
UC San Diego
Technical Reports

Title
Minimax Programs and Bitonic Column Matrices

Permalink
https://escholarship.org/uc/item/0z4236fg

Authors
Tucker, Paul A
Hu, T. C.

Publication Date
1999-06-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0z4236fg
https://escholarship.org
http://www.cdlib.org/

Minimax Programs and Bitonic Column Matrices

P. A. Tucker

�

, T. C. Hu

ptucker@cs.ucsd.edu, hu@cs.ucsd.edu

UCSD Computer Science and Engineering Dept.

Technical Report CS99-624

June 17, 1999

Abstract

This report describes an optimization problem called a minimax program that is

similar to a linear program, except that the addition operator is replaced by the max-

imum operator in the constraint inequalities. The relation of this problem to some

well-known problems is clari�ed. An interesting special case, bitonic columns, is iden-

ti�ed, and a new, e�cient algorithm is presented for its solution. Also presented is an

e�cient algortihm for recognition of matrices with the bitonic columns property, which

is an extension of the PQ-tree reduction algorithm.

1 Introduction

Over the last �fty years, countless problems of practical interest have been formulated as a

linear program. Not only has the linear programming model proven to be widely applicable,

but ongoing research has discovered highly e�ective algorithms for solution of various classes

of linear programs. Linear programming represents one of the major achievements of the

operations research and mathematical programming community.

In this report we introduce an optimization problem we call a \minimax program" that

very much resembles a linear program. The task is still to minimize a linear function, but in

the constraint inequalities we replace the addition operator by the maximum operator. With

this change we obtain a problem formulation that straightforwardly captures the structure

of some real optimization problems. The problem also turns out to be NP-complete, with a

close similarity to set cover.

We describe an e�cient algorithm for solving an interesting subclass of minimax pro-

grams, those whose constraint matrices have columns with the \mountain property," which

is a generalization of the consecutive ones property (i.e. the rows can be permuted so that

entries in each column �rst increase, then decrease). We also present an e�cient algorithm

for recognition of matrices with this properties. The algorithm is an extension of the PQ

�

Supported in part by a National Science Foundation Graduate Fellowship.

1

tree reduction algorithm of Booth and Lueker [1]. More recently developed algorithms (e.g.

lex-bfs [10]) are now preferred to the original PQ tree reduction algorithm for, e.g., inter-

val graph recognition, but our extension shows that the original algorithm has previously

undescribed adaptability that the newer algorithms do not obviously share.

The rest of this report is organized as follows. Section 2 de�nes a minimax program.

Subsections describe its relation to other problems, and an interesting and practical special

case (bitonic columns) that can be solved quickly. Section 2.4 presents an e�cient algorithm

to solve minimax programs with the proper bitonic columns. Section 3 describes an e�cient

algorithm for detecting whether a matrix has a bitonic column property. Section 4 describes

an example application of minimax programs.

2 Minimax Programs

In a linear program the task is to

min z =

P

c

j

x

j

(j = 1; : : : ; n)

subject to

P

a

ij

x

j

� b

i

(i = 1; : : : ; m)

x

j

� 0:

(1)

The linear program model assumes linearity of both the objective function and the constraint

inequalities. Implicit in the linearity of constraints is additivity of the basic vectors in

satisfying the requirement vector b.

A simple example of a typical linear programming application is the selection of food

servings to satisfy nutritional requirements at minimum cost. Suppose there are n kinds

of food to choose from, while m di�erent nutrient requirements are to be ful�lled. In this

example, the additivity assumption is justi�ed because the nutritional properties of food are

believed to be additive. The daily requirement for protein, for example, can be satis�ed

by eating a mix of food servings throughout the day whose protein contents sum to the

requirement. It is not necessary to eat a single large serving of one food su�cient to satisfy

the protein requirement by itself, and each food serving can contribute to the satisfaction of

many nutritional requirements.

However, the additivity assumption does not always hold. Consider a slight variation

on the problem where instead of purchasing food, our goal is to purchase poisons to kill a

mixture of household pests. The essential di�erence is that we assume the e�ects of di�erent

kinds of poison are independent. We suppose that all of the poisons are to be applied

sequentially or even simultaneously (perhaps by fumigating the house), and for each poison

there is a lethal dose associated with each species of pest. If we apply at least the lethal dose

the pest population will be exterminated, but anything signi�cantly less than that dose will

not noticeably harm the pests. Moreover, if we apply a sub-lethal dose of one poison, the

lethal dose of a second poison, towards the same pest species, is not reduced. Because the

mechanisms of action of di�erent kinds of poison are di�erent, the pests can survive sub-

lethal doses of a number of di�erent poisons within a short period of time. In purchasing a

minimum cost blend of poisons, we have to ensure that it contains a lethal dose of at least

one poison for every pest species.

2

If we suppose there are n kinds of poison to choose from, and m species of pest to exter-

minate, the problem can be modeled by the same structure as a linear program, except that

we replace the addition operator in the constraint inequalities with the maximum operator.

min z =

P

c

j

x

j

(j = 1; : : : ; n)

subject to

max

j

(a

ij

x

j

) � b

i

(i = 1; : : : ; m)

x

j

� 0:

(2)

We call this problem formulation a minimax program. Minimax programs can arise as a

natural problem formulation in domains such as software testing by a mixture of test methods

[7], an application to be discussed Section 4.

It is convenient to de�ne a standard form for minimax programs. First it should be ob-

served that there is no need for the presence of negative coe�cients in the cost or requirement

vectors, or in the constraint matrix A. If negative coe�cients are present we can eliminate

them through arithmetic manipulation, or replace them by 0 without a�ecting the optimal

solution, or they cause the problem to be unbounded and hence not well-formulated. So

without loss of generality we can require that all coe�cients be non-negative. Then, since

there is no integer restriction on coe�cients, we can normalize the cost and requirement

vectors to

~

1. The result is a standard form in which the minimax problem is completely

described by its constraint matrix A.

min z =

P

x

j

(j = 1; : : : ; n)

subject to

max

j

(a

ij

x

j

) � 1 (i = 1; : : : ; m)

x

j

� 0

(3)

As an illustration, let the constraint matrix A in (3) be as follows.

x

1

x

2

x

3

x

4

x

5

x

6

1

3

1

2

0 0

1

3

1

8

1

4

0

1

3

0

1

4

1

4

1

8

0 0

1

4

1

10

1

4

(4)

Then the minimax program (3) with constraint coe�cients (4) has many feasible solutions

such as

(i) x

1

= 8 with total cost 8

(ii) x

2

= 2; x

3

= 3; x

4

= 4 with total cost 9

(iii) x

4

= 4; x

5

= 4 with total cost 8

(iv) x

5

= 3; x

6

= 4 with total cost 7.

