9202	2809	5.76	2.29	0.70	9.89
			2.8	22222	8290	2809	5.54	2.07	0.70	9.07
			3.0	21716	7783	2809	5.41	1.94	0.70	8.62
			3.5	20705	6773	2809	5.16	1.69	0.70	7.72
R5	R11	0.5 ach	2.28	19102	7304	673	4.76	1.82	0.17	9.25
			2.5	18510	6712	673	4.61	1.67	0.17	8.64
			2.8	17850	6053	673	4.45	1.51	0.17	7.95
			3.0	17486	5688	673	4.36	1.42	0.17	7.57
			3.5	16755	4957	673	4.17	1.23	0.17	6.81
R5	R11	1.0 ach	2.28	20167	7.742	1301	5.02	1.93	0.32	9.70
			2.5	19538	7114	1301	4.87	1.77	0.32	9.05
			2.8	18840	6415	1301	4.69	1.60	0.32	8.32
			3.0	18453	6027	1301	4.60	1.50	0.32	7.91
			3.5	17678	5253	1301_	4.40	1.31 _	0.32	7.11
R5	R11	2.0 ach	2.28	21834	8422	2286	5.44	2.10	0.57	10.28
			2.5	21149	7738	2286	5.27	1.93	0.57	9.58
			2.8	20388	6977	2286	5.08	1.74	0.57	8.80
			3.0	19967	6555	2286	4.97	1.63	0.57	8.36
			3.5	19123	5710	2286	4.76	1.42	0.57	7.62
Best	Case*			16883	4573	1185	4.21	1.14	0.30	7.41

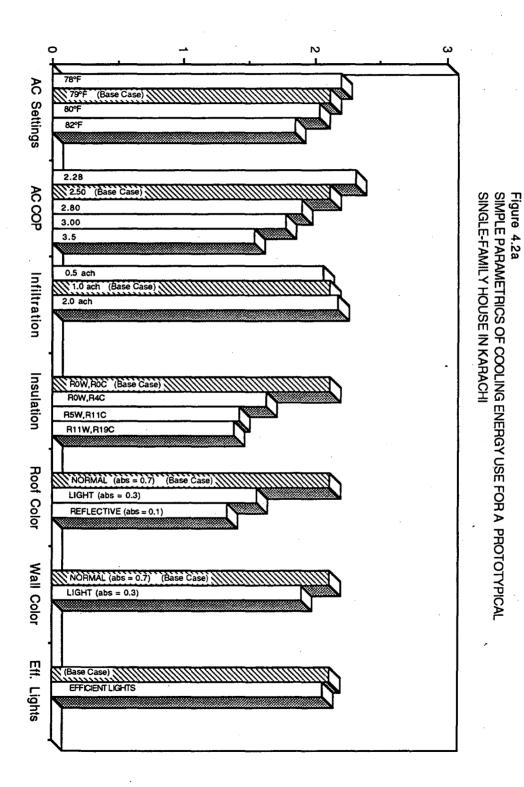
^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 4.6d. Summary of Combined Parametric Simulations for Prototypical Single-Family House in Multan (a=4014 ft²)

	ulation			E	nergy (kWh)			KWh/ft²		Peak
	ulation Roofs	Infilt	AC COP	Total	Cool	Hook	Total	Cool	Hook	Floo(IAM)
Walls				Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	24171	11210	1837	6.02	2.79	0.46	10.27
•		•	2.5	23243	10283	1837	5.79	2.56	0.46	9.56
		•	2.8	22214	9254	1837	5.53	2.31	0.46	8.78
			3.0	21643	8681	1837	5.39	2.16	0.46	8.35
			3.5	20501	7539	1837	5.11	1.88	0.46	7.48
R0	R4	1.0 ach	2.28	25285	11798	2361	6.30	2.94	0.59	10.63
			2.5	24310	10822	2361	6.06	2.70	0.59	9.90
		•	2.8	23224	9738	2361	5.79	2.43	0.59	9.08
			3.0	22623	9136	2361	5.64	2.28	0.59	8.63
			3.5	21420	7933	2361	5.34	1.98	0.59	7.72
R0	R4	2.0 ach	2.28	27031	12644	3260	6.73	3.15	0.81	11.19
			2.5	25984	11598	3260	6.47	2.89	0.81	10.40
			2.8	24822	10435	3260	6.18	2.60	0.81	9.53
		•	3.0	24176	9791	3260	6.02	2.44	0.81	9.05
_			3.5	22888	8501	3260	5.70	2.12	0.81	8.08
R5	R11	0.5 ach	2.28	21185	9117	943	5.28	2.27	0.23	9.43
			2.5	20435	8368	943	5.09	2.08	0.23	8.80
		•	2.8	19602	7536	943	4.88	1.88	0.23	8.10
•		•	3.0	19141	7074	943	4.77	1.76	0.23	7.71
			3.5	18217	6150	943	4.54	1.53	0.23	6.93
R5	R11	1.0 ach	2.28	22565	9817	1622	5.62	2.45	0.40	9.86
			2.5	21757	9009	1622	5.42	2.24	0.40	9.19
			2.8	20860	8112	1622	5.20	2.02	0.40	8.45
			3.0	20362	7614	1622	5.07	1.90	0.40	8.04
			3.5	19367	6619	1622	4.82	1.65	0.40	7.21
R5	R11	2.0 ach	2.28	24695	10860	2708	6.15	2.71	0.67	10.54
			2.5	23800	9966	2708	5.93	2.48	0.67	9.81
			2.8	22806	8973	2708	5.68	2.24	0.67	9.00
			3.0	22255	8421	2708	5.54	2.10	0.67	8.55
			3.5	21152	7319	2708	5.27	1.82	0.67	7.65
Best	Case*			18473	5852	1497.	4.60	1.46	0.37	7.56

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 4.6e. Summary of Combined Parametric Simulations for Prototypical Single-Family House in Peshawar (a=4014 ft²)


Ino	ulotion			E	nergy (kWh)			KWh/ft²		Peak
Walls	ulation Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	22704	7935	3644	5.66	1.98	0.91	10.18
ΠU	Π4	0.5 acm		22704						
			2.5		7305	3644	5.50	1.82	0.91	9.48
			2.8	21376	6607	3644	5.33	1.65	0.91	8.71
			3.0	20989	6220	3644	5.23	1.55	0.91	8.28
50			3.5	20214	5444	3644	5.04	1.36	0.91	7.42
R0	R4	1.0 ach	2.28	23843	8353	4365	5.94	2.08	1.09	10.50
			2.5	23180	7690	4365	5.77	1.92	1.09	9.78
			2.8	22443	6953	4365	5.59	1.73	1.09	8.97
			3.0	22035	6544	4365	5.49	1.63	1.09	8.53
			3.5	21217	5727	4365	5.29	1.43	1.09	7.64
R0	R4	2.0 ach	2.28	25662	8965	5571	6.39	2.23	1.39	10.69
			2.5	24949	8252	5571	6.22	2.06	1.39	9.95
			2.8	24157	7461	5571	6.02	1.86	1.39	9.13
			3.0	23718	7022	5571	5.91	1.75	1.39	8.67
			3.5	22839	6142	5571	5.69	1.53	1.39	8.45
R5	R11	0.5 ach	2.28	20032	6424	2484	4.99	1.60	0.62	9.49
			2.5	19531	5923	2484	4.87	1.48	0.62	8.85
			2.8	18972	5365	2484	4.73	1.34	0.62	8.15
	•		3.0	18663	5056	2484	4.65	1.26	0.62	7.75
			3.5	18044	4436	2484	4.50	1.11	0.62	6.97
R5	R11	1.0 ach	2.28	21395	6906	3365	5.33	1.72	0.84	9.85
			2.5	20854	6364	3365	5.20	1.59	0.84	9.19
			2.8	20252	5763	3365	5.05	1.44	0.84	8.45
			3.0	19919	5429	3365	4.96	1.35	0.84	8.03
			3.5	19252	4761	3365	4.80	1.19	0.84	7.21
R5	R11	2.0 ach	2.28	23623	7657	4841	5.89	1.91	1.21	10.13
. 10		2.0 do 11	2.5	23021	7057	4841	5.74	1.76	1.21	9.44
			2.8	22351	6385	4841	5.57	1.59	1.21	8.67
			3.0	21980	6014	4841	5.48	1.50	1.21	8.24
			3.5	21237	5271	4841	5.29	1.31	1.21	7.62
Best	Case*	· · · · · · · · · · · · · · · · · · ·	0.0	18527	4211	3191	4.62	1.05	0.79	7.60

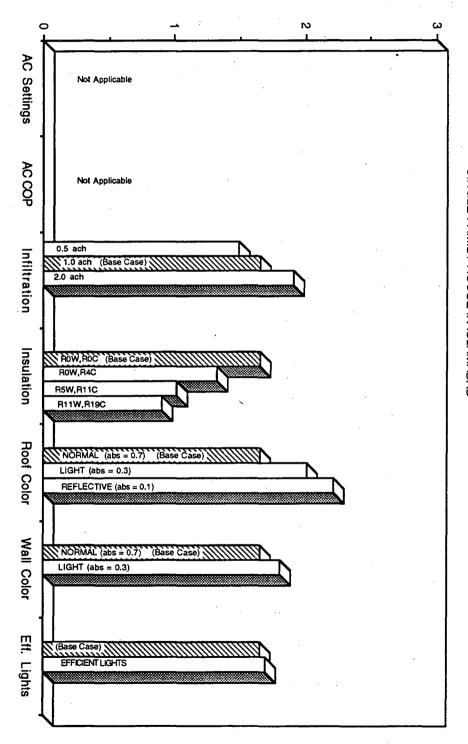
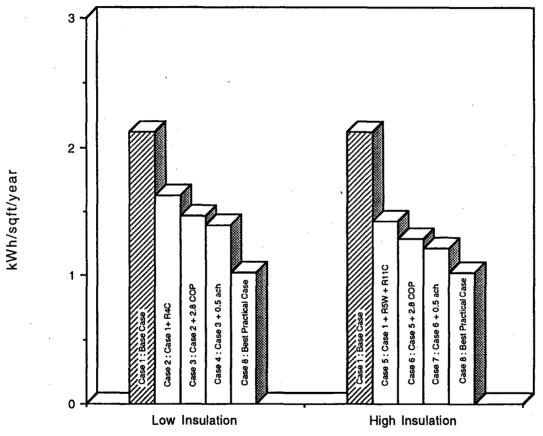
Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

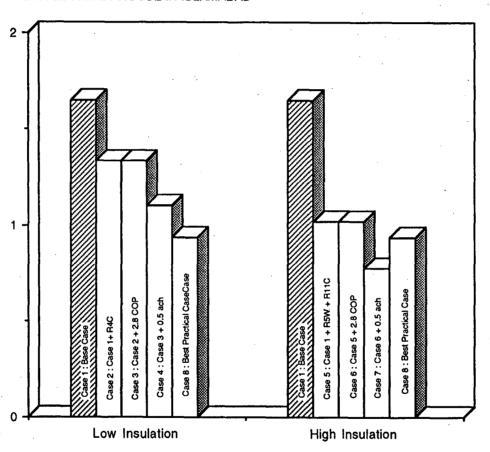
Table 4.6f. Summary of Combined Parametric Simulations for Prototypical Single-Family House in Quetta (a=4014 ft²)

laa				E	nergy (kWh)		KWh/ft²		Peak
	ulation	1 - 5114	40.000	Takal	01	114	7-1-1	01	114	
Walls	Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	24474	2651	10696	6.10	0.66	2.66	8.59
			2.5	24339	2516	10696	6.06	0.63	2.66	8.59
			2.8	24188	2366	10696	6.03	0.59	2.66	8.59
		•	3.0	24105	2283	10696	6.01	0.57	2.66	8.59
			3.5	23939	2116	10696	5.96	0.53	2.66	8.59
R0	R4	1.0 ach	2.28	25607	2711	11770	6.38	0.68	2.93	8.91
			2.5	25469	2574	11770	6.35	0.64	2.93	8.67
			2.8	25317	2422	11770	6.31	0.60	2.93	8.67
			3.0	25233	2337	11770	6.29	0.58	2.93	8.67
			3.5	25063	2168	11770	6.24	0.54	2.93	8.67
R0	R4	2.0 ach	2.28	27430	2824	13478	6.83	0.70	3.36	9.62
			2.5	27288	2682	13478	6.80	0.67	3.36	8.97
			2.8	27129	2523	13478	6.76	0.63	3.36	8.67
			3.0	27041	2435	13478	6.74	0.61	3.36	8.67
			3.5	26865	2261	13478	6.69	0.56	3.36	8.67
R5	R11	0.5 ach	2.28	21500	2387	7988	5.36	0.59	1.99	8.59
			2.5	21381	2267	7988	5.33	0.56	1.99	8.59
		,	2.8	21248	2135	7988	5.29	0.53	1.99	8.59
			3.0	21174	2061	7988	5.28	0.51	1.99	8.59
			3.5	21026	1913	7988	5.24	0.48	1.99	8.59
R5	R11	1.0 ach	2.28	23021	2465	9430	5.74	0.61	2.35	8.59
-			2.5	22900	2343	9430	5.71	0.58	2.35	8.59
			2.8	22762	2206	9430	5.67	0.55	2.35	8.59
			3.0	22688	2130	9430	5.65	0.53	2.35	8.59
			3.5	22537	1979	9430	5.61	0.49	2.35	8.59
R5	R11	2.0 ach	2.28	25251	2589	11536	6.29	0.64	2.87	9.10
.			2.5	25124	2461	11536	6.26	0.61	2.87	8.60
			2.8	24982	2320	11536	6.22	0.58	2.87	8.60
			3.0	24904	2241	11536	6.20	0.56	2.87	8.60
	-		3.5	24746	2084	11536	6.16	0.52	2.87	8.60
Best	Case*			21999	1960	8912	5.48	0.49	2.22	8.59

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

78


Figure 4.2b SIMPLE PARAMETRICS OF HEATING ENERGY USE FOR A PROTOTYPICAL SINGLE-FAMILY HOUSE IN ISLAMABAD

Best Practical Case: AC setting:79F, AC COP: 3.0, Overhang:3ft, Infilt:0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour:Light (0.3 abs), Insul: R4 roof for low case and R11 roof and R5 walls for high case, Adj. Shade: none, Efficient Lighting: none

Figure 4.3b COMBINED PARAMETRICS OF HEATING ENERGY USE FOR A PROTOTYPICAL SINGLE-FAMILY HOUSE IN ISLAMABAD

Best Practical Case: AC setting:79F, AC COP: 3.0, Overhang:3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: Light (0.3 abs), Insul: R4 roof for low case and R11 roof and R5 walls for high case, Adj. Shade: none, Eff. Lighting: none

Chapter 5

Office Building Converted from a Single-Family House in Pakistan

In Chapter 4, we discussed the detailed characteristics of a prototype residential building and presented DOE-2.1D simulation results for six climates showing the impacts of different conservation measures on the energy consumption. In this chapter, using the same methodology, the energy use of a prototypical office which is converted from a single family detached house will be analyzed. The main difference between the two analyses is the difference in their schedules of occupancy and use. The results of DOE-2.1D simulations for six climates (Karachi, Lahore, Islamabad, Quetta, Multan, and Peshawar) and for different energy conservation measures will be discussed.

The converted office prototype was defined based on surveys performed mainly in Islamabad, Karachi, and Lahore. In this chapter, parametric simulations for the three mentioned cities will be discussed in detail. For the other locations, namely, Multan, Peshawar, and Quetta, similar DOE-2 simulations using the prototype building models developed for Lahore and Islamabad were performed.

Prototype Office Building Converted from a Single-Family Detached House

In this section, data obtained from the two sources in developing a prototype for the converted office were used. Three major factors were considered in development of the converted office prototype:

- 1. the physical layout of the building, floor plan, zones, and construction materials;
- 2. the internal loads and schedules for each zone; and
- 3. cooling and heating systems and schedules.

Floor plan, zones, and construction

The recently surveyed converted offices were in the range of 1,800 to 4,900 ft². Consistent with the prototype single-family house, the floor area of the prototype converted office was assumed to be about about 3,800 ft². The building was divided into 7 zones. Six of these zones were offices and one zone included the corridors, kitchen and the common areas where secretaries and a receptionist are typically located. **Figures 5.1a&b** show the general floor plan of the prototype converted office building.

Table 5.1 summarizes the highlights of the prototype. To avoid any directional bias in the simulation results, the external walls and windows were distributed equally in the four cardinal directions.

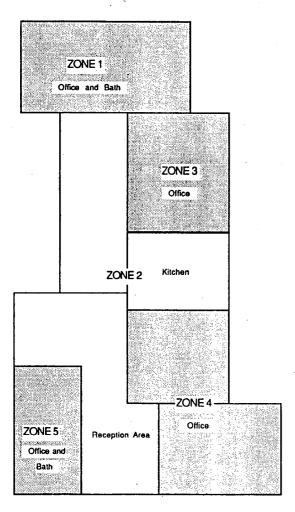


Figure 5.1 a General Floor Plan of the Prototype Converted Office Building (Ground Floor)

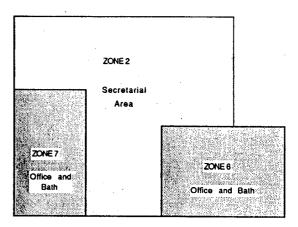


Figure 5.1 b General Floor Plan of the Prototype Converted Office Building (First Floor)

Table 5.1.

Prototypical Converted Office Description in Pakistan

Number of stories:

2

Total floor area:

3816 ft²

Total conditioned area:

3816 ft²

Total window area:

750 ft²

Window construction:

Single-pane glass, with 1.5-3.5 ft overhangs, no reflective film is used (reflective film will be used in

the prototype models of regular office buildings)

Wall construction:

In Karachi, 6" concrete with 1/2" plaster on either

side In Islamabad and Lahore, 91/2 " brick with 1/2"

plaster on either side

Roof construction:

6" concrete with 1/2" plaster inside, 1/2" roofing

outside

Number of occupants:

15

Lighting:

Fluorescent, 1 Watt/sqft, except for the central area

Lighting schedule:

8.00 - 17.00

Internal loads:

a refrigerator, a hot plate, one telephone exchange

(150W), two computers (200W) each.

Air conditioning:

Nine 1.5 tons window units with 2.5 COP (one for each office, two for the central area and two for the

large office which originally was the drawing and

the dining room)

Fans:

One in each office room and three in the central

area (a total of 9 fans 50W each)

Heating:

Electric resistance (no heating in Karachi)

Thermostat setting:

Cooling 79°F, heating 65°F

Others:

Roof and walls have an absorptivity of 0.7

Internal loads and schedules

The prototype house was simulated with a 100 Watts refrigerator, two computers (400 Watts), a hot plate (200 Watts), and a telephone exchange (150 Watts). Lighting was fluorescent with a peak usage of about 2600 watts. 15 people work in the office. Lighting and occupancy schedules were 8 a.m. to 5 p.m. while the rest of the equipment was assumed to operate all the time. **Table 5.1** also summarizes the internal loads of the converted office.

Cooling and heating systems and schedules

Data for cooling and heating equipment were obtained from the ENERCON reports (1987, 1990) and the recent survey.

The prototype building was simulated with seven air conditioned zones. The central zone (Zone 2) and the former dining-drawing room (Zone 4) were cooled by two 1.5 ton window units each. The other offices had one 1.5 ton units each. The building was simulated with nine 50 Watt fans operating during working hours. The air conditioning season was April through November.

The recent survey shows that no heating is done in the three buildings in Karachi. In the prototypical buildings, it is assumed that heating is done with electrical resistance heaters. The heating energy use was then estimated by gas heating equipment using an assumed efficiency for the heating equipment. This reduced the number of DOE-2 runs without loss of accuracy.

DOE-2.1D Parametric Simulation

A systematic series of DOE-2.1D simulations were performed to benchmark and validate the simulation results with monthly utility bills (on a kWh/sqft basis). These comparisons are shown in **Table 5.2.** Once the base case prototype has been benchmarked against measured utility bills, parametric simulations we performed in order to investigate the energy saving potentials of various conservation measures.

Base Case

The base case simulations were performed with the heating thermostat at 65°F between 8 a.m. and 5 p.m., and the cooling thermostat at 79°F from 8 a.m. to 5 p.m. Window conditions were assumed to be fixed (closed) at all times.

The window air-conditioners were assumed to have COPs of 2.5. The roofs and walls were assumed to be uninsulated, and the windows were single-pane clear glass. Shading from adjoining buildings was ignored for the base case, but analyzed in the parametric analysis of conservation measures.

Energy conserving measures

Once the base case prototype was simulated and validated, a series of parametric simulations were performed to estimate the energy saving potentials of conservation. Typical conservation measures usually considered for the converted office applications include envelope retrofit measures (to control heating and cooling loads of the building), energy efficient lighting, and energy efficient appliances (refrigerators, air conditioners etc.). **Table 5.3** shows a list of technologies that may be applicable to Pakistan buildings. Those technologies considered for our parametric analyses are printed in **boldface**.

Parametric Simulations

The parametric simulations were focussed around three subjects: envelope modification, efficient window air conditioners, and improved operational strategies. These parametrics include four levels of insulation in walls and roofs, two levels of overhang size, one level of wall

Table 5.2.

Comparison of Measured Electricity Consumption of the Three Karachi and Lahore Offices and the Prototype Converted Offices

	· · · · · · · · · · · · · · · · · · ·		
	Area	kWh/year	kWh/sqft.year
Karachi			
Building 10	2160	17594	8.14
Building 12	4900	65270	13.32
Building 17	1800	17000*	9.44
Prototype	3816	31542	8.26
Lahore			
Building 22	3521	37562†	10.66
Building 23	1996	28333†	14.19
Building 24	2430	26778†	10.92
Prototype	3816	37582	9.84

^{*} Interpolated values were used for the months for which bills are missing.

† Lahore building sizes were smaller than the prototype. Hence electricity intensities of Lahore buildings were higher than the prototype. Also, the sample Lahore buildings were in part heated with gas. Total gas heating cost, however, was less than 10% of the total energy bills.

color, two levels of roof colors, two levels of infiltration, four levels of air conditioning COPs, and three cooling thermostat settings. In addition, the effects of varying amounts of shading from adjoining houses was also investigated. See **Table 5.4** for details.

As for single-family detached house simulations, upon the completion of single parametric DOE-2 simulations, some complementary simulations on a combination of a few promising ECOs were performed. The methodology used to develop the combined parametrics was the same as in the residential buildings. The combined parametric simulations included simultaneous variations of insulation levels on walls and roofs, change in infiltration rate, and change in coefficient of performance of air conditioning unit.

Table 5.3.

Converted Office Conservation Technologies

(The impact of boldfaced ECOs were simulated in this study)

Cooling/Heating

- 1. Ceiling insulation
- 2. Floor insulation
- 3. Wall insulation
- 4. Building color
- 5. Multiple glazing
- 6. Reduce infiltration (weather stripping and caulking)
- 7. Movable window insulation
- 8. Shading adjacent buildings
- 9. Insulate ductwork
- 10. High COP air conditioning units
- 11. Evaporative coolers

Lighting

- 12. Energy efficient fluorescent lamps
- 13. Lighting controls
- 14. Selective switching

Results

To a certain extend, the results of the parametric simulations for the converted office are comparable to those of the single family houses. Recall that the converted office prototype has the construction and structure of a house but with office equipment and schedules.

Tables 5.6a-f, respectively. Parametrics for climates regions of Islamabad, Karachi, Lahore, Multan, Peshawar, and Quetta are denoted with letters a through f. Table 5.5 presents simulation results for total building, and cooling and heating end uses; both total energy use and normalized energy use (kWh/ft²) are presented. These tables also provide data on peak electric demand on the building. For illustration and discussion purposes, the parametric results for Karachi (cooling dominated) and Islamabad (both cooling and heating are needed) are also plotted in **Figures 5.2** and **5.3**.

Table 5.4: DOE-2.1D Parametric Simulations for Converted Prototype Office Building

Parametric simulation	Description
Base Case	R0 in walls and roofs; 1 ACH; A/C COP of 2.5; cooling thermostat setting of 79°F; roof and wall absorptivity 0.7; no shading from adjoining buildings.
Simple Parametrics	
Insulation	Four Cases: walls R0, roofs R4; walls R5, roof R11; walls R11 roofs R19 (insulation inside and outside)
Infiltration	Two Cases: 0.5, and 2.0 ACH
A/C COP	Four Cases: 2.28, 2.8, 3.0, and 3.5
Cooling thermostat setting	Three Cooling Cases: 78, 80, and 82 °F
Overhangs	Two cases: 1-ft and 3-ft
Shading from adjoining buildings	Two Cases: two and three buildings
Wall color	One case: light (absorptivity 0.3)
Roof color	Two cases: light (abs 0.3), very light (abs 0.1)
Energy efficient lights and equipment	One case: Consumption is reduced by 50%

Simple Parametrics

Cooling

The total simulated electricity use for the base case building was 31,542 kWh per year of which 18,416 kWh was for cooling. (See Table 5.5b and Figure 5.2a.) The heating electricity use was 1,162 kWh. Lighting, fans, refrigerators, and other miscellaneous end uses accounted for the rest of electricity use (11,964 kWh per year).

We discuss the impact of ECOs on cooling energy use only for Karachi. The conclusions made to Karachi buildings can be also extended to other climate zones. As Figure 5.2a indicates, the cooling energy use was very sensitive to thermostat setting, air conditioning COP, infiltration, roof and walls insulation, and roof color. The impact of overhang length, and efficient lighting systems on air conditioning use was fairly low. Increasing the air conditioning temperature setpoint from 79°F to 82°F decreased the cooling energy use by 15% (~4% per °F) or 2,793 kWh per year.

The base case prototype converted office was simulated with no insulation on walls and roofs. Insulating the roofs of the building to meet the Pakistani proposed standards (no insulation on

walls and R4 total resistance of the roofs) decreased the cooling energy use of the building by 2,311 kWh per year (13%). Further increase on walls and roof insulation to [R5 on walls and R11 on roof] and [R11 on walls and R19 on roof] decreased the cooling energy use by 3,083 kWh (17%) and 3,294 kWh (18%), respectively.

All the simulations assume that the insulation on the walls and roof are on the outside. This would allow the building to take advantage of thermal mass in walls and ceilings. To analyze the impact of location of the insulation (inside or outside), the [R11 walls, R19 Roof] simulation was repeated with insulation on the inside. The results indicate a slight increase in both heating and cooling energy demand.

The cooling energy use, as it might be expected, was also very sensitive to the efficiency of the window air conditioning units. Increasing the COP of the window units from 2.5 (base case) to 3.5 resulted in a decrease of 4,995 kWh per year (27%). The Pakistani code suggests a minimum COP of 2.28 for window units. Changing the standards to the most efficient system (COP 3.5) in the market resulted in energy savings of 6,681 kWh (33%) per year per converted office.

Changing the color of the roof form the base case to a light color (absorptivity of 0.3) resulted in a 3,116 kWh (17%) reduction in air conditioning use. Further decrease in absorptivity of the roof color to 0.1 increaseed these savings to 4,399 kWh (24%). Note that changing the color of the roof is as effective as having R11 insulation on the roofs and R5 insulation on the walls. Obviously, changing colors of buildings will be probably much less costly than adding insulation on roofs and walls. Hence, we strongly recommend lighter building colors be included in the Pakistani codes and standards.

As we indicated in Chapter 4, horizontal surfaces (and to a certain extend, vertical surfaces) tend to collect dust and therefore dusty white roofs have lower reflectances than clean white roofs. Consequently, the energy savings potential of white colored roofs deteriorate with time. However, the reflectivity of a dusty white surface is still high and of order of 40 to 50%. Regular maintenance (clean up) of white roofs will insure the persistence of the cooling energy savings.

Changing the color of walls had less impact on cooling energy use, only 1,776 kWh (10%). It should be noticed that lightening the color of the roofs and walls had a negative impact on heating energy use. In Karachi, where the heating energy demand is fairly low, this change in color only increased the heating energy demand by less than 500 kWh per year. However, as we will discuss, the DOE-2 results for Islamabad showed that the impact of roof color on heating energy requirements may be fairly significant.

The cooling energy use of the converted office building was also sensitive to infiltration rate. Increasing the infiltration rate from 1 ACH (base case) to 2 ACH increased the cooling energy use by 1,766 kWh per year; about 10%. While, decreasing infiltration to 0.5 ACH reduced cooling energy use by 1,239 kWh (7%). Note that the impact of infiltration rate on cooling energy

consumption in a converted office was much more predominant than in single family houses. The main reason for this difference is the air conditioning schedules; in the converted office, the air conditioning is operating for longer hours and during the daytime where there is significant wind. In contrast, in the residential buildings, air conditioning is mainly operating for shorter hours during the nighttimes when wind speed is low and the outside temperature is also low.

There is no shading due to adjoining buildings in the base case. To estimate the shading impacts, the prototype building was simulated with adjacent buildings on **two** and **three** sides. Shading the building on two sides reduced the cooling energy use by 777 kWh per year (4%). The impact of the shading on the third side was an additional reduction of 311 kWh (2%).

Cooling energy use is fairly insensitive to overhang length. Increasing the overhang length from 2 feet to 3 feet reduced the cooling energy use by 329 kWh, while decreasing the length to 1 foot increased the cooling use by 494 kWh. The main reason for this behavior is the internal shades modeled for the prototypical building. Note that in the prototypical analysis, the windows are distributed equally in all orientations. Obviously the impact of the window shadings will be larger if the majority of the windows are positioned on the south and west of the building.

Also, the effects of efficient lighting and other appliances on cooling energy demand were fairly low.

<u>Heating</u>

As we discussed in the preceding section, some of the measures considered for reducing cooling energy use may have a negative impact on heating energy use (e.g., lighter roof color). Although, some other measures will result in heating and cooling energy savings (e.g., roof and wall insulation) and some other measures will not affect heating energy use at all (e.g., air conditioning set point temperature). We will review the impact of the proposed ECOs on heating energy use in Islamabad (Figure 5.2b). Data for all climate zones are presented in Tables 5.5.

Measures having the greatest impact on heating energy demand were roof and wall insulation (positive impact), roof color (negative impact), and control of infiltration (positive impact). The total building energy use for the Islamabad converted office was 35,059 kWh of that 13,890 kWh was for cooling and 9,201 kWh for heating.¹

The effects of added insulation on roofs [R4] was to decrease heating energy use by 2,486 kWh (27%). Further increase in insulation of walls and roofs [R11 in walls, R19 in roofs] increased the energy savings to 5,782 kWh (63%). Note that having the same insulation on the interior side of the walls and roofs have slightly (245 kWh) increased heating energy savings of the

¹ Consumption data for heating are obtained with electric resistance heating. To estimate the heating energy use by in-room gas convective heater, divide the electric heating demands by the efficiency of the gas heater, usually in the range of 55 to 75%.

converted office building in Islamabad.

The impact of an increase in infiltration from 1.0 ACH to 2.0 ACH was an increase of 2,513 kWh (27%) in heating energy need. Decreasing infiltration form 1.0 ACH to 0.5 ACH resulted in a decrease of 1,332 kWh (14%) in heating energy use.

Changing the roof color to white or reflective colors increased heating energy use by 2,497 (27%) and 3,971 kWh (43%). The effect of wall colors on heating energy use was also significant (1,446 kWH or 16%).

Efficient appliances such as lights increased the heating energy use of the building by 880 KWh (10%).

Combined Parametrics

Through the simple parametric simulations, measures that have the highest impact on both heating and cooling energy requirements of prototypical converted office building in all climate regions were identified. The combined parametrics included variation in wall and roof insulation, COP, and air infiltration. Based on these combined parametrics, identified ECOs for a "best practical case" were identified. **Tables 5.6a-f** present the results of 31 parametric simulations for each of the climate zones (a total of 186 simulations).

In Figure 5.3a a selected group of combined parametrics for Karachi has been plotted. Two series of cases are presented: low insulation (Case 1) and high insulation (Case 5). The low insulation case considers R4 insulation on roofs and the high insulation case considers R11 insulation on roofs and R5 insulation on walls. To each case is progressively added the impact of COP increase from 2.5 to 2.8 (Cases 3 and 6) and the reduced infiltration (Cases 4 and 7). Finally, simulation results for "best practical case" (Case 8) are shown. The best case is defined as the case of A/C temperature setting of 79°F, A/C COP of 3.0; 3-foot overhang; 0.5 ACH, R5 insulation of walls, R11 insulation on roof, light roof color (abs 0.3), and efficient lighting.

As in the simple parametric simulations, the highest relative savings were still obtained by adding insulation on roofs and walls. The impact of roof insulation on reducing cooling energy use was much higher than that of the wall insulation. The cooling energy difference between the base case and the "best" case was 7,202 kWh per year (39%). In other words, – 40% of cooling energy use in converted office buildings in Karachi can be saved through simple, practical, and readily available measures and technologies in Pakistan.

In the analysis of heating energy use for Islamabad (Figure 5.3b) similar results were obtained. The difference between the base case and best case heating energy use was 5,574 kWh per year (61%). Most of heating energy savings were realized through roof and wall insulation and control of infiltration.

In summary, the DOE-2 parametric simulations show that savings on the order of 50% in both heating and cooling energy use in Pakistani converted office buildings, through use of some simple and available conservation measures such as insulating roofs and walls, control of infiltration, use of high COP air conditioning units, coloring the roofs white, are easily achievable. An economic analysis is needed to evaluate the cost effectiveness of the proposed measures. This was not done due to the lack of cost data.

Table 5.5a. Summary of Simple Parametric Simulations for Prototypical Converted Office Building in Islamabad (a=3816 ft²)

			Energy (kWh)			KWh/ft ²	· ·	Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*	<i>)</i>	35059	13890	9201	9.19	3.64	2.41	22.95
AC Setting	78	35595	14428	9201	9.33	3.78	2.41	22.97
	80	34525	13360	9201	9.05	3.50	2.41	22.95
•	82	33477	12308	9201	8.77	3.23	2.41	22.95
AC COP	2.28	36219	15051	9201	9.49	3.94	2.41	24.40
	2.8	33770	12600	9201	8.85	3.30	2.41	22.95
	3.0	33052	11885	9201	8.66	3.11	2.41	22.95
	3.5	31623	10454	9201	8.29	2.74	2.41	22.95
Adj.	2 Houses	35204	13312	9923	9.23	3.49	2.60	22.95
Shade	3 Houses	35273	13084	10221	9.24	3.43	2.68	22.95
Overhang	1 ft	35129	14259	8903	9.21	3.74	2.33	22.95
	3 ft	35063	13652	9443	9.19	3.58	2.47	22.95
Infilt.	0.5 ach	33042	13206	7869	8.66	3.46	2.06	22.95
	2.0 ach	38587	14906	11714	10.11	3.91	3.07	24.67
Insul.	R0W,R4C	29774	11091	6715	7.80	2.91	1.76	22.95
	R5W,R11C	26478	10285	4224	6.94	2.70	1.11	22.93
	R11W,R19C	25356	9969	3419	6.64	2.61	0.90	22.78
	R11W,R19C**	25303	10160	3174	6.63	2.66	0.83	22.61
Roof	Light	33757	10092	11698	8.85	2.64	3.07	22.95
Color	Reflec.	33751	8607	13172	8.84	2.26	3.45	22.95
Wall C.	Light	35203	12590	10647	9.23	3.30	2.79	22.95
Eff. Lights		29204	13138	10081	7.65	3.44	2.64	21.18

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 5.5b. Summary of Parametric Simulations for Prototypical Converted Office Building in Karachi (a=3816 ft²)

		Ē	Energy (kWh)			KWh/ft ²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		31542	18416	1162	8.27	4.83	0.30	22.95
AC Setting	78	32462	19333	1162	8.51	5.07	0.30	23.18
	80	30616	17485	1162	8.02	4.58	0.30	22.95
	82	28751	15623	1161	7.53	4.09	0.30	22.95
AC COP	2.28	33227	20102	1162	8.71	5.27	0.30	24.62
	2.8	29669	16541	1162	7.77	4.33	0.30	22.95
٠.	3.0	28630	15501	1162	7.50	4.06	0.30	22.95
	3.5	26549	13421	1162	6.96	3.52	0.30	22.95
Adj.	2 Houses	30864	17639	1259	8.09	4.62	0.33	22.95
Shade	3 Houses	30596	17328	1301	8.02	4.54	0.34	22.95
Overhang	1 ft	31986	18910	1108	8.38	4.96	0.29	22.95
_	3 ft	31263	18087	1206	8.19	4.74	0.32	22.95
Infilt.	0.5 ach	30124	17177 .	981	7.89	4.50	0.26	22.95
	2.0 ach	33652	20182	1504	8.82	5.29	0.39	25.50
Insul.	R0W,R4C	28761	16105	689	7.54	4.22	0.18	22.75
	R5W,R11C	27466	15333	166	7.20	4.02	0.04	20.52
	R11W,R19C	27174	15122	83	7.12	3.96	0.02	20.27
	R11W,R19C**	27426	15311	148	7.19	4.01	0.04	19.73
Roof	Light	28761	15300	1496	7.54	4.01	0.39	22.95
Color	Reflec.	27696	14017	1711	7.26	3.67	0.45	22.95
Wall C.	Light	30053	16640	1444	7.88	4.36	0.38	22.95
Eff. Lights		24724	17415	1325	6.48	4.56	0.35	21.18

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 5.5c. Summary of Simple Parametric Simulations for Prototypical Converted Office Building in Lahore (a=3816 ft²)

			nergy (kWh)	· · · · · · · · · · · · · · · · · · ·		KWh/ft ²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		37582	22686	2929	9.85	5.94	0.77	24.75
AC Setting	78	38125	23228	2929	9.99	6.09	0.77	25.12
-	80	37022	22124	2929	9.70	5.80	0.77	24.35
	82	35925	21030	2929	9.41	5.51	0.77	23.54
AC COP	2.28	39626	24729	2929	10.38	6.48	0.77	26.76
,	2.8	35308	20414	2929	9.25	5.35	0.77	22.79
	3.0	34047	19151	2929	8.92	5.02	0.77	22.79
•	3.5	31528	16632	2929	8.26	4.36	0.77	22.79
Adj.	2 Houses	37119	21800	3352	9.73	5.71	0.88	24.63
Shade	3 Houses	36954	21454	3535	9.68	5.62	0.93	24.58
Overhang	1 ft	37951	23224	2757	9.95	6.09	0.72	24.84
•	3 ft	37356	22314	3074	9.79	5.85	0.81	24.69
Infilt.	0.5 ach	35751	21387	2396	9.37	5.60	0.63	22.82
	2.0 ach	40407	24415	4022	10.59	6.40	1.05	26.94
Insul.	R0W,R4C	31538	17627	1942	8.26	4.62	0.51	23.06
	R5W,R11C	28204	15244	991	7.39	3.99	0.26	22.29
•	R11W,R19C	27169	14502	699	7.12	3.80	0.18	22.01
	R11W,R19C**	27556	14936	654	7.22	3.91	0.17	21.45
Roof	Light	32853	16429	4457	8.61	4.31	1.17	23.55
Color	Reflec.	31192	13792	5430	. 8.17	3.61	1.42	22.92
Wall C.	Light	36266	20512	3786	9.50	5.38	0.99	24.41
Eff. Lights		31056	21670	3404	8.14	5.68	0.89	22.65

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 5.5d. Summary of Simple Parametric Simulations for Prototypical Converted Office Building in Multan (a=3816 ft²)

			Energy (kWh)			KWh/ft ²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		42387	26694	3724	11.11	7.00	0.98	25.45
AC Setting	78	42856	27164	3724	11.23	7.12	0.98	25.75
	80	41910	26219	3724	10.98	6.87	0.98	25.04
	82	40940	25247	3724	10.73	6.62	0.98	24.11
AC COP	2.28	44811	29120	3724	11.74	7.63	0.98	27.52
	2.8	39692	24002	3724	10.40	6.29	0.98	23.16
	3.0	38196	22508	3724	10.01	5.90	0.98	22.95
•	3.5	35209	19518	3724	9.23	5.11	0.98	22.95
Adj.	2 Houses	41947	25820	4159	10.99	6.77	1.09	25.36
Shade	3 Houses	41786	25474	4343	10.95	6.68	1,14	25.31
Overhang	1 ft	42781	27285	3529	11.21	7.15	0.92	25.51
_	3 ft	42158	26301	3888	11.05	6.89	1.02	25.41
Infilt.	0.5 ach	39957	24935	3055	10.47	6.53	0.80	23.58
	2.0 ach	46181	29153	5058	12.10	7.64	1.33	27.70
Insul.	R0W,R4C	35529	21053	2510	9.31	5.52	0.66	24.06
	R5W,R11C	31247	17894	1386	8.19	4.69	0.36	23.20
	R11W,R19C	29889	16899	1022	7.83	4.43	0.27	22.85
	R11W,R19C**	30505	17600	940	7.99	4.61	0.25	22.25
Roof	Light	37691	20371	5354	9.88	5.34	1.40	24.38
Color	Reflec.	35873	17547	6359	9.40	4.60	1.67	23.76
Wall C.	Light	41145	24542	4636	10.78	6.43	1.21	25.24
Eff. Lights		35859	25635	4239	9.40	6.72	1.11	23.41

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 5.5e. Summary of Simple Parametric Simulations for Prototypical Converted Office Building in Peshawar (a=3816 ft²)

			Energy (kWh)	·····		KWh/ft²		Peak
Measure_	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		38663	19542	7153	10.13	5.12	1.87	24.21
AC Setting	78	39129	20008	7153	10.25	5.24	1.87	24.62
_	80	38194	19073	7153	10.01	5.00	1.87	23.80
	82	37279	18158	7153	9.77	4.76	1.87	22.96
AC COP	2.28	40371	21250	7153	10.58	5.57	1.87	26.16
	2.8	36762	17641	7153	9.63	4.62	1.87	22.95
	3.0	35709	16587	7153	9.36	4.35	1.87	22.95
	3.5	33602	14481	7153	8.81	3.79	1.87	22.95
Adj.	2 Houses	38654	18834	7852	10.13	4.94	2.06	24.07
Shade	3 Houses	38674	18563	8142	10.13	4.86	2.13	24.01
Overhang	1 ft	38847	19997	6884	10.18	5.24	1.80	24.29
	3 ft	38582	19241	7375	10.11	5.04	1.93	24.16
Infilt.	0.5 ach	36353	18336	6048	9.53	4.81	1.58	22.95
	2.0 ach	42520	21282	9272	11.14	5.58	2.43	26.60
Insul.	R0W,R4C	32541	15418	5156	8.53	4.04	1.35	22.95
	R5W,R11C	28640	13443	3232	7.51	3.52	0.85	22.61
	R11W,R19C	27416	12829	2616	7.18	3.36	0.69	22.18
'	R11W,R19C**	27526	13228	2328	7.21	3.47	0.61	22.24
Roof	Light	36271	14740	9566	9.50	3.86	2.51	23.19
Color	Reflec.	35686	12711	11007	9.35	3.33	2.88	22.95
Wall C.	Light	38419	17893	8559	10.07	4.69	2.24	23.91
Eff. Lights		32604	18661	7961	8.54	4.89	2.09	22.13

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 5.5f. Summary of Simple Parametric Simulations for Prototypical Converted Office Building in Quetta (a=3816 ft²)

· · · · · · · · · · · · · · · · · · ·		E	nergy (kWh)			KWh/ft²		Peak
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
Base Case*		44822	6782	26071	11.75	1.78	6.83	22.95
AC Setting	78	45275	7235	26071	11.86	1.90	6.83	22.95
	80	44391	6348	26071	11.63	1.66	6.83	22.95
	82	43633	5596	26071	11.43	1.47	6.83	22.95
AC COP	2.28	45218	7180	26071	11.85	1.88	6.83	22.95
	2.8	44380	6340	26071	11.63	1.66	6.83	22.95
	3.0	44134	6094	26071	11.57	1.60	6.83	22.95
	3.5	43645	5604	26071	11.44	1.47	6.83	22.95
Adj.	2 Houses	45626	6622	27039	11.96	1.74	7.09	22.95
Shade	3 Houses	45954	6559	27429	12.04	1.72	7.19	22.95
Overhang	1 ft	44427	6933	25522	11.64	1.82	6.69	22.95
	3 ft	45157	6693	26496	11.83	1.75	6.94	22.95
Infilt.	0.5 ach	42115	6646	23501	11.04	1.74	6.16	22.95
·	2.0 ach	49764	7122	30674	13.04	1.87	8.04	22.95
Insul.	R0W,R4C	39203	6124	21110	10.27	1.60	5.53	22.95
	R5W,R11C	32386	6074	14342	8.49	1.59	3.76	22.95
	R11W,R19C	30130	6056	12108	7.90	1.59	3.17	22.95
	R11W,R19C**	30451	6230	12254	7.98	1.63	3.21	22.95
Roof	Light	47150	5596	29587	12.36	1.47	7.75	22.95
Color	Reflec.	48509	5123	31416	12.71	1.34	8.23	22.95
Wall C.	Light	46326	6419	27940	12.14	1.68	7.32	22.95
Eff. Lights		39589	6363	27241	10.37	1.67	7.14	21.18

^{*} Base Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Efficient Lighting: none.

^{**} Insulation applied to the interior surface.

Table 5.6a. Summary of Combined Parametric Simulations for Prototypical Converted Office Building in Islamabad (a=3816 ft²)

laa	ulation			E	nergy (kWh)			KWh/ft²		Peak
Walls	ulation Roofs	Infilt	AC COP	Total	Cool	Hoot	Total	Cool	Hoot	Floo(Is)A/\
						Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	28649	11272	5407	7.51	2.95	1.42	22.95
			2.5	27804	10428	5407	7.29	2.73	1.42	22.95
		•	2.8	26865	9487	5407	7.04	2.49	1.42	22.95
			3.0	26344	8968	5407	6.90	2.35	1.42	22.95
		<u> </u>	3.5	25302	7926	5407	6.63	2.08	1.42	22.95
R0	R4	1.0 ach	2.28	30677	11995	6715	8.04	3.14	1.76	22.95
			2.5	29774	11091	6715	7.80	2.91	1.76	22.95
			2.8	28767	10088	6715	7.54	2.64	1.76	22.95
			3.0	28210	9529	6715	7.39	2.50	1.76	22.95
			3.5	27097	8415	6715	7.10	2.21	1.76	22.95
R0	R4	2.0 ach	2.28	34491	13147	9378	9.04	3.45	2.46	25.27
			2.5	33494	12151	9378	8.78	3.18	2.46	23.40
	•		2.8	32388	11042	9378	8.49	2.89	2.46	22.95
		•	3.0	31773	10427	9378	8.33	2.73	2.46	22.95
			3.5	30544	9199	9378	8.00	2.41	2.46	22.95
R5	R11	0.5 ach	2.28	25406	10469	2969	6.66	2.74	0.78	22.47
			2.5	24625	9686	2969	6.45	2.54	0.78	22.47
			2.8	23754	8817	2969	6.22	2.31	0.78	22.47
•			3.0	23273	8334	2969	6.10	2.18	0.78	22.47
			3.5	22308	7370	2969	5.85	1.93	0.78	22.47
R5	R11	1.0 ach	2.28	27312	11120	4224	7.16	2.91	1.11	22.93
			2.5	26478	10285	4224	6.94	2.70	1.11	22.93
			2.8	25548	9354	4224	6.69	2.45	1.11	22.93
			3.0	25034	8840	4224	6.56	2.32	1.11	22.93
			3.5	24003	7811	4224	6.29	2.05	1.11	22.93
R5	R11	2.0 ach	2.28	31077	12192	6918	8.14	3.19	1.81	24.58
-,			2.5	30155	11271	6918	7.90	2.95	1.81	22.95
			2.8	29132	10246	6918	7.63	2.69	1.81	22.95
			3.0	28563	9678	6918	7.49	2.54	1.81	22.95
			3.5	27430	8543	6918	7.19	2.24	1.81	22.95
Best	Case*			23169	7575	3627	6.07	1.99	0.95	22.63

Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 5.6b. Summary of Combined Parametric Simulations for Prototypical Converted Office Building in Karachi (a=3816 ft²)

1				E	nergy (kWh)	· · · · · · · · · · · · · · · · · · ·		KWh/ft²	· · · · · · · · · · · · · · · · · · ·	Peak
	Insulation Walls Roofs Infilt AC COP				01		T-1-1	0 - 1		
Walls				Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	28730	16248	515	7.53	4.26	0.13	22.41
			2.5	27374	14893	515	7.17	3.90	0.13	22.41
			2.8	25869	13387	515	6.78	3.51	0.13	22.41
			3.0	25033	12553	515	6.56	3.29	0.13	22.41
		· 	3.5	23362	10880	515	6.12	2.85	0.13	22.41
R0	R4	1.0 ach	2.28	30231	17574	689	7.92	4.61	0.18	23.27
			2.5	28761	16105	689	7.54	4.22	0.18	22.75
			2.8	27127	14471	689	7.11	3.79	0.18	22.75
			3.0	26220	13564	689	6.87	3.55	0.18	22.75
			3.5	24408	11752	689	6.40	3.08	0.18	22.75
R0	R4	2.0 ach	2.28	32545	. 19552	1025	8.53	5.12	0.27	26.54
			2.5	30907	17912	1025	8.10	4.69	0.27	24.55
			2.8	29085	16091	1025	7.62	4.22	0.27	22.95
			3.0	28074	15079	1025	7.36	3.95	0.27	22.95
			3.5	26053	13057	1025	-6.83	3.42	0.27	22.95
R5	R11	0.5 ach	2.28	27546	15519	60	7.22	4.07	0.02	19.97
			2.5	26253	14225	60	6.88	3.73	0.02	18.56
			2.8	24816	12789	60	6.50	3.35	0.02	16.98
		•	3.0	24018	11990	60	6.29	3.14	0.02	16.11
•			3.5	22425	10396	60	5.88	2.72	0.02	14.36
R5	R11	1.0 ach	2.28	28865	16731	166	7.56	4.38	0.04	22.13
			2.5	27466	15333	166	7.20	4.02	0.04	20.52
		•	2.8	25912	13779	166	6.79	3.61	0.04	18.74
			3.0	25051	12916	166	6.56	3.38	0.04	17.75
			3.5	23326	11192	166	6.11	2.93	0.04	16.44
R5	R11	2.0 ach	2.28	31034	18608	460	8.13	4.88	0.12	25.05
			2.5	29475	17048	460	7.72	4.47	0.12	23.19
			2.8	27742	15315	460	7.27	4.01	0.12	21.99
			3.0	26780	14353	460	7.02	3.76	0.12	21.99
			3.5	24859	12430	460	6.51	3.26	0.12	21.99
Best	Case*		· ·	23283	11217	101	6.10	2.94	0.03	15.75

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 5.6c. Summary of Combined Parametric Simulations for Prototypical Converted Office Building in Lahore (a=3816 ft²)