3

2.1 Relation to Other Problems

Consider the usual integer program formulation of an arbitrary instance of weighted set

cover.

min z =

P

c

j

x

j

subject to

2

6

6

6

4

1 0 1 0

1 1 0 1

1 1 1 0

0 1 1 1

3

7

7

7

5

~x �

~

1

x

j

2 I

+

The constraint matrix A is (0; 1), and the requirement vector b is

~

1. If we take these same

parameters and put them into the minimax program model, in other words change the

constraint inequalities to

max(x

1

; 0; x

3

; 0) � 1

max(x

1

; x

2

; 0; x

4

) � 1

max(x

1

; x

2

; x

3

; 0) � 1

max(0; x

2

; x

3

; x

4

) � 1

retaining the cost vector c and eliminating the integer requirement on x

j

, then the optimal

solutions are unchanged.

Theorem 1 Let min cx such that Ax �

~

1, x

j

2 I

+

where a

ij

2 f0; 1g, c

j

2 R

+

be an integer

program instance of weighted set cover, and let min cx such that max

j

(a

ij

x

j

) � 1, x

j

2 R

+

be a minimax program (not necessarily in standard form) with the same cost vector c and

constraint matrix A. Any feasible solution to the integer program is feasible for the minimax

program. Any feasible solution to the minimax program maps onto a feasible solution to the

integer program of lesser or equal cost, in O(m) time.

Proof. In the �rst direction, let x

1

; x

2

; : : : ; x

m

be any feasible solution to the integer pro-

gram. Consider any row i of the constraint matrix; since A is (0; 1), there must be some

x

j

� 1 corresponding to some a

ij

= 1 to satisfy the row constraint. This same value of x

j

then also satis�es the row i constraint in the minimax program since a

ij

x

j

� 1. Hence the

solution is also feasible for the minimax program.

In the other direction, let x

1

; x

2

; : : : ; x

m

be any feasible solution to the minimax program,

and let x

0

be an m-length vector where x

0

j

= bx

j

c. Consider any row i of the (0; 1) matrix A;

for the minimax row constraint to be satis�ed, there must exist some x

j

� 1 corresponding

to some a

ij

= 1. Then x

0

j

� 1 and row i of the integer program constraints is also satis�ed.

Hence x

0

is feasible for the integer program and

P

j

x

0

j

�

P

j

x

j

.

A corollary of this theorem is that optimization of minimax programs is NP-complete.

There is also a reduction of any minimax program to an equivalent set cover problem

in integer program formulation. The general reduction technique involves expanding each

column of the minimax constraint matrix into m (0; 1) columns, and assigning appropriate

cost coe�cients to the new columns.

4

Theorem 2 Let A be the constraint matrix of a minimax program in standard form, and let

c

0

j

i

= 1=a

ij

and

a

0

k;j

i

=

(

1 if a

kj

� a

ij

0 otherwise

de�ne the cost vector and constraint matrix of an integer program min c

0

x such that A

0

x �

~

1,

x 2 I

+

. Then any feasible solution to the minimax program maps onto a feasible solution to

the integer program, of lesser or equal cost, and vice versa.

Proof. Let x

1

; x

2

; : : : ; x

m

be any feasible solution to the minimax program. Consider the

constraint imposed by any row i of A; it must be satis�ed by at least one x

j

such that

a

ij

x

j

� 1. Within column j of A, examine the entries in other rows and let k be min

i

a

ij

such that x

j

a

ij

� 1 (i.e. x

j

satis�es row k), then set

x

0

j

i

=

(

1 for i = k

0 for i 6= k

among the integer program solution components corresponding to x

j

. Observe that a

ij

� a

kj

,

so a

0

i;j

k

= 1 by the de�nition above, and a

0

i;j

k

x

0

j

k

= 1 and the constraint imposed by row i of

A

0

is satis�ed in the integer program. The cost of the solution to the integer program is

X

j

X

i

c

0

j

i

x

0

j

i

=

X

j

1=a

kj

� 1=a

ij

where k is selected for each j as above

�

X

j

x

j

:

In the other direction, consider any feasible solution to the integer program, x

0

. For each

associated set of variables x

0

j

1

; : : : ; x

0

j

m

, if any is non-zero, take the non-zero x

0

j

i

associated

with maximum c

0

j

i

, and assign x

j

= c

0

j

i

. If none of x

0

j

1

; : : : ; x

0

j

m

are non-zero, then assign

x

j

= 0. If a

0

i;j

k

x

0

j

k

� 1 (i.e. the ith row constraint is satis�ed), then x

j

� c

0

j

k

= 1=a

kj

. By

the construction of this theorem, a

0

i;j

k

= 1 only if a

ij

� a

kj

, so c

0

j

k

� 1=a

ij

, and x

j

a

ij

� 1,

satisfying the ith row constraint in the minimax program. The cost of the derived solution

to the minimax program is

X

j

x

j

=

X

j

max

i

c

j

i

x

j

i

�

X

j

X

i

c

j

i

x

j

i

:

In illustration of the reduction given by the theorem, the minimax program with unit

costs and constraint inequalities

max

2

6

6

6

4

x

1

x

2

x

3

5 1 1

2 4 3

1 1 4

3

7

7

7

5

�

1

1

1

x

j

� 0

5

is equivalent to an integer program with the following (0; 1) constraint matrix and cost

coe�cients.

sum

2

6

6

6

4

1

5

x

1

1

1

2

x

1

2

1x

1

3

1x

2

1

1

4

x

2

2

1x

2

3

1x

3

1

1

3

x

3

2

1

4

x

3

3

1 1 1 1 0 1 1 0 0

0 1 1 1 1 1 1 1 0

0 0 1 1 0 1 1 1 1

3

7

7

7

5

�

1

1

1

x

j

i

2 I

+

This reduction shows that a minimax program can be viewed as a compact representation

of a set cover instance whose coe�cients allow columns of the constraint matrix to be packed

together.

It follows from Theorem 2 and its proof that any solution to the integer program can

be converted in polynomial time to an equally good solution to the minimax program.

Hence, a corollary is that any exact or �-approximation algorithm for set cover or a general

integer program yields an equivalently accurate algorithm for the minimax program. For

example, the greedy algorithm for set cover gives an O(logn) approximation. This and

other approximation and special case results for set cover are surveyed in [5].

However, the reduction to an integer program incurs a penalty by inating the problem

representation size by a factor of O(m); if the size of the original minimax program is mn,

the size of the derived set cover problem is O(m

2

n). Hence it is desirable to solve a minimax

program directly by an e�cient algorithm. In a special case to be considered in the next

section, an exact solution to the minimax program can be obtained with a time complexity

less than that of the reduction to set cover.

2.2 A Fast Special Case

Among NP-complete problems that have a graph representation it is known that instances

with the interval graph property can often be solved e�ciently, even in linear time (e.g.

Hamilton circuit [8] and vertex cover [9]).

The interval graph property is intimately related to the consecutive ones property of

(0; 1) matrices [3]. A matrix has this property if its rows can be permuted such that all ones

in every column are consecutive.