				E	nergy (kWh)			KWh/ft²		Peak
	ulation									[<u>_</u>
Walls	Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	31255	17853	1434	8.19	4.68	0.38	22.92
			2.5	29800	16398	1434	7.81	4.30	0.38	21.26
			2.8	28183	14781	1434	7.39	3.87	0.38	21.26
•			3.0	27284	13884	1434	7.15	3.64	0.38	21.26
			3.5	25491	12088	1434	6.68	3.17	0.38	21.26
R0	R4	1.0 ach	2.28	33109	19198	1942	8.68	5.03	0.51	24.91
			2.5	31538	17627	1942	8.26	4.62	0.51	23.06
			2.8	29794	15882	1942	7.81	4.16	0.51	22.56
			3.0	28824	14913	1942	7.55	3.91	0.51	22.56
			3.5	26889	12976	1942	7.05	3.40	0.51	22.56
R0	R4	2.0 ach	2.28	36176	21262	2948	9.48	5.57	0.77	27.58
			2.5	34432	19516	2948	9.02	5.11	0.77	25.51
			2.8	32491	17575	2948	8.51	4.61	0.77	23.20
			3.0	31418	16499	2948	8.23	4.32	0.77	22.95
			3.5	29263	14347	2948	7.67	3.76	0.77	22.95
R5	R11	0.5 ach	2.28	27735	15287	481	7.27	4.01	0.13	- 22.12
			2.5	26499	14052	481	6.94	3.68	0.13	20.52
			2.8	25127	12677	481	6.58	3.32	0.13	18.74
			3.0	24364	11916	481	6.38	3.12	0.13	17.75
		1	3.5	22839	10391	481	5.99	2.72	0.13	16.93
R5	R11	1.0 ach	2.28	29552	16592	991	7.74	4.35	0.26	24.06
	•		2.5	28204	15244	991	7.39	3.99	0.26	22.29
			2.8	26706	13746	991	7.00	3.60	0.26	20.35
			3.0	25875	12914	991	6.78	3.38	0.26	20.35
			3.5	24212	11253	991	6.34	2.95	0.26	20.35
R5	R11	2.0 ach	2.28	32683	18713	2003	8.56	4.90	0.52	26.98
	•	v	2.5	31156	17185	2003	8.16	4.50	0.52	24.96
i			2.8	29456	15487	2003	7.72	4.06	0.52	22.90
			3.0	28516	14546	2003	7.47	3.81	0.52	22.90
			3.5	26632	12661	2003	6.98	3.32	0.52	22.90
Best	Case*			23419	10631	821	6.14	2.79	0.22	18.48

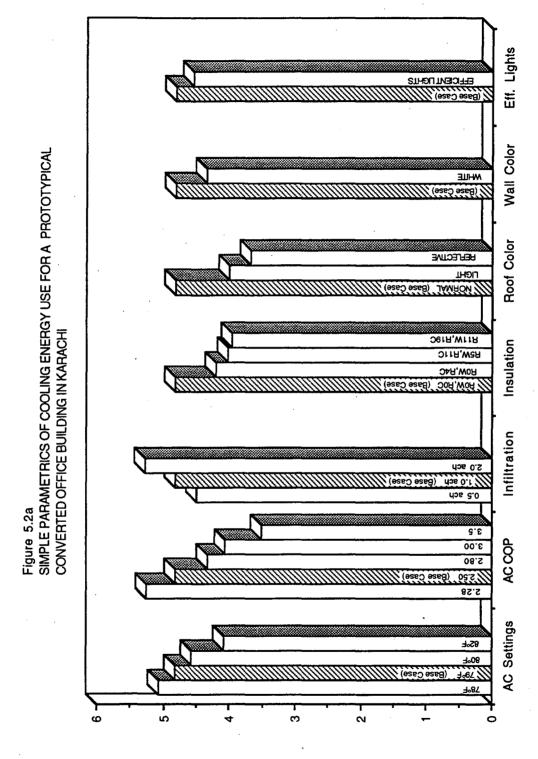
Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 5.6d. Summary of Combined Parametric Simulations for Prototypical Converted Office Building in Multan (a=3816 ft²)

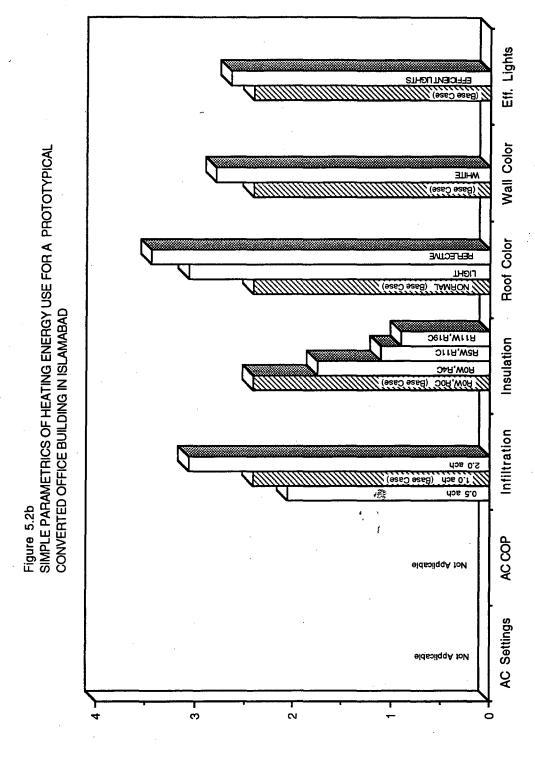
				E	nergy (kWh)			KWh/ft ²		Peak
	ulation			ł						ł
Walls	Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	34961	21082	1912	9.16	5.52	0.50	23.59
	•		2.5	33226	19345	1912	8.71	5.07	0.50	21.90
			2.8	31296	17417	1912	8.20	4.56	0.50	21.90
			3.0	30227	16347	1912	7.92	4.28	0.50	21.90
			3.5	28086	14206	1912	7.36	3.72	0.50	21.90
R0	R4	1.0 ach	2.28	37425	22948	2510	9.81	6.01	0.66	25.99
			2.5	35529	21053	2510	9.31	5.52	0.66	24.06
			2.8	33422	18946	2510	8.76	4.96	0.66	22.81
			3.0	. 32254	17778	2510	8.45	4.66	0.66	22.81
			3.5	29917	15440	2510	7.84	4.05	0.66	22.81
R0	R4	2.0 ach	2.28	41574	25843	3763	10.89	6.77	0.99	28.81
			2.5	39433	23703	3763	10.33	6.21	0.99	26.63
			2.8	37053	21323	3763	9.71	5.59	0.99	24.20
			3.0	35732	20003	3763	9.36	5.24	0.99	22.95
			3.5	33093	17360	3763	8.67	4.55	0.99	22.95
R5	R11	0.5 ach	2.28	30340	17603	770	7.95	4.61	0.20	22.53
			2.5	28903	16165	770	7.57	4.24	0.20	20.90
			2.8	27305	14568	770	7.16	3.82	0.20	19.08
			3.0	26420	13681	770	6.92	3.59	0.20	18.07
			3.5	24645	11908	770	6.46	3.12	0.20	17.56
R5	R11	1.0 ach	2.28	32846	19494	1386	8.61	5.11	0.36	25.05
			2.5	31247	17894	1386	8.19	4.69	0.36	23.20
			2.8	29468	16117	1386	7.72	4.22	0.36	21.50
			3.0	28482	15130	1386	7.46	3.96	0.36	21.50
			3.5	26509	13158	1386	6.95	3.45	0.36	21.50
R5	R11	2.0 ach	2.28	37127	22557	2601	9.73	5.91	0.68	28.08
			2.5	35265	20697	2601	9.24	5.42	0.68	25.97
			2.8	33197	18630	2601	8.70	4.88	0.68	23.61
			3.0	32049	17483	2601	8.40	4.58	0.68	22.95
			3.5	29756	15187	2601	7.80	3.98	0.68	22.95
Best	Case*			25432	12301	1164	6.66	3.22	0.31	19.25

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.

Table 5.6e. Summary of Combined Parametric Simulations for Prototypical Converted Office Building in Peshawar (a=3816 ft²)

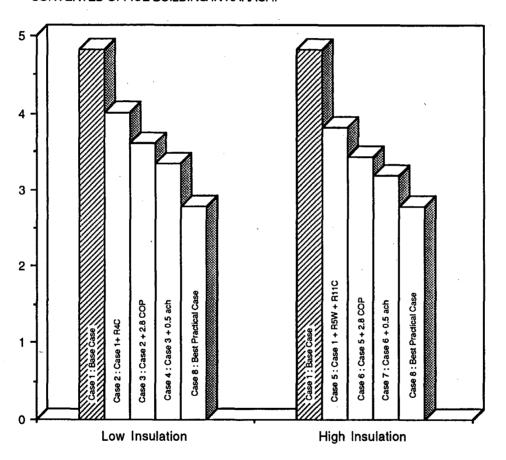

			<u> </u>	E	Energy (kWh) KWh/ft²					Peak
	ulation			,					•	
Walls	Roofs	Infilt	AC COP	Total	Cool	<u> Heat</u>	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	31592	15495	4131	8.28	4.06	1.08	22.74
	•		2.5	30372	14274	4131	7.96	3.74	1.08	22.74
			2.8	29016	12917	4131	7.60	3.38	1.08	22.74
		•	3.0	28263	12165	4131	7.41	3.19	1.08	22.74
			3.5	26759	10661	4131	7.01	2.79	1.08	22.74
R0	R4	1.0 ach	2.28	33866	16745	5156	8.87	4.39	1.35	24.68
			2.5	32541	15418	5156	8.53	4.04	1.35	22.95
			2.8	31068	13945	5156	8.14	3.65	1.35	22.95
			3.0	30251	13126	5156	7.93	3.44	1.35	22.95
			3.5	28614	11492	5156	7.50	3.01	1.35	22.95
R0	R4	2.0 ach	2.28	38037	18767	7304	9.97	4.92	1.91	27.30
			2.5	36543	17272	7304	9.58	4.53	1.91	25.25
			2.8	34882	15610	7304	9.14	4.09	1.91	22.97
		•	3.0	33959	14688	7304	8.90	3.85	1.91	22.95
			3.5	32118	12845	7304	8.42	3.37	1.91	22.95
R5	R11	0.5 ach	2.28	27545	13378	2201	7.22	3.51	0.58	21.37
			2.5	26504	12335	2201	6.95	3.23	0.58	21.13
			2.8	25345	11177	2201	6.64	2.93	0.58	21.13
			3.0	24702	10535	2201	6.47	2.76	0.58	21.13
			3.5	23416	9250	2201	6.14	2.42	0.58	21.13
R5	R11	1.0 ach	2.28	29784	14586	3232	7.81	3.82	0.85	23.82
			2.5	28640	13443	3232	7.51	3.52	0.85	22.61
			2.8	27368	12168	3232	7.17	3.19	0.85	22.61
			3.0	26661	11465	3232	6.99	3.00	0.85	22.61
		•	3.5	25251	10051	3232	6.62	2.63	0.85	22.61
R5	R11	2.0 ach	2.28	33912	16613	5330	8.89	4.35	1.40	26.49
			2.5	32597	15300	5330	8.54	4.01	1.40	24.51
			2.8	31137	13839	5330	8.16	3.63	1.40	22.95
			3.0	30326	13028	5330	7.95	3.41	1.40	22.95
•			3.5	28706	11408	5330	7.52	2.99	1.40	22.95
Best	Case*			24361	9581	2813	6.38	2.51	0.74	21.65

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.


Table 5.6f. Summary of Combined Parametric Simulations for Prototypical Converted Office Building in Quetta (a=3816 ft²)

Insulation			<u></u>	E	nergy (kWh)		Peak		
		L - 214	4.0.00D	T . 1 - 1	01					
Walls	Roofs	Infilt	AC COP	Total	Cool	Heat	Total	Cool	Heat	Elec(kW)
R0	R4	0.5 ach	2.28	36343	6363	18010	9.52	1.67	4.72	22.95
			2.5	35993	6013	18010	9.43	1.58	4.72	22.95
•		•	2.8	35606	5623	18010	9.33	1.47	4.72	22.95
	•		3.0	35389	5408	18010	9.27	1.42	4.72	22.95
			3.5	34957	4978	18010	9.16	1.30	4.72	22.95
R0	R4	1.0 ach	2.28	39553	6474	21110	10.37	1.70	5.53	22.95
			2.5	39203	6124	21110	10.27	1.60	5.53	22.95
			2.8	38813	5732	21110	10.17	1.50	5.53	22.95
			3.0	38598	5516	21110	10.11	1.45	5.53	22.95
•			3.5	38164	5084	21110	10.00	1.33	5.53	22.95
R0	R4	2.0 ach	2.28	45348	6790	26591	11.88	1.78	6.97	22.95
			2.5	44985	6429	26591	11.79	1.68	6,97	22.95
			2.8	44583	6025	26591	11.68	1.58	6.97	22.95
			3.0	44358	5800	26591	11.62	1.52	6.97	22.95
			3.5	43911	5351	26591	11.51	1.40	6.97	22.95
R5	R11	0.5 ach	2.28	29355	6443	10941	7.69	1.69	2.87	22.95
			2.5	28978	6066	10941	7.59	1.59	2.87	22.95
			2.8	28559	5647	10941	7.48	1.48	2.87	22.95
•			3.0	28328	5416	10941	7.42	1.42	2.87	22.95
			3.5	27866	4955	10941	7.30	1.30	2.87	22.95
R5	R11	1.0 ach	2.28	32750	6441	14342	8.58	1.69	3.76	22.95
			2.5	32386	6074	14342	8.49	1.59	3.76	22.95
			2.8	31977	5669	14342	8.38	1.49	3.76	22.95
			3.0	31752	5443	14342	8.32	1.43	3.76	22.95
			3.5	31302	4991	14342	8.20	1.31	3.76	22.95
R5	R11	2.0 ach	2.28	39308	6671	20671	10.30	1.75	5.42	22.95
· - -	• • • •		2.5	38941	6303	20671	10.20	1.65	5.42	22.95
			2.8	38532	5894	20671	10.10	1.54	5.42	22.95
			3.0	38304	5665	20671	10.04	1.48	5.42	22.95
			3.5	37849	5210	20671	9.92	1.37	5.42	22.95
Best	Case*			29286	5035	12286	7.67	1.32	3.22	22.95

^{*} Best Case is for the prototype model with the following properties: AC setting: 79°F, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Efficient Lighting: none.


kWh/sqft/year

kWh/sqft/year

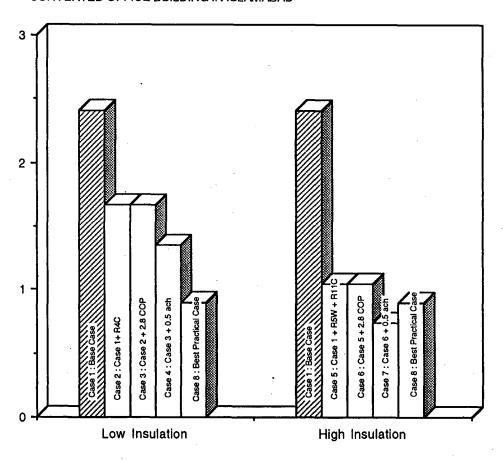

kWh/sqft/year

Figure 5.3a COMBINED PARAMETRICS OF COOLING ENERGY USE FOR A PROTOTYPICAL CONVERTED OFFICE BUILDING IN KARACHI

Best Practical Case: AC setting:79F, AC COP:3.0, Overhang: 3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: Light (0.3 abs), Insul: R4 roof for low case and R11 roof and R5 walls for high case, Adj. Shade: none, Eff. Lighting: none

Figure 5.3b COMBINED PARAMETRICS OF HEATING ENERGY USE FOR A PROTOTYPICAL CONVERTED OFFICE BUILDING IN ISLAMABAD

Best Practical Case: AC setting:79F, AC COP: 3.0, Overhang: 3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: Light (0.3 abs), Insul: R4 roof for low case and R11 roof and R5 walls for high case, Adj. Shade: none, Eff. Lighting: none

Chapter 6

Office Building

In Chapter 5, the detailed characteristics of a prototype residential building converted and used as an office were discussed and DOE-2.1D simulations results for six climate conditions showing the effects of different conservation measures on energy consumption were presented. In this chapter, a different methodology will be used to develop several prototype room models for a variety of offices located in different sides of a multi-story office building. The results of DOE-2.1D simulation for six climate conditions (Karachi, Lahore, Islamabad, Quetta, Multan, and Peshawar) and for different energy conservation measures will be given and discussed.

The office prototypes are defined based on surveys performed mainly in Islamabad, Karachi, and Lahore. In this chapter, parametric simulations for the three cities will be discussed in detail. For the other locations, i.e., Multan, Peshawar, and Quetta, similar DOE-2 simulations using the prototypes developed for Lahore and Islamabad were performed.

Prototype Office Buildings

Three major factors are considered in developing office prototype:

- 1. the physical layout of the building, floor plan, zones, and construction materials;
- 2. the internal loads and schedules for each zone; and
- 3. cooling and heating systems and schedules.

Floor plan, zones, and construction

Since most offices included in the 1989 survey have window air conditioning units, the orientation of each office will have a significant effect on cooling and heating energy consumption of the office. In addition to office orientation, other factors, such as whether the office is located on the corner of the building (two exterior walls rather than one) or the top floor (that is, it has roofs), will also significantly affect office energy consumption.

To account for all these variations, 32 prototypical office units were developed to simulate energy use of all possible configurations. Three office types were considered: top floor with roof in direct contact with unconditioned environment, middle floor, ground floor with floor in direct contact with unconditioned environment, and one story offices. For each floor conditions, eight possible office configurations were considered: North, Northeast, East, Southeast, South, Southwest, West, and Northwest.

Each prototype office was assumed to be square in shape with a floor area of 225 ft², conditioned by an individual window air conditioning unit. In some centrally air conditioned offices, the eight zones (one room per zone) on each floor were combined into one big zone depending

on the type of HVAC equipment used. Figure 6.1 shows the general floor plan layout of the prototype offices.

Table 6.1 summarizes the highlights of the prototype office room and **Table 6.2** summarizes the highlights of the prototype office building.

Table 6.1.

Prototypical Single Office Room Description in Pakistan

Total floor area:	225 ft ²
Total conditioned area:	225 ft ²
Total window area:	60 ft ² for central offices and 120 ft ² for corner offices
Window construction:	Single-pane glass with reflective film, with 1.5-3.5 ft overhangs
Wall construction:	In Karachi, 6" concrete with 1/2" plaster on either side In Islamabad and Lahore, 9½ " brick with 1/2" plaster on either side
Roof construction:	6" concrete with 1/2" plaster inside, 1/2" roofing outside (note that middle floor offices do not have external roofs)
Number of occupants:	2
Lighting:	Fluorescent, 1 Watt/sqft
Lighting schedule:	8.00 - 17.00
Air conditioning:	1.5 tons window units with 2.5
	COP (one for each office)
Fans:	One in each room (50W)
Heating:	Electric resistance
Thermostat setting:	Cooling 79°F, Heating 70°F

Figure 6.1 General Floor Plan of the Prototype Office Building

ZONES	ZONES	ZONES
1, 9, 17, 25	2, 10, 18, 26	3, 11, 19, 27
ZONES 8, 16, 24, 32		ZONES 4, 12, 20, 28
ZONES	ZONES	ZONES
7, 15, 23, 31	6, 14, 22, 30	5, 13, 21, 29

Top Floor: Zones 1,2,3,,4,5,6,7 and 8

Middle Floor: Zones 9,10,11,12,13,14,15 and 16 Ground Floor: Zones 17,18,19,20,21,22,23 and 24 Single Story: Zones 25,26,27,28,29,30,31 and 32

Table 6.2.

Prototypical Office Building Description in Pakistan

Number of stories: 3 Total floor area: 7200 ft² 7200 ft² Total conditioned area: 2880 ft² Total window area: Window construction: Single-pane alass with reflective film. with 2-ft overhangs Wall construction: In Karachi, 6" concrete with 1/2" plaster on either side In Islamabad and Lahore, 91/2 " brick with 1/2" plaster on either side Roof construction: 6" concrete with 1/2" plaster inside, 1/2" roofing outside Number of occupants: 64 Lighting: Fluorescent, 1 Watt/sqft Lighting schedule: 8.00 - 17.00Air conditioning: Central single zone package rooftop unit with 2.5 COP Fans: One in each room (50W) Heating: Electric resistance (no heating in Karachi) Thermostat setting: Cooling 79°F, Heating 70°F

Internal loads and schedules

Each room was simulated with a 50 Watt fan operating during working hours. Lighting was fluorescent with an intensity of 1W/ft². Each person approximately occupied 110 ft². Lighting and occupancy schedules were 8 a.m. to 5 p.m.. **Tables 6.1&2** also summarize the internal loads of the prototypical office buildings.

Cooling and heating systems and schedules

Data for cooling and heating equipment were obtained from the ENERCOM reports (1987, 1990) and the recent survey.

The prototype single offices were simulated with window air conditioners. The prototype office building was also simulated with central package air conditioning units and central fan coil systems.

The recent survey showed that no heating was done in the seven buildings in Karachi. In Lahore, out of the three samples one had no heating system and the other two used electric resistance heaters. In Islamabad, out of the sample of four buildings (all of which had heating systems), one used single zone packaged units, one used a fan-coil system, one used a room gas heater, and one used a combination of a room gas and electric resistance heater for heating.

DOE-2.1D Parametric Simulation

A systematic series of DOE-2.1D simulations were performed to benchmark and validate the simulation results with monthly utility bills (on a kWh/sqft basis). These comparisons are shown in **Table 6.3**. Once the base case prototype were benchmarked against measured utility bills, parametric simulations were performed in order to investigate the energy saving potentials of various conservation measures.

Base Case

The base case simulations were performed with the heating thermostat at 70°F between 8 a.m. and 5 p.m., and the cooling thermostat at 79°F from 8 a.m. to 5 p.m. The windows were assumed closed at all times.

The window air-conditioners were assumed to have COPs of 2.5. The roofs and walls were assumed to be uninsulated, and the windows were single-pane clear glass. Shading from adjoining buildings was ignored for the base case, but analyzed in the parametric simulations of conservation measures.

Base Case Office Orientation

One of the factors that significantly affected the heating and cooling energy use of individually conditioned offices is the office's orientation. For centrally conditioned offices, the impact of building orientation, once it is averaged is not that significant. Before performing the parametric simulations, the impact of office orientation was analyzed by simulating the heating and cooling energy use of 32 offices. Two building conditions were envisioned: single-story buildings and multi-story office buildings. For multi-story office buildings, three possible floors were considered: top floor, middle floor(s), and ground floor. Eight offices for each floor were simulated. Parametric simulations were performed on all 32 base cases. Although, all simulated data was included on the electronic data base, we only discuss the results of parametric simulations of the average of the four-side offices for each floor type will be discussed.

Energy conserving measures

Once the base case prototype was simulated and validated, we performed a series of parametric simulations were performed to estimate the energy saving potentials of conservation measures. Typical conservation measures usually considered for the office applications include

Table 6.3.

Comparison of Measured Electricity Consumption of the Offices in Karachi, Lahore, and Islamabad and the Prototype Converted Offices

Area	kWh/year	kWh/sqft.year
3200	·N/A	
801	6533	8.15
1890	363580 ^a	153.67
6200	109492 ^D	17.66
1444	20269	14.04
955	N/A	
2989	23973	8.02
7200	102276	14.2
		· · · · · · · · · · · · · · · · · · ·
2436	N/A	
1929	35445	18.37
2007	37186	18.52
7200	112077	15.5
2436	N/A	
2436	59098	18.94
2436	55801	15.70
2436	22119	9.25
7200	98617	13.7
	3200 801 1890 6200 1444 955 2989 7200 2436 1929 2007 7200	3200 N/A 801 6533 1890 363580 ^a 6200 109492 ^b 1444 20269 955 N/A 2989 23973 7200 102276 2436 N/A 1929 35445 2007 37186 7200 112077 2436 N/A 2436 59098 2436 55801 2436 22119

N/A Utility data unavailable.

- a. Very high value (This building is a hospital!)
- b. Bills for the entire building.

envelop retrofit measures (to control heating and cooling loads of the building), energy efficient lighting, daylighting, and energy efficient systems and appliances (refrigerators, air conditioners etc.). **Table 6.4** shows a list of technologies that may be applicable to Pakistan buildings. Those technologies considered for our parametric analyses were printed in **boldface**.

Table 6.4. Office Conservation Technologies

Cooling/Heating

- 1. Ceiling insulation
- 2. Floor insulation
- 3. Wall insulation
- 4. Building color
- 5. Multiple glazing
- 6. Reduce infiltration (weather stripping and caulking)
- 7. Movable window insulation
- 8. Shading modifications (solar screens, reflective films)
- 9. Insulate ductwork
- 10. High COP air conditioning units
- 11. Evaporative coolers
- 12. Reduced internal loads including daylighting

Lighting

- 12. Energy efficient fluorescent lamps
- 13. Lighting controls/daylighting
- 14. Selective switching

Parametric Simulations

The parametric simulations were focussed on three subjects: envelope modification, efficient window air conditioners, and improved operational strategies (daylighting). These parametrics included three levels of insulation in walls and roofs, two levels of infiltration, four levels of air conditioning COPs, two levels of overhangs, one level of wall color, two levels of roof color, two levels of film on windows, and one level of daylighting. In addition, the effects of varying amounts of shading from adjoining buildings was also investigated. The effects of natural ventilation were not examined. (See **Table 6.5** for details.)

As mentioned earlier, the parametric simulations were performed for all 32 base case offices. However, the impact of ECOs for the weighted average of offices on the North, South, East, and West sides of the buildings will be discussed only.

Just like for the case the single family detached house and converted office simulations, upon the completion of the single parametric DOE-2 simulations, some complementary simulations on a combination of a few promising ECOs were performed. The methodology we used to develop the various combinations of parametrics was the same as for the residential case. The parametric combinations included simultaneous variations in insulation levels on walls and roofs, change in infiltration rate, change in coefficient of performance of air conditioning units and the roof color.

Large office buildings can be conditioned with both in-room or central units. For offices, and in addition to all parametric simulations mentioned above, also simulated was the heating and cooling energy use of the building for two central systems: packaged and two-pipe fan coil.

Table 6.5: DOE-2.1D Parametric Simulations for Prototype Office Building

Parametric simulation	Description
32 Base Cases	R0 in walls and roofs; 1 ACH; A/C COP of 2.5; cooling thermostat setting of 79°F; 2-ft overhangs; roof and wall absorptivity 0.7; no shading from adjoining buildings.
Simple Parametrics	
Insulation	Three Cases: walls R0, roofs R4; walls R5, roof R11; walls R11 roofs R19 (insulation inside) For locations other than Karachi, two more cases are simulated: tile roof with 1½ " polystrene insulation, and mud covered roof
Infiltration	Two Cases: 0.5, and 2.0 ACH
A/C COP	Four Cases: 2.28, 2.8, 3.0, and 3.5
Overhangs	Two cases: 1-ft and 3-ft
Shading from adjoining buildings	Two Cases: two and three buildings
Wall color	One case: light (absorptivity 0.3)
Roof color	Two cases: light (abs 0.3), very light (abs 0.1)
Day lighting	One case
Central systems	Three cases: packaged single with and without reheat, 2-pipe fan coil

Results

We will discuss the simulation results in three sections: office orientations, energy conservation options, and central HVAC systems vs. window and in-room units. The total number of simulations performed for office buildings is approximately

32 (offices) x 50 (ECO parametrics) x 6 (locations) = 9,600.