Although having the interval property is a signi�cant restriction on the general class

of graphs, interval graphs have the virtue of corresponding to many problems that arise

naturally in the real world. The graph proximity corresponding to the intervals can model

physical or temporal proximity constraints in many application contexts. For example,

Fulkerson and Gross's paper [3] arose out of a study of genetic mutations where the interval

property modeled adjacency in a DNA strand. A number of scheduling problems, whether

for rooms or processors, turn out to have the interval graph property when represented as a

graph coloring problem where edges indicate incompatibilities. Interval graphs also play a

part in practical algorithms for synthesis and physical layout of circuit designs. See Golumbic

[4] for a survey.

6

2.2.1 Linear Time Set Covering for Consecutive Ones

As an illustration of the e�ciency with which problem instances with the interval graph

property can be solved, and in preparation for the broader special case of minimax programs

we next address, we present a simple linear time algorithm for unweighted set covering when

the problem matrix has consecutive ones.

Using the integer program formulation of set cover, we assume that the constraint (set

membership) array A is presented in a conforming permutation so that all ones are con-

secutive in every column. The algorithm �rst scans the array once to record the number

of consecutive ones beginning in each position and continuing down in the same column.

It then adopts a greedy strategy of scanning uncovered rows in order. It picks the column

that covers the most consecutive rows starting with the �rst row, and then repeats the same

strategy from the topmost uncovered row.

Assume that covers is a temporary array of dimension equal to A, and initially, all x

j

= 0.

Consecutive-Ones-Set-Cover:

for (i m down to 1) do

for (j 1 to n) do

if (mat[i; j] = 0) then covers[i; j] 0

else if (i = m) then covers[i; j] 1

else covers[i; j] covers[i+ 1; j] + 1

i 0

while (i � m) do

Scan row covers[i] for the max entry covers[i; j].

x

j

 1

i i + covers[i; j]

At the completion of this algorithm a minimal sized cover has been found, in time O(mn)

which is linear in the size of the input. This simple algorithm does not work for weighted set

cover. Ho�man [6] identi�es a broader range of cases (including weights) for which a greedy

algorithm does �nd the optimal solution to a combinatorial problem in the integer program

formulation.

2.3 Bitonic Columns

One natural generalization of the consecutive ones property of a matrix is what we call the

mountain property: for some permutation of the rows the values in every column are non-

decreasing to some midpoint, then non-increasing thereafter (examining entries from top to

bottom). The pro�le of each column looks like a mountain peak. More formally, a matrix

has the mountain property if its rows can be permuted so that for each column j there exists

an index i such that

a

1j

� a

2j

� : : : � a

ij

� a

i+1;j

� : : : � a

mj

: (5)

The midpoint index i can be di�erent for each column. A symmetric property is the valley

property in which the values in all columns decrease to a midpoint, then increase on the

7

other side (in some row permutation). Since in each case the values in a column must

�rst monotonically progress in one direction, then monotonically progress in the opposite

direction, we refer to these properties collectively as bitonic column properties.

One could further generalize the bitonic column concept to allow for a combination of

mountain and valley columns in the same matrix, but in this paper we only make use of

homogeneous bitonic column properties, where every column is a mountain, or every column

is a valley.

A bitonic column property is signi�cant because when the matrix is in conforming per-

mutation we are guaranteed that each column has no non-adjacent local maxima or minima.

Thus, the property is somewhat analogous to the concept of convexity, and similarly leads

to e�cient algorithms.

In solving a minimax program it is more convenient, for computational purposes, to deal

with a cost matrix W where w

ij

= 1=a

ij

. For example, the cost matrix corresponding to the

constraint matrix in (4) is

x

1

x

2

x

3

x

4

x

5

x

6

3 2 1 1 3 8

4 1 3 1 4 4

8 1 1 4 10 4:

(6)

It is easily seen that when the constraint matrix has the mountain property, the correspond-

ing cost matrix has the valley property.

In the next section we present a fast algorithm for solving minimax programs when the

cost matrix has the valley property. Its time complexity is linear when the number of columns

is at least as large as the number of rows. It is conjectured that bitonic column properties

imply e�cient solution techniques for other problems as well.

2.4 Solving Minimax Programs with Valley Costs

If the cost matrix W corresponding to a minimax program has the valley property, then

its rows can be permuted so that within any column the k smallest entries are all adjacent,

for any k. This situation is amenable to solution by an e�cient algorithm, described below.

Section 3 gives an O(nSORT(m)+mn) algorithm for �nding such a permutation, if one exists.

Here we assume that the input is presented as a cost matrix in conforming permutation.

We present the algorithm as constructing a network and then solving for the shortest

path between two distinguished vertices.

Recall that a minimax program in standard form (3) has been normalized so that all

RHS coe�cients b

i

and all objective function coe�cients c

j

are 1. The algorithm takes as

input a cost matrix obtained from the constraint matrix by the identity w

ij

= 1=a

ij

. We

assume that the rows of the cost matrix are in a permutation where the valley property

holds. If necessary, the algorithm given in Section 3 can be used as preprocessing to obtain

a conforming permutation.

The present algorithm begins by constructing a network data structure consisting ofm+1

vertices, indexed 0; 1; : : : ; m. Vertices will be joined by weighted, directed arcs from vertices

of smaller index to vertices of larger index.

8

Each column can potentially contribute m arcs. An arc from v

i

to v

j

indicates the cost

of \covering" rows i + 1 to j (i.e. satisfying the constraints imposed by those rows) by the

associated column variable. When two or more columns would contribute an arc joining the

same pair of vertices, we select only the best arc (i.e. the arc of minimum cost).

The network arcs are constructed from the matrix entries by repeating the following

process for each column, taking the columns in any order. (An illustrative example follows.)

First we scan down the column to discover the minimum value. In case of ties, any minimum

value is �ne. From that midpoint we then start two pointers scanning in opposite directions,

towards the top and bottom of the column. We iteratively move these pointers farther apart

so as to discover successively higher cost coe�cients in increasing order. Each new higher

value identi�es a span of rows (between the two pointers) that is covered by setting the

column variable to that cost. As each successively larger span is discovered, we update the

network with an arc from the vertex before the �rst covered row, to the vertex corresponding

to the last covered row, whose weight is the covering cost. If an arc (i; k) already exists,

we set its cost to the minimum of its existing cost and the covering cost represented by the

current column. In addition, we annotate each arc with the index of the column variable

whose covering capability it represents. Clearly, we consider the addition of O(mn) arcs to

the network, and no more than O(m

2

) will exist at any time, including after all columns

have been processed.

An algorithmic presentation of this procedure is given as Build-Network. We assume

that the network is represented as an upper triangle adjacency matrix, so existence of an arc

between two vertices can be checked in constant time.

Build-Network:

Begin with square matrices w and column indexed for pairs of

vertices in v

0

; : : : ; v

m

initialized w(i; j) 1

and an m� n cost matrix W .

for (1 � j � n) do

Scan W [; j] from the top to �nd the minimum entry W [z; j].

Set min entry W [z; j]; top z; bot z.

while (top > 1 or bot < m) do

Decrement top and increment bot until W [top; j]

and W [bot; j] are the farthest apart two column entries

that are each � min entry and

� (the smallest column entry > min entry).

fIn the �rst iteration, both W [top; j];W [bot; j]

must be equal to min entry. At any time,

if either top or bot reaches 1 or m, then only increment

or decrement the other.g

The arc (top� 1; bot) is a potential arc: update w(top� 1; bot)

to the minimum of its existing weight and W [z; j].