The Impact of Office Orientation

Heating, cooling, and total energy use for each office and for all climate zones for the base case simulations are shown in **Tables 6.6a-f** and plotted for Islamabad on **Figures 6.2a&b**. Note that all the prototypes had the same area so that the energy per unit area is comparable. In Islamabad, the difference in cooling energy use between the office with the lowest load (North) and the office with the highest load (South East) were 951, 1307, 875, and 701 kWh per year for the "top", "middle", "ground" floor, and "single story" offices, respectively. The difference in the heating energy use between the offices of lowest (South) load and highest load (either North or NorthWest) were 908, 782, 756, and 818 kWh per year for the "top", "middle", "ground" floor, and "single story" offices, respectively. Usually offices with the lowest cooling loads have the highest heating energy demand. The total office energy use for the South facing offices were lowest. The main reasons being: 1) during the summer, the windows in South facing offices are shaded with two-feet overhangs and 2) during the winter, South-facing offices have the greatest solar gains because of lower solar angle. It was found that the effect of office orientation on total heating and cooling energy use in Islamabad is about 800 to 1,000 kWh per year. For other locations, differences of the same order of magnitude were observed.

To further investigate the effect of location of offices on heating and cooling energy use, the average of energy use for comer offices was calculated and compared them with the corresponding averages for side offices and the average for the entire floor. The average heating energy use for the comer offices were about the same as the side offices. However, the average cooling energy use was about 400-700 kWh/year larger in corner offices than those of the side offices. This difference can be readily traced back to larger widow areas for comer offices.

In proposing energy conservation options, hence, one should carefully take into the account the location and orientation of the office. Figure 6.1 is intended to show the orientations of the prototypical rooms, however, we are not restricted in this analysis to a square floor-plan. Any floor-plan can be modeled using the room models. While some measures such as wall and roof insulation and infiltration have a clear impact on the energy use for all offices, measures such as window films and overhangs will have greater impacts on some offices compared to others. Although, the parametric simulations were performed for all configurations, the discussion will be limited to the parametrics for the average energy use for the side offices. The main reason for selecting side offices for the parametric discussion is that there can be more offices located

on the sides of the buildings than their comers.

Parametric Simulation Results

The simulation results for single and combined parametrics are presented in **Tables 6.7a-f(i-iii)** and **Tables 6.8a-f(i-iii)**, respectively. Parametrics for climate regions of Islamabad, Karachi, Lahore, Multan, Peshawar, and Quetta are denoted with letters a through f. Greek numerals i, ii, and iii refers to simulation results for "top", "middle" floor, and "single story" buildings. Although the database for the simulation results include results for all rooms types, for presentation purposes only Tables 6.7 have been included in this report. These present simulation results, averaged for 4-side offices for each floor type configurations, for total office, and cooling and heating end uses; both total energy use and normalized energy use (kWh/ft²) are presented. For illustration and discussion purposes, the parametric results for Karachi (cooling dominated) and Islamabad (both cooling and heating are needed) for single story office (data corresponding to Tables 6.7b.iii and 6.7a.iii, and Tables 6.8b.iii and 6.8a.iii) are plotted in **Figures 6.3a&b** and **6.4a&b**, respectively.

Simple Parametrics

Cooling

The total simulated electricity use for the single story base case office was 2,850 kWh per year (12.67 kWh/ft²) of that 2,167 kWh (76%) was for cooling. (See Table 6.7b.iii and Figure 6.3a.) Lighting, fans, and other miscellaneous end uses accounted for the rest of electricity use.

The impact of ECOs on cooling energy use for Karachi will be discussed only. The conclusions made for Karachi office can be extended to other climate zones. As Figure 6.3a indicates, the cooling energy use was very sensitive to air conditioning COP, window film, roof and walls insulation, and roof color. The impact of overhang length, wall color, efficient lighting systems, day lighting, and infiltration on air conditioning use was fairly low.

The base case prototype office was simulated with no insulation on walls and roofs. Insulating the roofs to meet the Pakistani proposed standards (no insulation on walls and R4 total resistance of the roofs) decreased the cooling energy use of the building by 229 kWh per year per side office (11%). Further increase on walls and roof insulation to [R5 on walls and R11 on roof] and [R11 on walls and R19 on roof] did not result in significant energy savings.

The cooling energy use, as it might be expected, was also very sensitive to the efficiency of the window air conditioning units. Increasing the COP of the window units form 2.5 (base case) to 3.5 resulted in a decrease of 586 kWh per year (27%). The Pakistani code suggests a minimum COP of 2.28 for window units. Changing the standards to the most efficient system (COP 3.5) in the market will result in energy savings of 784 kWh (33%) per year per office.

Changing the color of the roof (absorptivity of 0.7) to a light color (absorptivity of 0.3) resulted in a 430 kWh (20%) reduction in air conditioning use. Further decrease in absorptivity of the roof color to 0.1 increased these savings to 609 kWh (28%). Note that changing the color of the roof white for the single story office building in Karachi is more effective than having R11 insulation on the roofs and R5 insulation on the walls. Also, changing colors of buildings will be probably much less costly than adding insulation on roofs and walls. Hence, we strongly recommend lighter building colors be included in the Pakistani codes and standards.

Changing the color of walls had a small impact on cooling energy use, only 84 kWh (4%). It should be noticed that lightening the color of the roofs and walls had a negative impact on heating energy use. In Karachi, where the heating energy demand is fairly low, this change in the color only increased the heating energy demand by a negligible amount. In fact, the heating energy use for Karachi was not simulated at all. However, as will be discussed later with the DOE-2 results for of Islamabad simulations, the impact of roof color on heating energy requirement may be fairly significant.

The cooling energy use of the single-story office building was moderately sensitive to infiltration rate. Increasing the infiltration rate from 1 ACH (base case) to 2 ACH increased the cooling energy use by 115 kWh per year; about 5%. While, decreasing infiltration to 0.5 ACH reduced cooling energy use by 71 kWh (3%).

To estimate the shading impacts of adjacent buildings, buildings on **two** and **three** sides of the prototype building were simulated. Shading the building on two randomly picked sides reduced the cooling energy use by 289 kWh per year (13%). The impact of the shading on the third randomly picked side was an additional reduction of 112 kWh (5%).

Window films also have a significant potential for energy savings. Simulating the office building with window films of 80% transmissivity resulted in reducing the cooling energy consumption by 194 kWh (9%). A further decrease in the film transmissivity to 0.6 resulted in an additional savings of 191 kWh (9%).

Cooling energy use was fairly insensitive to the overhang length. Increasing the overhang length from 2 feet to 3 feet reduced the cooling energy use per side office by only 19 kWh, while decreasing the length to 1 foot increased the cooling use by 29 kWh for the office.

Also, the effects of efficient lighting, daylighting, and other equipment on cooling energy demand were fairly low.

Heating

As was discussed in the preceding section, some of the measures considered for reducing cooling energy use may have a negative impact on heating energy use (e.g., roof color). Although, some other measures will result in heating and cooling energy savings (e.g., roof and wall

insulations) and some other measures will not affect heating energy use at all (e.g., air conditioning set point temperature). The impact of the proposed ECOs on heating energy use in Islamabad (Figure 6.3b) will be discussed. Data for all climate zones are presented in Tables 6.7.

Measures having the greatest impact on heating energy demand were roof and wall insulations (positive impact), roof color (negative impact), and control of infiltration (positive impact). The total building energy use for the Islamabad office was 3,143 kWh of that 1,596 kWh was for cooling and 863 kWh for heating.¹

The effects of added insulation on roofs [R4] was to decrease heating energy use by 290 kWh (34%). Further increase in insulation of walls and roofs [R11 in walls, R19 in roofs] increased the energy savings to 473 kWh (57%). The prototype office building was also simulated with tile roofing plus insulation and mud roof with no insulation. The total heating energy use for the tile-roof case was 475 kWh, a saving of 388 kWh (45%). For the mud roof case there were no significant change in heating and cooling energy use from the base case.

The impact of an increase in infiltration from 1.0 ACH to 2.0 ACH was an increase of 208 kWh (24%) in heating energy need. Decreasing infiltration form 1.0 ACH to 0.5 ACH resulted in a decrease of 105 kWh (12%) in heating energy use.

Changing the roof color to white or reflective colors increased heating energy use by 248 (29%) and 396 kWh (46%), respectively. The effect of wall colors on heating energy use was fairly insignificant (35 kWH or 4%).

Efficient lighting and daylighting also slightly increased the heating energy use of the building. Use of window films also increased heating energy use by 85 to 182 kWh (10 to 21%).

Combined Parametrics

Through the simple parametric simulations measures that have the highest impact on both heating and cooling energy requirements of prototypical office building in all climate regions were identified. The combined parametrics included variation in walls and roof insulation, roof color, air conditioning COP, and air infiltration. Based on these combined parametric simulations, ECOs for a "best practical case" were identified. **Tables 6.8a-f(i-iii)** present the results of 33 parametric simulations (averaged for four side offices) for each floor type and each climate zones.

¹ Consumption data for heating are obtained with electric resistance heating. To estimate the heating energy use by in-room gas convective heater, divide the electric heating demands by the efficiency of the gas heater, usually in the range of 55 to 75%.

A selected group of combined parametric simulation results for Karachi is plotted in **Figure 6.4a**. Case 1 is the base case. Two series of cases are presented: low insulation (Case 2) and high insulation (Case 6). The low insulation case considers R4 insulation on roofs and the high insulation case considers R11 insulation on roofs and R5 insulation on walls. To each case has progressively been added the impact of COP increase from 2.5 to 2.8 (Cases 3 and 7), reduced infiltration (Cases 4 and 8), and light color roof (Cases 5 and 9). Finally, simulation results for "best practical case" (Case 10) ared presented. The best case has the following characteristics: A/C COP 3.0, 3-ft overhang, 0.5 ACH, R5 wall and R11 roof insulation.

As in the simple parametric simulations, the highest relative savings are obtained by adding insulations on roofs and walls. The impact of roof insulation on reducing cooling energy use was much higher than that of wall insulation. The cooling energy difference between the base case and the "best" case was 639 kWh per year (29%). In other words, ~30% of cooling energy use in office buildings in Karachi can be saved through simple, practical, and readily available measures and technologies in Pakistani market.

The analysis of heating energy use for Islamabad (**Figure 6.4b**) gives similar results. The difference between the base case and best case heating energy use was 501 kWh per year (58%). Most of heating energy savings were realized through roof and wall insulations and control of infiltration.

In summary, the DOE-2 parametrics show that savings in the order of 30 to 60% in both heating and cooling energy use in Pakistani office buildings are achievable, through use of some simple and available conservation measures such as insulating roofs and walls, control of infiltration, use of high COP air conditioning units, and coloring the roofs white. An economic analysis is needed to evaluate the cost effectiveness of the proposed measures.

Central versus Window Air Conditioning Systems

The recent survey of 1989 shows that the most common HVAC setup is window air-conditioners together with room gas heaters. This setup is compared to the two other central systems which are also used by some office buildings according to the same survey.

The two central systems examined are the 'Two Pipe Fan Coil system' (TPFC) and the 'Packaged Single Zone system' (PSZ). The prototype office with TPFC system uses a single central system for all of the four floors. When examining the PSZ system a separate system is assumed for each floor.

The PSZ system may be controlled in more than one way. Two of these implementations are analyzed. In one, during the cooling season, each of the office rooms has its own thermostat control and the supply temperature out of the unit is controlled by the thermostat in the room

with the highest cooling load. The supply air into the other rooms are electrically reheated to maintain comfort. This case is called 'Packaged Single Zone unit with Reheat' (PSZ/RH). In the other implementation, one thermostat in the middle of the office floor controls the supply temperature. This case is called simply the 'Packaged Single Zone system'. During the heating season both types are controlled by a thermostat at the center of the floor.

DOE-2 simulations were done for the base case values for all of the above HVAC systems and the results are tabulated in **Table 6.9**. The electricity consumption is shown in **Figures 6.5a-f** for Islamabad, Lahore, Multan, Peshawar and Quetta respectively. Gas consumption is shown in **Figure 6.6**.

Packaged Single Zone Systems

For cooling, as far as electricity consumption is concerned, central packaged units are not as good as window units because of the additional fan power requirements to transport the cool air to the zones (see Figures 6.5a-f). Naturally if there is reheat in the zones the electricity consumption further increases. On the other hand, during the heating season the gas consumption of the packaged single zone system is less than the setup where each office is individually heated by a room gas heater(see Figure 6.6). This is because of the fact that the central system is controlled by the average temperature of the floor and this allows the heat from the offices facing south to warm up the offices facing north. Hence the energy consumption for heating is less than the case where the rooms are individually heated by room gas heaters.

Two Pipe Fan Coil Systems

It can be seen from Figures 6.5.a-f and Figure 6.6 that both electricity and gas consumption of the central fan coil system is lower than the other systems considered. There are several reasons for this.

During the heating season the efficiency of the boiler is higher than the efficiency of typical gas heaters. Also, although zones are individually controlled, the offices facing south still help warm up the offices facing north and this reduces gas consumption.

During the cooling season the seasonal efficiency of the central fan coil system is better than of the heat pump in the window air conditioner. Therefore the energy consumption is less for the central system. This advantage diminishes when the cooling load reduces as can be seen from Figure 6.5.f for Quetta.

It should be noted that although the TPFC system is the least expensive system to operate, it is the most expensive system to install and maintain. Before one can determine the optimal system configuration, an economic analysis considering the equipment, installation and maintenance costs must be performed. Such price information was not available at this point but in future, such a study can be performed using the data in this section to estimate operating costs.

Figure 6.2a
The impact of Orientation of Single Story Office Building on Cooling and Heating Energy Use in Islamabad

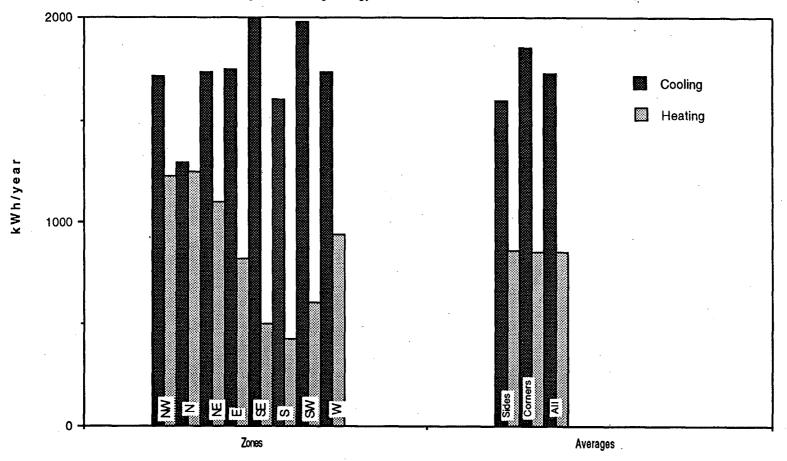
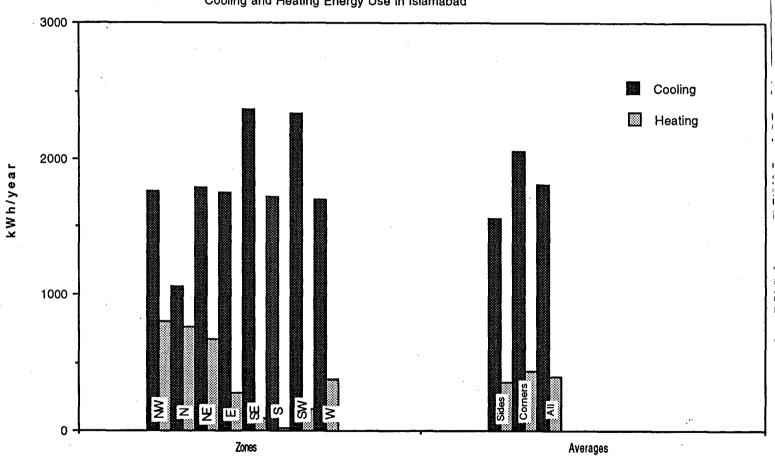
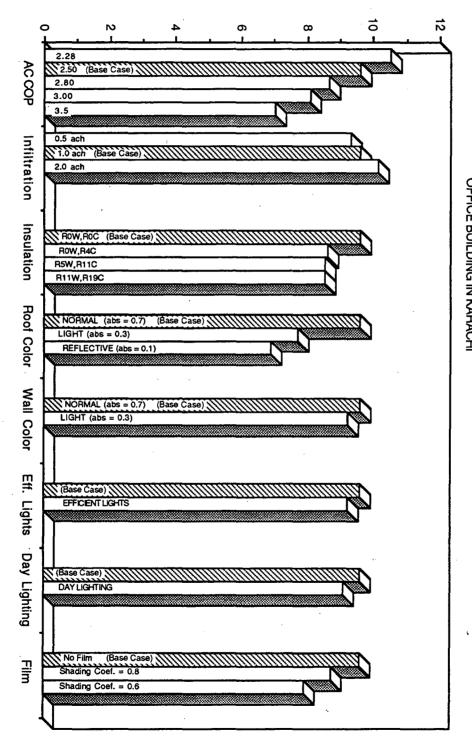
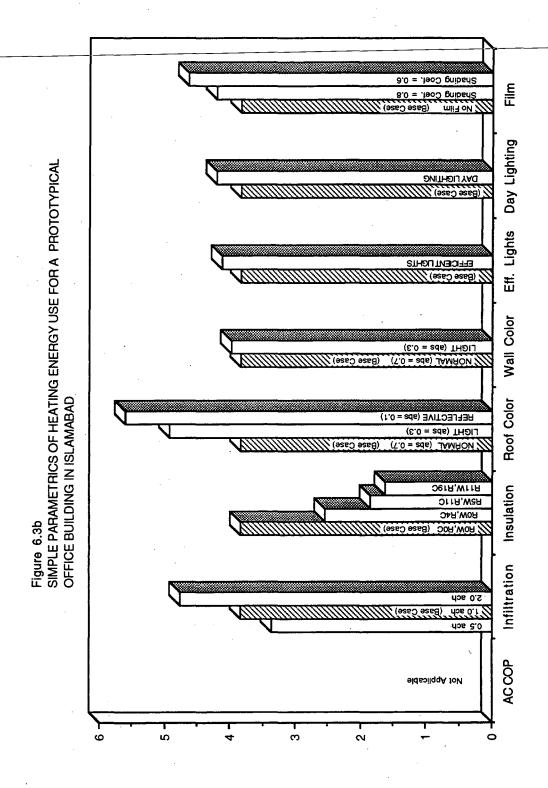
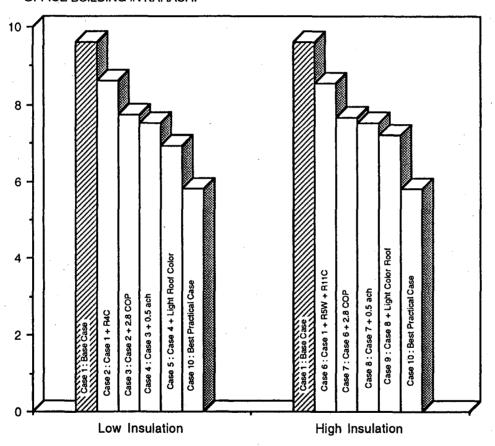



Figure 6.2b
The impact of Orientation of a Middle Floor Office on Cooling and Heating Energy Use in Islamabad


Figure 6.3a SIMPLE PARAMETRICS OF COOLING ENERGY USE FOR A PROTOTYPICAL OFFICE BUILDING IN KARACHI

kWh/sqft/year

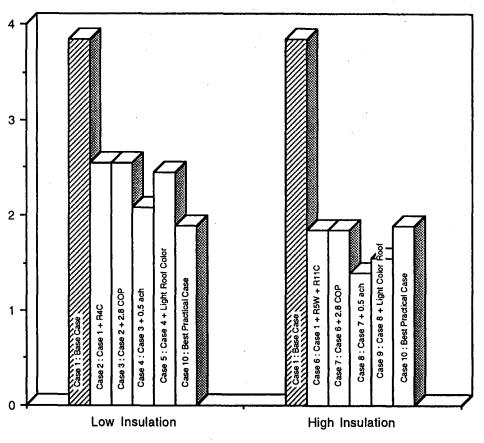

kWh/sqft/year

Figure 6.4a COMBINED PARAMETRICS OF COOLING ENERGY USE FOR A PROTOTYPICAL OFFICE BUILDING IN KARACHI

Best Practical Case: AC setting:79F, AC COP: 3.0, Overhang: 3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: Light (0.3 abs), Film Shading Coeff: 0.8, Insul: R4 roof for the low case and R11 roof and R5 walls for the high case

Figure 6.4b COMBINED PARAMETRICS OF HEATING ENERGY USE FOR A PROTOTYPICAL OFFICE BUILDING IN ISLAMABAD

Best Practical Case: AC setting:79F, AC COP: 3.0, Overhang: 3ft, Infilt: 0.5 ACH, Wall Colour: normal (0.7 abs), Roof Colour: Light (0.3 abs), Film Shading Coeff: 0.8, Insul: R4 roof for low case and R11 roof and R5 walls for the high case

Table 6.6a

The Impact of Office Orientation on Cooling and Heating Energy Use for Islamabad.

All figures are in kWh per year.

	Top Floo	r		Middle Flo	or		Ground Flo	or .		Single Sto	ry
Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating
4086	2099	1304	3243	1763	798	2830	1363	785	3627	1719	1226
3500	1548	1270	2507	1059	765	2375	888	804	3230	1297	1249
3957	2121	1153	3149	1791	675	2755	1399	673	3518	1733	1102
3573	2087	803	2719	1757	279	2434	1403	349	3260	1750	827
3654	2499	472	3143	2366	94	2580	1763	134	3183	1998	503
3031	1953	396	2425	1726	16	2059	1328	48	2716	1602	431
3742	2471	589	3175	2334	159	2628	1740	205	3266	1977	606
3691	2063	945	2759	1699	377	2436	1304	449	3366	1737	946
3449	1913	854	2103	1560	359	2326	1231	413	3143	1597	863
3860	2298	880	3178	2064	432,	2698	1917	449	3399	1857	859
3655	2106	867	2641	1812	396	2512	1574	431	3271	1727	861
	4086 3500 3957 3573 3654 3031 3742 3691 3449 3860	Total Cooling 4086 2099 3500 1548 3957 2121 3573 2087 3654 2499 3031 1953 3742 2471 3691 2063 3449 1913 3860 2298	Total Cooling Heating 4086 2099 1304 3500 1548 1270 3957 2121 1153 3573 2087 803 3654 2499 472 3031 1953 396 3742 2471 589 3691 2063 945 3449 1913 854 3860 2298 880	Total Cooling Heating Total 4086 2099 1304 3243 3500 1548 1270 2507 3957 2121 1153 3149 3573 2087 803 2719 3654 2499 472 3143 3031 1953 396 2425 3742 2471 589 3175 3691 2063 945 2759 3449 1913 854 2103 3860 2298 880 3178	Total Cooling Heating Total Cooling 4086 2099 1304 3243 1763 3500 1548 1270 2507 1059 3957 2121 1153 3149 1791 3573 2087 803 2719 1757 3654 2499 472 3143 2366 3031 1953 396 2425 1726 3742 2471 589 3175 2334 3691 2063 945 2759 1699 3449 1913 854 2103 1560 3860 2298 880 3178 2064	Total Cooling Heating Total Cooling Heating 4086 2099 1304 3243 1763 798 3500 1548 1270 2507 1059 765 3957 2121 1153 3149 1791 675 3573 2087 803 2719 1757 279 3654 2499 472 3143 2366 94 3031 1953 396 2425 1726 16 3742 2471 589 3175 2334 159 3691 2063 945 2759 1699 377 3449 1913 854 2103 1560 359 3860 2298 880 3178 2064 432	Total Cooling Heating Total Cooling Heating Total 4086 2099 1304 3243 1763 798 2830 3500 1548 1270 2507 1059 765 2375 3957 2121 1153 3149 1791 675 2755 3573 2087 803 2719 1757 279 2434 3654 2499 472 3143 2366 94 2580 3031 1953 396 2425 1726 16 2059 3742 2471 589 3175 2334 159 2628 3691 2063 945 2759 1699 377 2436 3449 1913 854 2103 1560 359 2326 3860 2298 880 3178 2064 432 2698	Total Cooling Heating Total Cooling Heating Total Cooling 4086 2099 1304 3243 1763 798 2830 1363 3500 1548 1270 2507 1059 765 2375 888 3957 2121 1153 3149 1791 675 2755 1399 3573 2087 803 2719 1757 279 2434 1403 3654 2499 472 3143 2366 94 2580 1763 3031 1953 396 2425 1726 16 2059 1328 3742 2471 589 3175 2334 159 2628 1740 3691 2063 945 2759 1699 377 2436 1304 3449 1913 854 2103 1560 359 2326 1231 3860 2298 880 3178 <td>Total Cooling Heating Total Cooling Heating Total Cooling Heating 4086 2099 1304 3243 1763 798 2830 1363 785 3500 1548 1270 2507 1059 765 2375 888 804 3957 2121 1153 3149 1791 675 2755 1399 673 3573 2087 803 2719 1757 279 2434 1403 349 3654 2499 472 3143 2366 94 2580 1763 134 3031 1953 396 2425 1726 16 2059 1328 48 3742 2471 589 3175 2334 159 2628 1740 205 3691 2063 945 2759 1699 377 2436 1304 449 3449 1913 854 2103</td> <td>Total Cooling Heating Total Cooling Heating Total Cooling Heating Total 4086 2099 1304 3243 1763 798 2830 1363 785 3627 3500 1548 1270 2507 1059 765 2375 888 804 3230 3957 2121 1153 3149 1791 675 2755 1399 673 3518 3573 2087 803 2719 1757 279 2434 1403 349 3260 3654 2499 472 3143 2366 94 2580 1763 134 3183 3031 1953 396 2425 1726 16 2059 1328 48 2716 3742 2471 589 3175 2334 159 2628 1740 205 3266 3691 2063 945 2759 1699 37</td> <td>Total Cooling Heating Total Cooling Heating Total Cooling Heating Total Cooling 4086 2099 1304 3243 1763 798 2830 1363 785 3627 1719 3500 1548 1270 2507 1059 765 2375 888 804 3230 1297 3957 2121 1153 3149 1791 675 2755 1399 673 3518 1733 3573 2087 803 2719 1757 279 2434 1403 349 3260 1750 3654 2499 472 3143 2366 94 2580 1763 134 3183 1998 3031 1953 396 2425 1726 16 2059 1328 48 2716 1602 3742 2471 589 3175 2334 159 2628 1740 205</td>	Total Cooling Heating Total Cooling Heating Total Cooling Heating 4086 2099 1304 3243 1763 798 2830 1363 785 3500 1548 1270 2507 1059 765 2375 888 804 3957 2121 1153 3149 1791 675 2755 1399 673 3573 2087 803 2719 1757 279 2434 1403 349 3654 2499 472 3143 2366 94 2580 1763 134 3031 1953 396 2425 1726 16 2059 1328 48 3742 2471 589 3175 2334 159 2628 1740 205 3691 2063 945 2759 1699 377 2436 1304 449 3449 1913 854 2103	Total Cooling Heating Total Cooling Heating Total Cooling Heating Total 4086 2099 1304 3243 1763 798 2830 1363 785 3627 3500 1548 1270 2507 1059 765 2375 888 804 3230 3957 2121 1153 3149 1791 675 2755 1399 673 3518 3573 2087 803 2719 1757 279 2434 1403 349 3260 3654 2499 472 3143 2366 94 2580 1763 134 3183 3031 1953 396 2425 1726 16 2059 1328 48 2716 3742 2471 589 3175 2334 159 2628 1740 205 3266 3691 2063 945 2759 1699 37	Total Cooling Heating Total Cooling Heating Total Cooling Heating Total Cooling 4086 2099 1304 3243 1763 798 2830 1363 785 3627 1719 3500 1548 1270 2507 1059 765 2375 888 804 3230 1297 3957 2121 1153 3149 1791 675 2755 1399 673 3518 1733 3573 2087 803 2719 1757 279 2434 1403 349 3260 1750 3654 2499 472 3143 2366 94 2580 1763 134 3183 1998 3031 1953 396 2425 1726 16 2059 1328 48 2716 1602 3742 2471 589 3175 2334 159 2628 1740 205

Table 6.6b

The Impact of Office Orientation on Cooling and Heating Energy Use for Karachi.