If we updated the arc weight, also set

column(top� 1; bot) j.

Set min entry max(W [top; j];W [bot; j]).

9

Figure 1: Initial row cost network

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

1 1 1

2

3 3

4

2
3 1

4

2

22

1

1

(b) (c)(a)

3

column 1
column 2
column 3

5

An example of applying this procedure to the following cost matrix W is shown in Fig-

ure 1.

W =

5 4 1

3 2 1

2 1 1

2 1 3

1 4 4

Only arcs with sub-in�nite cost are shown. Figure 1(a) shows the result after processing the

�rst column; sub-�gures (b) and (c) show the result after processing the second and third

columns.

Lemma 3 When the constraint matrix of a standard form minimax program has the valley

property, the network constructed by Build-Network contains an arc (i; j) with sub-in�nite

weight and column(i; j) = k i� the constraints of all rows i through j can be satis�ed by

setting x

k

= w(i; j), no lesser value of x

k

will satisfy all these same constraints, and no

other row constraints are so satis�ed.

Once the row cost network has been constructed, discovery of the optimal solution to the

original problem essentially corresponds to �nding a shortest path from v

0

to v

m

, interpreting

the arc weights as distances. In general this can be done in O(V

2

) or O(E logV) time by

Dijkstra's algorithm. For a DAG with a single source, such as our cost network, there is a well

10

known algorithm (as described in [2]) that merely iterates over the vertices in topologically

sorted order (v

0

; v

1

; : : : ; v

m�1

for our network) relaxing each outgoing arc once, and requires

only O(E) time. (Relaxation of an arc (i; j) involves conditionally updating the distance of

the terminal vertex, d(j), to d(i) + w(i; j) if that operation decreases d(j).)

We will assume use of the DAG algorithm to �nd the shortest path, however it only

�nds paths consisting of explicitly represented arcs, and the actual solution to the problem

may involve implicit arcs of the network just constructed, because our interpretation of the

network is that each arc corresponds to satisfying one or more consecutive row constraints by

a single x

j

. For example, in Figure 1(c) there is an arc with weight 1 from v

0

to v

3

indicating

that assigning x

3

= 1 covers the �rst three rows; implicitly there should also be weight 1

arcs connecting all pairs of vertices in fv

0

; v

1

; v

2

; v

3

g of increasing index. The shortest path

explicitly represented in the network is (v

0

; v

4

); (v

4

; v

5

) (among others) with distance 4, but

implicitly there is a covering path of distance 3 corresponding to arcs (v

0

; v

3

); (v

2

; v

5

).

The number of implicit arcs corresponding to each explicit arc (i; j) isO((j�i)

2

), therefore

naively inserting a representation for each one into the network during the processing of

each column in Build-Network could be very expensive. Instead, we update the result

of Build-Network to explicitly represent only some implicit arcs, leaving out those which

we can prove will never be a necessary component of a shortest path. This modi�cation can

be done in O(m

2

) time.

Every explicit arc (i; j) has implicit arcs (i

0

; j

0

), where i � i

0

< j

0

� j and w(i

0

; j

0

) =

w(i; j). We say an arc (i

0

; j

0

) is dominated if there exists an explicit arc (h; k) where h < i

0

,

k � j

0

and w(h; k) � w(i; j

0

). Observe that (i; j) dominates its own implicit arcs (i

0

; j

0

)

where i < i

0

, but not those where i = i

0

. An explicit arc may also be dominated by another.

Lemma 4 When all implicit arcs are included in the network, there exists a shortest path

from v

0

to v

m

that does not utilize any dominated arcs.

Proof. It is well known that every pre�x of a shortest path is itself a shortest path (c.f.

Floyd-Warshall all-pairs shortest path algorithm), so we only need to show that there exists

a shortest path to any intermediate vertex on the shortest path from v

0

to v

m

that does not

utilize any dominated arc. We argue by induction on the length of a path pre�x.

By the de�nition above, arc (0; j) is never dominated, so the �rst arc in the shortest path

cannot be dominated. Consider the shortest path pre�x e

1

; e

2

; : : : ; e

k

from v

0

to v

j

0

, where

e

k

= (i

0

; j

0

). By inductive hypothesis, none of the �rst k� 1 arcs are dominated. Suppose e

k

is dominated. Then there exists some (h; l) where h < i

0

and j

0

� l and w(h; l) � w(i

0

; j

0

).

Case 1: There exists an arc e

g

= (h; l

0

) in the path pre�x, where l

0

< j

0

. Then the

sequence of arcs e

g

; : : : ; e

k

can be replaced by the single arc (h; j

0

) which is not dominated

by (h; l), and which does not increase the length of the path, since w(h; j

0

) � w(i

0

; j

0

).

Case 2: There exists an arc e

g

= (a; b) in the path pre�x, where a < h and b > h. Then

there also must exist an implicit or explicit arc (a; h) where w(a; h) � w(a; b). Hence there

must exist a shortest path from vertex 0 to vertex h of no more than k � 1 arcs, with total

length no more than the length of the path pre�x e

1

; e

2

; : : : ; e

g

. This path can be extended,

by addition of arc (h; j

0

), which is not dominated by (h; l), into a path to vertex j

0

of no

greater length than e

1

; e

2

; : : : ; e

k

.

11

The cost network constructed by Build-Network can be updated to contain all non-

dominated arcs in O(m

2

) time by the algorithm below. The key observation is that if for

each v

i

we consider all possible arcs (i; j) where i < j in order of decreasing j, we can update

their weights to delete all dominated explicit arcs and add all non-dominated implicit arcs

among them, in O(m � i) time. Every new arc gets the column label of the corresponding

explicit arc.

Add-Arcs:

Operates on cost network w generated by Build-Network.

Assume that w(i; j) =1 if not explicitly set by that procedure.

for i from m� 1 down to 0 do

x w(i;m)

col column(i;m)

for j from m down to i+ 1 do

If w(i; j) > x then w(i; j) x and column(i; j) col

If x > w(i; j) then x w(i; j) and col column(i; j)

Lemma 5 The procedure Add-Arcs updates the cost network so that all non-dominated

implicit arcs are explicitly represented. Only implicit arcs of existing explicit arcs are added.

Proof. For each value of i in the outer loop, x gets its �rst sub-in�nite value from a pre-

existing explicit arc. Subsequently, an arc (i; j

0

) is added (i.e. has a new weight assigned)

only as an implicit arc of an existing explicit arc from which x has been set.

To see that all non-dominated implicit arcs are added, consider an arbitrary implicit arc

(i; j

0

) of some explicit arc (i; j). Since (i; j

0

) is not dominated, neither is (i; j), so as arcs out

of v

i

are processed by the procedure, x will be set to w(i; j) as that arc is considered. Neither

can any arc (i; k) exist, where j

0

< k < j and w(i; k) < w(i; j), otherwise (i; j

0

) would be

dominated, so x will still equal w(i; j) as the procedure considers arc (i; j

0

) and updates its

value to x.