All figures are in kWh per year.

		Top Floo	r .		Middle Flo	or		Ground Flo	or		Single Sto	ry
Office	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating
NW	3533	2850	0	3349	2666	0	2872	2190	. 0	3062	2379	0
N	2590	1907	0	2162	1479	0	2022	1339	0	2365	1682	0
NE	3484	2801	0	3331	2648	0	2853	2170	. 0	3009	2326	0
E	3323	2641	0	3139	2457	0	2838	2156	0	3005	2323	0
SE	4145	3462	0	4145	3463	0	3465	2782	0	3490	2807	0
S	3316	2633	0	3149	2466	.0	2797	2114	0	2953	2270	. 0
SW	4173	3491	0	4209	3526	0	3501	2819	0	3516	2833	0
W	3401	2719	0 -	3208	2526	0	2794	2110	0	3077	2394	0
Avg. Sides	3158	2475	0	2915	2232	0	2613	1930	0	2850	2167	0
Avg. Corners	3834	3151	0	3759	3076	0	3173	2490	0	3269	2586	0
Avg. All	3496	2813	0	3337	2654	0	2893	2210	0	3060	2377	0

Table 6.6c

The Impact of Office Orientation on Cooling and Heating Energy Use for Lahore.

All figures are in kWh per year.

		Top Floo	r		Middle Flo	or		Ground Flo	oor		Single Sto	ry
Office	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating
NW	4334	3037	613	3534	2478	373	3029	2022	323	3812	2599	531
N	3612	2293	637	2467	1373	412	2260	1202	375	3309	2040	586
NE	4250	3075	492	3458	2507	268	2968	2048	237	3740	2626	431
E	4034	3040	312	3100	2353	64	2734	1986	66	3693	2711	300
SE	4431	3628	121	3992	3304	4	3329	2638	8	3831	3027	121
S	3697	2899	115	3003	2321	0	2629	1946	0	3333	2541	109
SW	4484	3603	198	3991	3287	20	3327	2615	29	3879	3008	188
W	4108	2992	433	3192	2374	136	2753	1930	140	3764	2676	405
Avg. Sides	3863	2806	374	2941	2105	153	2594	1766	145	3525	2492	350
Avg. Corners	4375	3336	356	3744	2894	166	3163	2331	149	3816	2815	318
Avg. All	4119	3071	365	3342	2500	160	2879	2048	147	3670	2654	334

Table 6.6d

The Impact of Office Orientation on Cooling and Heating Energy Use for Multan.

All figures are in kWh per year.

		Top Floo	r'		Middle Flo	or		Ground Flo	or		Single Sto	ry
Office	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating
NW	4858	3477	698	4007	2906	419	3481	2444	355	4302	3019	600
N .	4005	2602	720	2722	1582	457	2473	1389	402	3683	2355	645
NE	4749	3471	595	3885	2871	331	3368	2405	280	4214	3015	516
Ε	4463	.3393	387	3416	2638	95	3038	2265	89	4130	3090	357
SE	4850	3993	174	4334	3636	15	3677	2974	20	4246	3395	169
S	4020	3178	159	3175	2492	0	2798	2115	0	3675	2844	149
SW	4948	4012	252	4413	3693	37	3745	3016	46	4328	3411	234
W	4565	3391	491	3602	2763	156	3157	2321	153	4216	3087	446
Avg. Sides	4263	3141	439	3229	2369	177	2867	2023	161	3926	2844	- 399
Avg. Corners	4851	3738	430	4160	3277	201	3568	2710	175	4273	3210	380
Avg. All	4557	3440	435	3694	2823	189	3217	2366	168	4099	3027	390

Table 6.6e

The Impact of Office Orientation on Cooling and Heating Energy Use for Peshawar.

All figures are in kWh per year.

	i	Top Floo	r		Middle Flo	or		Ground Flo	or		Single Sto	ry
Office	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating
NW	4454	2671	1101	3592	2221	688	3119	1788	648	3942	2254	1005
N	3773	2001	1089	2644	1279	682	2464	1094	687	3479	1756	1041
NE	4377	2721	974	3565	2293	588	3082	1842	557	3877	2294	900
E	4029	2676	670	3069	2156	230	2728	1774	271	3692	2339	670
SE .	4218	3179	356	3691	2946	63	3076	2304	89	3670	2621	366
S .	3496	2507	307	2748	2058	7	2352	1648	21	3166	2156	328
SW	4265	3121	462	3684	2886	116	3086	2252	150	3717	2577	458
W	4077	2607	788	3104	2105	316	2709	1666	360	3729	2277	770
Avg. Sides	3844	2448	714	2891	1900	309	2563	1546	335	3517	2132	702
Avg. Corners	4329	2923	723	3633	2587	364	3091	2047	361	3802	2437	682
Avg. All	4086	2685	718	3262	2243	336	2827	1796	348	3659	2284	692

Table 6.6f
The Impact of Office Orientation on Cooling and Heating Energy Use for Quette.
All figures are in kWh per year.

		Top Floo	r		Middle Flo	or		Ground Flo	or		Single Sto	ry
Office	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating	Total	Cooling	Heating
NW	4885	1247	2955	3824	1230	1911	3635	901	2051	4648	980	2985
N	4305	861	2762	3045	758	1604	3106	600	1823	4256	709	2864
NE	4787	1309	2796	3761	1342	1736	3573	996	1894	4548	1022	2843
E	3967	1275	2009	2818	1360	775	2726	1023	1020	3866	1013	2169
SE	3725	1426	1617	2783	1571	530	2561	1116	761	3576	1087	1806
S	2973	950	1339	1950	1054	212	1875	757	435	2973	769	1521
SW	3865	1382	1800	2840	1481	677	2613	1026	904	3698	1051	1965
W	4063	1192	2187	2889	1267	939	2749	883	1183	3927	927	2318
Avg. Sides	3827	1070	2074	2676	1110	883	2614	816	1115	3756	855	2218
Avg. Corners	4316	1341	2292	3302	1406	1214	3096	1010	1403	4118	1035	2400
Avg. All	4071	1205	2183	2989	1258	1048	2855	913	1259	3937	945	2309

Table 6.7a(i). Summary of Simple Parametric Simulations for Prototypical Office in Islamabad on Top Floor (a=225 ft²)

			Energy (kWh)		****	KWh/ft ²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		3448	1912	853	15.33	8.50	3.79
AC COP	2.28	3609	2073	853	16.04	9.22	3.79
•	2.8	3270	1734	853	14.53	7.71	3.79
	3.0	3171	1635	853	14.10	7.27	3.79
	3.5	2973	1437	853	13.22	6.39	3.79
Adj.	2 Houses	3438	1894	861	15.28	8.42	3.83
Shade	3 Houses	3434	1887	863	15.26	8.39	3.84
Overhang	1 ft	3463	1934	846	15.39	8.60	3.76
	3 ft	3437	1895	859	15.28	8.43	3.82
Infilt.	0.5 ach	3309	1884	742	14.71	8.38	3.30
	2.0 ach	3710	1952	1074	16.49	8.68	4.78
Insul.	R0W,R4C	2858	1651	524	12.70	7.34	2.33
	R5W,R11C	2656	1616	356	11.81	7.18	1.59
	R11W,R19C	2595	1609	302	11.53	7.15	1.35
	R0W,TileR**	2685	1582	420	11.94	7.03	1.87
	R0W,MudR	3453	1902	867	15.34	8.45	3.86
Wall C.	Light	3419	1845	891	15.20	8.20	3.96
Roof	Light	3145	1353	1109	13.98	6.01	4.93
Color	Reflec.	3069	1123	1262	13.64	4.99	5.61
Film	0.8	3382	1757	942	15.03	7.81	4.19
	0.6	3334	1607	1044	14.82	7.14	4.64
Eff. Lights		3103	1845	917	13.79	, 8.20	4.07
Day Lighting		2985	1822	935	13.27	8.10	4.16

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7a(ii). Summary of Simple Parametric Simulations for Prototypical Office in Islamabad on Middle Floor (a=225 ft²)

			Energy (kWh)			KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		2602	1560	359	11.57	6.94	1.60
AC COP	2.28	2731	1689	359	12.14	7.51	1.60
	2.8	2459	1417	359	10.93	6.30	1.60
	3.0	2380	1338	359	10.58	5.95	1.60
	3.5	2221	1179	359	9.87	5.24	1.60
Adj.	2 Houses	2543	1474	385	11.30	6.55	1.71
Shade	3 Houses	2520	1441	397	11.20	6.40	1.77
Overhang	1 ft	2629	1592	354	11.68	7.07	1.57
.•	3 ft	2583	1538	362	11.48	6.84	1.61
Infilt.	0.5 ach	2528	1584	261	11.24	7.04	1.16
	2.0 ach	2795	1548	564	12.43	6.88	2.51
Insul.	R0W,R4C	2602	1560	359	11.57	6.94	1.60
	R5W,R11C	2555	1593	279	11.36	7.08	1.24
	R11W,R19C	2542	1604	256	11.30	7.13	1.14
	R0W,TileR**	2602	1560	359	11.57	6.94	1.60
	R0W,MudR	2602	1560	359	11.57	6.94	1.60
Wall C.	Light	2544	1475	386	11.31	6.56	1.72
Roof	Light	2602	1560	359	11.57	6.94	1.60
Color	Reflec.	2602	1560	359	11.57	6.94	1.60
Film	0.8	2452	1341	428	10.90	5.96	1.91
	0.6	2350	1145	521	10.45	5.09	2.32
Eff. Lights		2235	1477	417	9.94	6.57	1.86
Day Lighting		2109	1448	434	9.38	6.44	1.93

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7a(iii). Summary of Simple Parametric Simulations for Prototypical Office in Islamabad in a Single-Story Building (a=225 ft²)

		Ţ	Energy (kWh)		KWh/ft²			
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	
Base Case*		3143	1596	863	13.97	7.09	3.84	
AC COP	2.28	3273	1727	863	14.55	7.68	3.84	
	2.8	2997	1451	863	13.32	6.45	3.84	
	3.0	2917	1370	863	12.97	6.09	3.84	
•	3.5	2756	1209	863	12.25	5.38	3.84	
Adj.	2 Houses	3091	1405	1002	13.74	6.25	4.46	
Shade	3 Houses	3083	1332	1068	13.70	5.92	4.75	
Overhang	1 ft	3154	1616	856	14.02	7.18	3.81	
	3 ft	3136	1584	869	13.94	7.04	3.86	
Infilt.	0.5 ach	2998	1556	758	13.32	6.92	3.37	
	2.0 ach	3416	1662	1071	15.18	7.39	4.76	
Insul.	R0W,R4C	2582	1325	573	11.48	5.89	2.55	
	R5W,R11C	2367	1269	415	10.52	5.64	1.85	
	R11W,R19C	2300	1253	363	10.23	5.57	1.62	
	R0W,TileR**	2413	1255	475	10.73	5.58	2.11	
	R0W,MudR	3150	1585	882	14.00	7.05	3.92	
Wall C.	Light	3123	1542	898	13.88	6.86	3.99	
Roof	Light	2934	1140	1111	13.04	5.07	4.94	
Color	Reflec.	2906	964	1259	12.92	4.28	5.60	
Film	0.8	3100	1469	948	13.78	6.53	4.22	
	0.6	3073	1346	1045	13.66	5.98	4.64	
Eff. Lights		2806	1537	927	12.47	6.83	4.12	
Day Lighting		2692	1517	947	11.97	6.74	4.22	

Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7b(i). Summary of Simple Parametric Simulations for Prototypical Office in Karachi on Top Floor (a=225 ft²)

	· · · · · · · · · · · · · · · · · · ·		Energy (kWh)		KWh/ft²				
Measure	Case	Total	Cool	Heat	Total	Cool	Heat		
Base Case*		3157	2475	0	14.03	11.00	0.00		
AC COP	2.28	3384	2702	0	15.04	12.01	0.00		
•	2.8	2905	2222	0	12.91	9.88	0.00		
	3.0	2765	2082	0	12.29	9.26	0.00		
•	3.5	2485	1802	0	11.05	8.01	0.00		
Adj.	2 Houses	3132	2449	0	13.92	10.89	0.00		
Shade	3 Houses	3122	2439	0	13.88	10.84	0.00		
Overhang	1 ft	3190	2508	0	14.18	11.15	0.00		
	3 ft	3133	2451	. 0	13.93	10.90	0.00		
Infilt.	0.5 ach	3085	2402	0	13.71	10.68	0.00		
	2.0 ach	3262	2580	0	14.50	11.47	0.00		
Insul.	R0W,R4C	2926	2243	0	13.01	9.97	0.00		
	R5W,R11C	2941	2258	0	13.07	10.04	0.00		
	R11W,R19C	2948	2265	0	13.10	10.07	0.00		
Wall C.	Light	3063	2380	0	13.61	10.58	0.00		
Roof	Light	2664	1980	0	11.84	8.80	0.00		
Color	Reflec.	2441	1758	0	10.85	7.82	0.00		
Film	0.8	2931	2248	0	13.03	9.99	0.00		
	0.6	2708	2025	0	12.04	9.00	0.00		
Eff. Lights		2723	2381	0	12.10	10.59	0.00		
Day Lighting		2576	2349	0	11.45	10.44	0.00		

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

Table 6.7b(ii). Summary of Simple Parametric Simulations for Prototypical Office in Karachi on Middle Floor (a=225 ft²)

· · · · · · · · · · · · · · · · · · ·			Energy (kWh)			KWh/ft²			
Measure	Case	Total	Cool	Heat	Total	Cool	Heat		
Base Case*		2914	2232	0	12.95	9.92	0.00		
AC COP	2.28	3118	2436	0	13.86	10.83	0.00		
	2.8	2687	2005	0	11.95	8.91	0.00		
	3.0	2562	1879	. 0	11.39	8.35	0.00		
	3.5	2310	1628	0	10.27	7.24	0.00		
Adj.	2 Houses	2800	2117	0	12.44	9.41	0.00		
Shade	3 Houses	2755	2072	0	12.25	9.21	0.00		
Overhang	1 ft	2954	2271	0	13.13	10.10	0.00		
	3 ft	2884	2201	. 0	12.82	9.79	0.00		
Infilt.	0.5 ach	2875	2192	0	12.78	9.74	0.00		
	2.0 ach	2984	2301	0	13.26	10.23	0.00		
Insul.	R0W,R4C	2914	2232	0	12.95	9.92	0.00		
	R5W,R11C	2963	2280	0	13.17	10.13	0.00		
	R11W,R19C	2977	2294	0	13.23	10.20	0.00		
Wall C.	Light	2801	2118	0	12.45	9.41	0.00		
Roof	Light	2914	2232	0	12.95	9.92	0.00		
Color	Reflec.	2914	2232	0	12.95	9.92	0.00		
Film	0.8	2631	1948	0	11.70	8.66	0.00		
,	0.6	2346	1663	0	10.43	7.39	0.00		
Eff. Lights		2463	2122	0	10.95	9.43	0.00		
Day Lighting		2313	2085	0	10.28	9.27	0.00		

Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

Table 6.7b(iii). Summary of Simple Parametric Simulations for Prototypical Office in Karachi in a Single-Story Building (a=225 ft²)

	· _ · · · · · · · · · · · · · · · · · ·	Energy (kWh)			KWh/ft²				
Measure	Case	Total	Cool	Heat	Total	Cool	Heat		
Base Case*	······································	2850	2167	0	12.67	9.63	0.00		
AC COP	2.28	3048	2365	0	13.55	10.51	0.00		
	2.8	2630	1947	0	11.69	8.66	0.00		
	3.0	2507	1825	0 -	11.15	8.11	0.00		
	3.5	2263	1581	0	10.06	7.03	0.00		
Adj.	2 Houses	2561	1878	0	11.38	8.35	0.00		
Shade	3 Houses	2449	1766	0	10.89	7.85	0.00		
Overhang	1 ft	2879	2196	0	12.80	9.76	0.00		
	3 ft	2830	2148	0	12.58	9.55	0.00		
Infilt.	0.5 ach	2778	2096	0	12.35	9.32	0.00		
	2.0 ach	2965	2282	0	13.18	10.14	0.00		
Insul.	R0W,R4C	2621	1938	0	11.65	8.61	0.00		
	R5W,R11C	2607	1924	0	11.59	8.56	0.00		
	R11W,R19C	2606	1923	0	11.59	8.55	0.00		
Wall C.	Light	2765	2083	0	12.29	9.26	0.00		
Roof	Light	2420	1737	0	10.76	7.72	0.00		
Color	Reflec.	2241	1558	0	9.96	6.92	0.00		
Film	0.8	2656	1973	0	11.81	8.77	0.00		
	0.6	2465	1782	0	10.96	7.92	0.00		
Eff. Lights		2420	2079	0	10.76	9.24	0.00		
Day Lighting		2276	2048	0	10.12	9.11	0.00		

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

Table 6.7c(i). Summary of Simple Parametric Simulations for Prototypical Office in Lahore on Top Floor (a=225 ft²)

		T ·	Energy (kWh)		KWh/ft²			
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	
Base Case*		3862	2806	374	17.17	12.47	1.66	
AC COP	2.28	4114	3057	374	18.28	13.59	1.66	
	2.8	3583	2526	374	15.93	11.23	1.66	
	3.0	3428	2371	374	15.24	10.54	1.66	
	3.5	3118	2061	374	13.86	9.16	1.66	
Adj.	2 Houses	3845	2784	378	17.09	12.37	1.68	
Shade	3 Houses	3838	2775	380	17.06	12.33	1.69	
Overhang	1 ft.	3887	2834	370	17.28	12.59	1.65	
•	3 ft	3845	2785	377	17.09	12.38	1.68	
Infilt.	0.5 ach	3727	2724	320	16.56	12.11	1.42	
	2.0 ach	4087	2926	479	18.17	13.00	2.13	
Insul.	R0W,R4C	3281	2374	223	14.59	10.56	1.00	
	R5W,R11C	3045	2216	145	13.53	9.85	0.65	
	R11W,R19C	2967	2163	120	13.19	9.61	0.54	
	R0W,TileR**	3075	2215	177	13.67	9.85	0.79	
	R0W,MudR	3894	2834	377	17.31	12.60	1.68	
Wall C.	Light	3794	2714	396	16.86	12.07	1.77	
Roof	Light	3246	2021	542	14.43	8.98	2.41	
Color	Reflec.	2984	1652	648	13.26	7.35	2.88	
Film	0.8	3713	2607	423	16.51	11.59	1.88	
	0.6	3579	2415	481	15.91	10.73	2.14	
Eff. Lights		3479	2725	413	15.47	12.11	1.84	
Day Lighting		3347	2696	423	14.88	11.99	1.88	

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7c(ii). Summary of Simple Parametric Simulations for Prototypical Office in Lahore on Middle Floor (a=225 ft²)

			Energy (kWh)			KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		2940	2105	153	13.07	9.36	0.68
AC COP	2.28	3126	2291	153	13.89	10.18	0.68
	2.8	2734	1898	153	12.15	8.44	0.68
	3.0	2619	1784	153	11.64	7.93	0.68
	3.5	2390	1554	153	10.62	6.91	0.68
Adj.	2 Houses	2840	1987	170	12.62	8.83	0.75
Shade	3 Houses	2802	1943	177	12.46	8.64	0.78
Overhang	1 ft	2978	2145	151	13.24	9.53	0.67
-	3 ft	2912	2075	154	12.94	9.22	0.69
Infilt.	0.5 ach	2864	2075	106	12.73	9.22	0.47
	2.0 ach	3106	2173	250	13.81	9.66	1.11
Insul.	R0W,R4C	2940	2105	153	13.07	9.36	0.68
	R5W,R11C	2894	2098	113	12.87	9.33	0.50
	R11W,R19C	2882	2097	102	12.81	9.33	0.45
	R0W,TileR**	2940	2105	153	13.07	9.36	0.68
	R0W,MudR	2940	2105	153	13.07	9.36	0.68
Wall C.	Light	2833	1981	169	12.59	8.81	0.75
Roof	Light	2940	2105	153	13.07	9.36	0.68
Color	Reflec.	2940	2105	153	13.07	9.36	0.68
Film	0.8	2701	1828	191	12.01	8.12	0.85
	0.6	2478	1556	239 .	11.02	6.92	1.06
Eff. Lights		2529	2001	187	11.25	8.89	0.83
Day Lighting		2393	1969	196	10.64	8.75	0.88

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7c(iii). Summary of Simple Parametric Simulations for Prototypical Office in Lahore in a Single-Story Building (a=225 ft²)

······································			Energy (kWh)	1	KWh/ft²			
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	
Base Case*		3524	2492	350	15.66	11.07	1.55	
AC COP	2.28	3746	2714	350	16.65	12.06	1.55	
	2.8	3278	2245	350	14.57	9.98	1.55	
	3.0	3141	2109	350	13.96	9.38	1.55	
	3.5	2868	1835	350	12.75	8.16	1.55	
Adj.	2 Houses	3333	2223	426	14.81	9.88	1.89	
Shade	3 Houses	3264	2119	462	14.51	9.42	2.06	
Overhang	1 ft	3546	2517	346	15.76	11.19	1.54	
J	3 ft	3510	2475	353	15.60	11.00	1.57	
Infilt.	0.5 ach	3390	2407	299	15.07	10.70	1.33	
	2.0 ach '	3758	2627	447	16.70	11.68	1.99	
Insul.	R0W,R4C	2896	1997	215	12.87	8.88	0.96	
	R5W,R11C	2665	1841	141	11.85	8.18	0.63	
	R11W,R19C	2593	1792	117	11.53	7.97	0.52	
	R0W,TileR**	2700	1847	170	12.00	8.21	0.76	
	R0W,MudR	3558	2518	357	15.81	11.19	1.59	
Wall C.	Light	3460	2407	370	15.38	10.70	1.64	
Roof	Light	2954	1768	503	13.13	7.86	2.24	
Color	Reflec.	2744	1461	601	12.20	6.49	2.67	
Film	0.8	3394	2315	395	15.09	10.29	1.76	
	0.6	3279	2146	449	14.57	9.54	2.00	
Eff. Lights		3145	2414	388	13.98	10.73	1.73	
Day Lighting		3015	2387	399	13.40	10.61	1.77	

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7d(i). Summary of Simple Parametric Simulations for Prototypical Office in Multan on Top Floor (a=225 ft²)

			Energy (kWh)		KWh/ft²			
Measure	Case	Total	Cool	Heat	Total	Cool	Heat	
Base Case*		4263	3141	439	18.95	13.96	1.95	
AC COP	2.28	4546	3424	439	20.20	15.22	1.95	
	2.8	3948	2825	439	17.55	12.56	1.95	
	3.0	3773	2651	439	16.77	11.78	1.95	
	3.5	3424	2301	439	15.22	10.23	1.95	
Adj.	2 Houses	4244	3117	444	18.86	13.86	1.97	
Shade	3 Houses	4236	3108	. 446	18.83	13.82	1.98	
Overhang	1 ft	4288	3170	435	19.06	14.09	1.93	
_	3 ft	4244	3119	442	18.87	13.86	1.97	
Infilt.	0.5 ach	4084	3024	376	18.15	13.44	1.67	
	2.0 ach	4567	3325	559	20.30	14.78	2.49	
Insul.	R0W,R4C	3605	2659	263	16.02	11.82	1.17	
•	R5W,R11C	3330	2474	173	14.81	11.00	0.77	
	R11W,R19C	3240	2413	144	14.40	10.73	0.64	
• .	R0W,TileR**	3386	2498	205	15.05	11.10	0.91	
	R0W,MudR	4311	3193	434	19.17	14.20	1.93	
Wall C.	Light	4201	3056	462	18.67	13.59	2.05	
Roof	Light	3676	2382	610	16.34	10.59	2.71	
Color	Reflec.	3417	2015	718	15.18	8.96	3.19	
Film	0.8	4112	2938	491	18.27	13.06	2.18	
	0.6	3978	2741	553	17.68	12.19	2.46	
Eff. Lights		3878	3058	479	17.24	13.59	2.13	
Day Lighting		3746	3028	490	16.65	13.46	2.18	