With this post-processing of the cost network, an optimal solution to the original minimax

program can be discovered by the shortest-path algorithm for a single-source DAG.

Theorem 6 If the cost matrix of a standard form minimax program has the valley property,

and e

1

; e

2

; : : : ; e

k

are the arcs constituting the shortest path from v

0

to v

m

in the cost network

constructed by Build-Network and updated by Add-Arcs, then

x

j

=

(

w(e

i

) if x

j

= column(e

i

) for some e

i

in the path

0 otherwise

is an optimal solution to the minimax program.

12

Proof. If the minimax program constraint matrix has the valley property, then it can be

put in a permutation where any setting of some column variable that satis�es some row

constraint necessarily satis�es the constraints of a consecutive group of one or more rows.

In this permutation (which is the input to Build-Network), any feasible solution covers

consecutive rows with each column variable that covers any row, and hence any optimal

solution has the same property. Moreover, we can uniquely associate each row to a covering

variable in any optimal solution, such that all rows associated with a variable are consecutive.

By Lemma 3 the network constructed by Build-Network contains all the arcs corre-

sponding to maximal consecutive groups of rows that can be covered by a minimal setting of

each x

j

. By the de�nition of implicit arcs it follows that adding implicit arcs to the network

results in an implicit arc for every consecutive group of rows that can be covered by one

column variable, at minimal cost. Hence, for every possible way of covering a consecutive

group of rows by one variable, there is an explicit or implicit arc e associated with that

variable where w(e) is the least possible value of the variable covering all rows in the group.

Each such arc is directed from the vertex of lower index to the vertex of higher index. Con-

sequently, for any complete and exhaustive partition of rows into consecutive groups that

can be satis�ed by some variable assignment, there is a path from v

0

to v

m

, and the least

cost feasible assignment corresponds to the shortest such path.

By Lemma 4 it follows that dominated arcs need not be examined in order to �nd a

shortest path in the network, and by Lemma 5 we know that Add-Arcs adds all non-

dominated arcs to the network constructed by Build-Network. Therefore, the shortest-

path in the resulting network (which can be found by the standard algorithm for DAGs)

corresponds to the optimal solution to the minimax program, in the manner described by

the statement of this theorem.

2.5 Complexity

Build-Network does O(m) work for each column, since it scans each column twice and

does no more than a constant amount of work for each entry. The network it constructs has

m+1 vertices and O(min(m

2

; mn)) sub-in�nite arcs. Including data structure initialization,

Build-Network runs in O(mn+m

2

) time and uses O(m

2

) space. Add-Arc does constant

work for each entry of the matrices representing the network, consuming O(m

2

) time. The

shortest-path algorithm used to �nd the least-weight sequence of arcs connecting v

0

to v

m

requires O(m

2

) time. The complete algorithm runs in O(mn+m

2

) time.

3 Testing for Bitonic Columns

The mountain and valley properties of matrix columns were de�ned in Section 2.3. In

this part we present an e�cient algorithm to identify whether a matrix has either or these

properties, and if so, a permutation that puts it into a conforming con�guration. The

algorithm is an extension of the original PQ-tree reduction algorithm [1].

13

Figure 2: P-node

A B C

Figure 3: Q-node

A B C

3.1 PQ-trees

Booth and Lueker [1] showed how to test for the consecutive ones property (and related

properties such as being an interval graph) in linear time with a data structure called a PQ-

tree. A PQ-tree is capable of e�ciently representing all permissible permutations of a set

subject to constraints in the form of subsets which must occur as consecutive subsequences.

A PQ-tree consists of three kinds of nodes: P-nodes, Q-nodes and leaves. A P-node

has two or more children and represents any permutation of those children. For example,

Figure 2 shows a P-node with three children: the leaves A;B;C. It represents all 3! possible

permutations of those leaves. (P-nodes are drawn as circles.) A Q node has three or more

children and represents either of the two permutations that preserve the linear arrangement

of the children. Figure 3 shows a Q-node with three children, the leaves A,B,C. It represents

the permutations ABC and CBA. (Q-nodes are drawn as rectangles.)

Booth and Lueker presented a basic algorithm for processing PQ-tree constraints that

takes two arguments, a PQ-tree T and a set S � U (U is the complete set of leaves), and

returns a modi�ed tree T representing the subset of permutations represented by T in which

the elements of S occur consecutively. If no such permutations exist, T will be the empty

tree representing no permutations. By starting with an initial tree consisting of a single

P-node with all leaves as children, and iteratively applying the algorithm to members of a

set S of sets S

i

of leaves, a tree representing all permutations in which all members of each

set S

i

are consecutive can be obtained. Booth and Lueker prove that their algorithm runs in

time O(m+n+SIZE(S)) where m = jU j, n = jSj, and SIZE(S) =

P

jS

i

j. (We follow the

convention that m denotes the number of rows and n the number of columns in the matrix.)

Section 3.4 presents a modi�ed PQ-tree algorithm for e�ciently testing for a bitonic

column property. The algorithm is not described in its entirety, but as a set of modi�cations

to the algorithm of Booth and Lueker. In order to fully comprehend the algorithm, such

as for implementation, their paper should be consulted. However, the remainder of this

section gives a general outline of their algorithm together with a small example so that the

modi�cations and proofs described in subsequent sections can be understood at a high level.

The basic PQ-tree reduction algorithm consists of two phases: bubble-up and reduce. The

14

Figure 4: Initial PQ-tree

1 2 43

bubble-up phase identi�es the pruned pertinent subtree containing S. The pertinent subtree

with respect to S is the minimal subtree of T whose leaves contain all of S; the pruned

pertinent subtree is generated by removing all subtrees not containing any member of S.

The procedure bubble starts with the leaves in S and ascends T , marking each node with

the number of children that must be processed before it in the reduction phase. In the

reduction phase the subtrees of the pruned pertinent subtree are matched against a small

�xed set of templates and transformed according to the �rst one that matches, bottom up.

The procedure reduce begins by putting all leaves in S on a queue, then processes the queue

in FIFO order, placing the parents of transformed nodes on the end of the queue when all

of their pertinent children have been reduced, until the entire pruned pertinent subtree has

been handled. If at any point there is no applicable template, then the tree is transformed

to NIL, since there are no permutations meeting all the constraints.

3.1.1 Consecutive Ones Example

Suppose we are given the (0; 1) matrix

1

2

3

4

2

6

6

6

4

0 1 0

0 0 1

1 0 1

1 1 0

3

7

7

7

5

and wish to determine whether it has the consecutive ones property (row indices are shown

for convenience). Using PQ-trees we begin by forming the initial tree shown in Figure 4 with

a single P-node and a leaf for each row index. Then we reduce the tree by the set of all row

indices corresponding to ones, for each column.

The reduction set of column 1 is S

1

= f3; 4g. Figure 5 illustrates the reduction. The P-

node labeled a has two pertinent children, the leaves whose labels are members of S. Those

leaves are shown shaded, to indicate they are \full". The applicable reduction is to create a

new P-node, labeled b, unifying all and only the full children of a. The resulting node b is

full because all of its children are full (i.e. all of the leaves in its subtree are in S).

The reduction set of column 2 is S

2

= f1; 4g. Figure 6 illustrates the reduction. Initially,

leaves 1 and 4 are full, node b has one pertinent child, and node a has two pertinent children.

Node b is temporarily reduced to a 2-child Q-node c (during reduction the 3-child minimum

can be violated in an intermediate result), then when node a is reduced its full children are

moved onto the full end of its partial Q-node child. (A \partial" node is a Q-node with some

full and some empty children.)

15

Figure 5: Column 1 reduction

1 2 43 1 2

43

a a

b

Figure 6: Column 2 reduction

1 2

43

1 2

43

1

2

43

b

a

c

a

c

a

The reduction set of column 3 is S

3

= f2; 3g. Figure 7 illustrates the reduction. Initially,

leaves 2 and 3 are full, node c has one pertinent child, and node a has two pertinent children.

The reduction of c is just to mark it as partial. The reduction of a is to move its full child

onto the full end of c, then promote c to root, since a is no longer necessary.

The �nal tree shows that two satisfying row permutations of the matrix exist: 2; 3; 4; 1

and 1; 4; 3; 2. If at any time during the process there was no applicable reduction for a node

in the pruned pertinent subtree, then the tree would have reduced to NIL, and we would

know that the matrix does not have the consecutive ones property.

3.2 Expressing a Bitonic Constraint in a PQ-tree

A single P-node with all leaves as children represents all possible permutations. The con-

straint that a leaf subset S � U must appear consecutively is easily expressed with a single

additional P-node as illustrated in Figure 8. A bitonic constraint can be represented sim-

ilarly, using an unbalanced tree of P-nodes. For example, suppose that a column contains

the set of values f1; 2; 3; 3; 4; 5; 5; 5g, then all permutations of those values with the bitonic

valley property can be expressed by the tree shown in Figure 9. Basically, the children of

each node are the leaves representing all members of an equal-value set together with the P-

node whose children are in the immediately preceding set. The only exception is that, since

a P-node must have at least two children, if there is only one member of the �rst (according

to the \�" relation) equal-value set, then the bottom-most P-node has the members of the

16

Figure 7: Column 3 reduction

2

43 1

2 43 1

2

43 1

c

c

a

c

a

Figure 8: Consecutive subset schema

{S}

{U-S}

Figure 9: Bitonic constraint by P-nodes

1 2

3 3

4

5 5 5

17

�rst two equal-value sets as its children. (In the rest of the paper, in such a situation it is

assumed that the �rst two equal-value sets are merged.)

Lemma 7 A matrix has a bitonic column property just in case there exists a permutation

of its rows in which for every column, given a partitioning of its elements into equal-value

sets E

1

; : : : ; E

k

of increasing or decreasing value, all members of

S

i

j=1

E

j

are consecutive, for

1 � i � k.

Proof. Suppose such a permutation exists; then column entries are monotonically decreasing

(increasing) from the outermost equal-value set to the center of the innermost. Suppose the

bitonic valley (mountain) property holds; then we can identify nested increasing (decreasing)

equal-value sets in each column.

3.3 A Naive Algorithm

A matrix can be tested for the bitonic valley property by using the original PQ-tree algorithm

of Booth and Lueker as follows:

1. Start with a tree T consisting of a single P-node with all the row indices as leaves.

2. For each column do the following:

(a) Sort the elements into ascending equal-value sets E

1

; :::; E

k

.

(b) For i from 1 to k, let S be the row indices of elements in E

1

[: : : [E

i

; perform

the bubble-up and reduce phases to obtain T .

3. If the �nal T is not NIL, then the bitonic valley property holds and T encodes the row

permutation(s) of interest.

Naively applying the Booth and Lueker algorithm in this way results in a time complexity

of O(mn logm+m

2

n). The �rst term, (mn logm), is the cost of sorting each column to �nd

the equal-value sets. The second term is the cost of running their algorithm O(m) times

on each column, with increasingly larger sets S, so that the sum of all input set sizes is

SIZE(S) = O(m

2

n).

The next section presents an extension of their algorithm that preserves its linear time

complexity when repeatedly applied to equal-value sets within a column. The resulting time

complexity is

O((nSORT(m) +mn)

where SORT(m) is the time to sort m elements in one column. When a linear time sorting

method is applicable, bitonic column testing can be performed in linear time.

18

3.4 The Extended Algorithm

Suppose that the equal-value sets of elements in each column have already been identi�ed,

and let us focus on the work done to process a single column. The results of work done so far

has been expressed in a PQ-tree T whose leaves hold the row indices of the matrix. In the

original algorithm of Booth and Lueker, the task of the algorithm is to ensure that the leaves

in S (the set of all rows with a 1 in this column) are adjacent in all permutations represented

by T . The extended algorithm must ensure that all leaves in

S

i

j=1

E

j

are consecutive in

all permutations, for 1 � i � k where E

1

; : : : ; E

k

are the disjoint equal-value sets for the

column. Note that

P

k

j=1

jE

j

j = m.

The original algorithm processes each column with one invocation of bubble, followed

by one invocation of reduce. The essential idea of the extended algorithm is to break a

single iteration of this sort into k bubble/reduce passes, and preserve the linear running

time by ensuring that no pass does more than a constant amount of work in a part of the

PQ-tree that has been processed by an earlier pass. That this is possible is suggested by the

following observations.

(1) Reduction does not alter any node that is not part of the pruned pertinent subtree.

(2) If T has already been reduced with respect to S, then reduction of T with respect to

S

0

� S does not change more than one node in the pruned pertinent subtree of T with

respect to S.

The truth of (1) is clear from inspection of the algorithm. Observation (2) will be proven as

Lemma 8 in Section 3.6.

Although the basic idea is simple, the details of data structure maintenance necessary for

implementation are somewhat involved. The rest of this section outlines the modi�cations

necessary, giving more details on Booth and Lueker's basic bubble/ reduce iteration as

appropriate. Afterwards, a concrete example is given in illustration.

Last Subtree Root Each column is processed by k passes through bubble/ reduce for

the k equal-value sets. At the end of each pass, reduce saves a pointer to the result of the

last node reduction. That node is denoted R, and it is the root of the pertinent subtree with

respect to all equal-value sets processed so far. Both bubble and reduce use R during

their initialization to quickly recover a state as though they had just �nished reducing all

previous equal-value sets in a single pass, then continue with the new members of U added

in this pass. (R is initially null, at the beginning of the �rst pass.) Hence, the parameters

to bubble and reduce are (T;R;E

i

), rather than (T; S).

Persistence of State The original algorithm annotates the tree with marks, labels and

counters during bubble and reduce, then reinitializes them all before the next column

iteration. With a very few exceptions, these annotations are all in the pruned pertinent sub-

tree. In the extended algorithm, additional nodes are added to the pruned pertinent subtree

with each pass within a column. With a very few exceptions, annotations are preserved

between passes and only erased when the entire column has been processed. However, only

19

Figure 10: Pseudo-node application

Figure 11: Reduction result

the annotations on R are actually examined in subsequent passes. Consequently, the amount

of work involved in making and erasing all of these annotations is approximately the same

as if they were all done in a single pass.