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7d(ii). Summary of Simple Parametric Simulations for Prototypical Office in Multan on Middle Floor (a=225 ft²)

			Energy (kWh)	· · · · · · · · · · · · · · · · · · ·		KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		3228	2368	177	14.35	10.53	0.79
AC COP	2.28	3439	2580	177	15.28	11.47	0.79
	2.8	2993	2134	177	13.31	9.48	0.79
	3.0	2863	2003	177	12.73	8.91	0.79
	3.5	2603	1743	177	11.57	7.75	0.79
Adj.	2 Houses	3123	2245	195	13.88	9.98	0.87
Shade	3 Houses	3081	2196	203	13.69	9.76	0.90
Overhang	1 ft	3267	2410	174	14.52	10.72	0.78
· ·	3 ft	3201	2339	178	14.23	10.40	0.80
Infilt.	0.5 ach	3111	2305	123	13.83	10.25	0.55
	2.0 ach	3473	2502	288	15.44	11.12	1.28
insul.	R0W,R4C	3228	2368	177	14.35	10.53	0.79
	R5W,R11C	3156	2340	134	14.03	10.40	0.59
	R11W,R19C	3139	2335	121	13.95	10.38	0.54
	R0W,TileR**	3228	2368	177	14.35	10.53	0.79
	R0W,MudR	3228	2368	177	14.35	10.53	0.79
Wall C.	Light	3129	2252	194	13.90	10.01	0.86
Roof	Light	3228	2368	177	14.35	10.53	0.79
Color	Reflec.	3228	2368	177	14.35	10.53	0.79
Film	0.8	2982	2081	218	13.25	9.25	0.97
	0.6	2740	1786	271	12.18	7.94	1.21
Eff. Lights		2820	2265	213	12.53	10.07	0.94
Day Lighting		2682	2231	223	11.92	9.92	1.00

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7d(iii). Summary of Simple Parametric Simulations for Prototypical Office in Multan in a Single-Story Building (a=225 ft²)

	·		Energy (kWh)			KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		3926	2844	399	17.45	12.64	1.77
AC COP	2.28	4181	3099	399	18.58	13.78	1.77
	2.8	3642	2560	399	16.19	11.38	1.77
	3.0	3484	2402	399	15.49	10.68	1.77
	3.5	3169	2087	399	14.09	9.28	1.77
Adj.	2 Houses	3732	2576	473	16.59	11.45	2.10
Shade	3 Houses	3663	2471	508	16.28	10.98	2.26
Overhang	1 ft	3948	2870	395	17.55	12.76	1.76
	3 ft	3909	2824	402	17.37	12.55	1.79
Infilt.	0.5 ach	3749	2725	341	16.67	12.11	1.52
:	2.0 ach	4228	3036	509	18.79	13.49	2.26
Insul.	R0W,R4C	3217	2289	244	14.30	10.18	1.09
	R5W,R11C	2944	2100	161	13.09	9.34	0.72
	R11W,R19C	2858	2041	133	12.71	9.07	0.59
•	R0W,TileR**	3003	2130	190	13.35	9.47	0.84
	R0W,MudR	3982	2899	400	17.70	12.89	1.78
Wall C.	Light	3867	2764	419	.17.19	12.28	1.86
Roof	Light	3357	2121	552	14.92	9.43	2.46
Color	Reflec.	3131	1801	647	13.92	8.01	2.88
Film	0.8	3792	2662	447	16.86	11.83	1.99
	0.6	3669	2483	502	16.31	11.04	2.23
Eff. Lights		3545	2765	438	15.76	12.29	1.95
Day Lighting		3415	2736	450	15.18	12.16	2.00

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7e(i). Summary of Simple Parametric Simulations for Prototypical Office in Peshawar on Top Floor (a=225 ft²)

		T	Energy (kWh)			KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		3843	2447	713	17.09	10.88	3.17
AC COP	2.28	4056	2660	713	18.03	11.83	3.17
	2.8	3607	2211	713	16.03	9.83	3.17
	3.0	3476	2079	713	15.45	9.24	3.17
	3.5	3213	1817	713	14.28	8.08	3.17
Adj.	2 Houses	3830	2428	720	17.02	10.79	3.20
Shade	3 Houses	3825	2420	722	17.01	10.76	3.21
Overhang	1 ft	3863	2472	707	17.17	10.99	3.14
_	. 3 ft ⁻	3829	2428	718	17.02	10.79	3.19
Infilt.	0.5 ach	3679	2377	619	16.35	10.57	2.75
	2.0 ach	4140	2556	901	18.40	11.36	4.01
Insul.	R0W,R4C	3225	2100	441	14.34	9.34	1.96
	R5W,R11C	2965	1980	302	13.18	8.80	1.34
	R11W,R19C	2884	1944	258	12.82	8.64	1.15
	R0W,TileR**	3017	1975	359	13.41	8.78	1.60
	R0W,MudR	3870	2460	728	17.20	10.93	3.24
Wall C.	Light	3806	2375	748	16.92	10.56	3.33
Roof	Light	3474	1829	962	15.44	8.13	4.28
Color	Reflec.	3337	1539	1115	14.83	6.84	4.96
Film	0.8	3749	2276	790	16.66	10.12	3.51
	0.6	3672	2109	880	16.32	9.38	3.91
Eff. Lights		3489	2375	771	15.51	10.56	3.43
Day Lighting		3369	2352	789	14.97	10.45	3.51

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7e(ii). Summary of Simple Parametric Simulations for Prototypical Office in Peshawar on Middle Floor (a=225 ft²)

			Energy (kWh)			KWh/ft²	······································
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		2891	1899	308	12.85	8.44	1.37
AC COP	2.28	3053	2062	308	13.57	9.16	1.37
	2.8	2711	1719	308	12.05	7.64	1.37
	3.0	2610	1619	308	11.60	7.20	1.37
	3.5	2410	1419	308	10.72	6.31	1.37
Adj.	2 Houses	2815	1799	334	12.51	8.00	1.49
Shade	3 Houses	2784	1757	344	12.38	7.81	1.53
Overhang	1 ft	2924	1937	304	13.00	8.61	1.36
	3 ft	2868	1873	312	12.75	8.32	1.39
Infilt.	0.5 ach	2794	1888	223	12.42	8.40	0.99
	2.0 ach	3128	1958	487	13.90	8.71	2.16
Insul.	R0W,R4C	2891	1899	308	12.85	8.44	1.37
	R5W,R11C	2824	1902	239	12.55	8.45	1.07
	R11W,R19C	2805	1903	219	12.47	8.46	0.97
	R0W,TileR**	2891	1899	308	12.85	8.44	1.37
	R0W,MudR	2891	1899	308	12.85	8.44	1.37
Wall C.	Light	2817	1799	335	12.52	8.00	1.49
Roof	Light	2891	1899	308	12.85	8.44	1.37
Color	Reflec.	2891	1899	308	12.85	8.44	1.37
Film	0.8	2705	1651	370	12.02	7.34	1.64
	0.6	2551	1416	453	11.34	6.30	2.01
Eff. Lights		2514	1809	363	11.17	8.05	1.62
Day Lighting		2386	1779	380	10.61	7.90	1.69

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7e(iii). Summary of Simple Parametric Simulations for Prototypical Office in Peshawar in a Single-Story Building (a=225 ft²)

	-		Energy (kWh)			KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		3516	2132	702	15.63	9.48	. 3.12
AC COP	2.28	3700	2315	702	16.44	10.29	3.12
	2.8	3313	1928	702	14.73	8.57	3.12
	3.0	3200	1815	702	14.23	8.07	3.12
	3.5	2974	1589	702	13.22	7.07	3.12
Adj.	2 Houses	3423	1915	824	15.21	8.51	3.67
Shade	3 Houses	3396	1830	883	15.09	8.14	3.92
Overhang	1 ft	3533	2154	696	15.70	9.58	3.09
	3 ft	3506	2115	706	15.58	9.40	3.14
Infilt.	0.5 ach	3352	2055	613	14.90	9.14	2.73
	2.0 ach	3820	2260	877	16.98	10.04	3.90
Insul.	R0W,R4C	2865	1718	464	12.73	7.63	2.07
	R5W,R11C	2611	1595	333	11.61	7.09	1.48
	R11W,R19C	2534	1560	291	11.27	6.94	1.29
	R0W,TileR**	2669	1599	386	11.86	7.11	1.72
	R0W,MudR	3546	2142	721	15.76	9.52	3.21
Wall C.	Light	3485	2067	734	15.49	9.19	3.27
Roof	Light	3189	1569	937	14.17	6.98	4.17
Color	Reflec.	3088	1324	1081	13.73	5.89	4.81
Film	0.8	3441	1983	774	15.30	8.82	3.44
	0.6	3379	1839	857	15.02	8.18	3.81
Eff. Lights		3167	2066	760	14.08	9.18	3.38
Day Lighting		3050	2043	779	13.56	9.09	3.46

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7f(i). Summary of Simple Parametric Simulations for Prototypical Office in Quetta on Top Floor (a=225 ft²)

		<u> </u>	Energy (kWh)			KWh/ft²	
Measure	Case	Total ·	Cool	Heat	Total	Cool	Heat
Base Case*		3827	1069	2074	17.01	4.76	9.22
AC COP	2.28	3898	1140	2074	17.32	5.07	9.22
	2.8	3747	990	2074	16.66	4.40	9.22
	3.0	3703	946	2074	16.46	4.21	9.22
	3.5	3615	858	2074	16.07	3.81	9.22
Adj.	2 Houses	3828	1058	2087	17.02	4.70	9.28
Shade	3 Houses	3829	1053	2093	17.02	4.68	9.30
Overhang	1 ft	3825	1084	2058	17.00	4.82	9.15
	3 ft	3829	1059	2087	17.02	4.71	9.28
Infilt.	0.5 ach	3611	1086	1842	16.05	4.83	8.19
	2.0 ach	4271	1060	2528	18.98	4.71	11.24
Insul.	R0W,R4C	3015	1062	1269	13.40	4.72	5.64
	R5W,R11C	2676	1124	868	11.90	5.00	3.86
	R11W,R19C	2581	1151	745	11.47	5.12	3.31
	R0W,TileR**	2791	1073	1035	12.41	4.77	4.60
•	R0W,MudR	3866	1035	2147	17.18	4.60	9.55
Wall C.	Light	3857	1044	2130	17.15	4.64	9.47
Roof	Light	3981	833	2465	17.69	3.70	10.96
Color	Reflec.	4104	736	2685	18.24	3.27	11.93
Film	0.8	3889	965	2240	17.29	4.29	9.96
	0.6	3976	873	2420	17.67	3.88	10.76
Eff. Lights	,	3524	1020	2162	15.66	4.53	9.61
Day Lighting	an anti-frances de la constantia	3424	1003	2192	15.22	4.46	9.75

Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7f(ii). Summary of Simple Parametric Simulations for Prototypical Office in Quetta on Middle Floor (a=225 ft²)

		T	Energy (kWh)			KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		2675	1109	882	11.89	4.93	3.92
AC COP	2.28	2753	1188	882	12.24	5.28	3.92
	2.8	2588	1022	882	11.50	4.55	3.92
	3.0	2539	974	882	11.28	4.33	3.92
	3.5	2443	877	882	10.86	3.90	3.92
Adj.	2 Houses	2660	1044	933	11.82	4.64	4.15
Shade	3 Houses	2656	1019	- 954	11.81	4.53	4.24
Overhang	1 ft	2686	1133	870	11.94	5.03	3.87
	3 ft	2666	1091	891	11.85	4.85	3.96
Infilt.	0.5 ach	2534	1180	670	11.26	5.24	2.98
	2.0 ach	3047	1038	1326	13.55	4.62	5.90
Insul.	R0W,R4C	2675	1109	882	11.89	4.93	3.92
	R5W,R11C	2548	1171	693	11.33	5.21	3.08
	R11W,R19C	2516	1191	642	11.19	5.30	2.85
	R0W,TileR**	2675	1109	882	11.89	4.93	3.92
	R0W,MudR	2675	1109	882	11.89	4.93	3.92
Wall C.	Light	2677	1067	927	11.90	4.74	4.12
Roof	Light	2675	1109	882	11.89	4.93	3.92
Color	Reflec.	2675	1109	882	11.89	4.93	3.92
Film	0.8	2664	949	1032	11.84	4.22	4.59
	0.6	2715	816	1216	12.07	3.62	5.41
Eff. Lights		2353	1043	969	10.46	4.64	4.31
Day Lighting		2247	1024	995	9.99	4.55	4.43

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.7f(iii). Summary of Simple Parametric Simulations for Prototypical Office in Quetta in a Single-Story Building (a=225 ft²)

			Energy (kWh)		····	KWh/ft²	
Measure	Case	Total	Cool	Heat	Total	Cool	Heat
Base Case*		3755	854	2218	16.69	3.80	9.86
AC COP	2.28	3806	905	2218	16.92	4.03	9.86
	2.8	3699	798	2218	16.44	3.55	9.86
	3.0	3667	767	2218	16.30	3.41	9.86
•	3.5	3605	704	2218	16.03	3.13	9.86
Adj.	2 Houses	3893	766	2443	17.30	3.41	10.86
Shade	3 Houses	3954	734	2538	17.58	3.27	11.28
Overhang	1 ft	3750	865	2201	16.67	3.84	9.78
	3 ft	3760	846	2231	16.71	3.76	9.91
Infilt.	0.5 ach	3535	859	1993	15.72	3.82	8.86
	2.0 ach	4201	863	2654	18.67	3.84	11.80
Insul.	R0W,R4C	2980	818	1479	13.25	3.64	6.57
	R5W,R11C	2620	828	1108	11.64	3.68	4.93
	R11W,R19C	2507	832	991	11.14	3.70	4.41
	R0W,TileR**	2756	810	1263	12.25	3.60	5.61
	R0W,MudR	3803	829	2291	16.91	3.69	10.18
Wall C.	Light	3793	836	2273	16.86	3.72	10.10
Roof	Light	3976	683	2609	17.67	3.04	11.60
Color	Reflec.	4123	615	2825	18.33	2.74	12.55
Film	0.8	3845	783	2379	17.09	3.48	10.58
	0.6	3952	719	2550	17.56	3.19	11.34
Eff. Lights		3461	813	2305	15.38	3.62	10.25
Day Lighting		3364	800	2336	14.95	3.55	10.39

^{*} Base Case is for the prototype model with the following properties: AC setting: 79, AC COP: 2.5, Adj. Shade: none, Overhang: 2ft, Infilt: 1.0 ach, Insul: R0, Wall Color: normal(0.7 absorbtance), Roof Color: normal(0.7 absorbtance), Film Shading Coef.: none, Day Lighting: none, Efficient Lighting: none.

^{**} There is 1 1/2 " polystyrene insulation under tile roof.

Table 6.8a(i). Summary of Combined Parametric Simulations for Prototypical Office in Islamabad on Top Floor (a=225 ft²)

	1.4				E	nergy (kWh)		KWh/ft²			
	ulation	1 £!14	40 00D	D40-l	Takal	01	114	T.A.I	0 1		
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat	
R0	R4	0.5 ach	2.28	Normal	2896	1791	421	12.87	7.96	1.88	
			2.28	Light	2716	1529	505	12.08	6.80	2.25	
			2.5	Normal	2758	1654	421	12.26	7.35	1.88	
			2.5	Light	2602	1414	505	11.57	6.29	2.25	
			2.8	Normal	2606	1501	421	11.58	6.67	1.88	
			2.8	Light	2475	1287	505	11.00	5.72	2.25	
			3.0	Normal	2521	1416	421	11.20	6.30	1.88	
	_		3.0	Light	2404	1216	505	10.69	5.40	2.25	
R0	R4	1.0 ach	2.28	Normal	2995	. 1787	524	13.31	7.94	2.33	
		•	2.28	Light	2835	1540	612	12.60	6.85	2.72	
			2.5	Normal	2858	1651	524	12.70	7.34	2.33	
			2.5	Light	2720	1425	612	12.09	6.34	2.72	
			2.8	Normal	2706	1499	524	12.03	6.66	2.33	
			2.8	Light	2592	1297	612	11.52	5.77	2.72	
			3.0	Normal	2622	1414	524	11.65	6.29	2.33	
			3.0	Light	2521	1226	612	11.21	5.45	2.72	
R5	R11	0.5 ach	2.28	Normal	2720	1778	259	12.09	7.90	1.15	
			2.28	Light	2619	1642	293	11.64	7.30	1.31	
			2.5	Normal	2583	1641	259	11.48	7.30	1.15	
			2.5	Light	2495	1518	293	11.09	6.74	1.31	
			2.8	Normal	2431	1490	259	10.81	6.62	1.15	
			2.8	Light	2356	1379	293	10.47	6.13	1.31	
			3.0	Normal	2347	1405	259	10.43	6.25	1.15	
			3.0	Light	2279	1302	293	10.13	5.79	1.31	
R5	R11	1.0 ach	2.28	Normal	2790	1750	356	12.40	7.78	1.59	
			2.28	Light	2702	1625	394	12.01	7.22	1.75	
	,	· -	2.5	Normal	2656	1616	356	11.81	7.18	1.59	
			2.5	Light	2579	1502	394	11.46	6.68	1.75	
			2.8	Normal	2507	1467	356	11.15	6.52	1.59	
			2.8	Light	2442	1365	394	10.85	6.07	1.75	
•			3.0	Normal	2424	1385	356	10.78	6.15	1.59	
	•		3.0	Light	2366	1289	394	10.51	5.73	1.75	
Best	Case*				2140	1095	362	9.51	4.87	1.61	

Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8a(ii). Summary of Combined Parametric Simulations for Prototypical Office in Islamabad on Middle Floor (a=225 ft²)

lmai	.1.4					nergy (kWh)			KWh/ft²	
unst Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2659	1716	261	11.82	7.63	1.16
			2.28	Light	2659	1716	261	11.82	7.63	1.16
			2.5	Normal	2528	1584	261	11.24	7.04	1.16
*.			2.5	Light	2528	1584	261	11.24	7.04	1.16
			2.8	Normal	2382	1438	261	10.58	6.39	1.16
			2.8	Light	2382	1438	261	10.58	6.39	1.16
			3.0	Normal	2301	1357	261	10.23	6.03	1.16
			3.0	Light	2301	1357	261	10.23	6.03	1.16
R0	R4	1.0 ach	2.28	Normal	2731	1689	359	12.14	7.51	1.60
			2.28	Light	2731	1689	359	12.14	7.51	1.60
			2.5	Normal	2602	1560	359	11.57	6.94	1.60
			2.5	Light	2602	1560	359	11.57	6.94	1.60
			2.8	Normal	2459	1417	359	10.93	6.30	1.60
			2.8	Light	2459	1417	359	10.93	6.30	1.60
			3.0	Normal	2380	1338	359	10.58	5.95	1.60
			3.0	Light 🕔	2380	1338	359	10.58	5.95	1.60
R5	R11	0.5 ach	2.28	Normal	2635	1769	183	11.71	7.86	0.81
			2.28	Light	2635	1769	183	11.71	7.86	0.81
•			2.5	Normal	2499	1633	183	11.11	7.26	0.81
			2.5	Light	2499	1633	183	11.11	7.26	0.81
•			2.8	Normal	2348	1481	183	10.43	6.58	0.81
			2.8	Light	2348	1481	183	10.43	6.58	0.81
			3.0	Normal	2264	1398	183	10.06	6.21	0.81
			3.0	Light	2264	1398	183	10.06	6.21	0.81
R5	R11	1.0 ach	2.28	Normal	2688	1725	279	11.95	7.67	1.24
		•	2.28	Light	2688	1725	279	11.95	7.67	1.24
			2.5	Normal	2555	1593	279	11.36	7.08	1.24
			2.5	Light	2555	1593	279	11.36	7.08	1.24
			2.8	Normal	2409	1446	279	10.70	6.43	1.24
			2.8	Light	2409	1446	279	10.70	6.43	1.24
			3.0	Normal	2327	1365	279	10.35	6.07	1.24
			3.0	Light	2327	1365	279	10.35	6.07	1.24
Best	Case*				2091	1171	237	9.30	5.20	1.06

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8a(iii). Summary of Combined Parametric Simulations for Prototypical Office in Islamabad in a Single-Story Building (a=225 ft²)

					[E	nergy (kWh)			KWh/ft²	<u> </u>
	ulation		40.000	D (0)	-	•		-		
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2554	1402	470	11.35	6.23	2.09
		,	2.28	Light	2449	1214	551	10.89	5.40	2.45
			2.5	Normal	2451	1298	470	10.90	5.77	2.09
			2.5	Light	2361	1127	551	10.50	5.01	2.45
			2.8	Normal	2336	1183	470	10.39	5.26	2.09
			2.8	Light	2264	1030	551	10.07	4.58	2.45
			3.0	Normal	2272	1119	470	10.10	4.97	2.09
			3.0	Light	2210	976	551	9.83	4.34	2.45
RO	R4	1.0 ach	2.28	Normal	2688	1431	573	11.95	6.36	2.55
	•		2.28	Light	2593	1252	658	11.53	5.56	2.93
			2.5	Normal	2582	1325	573	11.48	5.89	2.55
			2.5	Light	2503	1161	658	11.13	5.16	2.93
			2.8	Normal	2465	1208	573	10.95	5.37	2.55
			2.8	Light	2403	1061	658	10.68	4.72	2.93
			3.0	Normal	2399	1142	573	10.66	5.08	2.55
			3.0	Light	2347	1006	658	10.43	4.47	2.93
R5	R11	0.5 ach	2.28	Normal	2350	1353	314	10.44	6.01	1.40
			2.28	Light	2290	1259	348	10.18	5.60	1.55
			2.5	Normal	2250	1253	314	10.00	5.57	1.40
			2.5	Light	2198	1167	348	9.77	5.19	1.55
		-	2.8	Normal	2139	1142	314	9.51	5.08	1.40
			2.8	Light	2096	1066	348	9.32	4.74	1.55
			3.0	Normal	2077	1081	314	9.23	4.80	1.40
			3.0	Light	2040	1009	348	9.07	4.49	1.55
R5	R11	1.0 ach	2.28	Normal	2468	1370	415	10.97	6.09	1.85
			2.28	Light	2416	1281	452	10.74	5.70	2.02
			2.5	Normal	2367	1269	415	10.52	5.64	1.85
			2.5	Light	2323	1187	452	10.33	5.28	2.02
			2.8	Normal	2255	1156	415	10.02	5.14	1.85
			2.8	Light	2219	1084	452	9.86	4.82	2.02
			3.0	Normal	2192	1094	415	9.74	4.86	1.85
			3.0	Light	2161	1026	452	9.61	4.56	2.02
Best	Case*			<u> </u>	1980	873	424	8.80	3.88	1.89

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8b(i). Summary of Combined Parametric Simulations for Prototypical Office in Karachi on Top Floor (a=225 ft²)

					E	nergy (kWh)			KWh/ft²	
Insi Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3085	2402	0	13.71	10.68	0.00
nu	□ 4	0.5 acm	2.28	Light	2878	2194	0	12.79	9.75	0.00
			2.20 2.5	Normal	2884	2201	0	12.79	9.78	0.00
			2.5 2.5	Light	2694	2011	. 0	11.98	8.94	0.00
			2.8 2.8	Normal	2660	1977	0	11.82	8.79	0.00
	b		2.8 2.8	Light	2491	1808	0	11.07	8.04	0.00
	· .		3.0	Normal	2536	1853	0	11.07	8.24	0.00
			3.0	Light	2378	1695	0	10.57	7.53	0.00
DO	D4	1 0 aab						13.92		0.00
R0	R4	1.0 ach	2.28	Normal	3131	2448	0		10.89	
			2.28	Light	2937	2254	0	13.06	10.02	0.00
			2.5	Normal	2926	2243	0	13.01	9.97	0.00
			2.5	Light	2748	2065	0	12.22	9.18	0.00
			2.8	Normal	2698	2015	0	11.99	8.96	0.00
	•		2.8	Light	2539	1856	0	11.28	8.25	0.00
			3.0	Normal	2571	1889	0	11.43	8.40	0.00
		· · · · · · · · · · · · · · · · · · ·	3.0	Light	2423	1740	0	10.77	7.74	0.00
R5	R11	0.5 ach	2.28	Normal	3124	2441	0	13.89	10.85	0.00
			2.28	Light	3015	2332	0	13.40	10.37	0.00
	•,		2.5	Normal	2919	2237	0	12.98	9.94	0.00
			2.5	Light	2820	2137	0	12.54	9.50	0.00
			2.8	Normal	2692	2009	0	11.97	8.93	0.00
			2.8	Light	2603	1921	0	11.57	8.54	0.00
			3.0	Normal	2566	1884	0	11.41	8.37	0.00
			3.0	Light	2483	1800	0	11.04	8.00	0.00
R5	R11	1.0 ach	2.28	Normal	3147	2464	0	13.99	10.95	0.00
			2.28	Light	3045	2362	0	13.53	10.50	0.00
		•	2.5	Normal	2941	2258	0	13.07	10.04	0.00
*			2.5	Light	2847	2164	0	12.65	9.62	0.00
	•		2.8	Normal	2711	2029	0	12.05	9.02	0.00
	-		2.8	Light	2627	1945	0	11.68	8.64	0.00
•	•		3.0	Normal	2584	1901	0	11.48	8.45	0.00
			3.0	Light	2505	1823	0	11.14	8.10	0.00
Best	Case*				2211	1528	0	9.82	6.79	0.00

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8b(ii). Summary of Combined Parametric Simulations for Prototypical Office in Karachi on Middle Floor (a=225 ft²)