Limited Overlap At the beginning of pass i+ 1, one of two situations can obtain: either

some leaf in E

i+1

is a descendent of R, or none is. The �rst case can only arise if R is not

labeled full (i.e. not every leaf below R is in

S

i

E

j

). If R is a P-node, then a property of the

algorithm (following from case analysis of the reduction templates) is that R is either full

or has exactly one non-empty (i.e. none of its leaves are in

S

i

E

j

) child. If R is a Q-node,

it can only be full or partial (children on one side are full and the rest are empty). If the

last node reduced in pass i is a non-full P-node, then we set R not to that node, but to its

only non-empty child, which can be only a Q-node or a full P-node. The result is that R is

always the least ancestor of all leaves in

S

i

E

j

, and that some leaf in E

i+1

can lie below R

only if R is a partial Q-node.

Pseudo-Nodes and Parent Pointers An exception to the foregoing is that R can some-

times be a pseudo-node, a temporary node type used to attain linear running time of the

original algorithm. In that algorithm, it can happen that a leaf set S might lie entirely

below internal (i.e. not endmost) children of some Q-node, and still have a consecutive

permutation. Figure 10 illustrates such a situation, with the leaves in S shown shaded.

In this case the desired reduction is to raise and merge the child Q-node into its parent,

with the result shown in Figure 11. For greater e�ciency, the original algorithm does not

guarantee correctness of the parent pointer of a child of a Q-node unless that child is an

endmost child. Children of Q-nodes are always correctly linked to their immediate siblings,

20

then the ends of the sibling chain are linked to the parent. Repeatedly �nding the root

of the pertinent subtree in cases like that illustrated in Figure 10 could violate linear time

constraints by scanning too many siblings. And the parent is not really necessary, since the

reduction can be performed just by adjusting sibling pointers. So, the original algorithm uses

a pseudo-node, shown in dotted lines, which shadows the real Q-node parent. The relevant

subsequence of Q-node children is temporarily linked to the pseudo-node for the duration of

one reduce invocation. The extended algorithm uses pseudo-nodes in the same situations,

but must consequently be able to update correctly the annotations of the real Q-node parent

if a pseudo-node is used in any pass but the last (since then R will be that pseudo-node).

Initialization of bubble As explained in the previous paragraph, nodes in a PQ-tree do

not always have valid parent pointers, but parent pointers must be correct in the pruned

pertinent subtree in order to do bottom-up reduction. Therefore, a role of bubble is to

establish correct parent pointers in the pruned pertinent subtree that it discovers. The

routine bubble uses the marks blocked and unblocked to denote that a node is waiting for

or has, respectively, a valid parent pointer.

In the �rst pass R is null, and bubble behaves as in the ordinary algorithm. Otherwise,

special initialization is performed according to the value of R.

1. If R is a pseudo-node, then it anchors a sequence of full nodes not adjacent to either

endmost child of some Q-node. These nodes are all blocked (in essence; the pseudo-

node reduction function makes sure that at least the ends are so marked) so bubble

is initialized with block-count = 1.

2. If R is an empty P-node, we reset R to be its only non-empty child, as described

previously.

3. If R is a non-empty, non-pseudo-node, we check its parent type and if R turns out to

be a non-endmost child of a Q-node we mark it blocked and initialize a block-count of

1.

4. Finally, if R is not a pseudo-node or a non-endmost child of a Q-node, we mark R

unblocked, initialize it and its parent with a pertinent-child-count of 1, and queue the

parent.

Then, all leaves in E

i

are enqueued, and processing of the queue begins.

Unblocking in bubble Whenever a previously blocked node is unblocked by its sibling

(an endmost child with a valid parent pointer was discovered), we must check to see if R is

a pseudo-node and the node is linked to it. If so, we don't proceed down the line of siblings

as usual, but jump over all nodes remaining blocked from the last pass by following pointers

threaded through R. At this time, accumulated annotations on R are used to update the

real Q-node parent with any necessary annotations, and R is reset to be that Q-node, for

use in reduce.

21

Termination of bubble The termination conditions of the extended algorithm are the

same as those for the original algorithm. If a pseudo-node is needed, and R is a pseudo-

node, then it is re-used, and existing pointers are used to avoid traversing blocked children

remaining from the last pass. Upon termination of bubble, all nodes in the new pruned

pertinent subtree have valid parent pointers and pertinent-child counters. An exception is

that R's pertinent-child counter is one greater than its number of pertinent children. In

essence, R will be treated as an additional leaf by reduce.

Modi�cation to reduce When R is null, reduce behaves as in the original algorithm.

Otherwise, it begins by decrementing the pertinent-child count of R.

1. If the result is non-zero, then some part of E

i

lies below R. R will be queued for

reduction when that part of E

i

has been reduced, so nothing more is done with it now.

2. If the result is zero, then no part of E

i

lies below R, and R does not need to be reduced

again. We then decrement the pertinent-child counter of R's parent, and are done with

R.

Then all of the leaves in E

i

are queued and queue processing begins. Termination of reduce

is the same as in the original algorithm, except that the last node to be reduced is identi�ed

by pertinent-leaf-count reaching jE

i

j+ 1, and we set R to the result of its reduction.

Modi�cation to Templates Exactly the same templates and reduction transformations

are used. However, in the original algorithm the time complexity of template testing and

application is directly proportional to the number of full children of a node. In the extended

algorithm we need to avoid paying again for nodes reduced in previous passes, so it is

necessary for transformations to add some additional state (a few extra pointers) to Q-nodes

and pseudo-nodes that enables template testing to skip over runs of adjacent children that

were reduced in a previous pass.

3.5 An Example

The following example illustrates the behavior of the extended algorithm in a simple case.

Suppose we want to test the following 8� 2 matrix for the bitonic valley property.

1

2

3

4

5

6

7

8

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 3

2 2

2 3

3 3

3 3

2 2

1 1

1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The initial tree T is shown in Figure 12; the leaves hold the matrix row indices. The equal-

value sets of column one are

E

1

= f1; 7; 8g; E

2

= f2; 3; 6g; E

3

= f4; 5g:

22

Figure 12: Initial tree

1 2 43 5 6 7 8

Figure 13: Column 1, pass 1

7 8

5 62 43

1

5 6 7 81 2 43

3

Figures 13, 14, 15 show the three passes of reduction by these equal-value sets.

The nodes labeled full in each pass are shown lightly shaded, and the number of pertinent

children of each internal node is shown in italics, next to the node. The �rst tree in each

�gure shows the state after bubble and at the beginning of reduce. Subsequent trees show

the state as reduce works from bottom up. For example, in Figure 13 the leaves 1; 7; 8 are

in the equal-value set, so they are shaded in the �rst tree, and the root node is annotated

with a 3. The second tree, the result of the reduction, has an additional shaded (full) P-node

that has become the parent of those three leaves.