		•			E	nergy (kWh)			KWh/ft ²	
	ulation			5 (0)		•			_	
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3075	2393	0	13.67	10.64	0.00
			2.28	Light	3075	2393	0	13.67	10.64	0.00
	-		2.5	Normal	2875	2192	0	12.78	9.74	0.00
			2.5	Light	2875	2192	0	12.78	9.74	0.00
		•	2.8	Normal	2653	1970	0	11.79	8.76	0.00
			2.8	Light	2653	1970	. 0	11.79	8.76	0.00
			3.0	Normal	2529	1846	0	11.24	8.21	0.00
			3.0	Light	2529	1846	0	11.24	8.21	0.00
R0	R4	1.0 ach	2.28	Normal	3118	2436	, O	13.86	10.83	0.00
			2.28	Light	3118	2436	0	13.86	10.83	0.00
			2.5	Normal	2914	2232	0	12.95	9.92	0.00
			2.5	Light	2914	2232	0	12.95	9.92	0.00
			2.8	Normal	2687	2005	0 `	11.95	8.91	0.00
			2.8	Light	2687	2005	0	11.95	8.91	0.00
			3.0	Normal	2562	1879	0	11.39	8.35	0.00
			3.0	Light	2562	1879	0	11.39	8.35	0.00
R5	R11	0.5 ach	2.28	Normal	3150	2468	0	14.00	10.97	0.00
	•		2.28	Light	3150	2468	0	14.00	10.97	0.00
			2.5	Normal	2944	2261	0	13.08	10.05	0.00
			2.5	Light	2944	2261	0	13.08	10.05	0.00
			2.8	Normal	2714	2031	0	12.06	9.03	0.00
			2.8	Light	2714	2031	0	12.06	9.03	0.00
			3.0	Normal	2587	1904	. 0	11.50	8.47	0.00
			3.0	Light	2587	1904	0	11.50	8.47	0.00
R5	R11	1.0 ach	2.28	Normal	3171	2488	0	14.09	11.06	0.00
			2.28	Light	3171	2488	0	14.09	11.06	0.00
			2.5	Normal	2963	2280	0	13.17	10.13	0.00
	1		2.5	Light	2963	2280	0	13.17	10.13	0.00
			2.8	Normal	2731	2048	0	12.14	9.11	0.00
			2.8	Light .	2731	2048	0	12.14	9.11	0.00
		•	3.0	Normal	2602	1919	0	11.57	8.53	0.00
			3.0	Light	2602	1919	0	11.57	8.53	0.00
Best	Case*	,			2306	1623	0	10.25	7.22	0.00

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8b(iii). Summary of Combined Parametric Simulations for Prototypical Office in Karachi in a Single-Story Building (a=225 ft²)

lm av	.1.4:				E	nergy (kWh)			KWh/ft²	
Inst Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Takal	Cool	114
								Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2735	2052	0	12.16	9.12	0.00
			2.28	Light	2571	1889	0	11.43	8.40	0.00
			2.5	Normal	2564	1882	0	11.40	8.36	0.00
			2.5	Light	2415	1732	0	10.74	7.70	0.00
			2.8	Normal	2374	1692	0	10.56	7.52	0.00
	·		2.8	Light	2241	1558	0	9.96	6.93	0.00
	_		3.0	Normal	2269	1586	. 0	10.09	7.05	0.00
,			3.0	Light	2144	1461	0	9.53	6.49	0.00
R0	R4	1.0 ach	2.28	Normal	2797	2114	0	12.43	9.40	0.00
			2.28	Light	2640	1957	0	11.74	8.70	0.00
			2.5	Normal	2621	1938	0	11.65	8.61	0.00
	•		2.5	Light	2477	1794	0	11.01	7.97	0.00
			2.8	Normal	2425	1742	0	10.78	7.74	0.00
			2.8	Light	2296	1613	0	10.21	7.18	0.00
		4	3.0	Normal	2316	1634	0	10.30	7.26	0.00
			3.0	Light	2196	1513	0	9.76	6.73	0.00
R5	R11	0.5 ach	2.28	Normal	2739	2057	. 0	12.18	9.14	0.00
		•	2.28	Light -	2654	1971	0	11.80	8.76	0.00
			2.5	Normal	2568	1885	0	11.41	8.38	0.00
			2.5	Light	2490	1807	0	11.07	8.03	0.00
			2.8	Normal	2378	1695	0	10.57	7.54	0.00
			2.8	Light	2308	1626	0	10.26	7.22	0.00
			3.0	Normal	2272	1590	0	10.10	7.07	0.00
•			3.0	Light	2207	1524	0	9.81	6.78	0.00
R5	R11	1.0 ach	2.28	Normal	2782	2099	0	12.37	9.33	0.00
			2.28	Light	2701	2018	. 0	12.01	8.97	0.00
			2.5	Normal	2607	1924	0	11.59	8.56	0.00
			2.5	Light	2533	1850	ŏ	11.26	8.22	0.00
			2.8	Normal	2412	1730	Ŏ.	10.72	7.69	0.00
			2.8	Light	2346	1664	Ö	10.43	7.40	0.00
			3.0	Normal	2305	1622	Ö	10.43	7.40	0.00
			3.0	Light	2243	1560	0	9.97	6.93	0.00
Best	Case*			<u>3</u>	1989	1306	0	8.84	5.81	0.00

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8c(i). Summary of Combined Parametric Simulations for Prototypical Office in Lahore on Top Floor (a=225 ft²)

Inci	ulation					nergy (kWh)			KWh/ft²	
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool `	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3399	2541	175	15.11	11.29	0.78
		•	2.28	Light	3071	2156	231	13.65	9.58	1.03
			2.5	Normal	3191	2333	175	14.19	10.37	0.78
			2.5	Light	2897	1982	231	12.87	8.81	1.03
			2.8	Normal	2961	2103	175	13.16	9.35	0.78
			2.8	Light	2703	1788	231	12.02	7.95	1.03
			3.0	Normal	2833	1975	175	12.59	8.78	0.78
			3.0	Light	2596	1681	231	11.54	7.47	1.03
R0	R4	1.0 ach	2.28	Normal	3493	2585	223	15.52	11.49	1.00
			2.28	Light	3179	2213	282	14.13	9.84	1.25
•		•	2.5	Normal	3281	2374	223	14.59	10.56	1.00
			2.5	Light	2999	2034	282	13.33	9.04	1.25
			2.8	Normal	3046	2139	223	13.54	9.51	1.00
			2.8	Light	2801	1835	282	12.45	8.16	1.25
			3.0	Normal	2916	2009	223	12.96	8.93	1.00
			3.0	Light	2690	1725	282	11.96	7.67	1.25
R5	R11	0.5 ach	2.28	Normal	3162	2380	99	14.05	10.58	0.44
			2.28	Light	2990	2185	121	13.29	9.72	0.54
			2.5	Normal	2968	2186	99	13.20	9.72	0.44
•	*		2.5	Light	2813	2008	121	12.50	8.93	0.54
		•	2.8	Normal	2753	1971	99	12.24	8.76	0.44
			2.8	Light	2616	1812	121	11.63	8.06	0.54
			3.0	Normal	2633	1851	99	11.70	8.23	0.44
			3.0	Light	2507	1703	121	11.14	7.57	0.54
R5	R11	1.0 ach	2.28	Normal	3241	2413	145	14.40	10.72	0.65
			2.28	Light	3077	2224	171	13.68	9.89	0.76
			2.5	Normal	3045	· 2216	145	13.53	9.85	0.65
			2.5	Light	2897	2044	171	12.88	9.08	0.76
			2.8	Normal	2827	1998	145	12.57	8.88	0.65
			2.8	Light	2697	1844	171	11.99	8.20	0.76
	•		3.0	Normal	2705	1877	145	12.03	8.35	0.65
			3.0	Light	2586	1733	171	11.50	7.70	0.76
Best	Case*		,		2291	1448	160	10.18	6.44	0.71

Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8c(ii). Summary of Combined Parametric Simulations for Prototypical Office in Lahore on Middle Floor (a=225 ft²)

 		··							12\A/L-/2\2	
lno	ulation					nergy (kWh)	•		KWh/ft²	
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	.0.5 ach	2.28	Normal	3047	2258	106	13.55	10.04	0.47
			2.28	Light	3047	2258	106	13.55	10.04	0.47
			2.5	Normal	2864	2075	106	12.73	9.22	0.47
			2.5	Light	2864	2075	106	12.73	9.22	0.47
	•		2.8	Normal	2660	1871	106	11.82	8.32	0.47
1.			2.8	Light	2660	1871	106	11.82	8.32	0.47
			3.0	Normal	2547	1759	106	11.32	7.82	0.47
			3.0	Light	2547	1759	106	11.32	7.82	0.47
R0	R4	1.0 ach	2.28	Normal	3126	2291	153	13.89	10.18	0.68
			2.28	Light	3126	2291	153	13.89	10.18	0.68
	•		2.5	Normal	2940	2105	153	13.07	9.36	0.68
			2.5	Light	2940	2105	153	13.07	9.36	0.68
	•		2.8	Normal	2734	1898	153	12.15	8.44	0.68
			2.8	Light	2734	1898	153	12.15	8.44	0.68
			3.0	Normal	2619	1784	153	11.64	7.93	0.68
			3.0	Light	2619	1784	153	11.64	7.93	0.68
R5	R11	0.5 ach	2.28	Normal	3017	2263	70	13.41	10.06	0.31
			2.28	Light	3017	2263	70	13.41	10.06	0.31
			2.5	Normai	2833	2080	70	12.59	9.24	0.31
			2.5	Light	2833	2080	70	12.59	9.24	0.31
			2.8	Normal	2629	1876	70	11.69	8.34	0.31
			2.8	Light	2629	1876	70	11.69	8.34	0.31
			3.0	Normal	2516	1763	70	11.18	7.84	0.31
			3.0	Light	2516	1763	70	11.18	7.84	0.31
R5	R11	1.0 ach	2.28	Normal	3079	2283	113	13.69	10.15	0.50
	•		2.28	Light	3079	2283	113	13.69	10.15	0.50
		•	2.5	Normal	2894	2098	113	12.87	9.33	0.50
			2.5	Light	2894	2098	113	12.87	9.33	0.50
			2.8	Normal	2688	1892	113	11.95	8.41	0.50
			2.8	Light	2688	1892	113	11.95	8.41	0.50
			3.0	Normal	2574	1778	113	11.44	7.90	0.50
			3.0	Light ·	2574	1778	113	11.44	7.90	0.50
Best	Case*			***************************************	2269	1490	96	10.09	6.62	0.42

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8c(iii). Summary of Combined Parametric Simulations for Prototypical Office in Lahore in a Single-Story Building (a=225 ft²)

	.1 . 4!				E	nergy (kWh)			KWh/ft²	
Inst Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
RO	R4	0.5 ach	2.28	Normal	2957	2107	167	13.14	9.36	0.74
nu	F1 *1	0.5 acm	2.28	Light	2694	1794	217	11.98	7.97	0.74
			2.26 2.5	Normal	2787	1794	167	12.39	7.97 8.61	0.97
			2.5 2.5	Light	2551	1652	217	11.34	7.34	0.74
•			2.8 2.8	Normal	2598	1748	167	11.54	7.3 4 7.77	0.97
			2.8 2.8		2393	1493	217	10.64	6.63	
			2.8 3.0	Light		1643				0.97
•				Normal	2493		167	11.08	7.30	0.74
			3.0	Light	2305	⁾ 1405	217	10.24	6.24	0.97
R0	R4	1.0 ach	2.28	Normal	3072	2173	215	13.66	9.66	0.96
			2.28	Light	2818	1867	267	12.53	8.30	1.19
			2.5	Normal	2896	1997	215	12.87	8.88	0.96
			2.5	Light	2669	1719	267	11.87	7.64	1.19
			2.8	Normal	2701	1802	215	12.01	8.01	0.96
			2.8	Light	2503	1553	267	11.13	6.90	1.19
			3.0	Normal	2593	1694	215	11.52	7.53	0.96
			3.0	Light	2411	1461	267	10.72	6.49	1.19
R5	R11	0.5 ach	2.28	Normal	2724	1947`	95	12.11	8.65	0.43
			2.28	Light	2597	1799	115	11.54	8.00	0.51
			2.5	Normal	2568	1791	95	11.41	7.96	0.43
			2.5	Light	2453	1655	115	10.91	7.36	0.51
			2.8	Normal	2394	1617	95	10.64	7.19	0.43
			2.8	Light ~	2294	1496	115	10.20	6.65	0.51
			3.0	Normal	2298	1520	95	10.22	6.76	0.43
			3.0	Light	2206	1408	115	9.80	6.26	0.51
R5	R11	1.0 ach	2.28	Normal	2826	2002	141	12.56	8.90	0.63
			2.28	Light	2706	1859	164	12.02	8.26	0.73
•		•	2.5	Normal	2665	1841	141	11.85	8.18	0.63
			2.5	Light	2557	1711	164	11.36	7.61	0.73
			2.8	Normal	2486	1661	141	11.05	7.39	0.63
			2.8	Light	2392	1545	164	10.64	6.87	0.73
	*		3.0	Normal	2387	1563	141	10.61	6.94	0.63
		4	3.0	Light	2300	1454	164	10.23	6.46	0.73
Best	Case*				2040	1207	150	9.07	5.37	0.67

Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8d(i). Summary of Combined Parametric Simulations for Prototypical Office in Multan on Top Floor (a=225 ft²)

	.1.4		· • · · · · · · · · · · · · · · · · · ·		E	nergy (kWh)	•		KWh/ft²	
Inst Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3703	2813	207	16.46	12.50	0.92
nυ	Π4	0.5 acm	2.28 2.28	Light	3395	2448	263	15.09	10.88	1.17
•			2.20 2.5	Normal	3472	2581	203	15.09	11.48	0.92
			2.5 2.5	Light	3195	2249	263	14.20	9.99	1.17
			2.8	Normal	3214	2324	203	14.20	10.33	0.92
			2.8 2.8	Light	2973	2026	263	13.21	9.01	1.17
		•	2.8 3.0	Normal	3072	2181	203	13.65	9.69	0.92
			3.0		2850	1903	263	12.66	9.09 8.46	1.17
	D4	4.0 1		Light						
R0	R4	1.0 ach	2.28	Normal	3843	2897	263	17.08	12.88	1.17
			2.28	Light	3548	2544	321	15.77	11.31	1.43
			2.5	Normal	3605	2659	263	16.02	11.82	1.17
			2.5	Light	3340	2336	321	14.85	10.38	1.43
			2.8	Normal	3340	2394	263	14.84	10.64	1.17
			2.8	Light	3109	2105	321	13.82	9.35	1.43
		•	3.0	Normal	3193	2247	263	14.19	9.98	1.17
			3.0	Light	2981	1976	321	13.25	8.79	1.43
R5	R11	0.5 ach	2.28	Normal	3425	2622	119	15.22	11.65	0.53
			2.28	Light	3264	2438	142	14.51	10.84	0.63
		,	2.5	Normal	3210	2407	119	14.27	10.70	0.53
			2.5	Light	3064	2239	142	13.62	9.95	0.63
		•	2.8	Normal	2971	2168	119	13.20	9.64	0.53
			2.8	Light	2843	2018	142	12.64	8.97	0.63
			3.0	Normal	2838	2035	119	12.61	9.05	0.53
			3.0	Light	2720	1895	142	12.09	8.43	0.63
R5	R11	1.0 ach	2.28	Normal	3552	2695	173	15.79	11.98	0.77
			2.28	Light	3400	2519	198	15.11	11.19	0.88
			2.5	Normal	3330	2474	173	14.81	11.00	0.77
			2.5	Light	3194	2313	198	14.20	10.28	0.88
	*		2.8	Normal	3085	2228	173	13.71	9.90	0.77
			2.8	Light	2965	2084	198	13.18	9.27	0.88
			3.0	Normal	2948	2092	173	13.10	9.30	0.77
			3.0	Light	2838	1957	198	12.61	8.70	0.88
Best	Case*				2496	1629	184	11.10	7.24	0.82

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8d(ii). Summary of Combined Parametric Simulations for Prototypical Office in Multan on Middle Floor (a=225 ft²)

				·	E	nergy (kWh)			KWh/ft²	
	ulation		10.000	D (0)		•				
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3317	2511	123	14.74	11.16	0.55
			2.28	Light	3317	2511	123	14.74	11.16	0.55
•			2.5	Normal	3111	2305	123	13.83	10.25	0.55
			2.5	Light	3111	2305	123	13.83	10.25	0.55
			2.8	Normal	2883	2077	123	12.82	9.24	0.55
			2.8	Light	2883	2077	123	12.82	9.24	0.55
			3.0	Normal	2756	1951	123	12.25	8.67	0.55
			3.0	Light	2756	1951	123	12.25	8.67	0.55
R0	R4	1.0 ach	2.28	Normal	3439	2580	177	15.28	11.47	0.79
			2.28	Light	3439	2580	177	15.28	11.47	0.79
			2.5	Normal	3228	2368	177	14.35	10.53	0.79
			2.5	Light	3228	2368	177	14.35	10.53	0.79
			2.8	Normal	2993	2134	177	13.31	´ 9.48	0.79
	•		2.8	Light	2993	2134	· 177	13.31	9.48	0.79
			3.0	Normal	2863	2003	177	12.73	8.91	0.79
			3.0	Light	2863	2003	177	12.73	8.91	0.79
R5	R11	0.5 ach	2.28	Normal	3261	2493	84	14.50	11.08	0.38
			2.28	Light	3261	2493	84	14.50	11.08	0.38
			2.5	Normal	3057	2290	84	13.59	10.18	0.38
			2.5	Light	3057	2290	84	13.59	10.18	0.38
			2.8	Normal	2830	2063	84	12.58	9.17	0.38
			2.8	Light	2830	2063	84	12.58	9.17	0.38
•		•	3.0	Normal	2704	1937	84	12.02	8.61	0.38
		•	3.0	Light	2704	1937	84	12.02	8.61	0.38
R5	R11	1.0 ach	2.28	Normal	3365	2548	134	14.96	11.32	0.59
			2.28	Light	3365	2548	134	14.96	11.32	0.59
			2.5	Normal	3156	2340	134	14.03	10.40	0.59
			2.5	Light	3156	2340	134	14.03	10.40	0.59
			2.8	Normal	2925	2108	134	13.00	9.37	0.59
			2.8	Light	2925	2108	134	13.00	9.37	0.59
			3.0	Normal	2796	1979	134	12.43	8.80	0.59
			3.0	Light	2796	1979	134	12.43	8.80	0.59
Best	Case*				2444	1648	112	10.86	7.33	0.50

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8d(iii). Summary of Combined Parametric Simulations for Prototypical Office in Multan in a Single-Story Building (a=225 ft²)

	ulation		······································		E	nergy (kWh)			KWh/ft²	
Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3265	2392	190	14.51	10.63	0.85
nu	D 4	0.5 acm	2.28	Light	3002	2081	238	13.34	9.25	1.06
			2.5	Normal	3070	2197	190	13.64	9.23 9.77	0.85
			2.5	Light	2834	1913	238	12.60	8.77 8.51	1.06
			2.8	Normal	2853	1980	190	12.68	8.80	0.85
			2.8	Light	2647	1727	238	11.77	7.68	1.06
			3.0	Normal	2733	1860	190	12.15	8.27	0.85
			3.0	Light	2544	1623	238	11.31	7.21	1.06
R0	R4	1.0 ach	2.28	Normal	3420	2493	244	15.20	11.08	1.00
ΠU	Π4	1.0 acm	2.28	Light	3169	2493 2191		14.08	9.74	1.09
			2.5	Normal	3217	2191	295 244	14.00	9.74 10.18	1.09
			2.5 2.5	Light	2991	2014	2 44 295	13.30	8.95	1.09
			2.8	Normal	2990	2063	244	13.29	9.17	1.09
*			2.8	Light	2794	1817	295	12.42	8.07	1.09
			3.0	Normal	2865	1937	244	12.42	8.61	1.09
			3.0	Light	2685	1707	244 295	11.94	7.59	1.09
R5	R11	0.5 ach	2.28	Normal	2985	2194	108	13.27	9.75	0.48
no	nii ,	0.5 acm	2.28	Light	2859	2048	128	13.27		0.48
			2.26 2.5	Normal	2807	2046	108	12.71	9.10 8.96	0.57
		•	2.5 2.5	Light	2694	1882	128	11.98	8.36	0.48 0.57
			2.8	Normal	2609	1818	108	11.60	8.08	0.57
			2.8 2.8	Light	2510	1699	128	11.15	7.55	0.48
			3.0	Normal	2499	1708	108	11.15	7.55 7.60	0.57
•		•	3.0	Light	2408	1597	128	10.70	7.00 7.10	0.46
DE	R11	1 0 oob	2.28	Normal	3130	2286	161	13.91		0.57
R5	HII	1.0 ach	2.28 2.28	Light	3006	2140	183	13.91	10.16	0.72 0.81
			2.5	Normal	2944	2140	161		9.51	
			2.5 2.5					13.09	9.34	0.72
				Light	2833	1967	183	12.59	8.74	0.81
			2.8	Normal	2738	1894	161	12.17	8.42	0.72
			2.8	Light	2640	1774	183	11.74	7.89	0.81
			3.0	Normal	2623	1779	161	11.66	7.91	0.72
		1	3.0	Light	2533	1668	183	11.26	7.41	0.81
Best	Case*				2219	1371	165	9.86	6.09	0.73

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8e(i). Summary of Combined Parametric Simulations for Prototypical Office in Peshawar on Top Floor (a=225 ft²)

				· · · · · · · · · · · · · · · · · · ·	E	nergy (kWh)			KWh/ft²	
	ulation	1 (1)	40.000	D = 4 O = 1 = 1	T-4-1	01	114	T	0.0	114
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	3278	2242	353	14.57	9.97	1.57
			2.28	Light	3046	1928	435	13.54	8.57	1.93
			2.5	Normal	3100	2064	353	13.78	9.18	1.57
			2.5	Light	2896	1778	435	12.87	7.90	1.93
			2.8	Normal	2903	1867	353	12.90	8.30	1.57
			2.8	Light	2729	1611	435	12.13	7.16	1.93
,			3.0	Normal	2793	1757	353	12.42	7.81	1.57
			3.0	Light	2636	1518	435	11.72	6.74	1.93
R0	R4	1.0 ach	2.28	Normal	3406	2281	441	15.14	10.14	1.96
		•	2.28	Light	3195	1984	528	14.20	8.81	2.35
		•	2.5	Normal	3225	2100	441	14.34	9.34	1.96
			2.5	Light	3040	1829	528	13.51	8.13	2.35
			2.8	Normal	3024	1900	441	13.44	8.44	1.96
			2.8	Light	2868	1656	528	12.75	7.37	2.35
	•		3.0	Normal	2912	1788	441	12.95	7.95	1.96
		•	3.0	Light	2772	1561	528	12.32	6.94	2.35
R5	R11	0.5 ach	2.28	Normal	3034	2134	217	13.48	9.48	0.97
		•	2.28	Light	2911	1976	252	12.94	8.78	1.12
			2.5	Normal	2865	1965	217	12.73	8.73	0.97
			2.5	Light	2756	1821	252	12.25	8.10	1.12
	•		2.8	Normal	2678	1777	217	11.90	7.90	0.97
			2.8	Light	2584	1649	252	11.48	7.33	1.12
			3.0	Normal	2574	1673	217	11.44	7.44	0.97
			3.0	Light	2488	1553	252	11.06	6.90	1.12
R5	R11	1.0 ach	2.28	Normal	3135	2149	302	13.93	9.55	1.34
			2.28	Light	3021	1999	339	13.43	8.88	1.51
	*		2.5	Normal	2965	1980	302	13.18	8.80	1.34
			2.5	Light	2864	1842	339	12.73	8.19	1.51
			2.8	Normal	2776	1791	302	12.34	7.96	1.34
		•	2.8	Light	2690	1668	339	11.96	7.41	1.51
			3.0	Normal	2671	1686	302	11.88	7.49	1.34
1			3.0	Light	2593	1571	339	11.53	6.98	1.51
Best	Case*			3	2313	1317	313	10.28	5.86	1.39

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8e(ii). Summary of Combined Parametric Simulations for Prototypical Office in Peshawar on Middle Floor (a=225 ft²)

l	.l_A!				E	nergy (kWh)			KWh/ft²	
	ulation	1	AC COD	Doof Color	Total	Cool	11004	Total	Cool	Hank
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2956	2050	223	13.14	9.11	0.99
			2.28	Light	2956	2050	223	13.14	9.11	0.99
			2.5	Normal	2794	1888	223	12.42	8.40	0.99
			2.5	Light	2794	1888	223	12.42	8.40	0.99
			2.8	Normal	2615	1709	223	11.62	7.60	0.99
•			2.8	Light	2615	1709	223	11.62	7.60	0.99
			3.0	Normal	2515	1609	223	11.18	7.15	0.99
			3.0	Light	2515	1609	223	11.18	7.15	0.99
R0	R4	1.0 ach	2.28	Normal	3053	2062	308	13.57	9.16	1.37
			2.28	Light	3053	2062	308	13.57	9.16	1.37
			2.5	Normal	2891	1899	308	12.85	8.44	1.37
			2.5	Light	2891	1899	308	12.85	8.44	1.37
			2.8	Normal	2711	1719	308	12.05	7.64	1.37
			2.8	Light	2711	1719	308	12.05	7.64	1.37
		•	3.0	Normal	2610	1619	308	11.60	7.20	1.37
			3.0	Light	2610	1619	308	11.60	7.20	1.37
R5	R11	0.5 ach	2.28	Normal	2898	2060	155	12.88	9.16	0.69
		•	2.28	Light	2898	2060	155	12.88	9.16	0.69
			2.5	Normal	2735	1898	155	12.16	8.44	0.69
			2.5	Light	2735	1898	155	12.16	8.44	0.69
			2.8	Normal	2555	1717	155	11.35	7.63	0.69
		•	2.8	Light	2555	1717	155	11.35	7.63	0.69
			3.0	Normal	2455	1617	155	10.91	7.19	0.69
	•		3.0	Light	2455	1617	155	10.91	7.19	0.69
R5	R11	1.0 ach	2.28	Normal	2987	2065	239	13.27	9.18	1.07
			2.28	Light	2987	2065	239	13.27	9.18	1.07
			2.5	Normal	2824	1902	239	12.55	8.45	1.07
		•	2.5	Light	2824	1902	239	12.55	8.45	1.07
			2.8	Normal	2643	1721	239	11.75	7.65	1.07
	e de la companya della companya della companya de la companya della companya dell		2.8	Light	2643	1721	239	11.75	7.65	1.07
			3.0	Normal	2543	1621	239	11.30	7.20	1.07
			3.0	Light	2543	1621	239	11.30	7.20	1.07
Best	Case*				2258	1371	204	10.04	6.10	0.90

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8e(iii). Summary of Combined Parametric Simulations for Prototypical Office in Peshawar in a Single-Story Building (a=225 ft²)

					E	nergy (kWh)		-	KWh/ft²	
	ulation	1 6'14	40.00D	D (O - 1	Tital	01	114	T-4-1	01	11
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2856	1798	375	12.69	7.99	1.67
			2.28	Light	2696	1562	452	11.99	6.94	2.01
			2.5	Normal	2717	1658	375	12.07	7.37	1.67
			2.5	Light	2578	1443	452	11.46	6.41	2.01
			2.8	Normal	2562	1504	375	11.39	6.68	1.67
			2.8	Light	2446	1311	452	10.87	5.83	2.01
			3.0	Normal	2476	1418	375	11.01	6.30	1.67
	•		3.0	Light	2373	1238	452	10.55	5.50	2.01
R0	R4	1.0 ach	2.28	Normal	3010	1862	464	13.38	8.28	2.07
			2.28	Light	2861	1632	545	12.72	7.26	2.43
		,	2.5	Normal	2865	1718	464	12.73	7.63	2.07
			2.5	Light -	2736	1508	545	12.16	6.70	2.43
			2.8	Normal	2704	1557	464	12.02	6.92	2.07
			2.8	Light	2597	1369	545	11.55	6.09	2.43
			3.0	Normal	2615	1468	464	11.62	6.53	2.07
			3.0	Light	2521	1292	545	11.20	5.75	2.43
R5	R11	0.5 ach	2.28	Normal	2611	1682	246	11.60	7.48	1.10
			2.28	Light	2527	1565	279	11.24	6.95	1.24
			2.5	Normal	2482	1552	246	11.03	6.90	1.10
		•	2.5	Light	2408	1445	279	10.70	6.43	1.24
			2.8	Normal	2337	1408	246	10.39	6.26	1.10
			2.8	Light	2275	1313	279	10.11	5.84	1.24
			3.0	Normal	2258	1328	246	10.03	5.90	1.10
			3.0	Light	2201	1239	279	9.78	5.51	1.24
R5	R11	1.0 ach	2.28	Normal	2745	1728	333	12.20	7.68	1.48
			2.28	Light	2670	· 1618	369	11.87	7.20	1.64
	,		2.5	Normal	2611	1595	333	11.61	7.09	1.48
			2.5	Light	2547	1494	369	11.32	6.64	1.64
			2.8	Normal	2463	1446	333	10.95	6.43	1.48
			2.8	Light	2409	1357	369	10.71	6.03	1.64
	•	ż	3.0	Normal	2381	1364	333	10.58	6.07	1.48
	•		3.0	Light	2333	1280	369	10.37	5.69	1.64
Best	Case*				2094	1069	342	9.31	4.75	1.52

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8f(i). Summary of Combined Parametric Simulations for Prototypical Office in Quetta on Top Floor (a=225 ft²)

Insula Walls R0	Roofs R4	Infilt 0.5 ach	AC COP 2.28 2.28 2.5 2.5	Roof Color Normal Light Normal	Total 2913 2918	Cool 1183	Heat 1046	Total 12.95	Cool	Heat
			2.28 2.28 2.5 2.5	Normal Light Normal	2913 2918	1183				
но	Н4	0.5 acn	2.28 2.5 2.5	Light Normal	2918		1046 1	19 95		
			2.5 2.5	Normal					5.26	4.65
		•	2.5			1061	1175	12.97	4.72	5.22
			2.5		2835	1105	1046	12.60	4.91	4.65
				Light	2851	994	1175	12.67	4.42	5.22
			2.8	Normal	2748	1019	1046	12.22	4.53	4.65
			2.8	Light	2777	920	1175	12.34	4.09	5.22
			3.0	Normal	2700	-971	1046	12.00	4.32	4.65
			3.0	Light	2736	878	1175	12.16	3.91	5.22
R0	R4	1.0 ach	2.28	Normal	3088	1135	1269	13.72	5.05	5.64
	,		2.28	Light	3114	1025	1405	13.84	4.56	6.25
			2.5	Normal	3015	1062	1269	13.40	4.72	5.64
			2.5	Light	3050	962	1405	13.56	4.28	6.25
			2.8	Normal	2934	981	1269	13.04	4.36	5.64
	•		2.8	Light	2980	892	1405	13.25	3.97	6.25
			3.0	Normal	2888	936	1269	12.84	4.16	5.64
			3.0	Light	2942	853	1405	13.07	3.79	6.25
R5	R11	0.5 ach	2.28	Normal	2619	1279	658	11.65	5.68	2.93
			2.28	Light	2602	1209	710	11.56	5.38	3.16
			2.5	Normal	2532	1192	658	11.26	5.30	2.93
			2.5	Light	2521	1128	710	11.21	5.01	3.16
			2.8	Normal	2436	1095	658	10.83	4.87	2.93
			2.8	Light	2431	1038	710	10.81	4.61	3.16
			3.0	Normal	2382	1042	658	10.59	4.63	2.93
			3.0	Light	2382	988	710	10.59	4.39	3.16
R5	R11	1.0 ach	2.28	Normal	2756	1204	868	12.25	5.35	3.86
			2.28	Light	2750	1140	926	12.22	5.07	4.12
			2.5	Normal	2676	1124	868	11.90	5.00	3.86
		•	2.5	Light	2676	1066	926	11.89	4.74	4.12
			2.8	Normal	2587	1035	868	11.50	4.61	3.86
			2.8	Light	2593	983	926	11.52	4.37	4.12
			3.0	Normal	2538	986	868	11.28	4.39	3.86
			3.0	Light	2547	938	926	11.32	4.17	4.12
Best	Case*				2380	837	860	10.58	3.72	3.82

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8f(ii). Summary of Combined Parametric Simulations for Prototypical Office in Quetta on Middle Floor (a=225 ft²)

	Insulation			Energy (kWh)			KWh/ft²			
		1 £:14	40 00D	Doof Color	Tatal	Cool	Uant	Total	01	114
Walls	Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2620	1266	670	11.65	5.63	2.98
			2.28	Light	2620	1266	670	11.65	5.63	2.98
			2.5	Normal	2534	1180	670	11.26	5.24	2.98
			2.5	Light	2534	1180	670	11.26	5.24	2.98
•			2.8	Normal	2438	1085	670	10.84	4.82	2.98
•			2.8	Light	2438	1085	670	10.84	4.82	2.98
			3.0	Normal	2385	1032	670	10.60	4.59	2.98
	-		3.0	Light	2385	1032	670	10.60	4.59	2.98
R0	R4	1.0 ach	2.28	Normal	2753	1188	882	12.24	5.28	3.92
			2.28	Light	2753	. 1188	882	12.24	5.28	3.92
			2.5	Normal	2675	1109	882	11.89	4.93	3.92
			2.5	Light	2675	1109	882	11.89	4.93	3.92
			2.8	Normal	2588	1022	882	11.50	4.55	3.92
			2.8	Light	2588	1022	882	11.50	4.55	3.92
			3.0	Normal	2539	974	882	11.28	4.33	3.92
			3.0	Light	2539	974	882	11.28	4.33	3.92
R5	R11	0.5 ach	2.28	Normal	2537	1361	492	11.27	6.05	2.19
			2.28	Light	2537	1361	492	11.27	6.05	2.19
•			2.5	Normal	2442	1267	492	10.85	5.63	2.19
			2.5	Light	2442	1267	492	10,85	5.63	2.19
			2.8	Normal	2337	1162	492	10.39	5.16	2.19
			2.8	Light	2337	1162	492	10.39	5.16	2.19
	· .		3.0	Normal	2279	1103	492	10.13	, 4.91	2.19
			3.0	Light	2279	1103	492	10.13	4.91	2.19
R5	R11	1.0 ach	2.28	Normal	2633	1256	693	11.70	5.58	3.08
			2.28	Light	2633	1256	693	11.70	5.58	3.08
		•	2.5	Normal	2548	1171	693	11.33	5.21	3.08
			2.5	Light	2548	1171	693	11.33	5.21	3.08
			2.8	Normal	2454	1077	693	10.91	4.79	3.08
			2.8	Light	2454	1077	693	10.91	4.79	3.08
			3.0	Normal	2402	1025	693	10.68	4.56	3.08
	•		3.0	Light	2402	1025	693	10.68	4.56	3.08
Best	Case*				2206	912	611	9.80	4.06	2.72

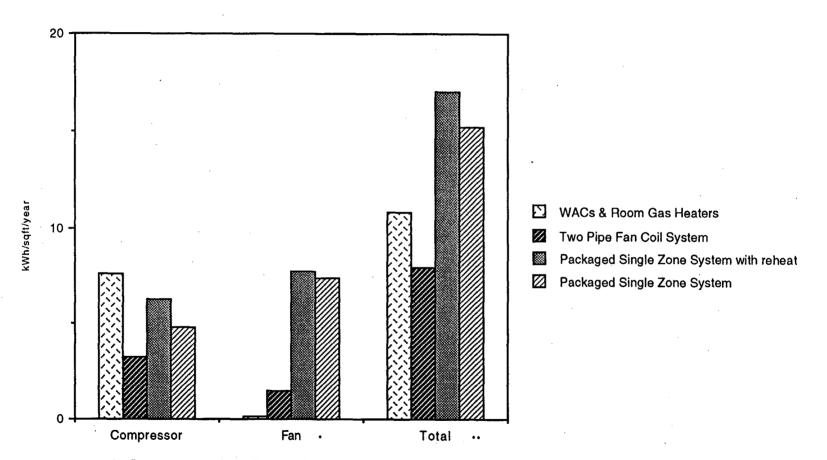

Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Table 6.8f(iii). Summary of Combined Parametric Simulations for Prototypical Office in Quetta in a Single-Story Building (a=225 ft²)

	.1 . 4 !			· · · · · · · · · · · · · · · · · · ·		nergy (kWh)		 	KWh/ft²	
Inst Walls	ulation Roofs	Infilt	AC COP	Roof Color	Total	Cool	Heat	Total	Cool	Heat
R0	R4	0.5 ach	2.28	Normal	2826	885	1258	12.56	3.94	5.60
ΠU	, D4	0.5 acm	2.28	Light	2877	803	1391	12.50	3.94 3.57	6.18
		•	2.26 2.5	Normal	2775	833	1258	12.79	3.57 3.71	5.60
			2.5 2.5	Light	2833	759	1391	12.53	3.71	6.18
			2.5 2.8	Normal	2718	759 776	1258	12.08	3.45	5.60
			2.8 2.8	Light	2784	776 710	1391	12.06	3.45 3.16	6.18
					2686					
•			3.0	Normal		744	1258	11.94	3.31	5.60
-			3.0	Light	2757	683	1391	12.25	3.03	6.18
R0	R4	1.0 ach	2.28	Normal	3030	867	1479	13.47	3.86	6.57
		•	2.28	Light	3089	790	1616	13.73	3.51	7.18
			2.5	Normal	2980	818	1479	13.25	3.64	6.57
			2.5	Light	3047	747	1616	13.54	3.32	7.18
			2.8	Normal	2925	763	1479	13.00	3.39	6.57
			2.8	Light	3000	700	1616	13.34	3.11	7.18
			3.0	Normal	2895	732	1479	12.87	3.26	6.57
			3.0	Light	2974	674	1616	13.22	3.00	7.18
R5	R11	0.5 ach	2.28	Normal	2480	906	890	11.02	4.03	3.96
			2.28	Light	2492	861	948	11.08	3.83	4.22
			2.5	Normal	2426	852	890	10.78	3.79	3.96
			2.5	Light	2442	811	948	10.86	3.61	4.22
			2.8	Normal	2365	792	890	10.51	3.52	3.96
			2.8	Light	2386	755	948	10.61	3.36	4.22
			3.0	Normal	2332	758	890	10.36	3.37	3.96
			3.0	Light	2355	724	948	10.47	3.22	4.22
R5	R11	1.0 ach	2.28	Normal	2671	880	1108	11.87	3.91	4.93
			2.28	Light	2691	839	1168	11.96	3.73	5.20
			2.5	Normal	2620	828	1108	11.64	3.68	4.93
			2.5	Light	2643	792	1168	11.75	3.52	5.20
			2.8	Normal	2563	771	1108	11.39	3.43	4.93
		•	2.8	Light	2590	738	1168	11.51	3.28	5.20
			3.0	Normal	2531	740	1108	11.25	3.29	4.93
			3.0	Light	2560	709	1168	11.38	3.15	5.20
Best	Case*				2436	635	1117	10.83	2.83	4.97

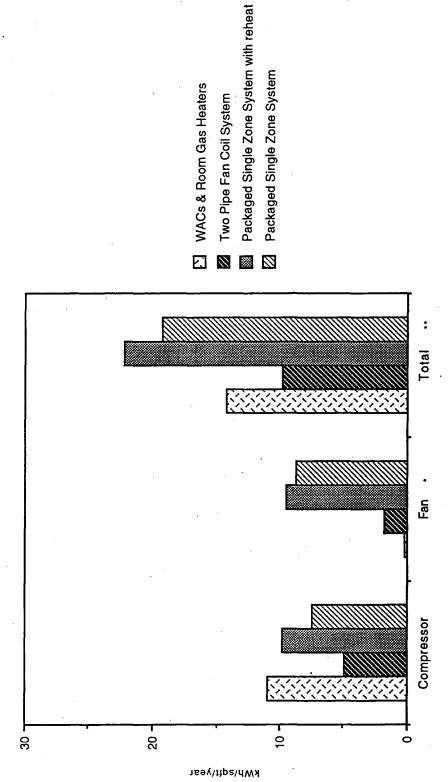

^{*} Best Case is for the prototype model with the following properties: AC setting: 79, AC COP: 3.0, Adj. Shade: none, Overhang: 3ft, Infilt: 0.5 ach, Insul: R5W and R11C, Wall Color: normal(0.7 absorbtance), Roof Color: light(0.3 absorbtance), Film Shading Coef.: 0.8 Day Lighting: none, Efficient Lighting: none.

Figure 6.5a
THE IMPACT OF HVAC SYSTEM TYPES ON ELECTRICITY CONSUMPTION IN ISLAMABAD

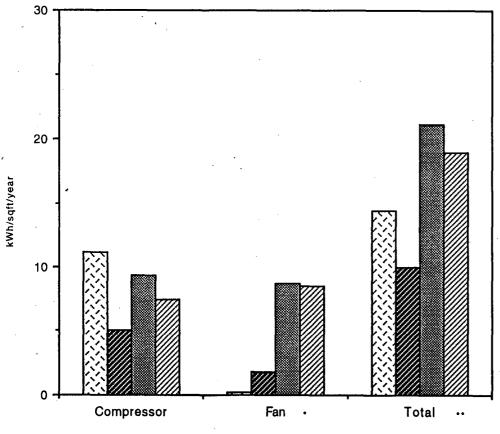
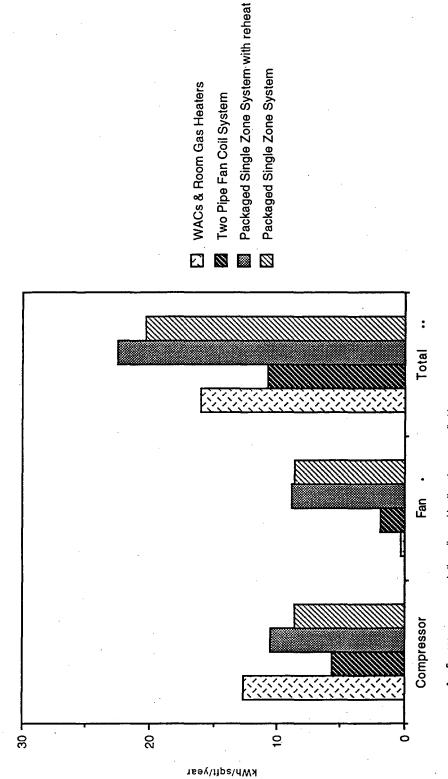

- Fan energy use covers both cooling and heating, whenever applicable
- ** Total includes 3.04kWh/sqft for lighting and equipment

Figure 6.5b THE IMPACT OF HVAC SYSTEM TYPES ON ELECTRICITY CONSUMPTION IN KARACHI

Fan energy use covers both cooling and heating, whenever applicable

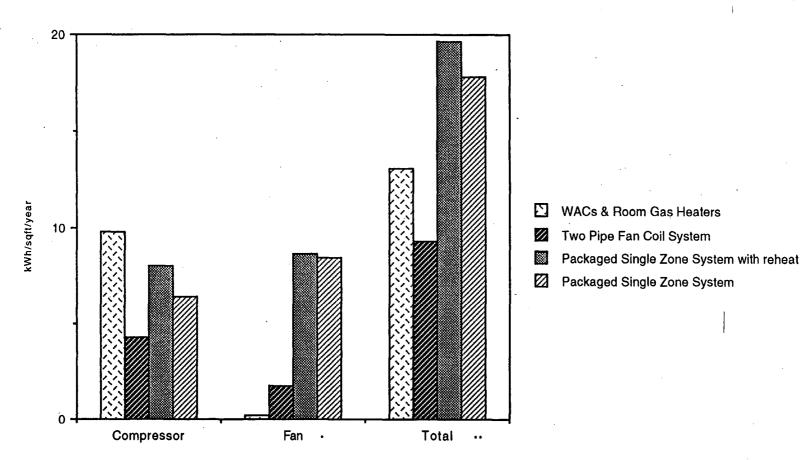
Total includes 3.04kWh/sqft for lighting and equipment


- WACs & Room Gas Heaters
- Two Pipe Fan Coil System
 - Packaged Single Zone System with reheat
- Packaged Single Zone System

* Fan energy use covers both cooling and heating, whenever applicable

** Total includes 3.04kWh/sqft for lighting and equipment

18


Figure 6.5d THE IMPACT OF HVAC SYSTEM TYPES ON ELECTRICITY CONSUMPTION IN MULTAN

· Fan energy use covers both cooling and heating, whenever applicable

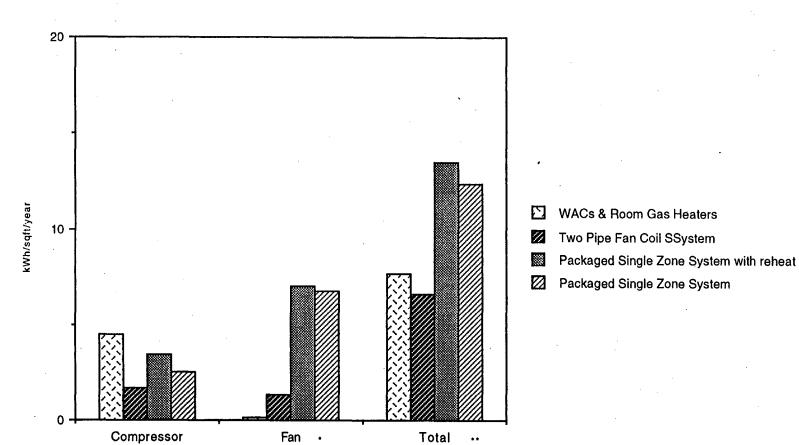

•• Total includes 3.04kWh/sqft for lighting and equipment

Figure 6.5e
THE IMPACT OF HVAC SYSTEM TYPES ON ELECTRICITY CONSUMPTION IN PESHAWAR

- * Fan energy use covers both cooling and heating, whenever applicable
- ** Total includes 3.04kWh/sqft for lighting and equipment

Figure 6.5f
THE IMPACT OF HVAC SYSTEM TYPES ON ELECTRICITY CONSUMPTION IN QUETTA

- * Fan energy use covers both cooling and heating, whenever applicable
- ** Total includes 3.04kWh/sqft for lighting and equipment

Figure 6.6
THE IMPACT OF HVAC SYSTEM TYPES ON GAS CONSUMPTION IN PAKISTAN

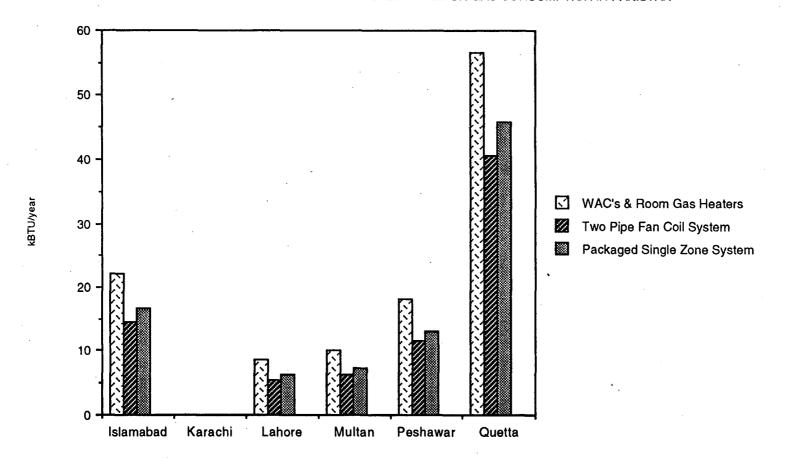


Table 6.9. The Effect of the HVAC System Types on Electricity and Gas Consumption in Pakistan

	Heating		Cooling		Total Elec.	Total Gas
	Gas(kBTU)	Pumps(kWh)	Compressors(kWh)	Fans(kWh)*	(kWh)	(kBTU)
Islamabad					·	
WACs & Room Gas Heaters	22.11	N/A	7.59	0.17	10.82	22.11
Two Pipe Fan Coil System	14.53	0.18	3.20	1.50	7.92	14.53
Packaged Single Zone System with Reheat	N/A	N/A	6.26	7.75	17.07	N/A
Packaged Single Zone System	16.64	N/A	4.80	7.37	15.22	16.64
Karachi						
WACs & Room Gas Heaters			10.93	0.24	14.22	0.00
Two Pipe Fan Coil System	No	Heating	4.97	1.82	9.82	0.00
Packaged Single Zone System with Reheat		· ·	9.77	9.44	22.26	N/A
Packaged Single Zone System			7.48	8.77	19.30	0.00
Lahore						
WACs & Room Gas Heaters	8.72	N/A	11.15	0.25	14.23	8.72
Two Pipe Fan Coil System	5.44	0.07	5.06	1.83	10.00	5.44
Packaged Single Zone System with Reheat	N/A	N/A	9.42	8.69	21.14	N/A
Packaged Single Zone System	6.34	N/A	7.43	8.50	18.97	6.34
Multan						
WACs & Room Gas Heaters	10.12	N/A	12.65	0.27	15.98	10.12
Two Pipe Fan Coil System	6.39	0.08	5.69	1.93	10.73	6.39
Packaged Single Zone System with Reheat	N/A	N/A	10.58	8.88	22.49	N/A
Packaged Single Zone System	7.29	N/A	8.59	8.65	20.29	7.29
Peshawar						
WACs & Room Gas Heaters	18.17	N/A	9.74	0.22	13.02	18.17
Two Pipe Fan Coil System	11.63	0.14	4.30	1.76	9.24	11.63
Packaged Single Zone System with Reheat	N/A	N/A	8.02	8.60	19.68	N/A
Packaged Single Zone System	12.97	N/A	6.36	8.39	17.80	12.97
Quetta						
WACs & Room Gas Heaters	56.63	N/A	4.48	0.16	7.68	56.63
Two Pipe Fan Coil System	40.64	0.51	1.70	1.33	6.57	40.64
Packaged Single Zone System with Reheat	N/A	N/A	3.43	7.02	13.48	N/A
Packaged Single Zone System	45.81	N/A	2.56	6.77	12.38	45.81

N/A Not applicable

^{*} Fans do not account for ceiling fans

References

- Akbari, H; Huang, J.; Ritschard, R. 1990a. "A review of DOE-2 weather data for six locations in Pakistan: Islamabad, Karachi, Lahore, Multan, Peshawar, and Quetta," Lawrence Berkeley Laboratory interim report to ENERCON (February).
- Akbari, H; Huang, J.; Rainer, L.; Ritschard, R. 1990b. "Energy-use characteristics of a single-family prototype house in Pakistan," Lawrence Berkeley Laboratory interim report to ENERCON (February).
- Akbari, H; Huang, J.; Rainer, L.; Ritschard, R.; Sezgen, O. 1990c. "Energy-use characteristics of a prototype office building converted from a single-family house in Pakistan," Lawrence Berkeley Laboratory interim report to ENERCON, (March).
- Building Energy Simulation Group (BESG) 1980. DOE-2 Reference Manual (Versions 2.1A), Lawrence Berkeley Laboratory report LBL-8706, Berkeley CA.
- Building Energy Simulation Group (BESG) 1982. DOE-2 Engineers Manual (Version 2.1A), Lawrence Berkeley Laboratory report LBL-11353, Berkeley CA.
- Building Energy Simulation Group (BESG) 1990. "Overview of the DOE-2 Building Energy Analysis Program", Lawrence Berkeley Laboratory report LBL-19735, Berkeley CA.
- ENERCON 1986. "Data compilation for determining electricity conservation potential," ENERCON-86-17, The National Energy Conservation Centre, Islamabad, Pakistan (September).
- ENERCON 1987. "Preliminary energy surveys in buildings," Summary report, ENERCON-87-84, The National Energy Conservation Centre, Islamabad, Pakistan (November).
- ENERCON 1990. "Building Energy Code of Pakistan," 5th Draft, The National Energy Conservation Centre, Islamabad, Pakistan (January).
- Simulation Research Group 1989. DOE-2 Reference Manual (Version 2.1D), Parts 1 and 2. Lawrence Berkeley Laboratory, Berkeley CA.

LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA TECHNICAL INFORMATION DEPARTMENT BERKELEY, CALIFORNIA 94720