Full nodes that persist from former passes are shown in darker shading, and the last

pertinent subtree root is marked R. In Figure 14 the leaves 1; 7; 8 and their parent P-node

are darker, while the members of the new equal-value set f2; 3; 6g are lightly shaded. R

counts as a pertinent child, so the root P-node is annotated 4.

The �nal result of column 1 reduction, shown in Figure 15, is the unbalanced tree repre-

senting the nesting of its equal-value sets, in accordance with Lemma 7.

The equal-value sets of column 2 are f7; 8g; f2; 6g; f1; 3; 4; 5g. Figures 16,17,18 show the

subsequent reduction of the tree by those sets.

The �nal result shows that a number of row permutations, including the one shown below,

23

Figure 14: Column 1, pass 2

54

2 3 6

1 7 8

5 62 43

1

R

4

7 8

Figure 15: Column 1, pass 3

54

2 3 6

1 7 8

R

3

54

2 3 6

1 7 8

Figure 16: Column 2, pass 1

54

2 3 6

1 7 8

2

7 8

54

2 3 6

1

24

Figure 17: Column 2, pass 2

54

2 3 6

1

7 8

3

R

1

7 8

R

54

2 3 6

1

3

54

1

7 8

2 6

3

Figure 18: Column 2, pass 3

54

1

7 8

2 6

3

2

3

R 2

54

1

7 8

2 6

3

25

satisfy the bitonic valley constraint.

4

5

1

7

8

2

6

3

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3 3

3 3

1 3

1 1

1 1

2 2

2 2

3 3

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3.6 Correctness and Complexity

The correctness of this algorithm for �nding all permutations conforming to a bitonic column

property follows from Lemma 7, the correctness of Booth and Lueker's original algorithm,

and the truth of the assertion that the modi�cations improve e�ciency of the naive procedure

described in Section 3.3, but do not alter its semantics. Hopefully, the description of those

modi�cations in the previous section together with the following lemma whose proof was

delayed until this point make a persuasive case for that assertion.

Lemma 8 If T has already been reduced successfully with respect to S, then successful reduc-

tion of T with respect to S

0

� S does not change more than one node in the pruned pertinent

subtree of T with respect to S.

Proof. Since T has been reduced with respect to S, the elements of S are consecutive in all

permutations represented by T . Therefore, the root of the pertinent subtree with respect to

S must be either a P-node that is full with respect to S, or a Q-node whose children contain

a single, consecutive subsequence of nodes that are full with respect to to S. By inspection

of the reduction templates it can be seen that no template is applicable to a full node, hence

no reduction action applies to any of the nodes that were full with respect to to S when

reducing S

0

. The only node in the pruned pertinent subtree of S that can change is the root,

if it is a partial Q-node (or a pseudo-node shadow).

The proof of linear time complexity for reduction (not including equal-value set iden-

ti�cation) is based on that of Booth and Lueker. It essentially involves showing that the

extended algorithm has nearly the same complexity, despite performing k passes in place of

1 for each column. Their proof is built on the following lemmas.

Lemma 9 (Booth and Lueker Lemma 2) The original bubbling up phase of reduction

requires

O(jPRUNED(T; S)j)

steps.

Lemma 10 (Booth and Lueker Lemma 3) The original template-matching phase of re-

duction requires

O(jPRUNED(T; S)j)

steps.

26

These lemmas extend naturally to the extended algorithm when it is observed that for

each column we reduce T with respect to E

1

; : : : ; E

k

in place of S, where the union of these

disjoint sets is U . Since U is the set of all leaves of T , for each column we process the entire

tree. (An easy but asymptotically insigni�cant improvement to the algorithm would be to

skip the k'th pass for each column, since in that �nal pass all nodes become full and the tree

topology does not change.)

Lemma 11 The modi�ed bubbling up and template matching phases of reduction each require

O(jT j) steps for all k passes put together.

Proof. In accordance with Lemma 8, in pass i + 1 the extended algorithm does not touch

any node in the pruned pertinent subtree of

S

i

E

j

except the root R. When it does touch

R it performs no more than a constant number of steps, plus possibly an additional amount

O(jE

i+1

j) (when some part of E

i+1

lies below R; that additional work falls into the cost

accounted for that subtree). Otherwise, the processing of the pruned pertinent subtree with

respect to E

i+1

is extremely similar to, and has the same complexity as, that of the original

algorithm. Since the pruned pertinent subtrees of T with respect to E

1

; : : : ; E

k

exactly

span T , intersecting only at the intermediate roots R, the extended algorithm performs

O(jT j)+O(k) steps. Since k � m, and T is a tree of m leaves, the jT j component dominates.

All that remains is to sum all the costs.

Theorem 12 The extended algorithm requires O(nSORT(m)+mn) steps to test for a bitonic

column property in a matrix, where SORT(m) is the number of steps required to discover the

equal-value sets in a column.

Proof. The costs for both the bubble-up and template matching phases of reduction are

O(jT j) for each column. Since there are no more than O(m) nodes in the tree, once the

equal-value sets have been identi�ed the rest of the algorithm requires only O(mn) steps.

4 Application

We conclude by describing a real application whose description preceded our exploration of

this topic, in order to illustrate how the minimax program formulation can naturally capture

the structure of a practical optimization problem.

Huang's [7] work on software dependability measurement investigated a metric called

trustability (T) that represents the degree of con�dence that a program being tested is free of

faults. If D represents the probability of detecting a fault by applying a particular stochastic

test method, then after N error-free applications of that test method, the trustability of the

program is

T = 1� (1�D)

N

:

(We have slightly simpli�ed Huang's formulae for this presentation.) More generally, suppose

there are m fault classes and n test methods, then trustability after an uninterrupted series

of successful tests is

T = 1� max

1�i�m

f min

1�j�n

f(1�D

ij

)

N

j

gg (7)

27

where D

ij

is the probability that method j detects a fault in class i, and N

j

is the number

of times method j has been applied. Equation (7) has a max-min structure because the

testing methods are assumed to be probabilistic, so their e�ects are independent, rather

than additive.

An optimization problem that arises in this context is to minimize the amount of e�ort

devoted to testing,

E =

n

X

i=1

c

j

N

j

subject to the constraint that a minimal value of T � T

0

is attained. This problem can be

converted to a minimax program of form (3) where x

j

= N

j

and

a

ij

=

log(1�D

ij

)

c

j

log(1� T

0

)

:

References

[1] Booth, K. S., and Lueker, G. S. Testing for the consecutive ones property, interval

graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 3 (Dec.

1976), 335{379.

[2] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algorithms.

MIT Press, Cambridge, MA, 1990.

[3] Fulkerson, D. R., and Gross, O. A. Incidence matrices and interval graphs.

Paci�c Journal of Mathematics 15 (1965), 835{855.

[4] Golumbic, M. C. Interval graphs and related topics. Discrete Math 55 (1985), 113{

121.

[5] Hochbaum, D. S. Approximating covering and packing problems: Set cover, vertex

cover, independent set, and related problems. In Approximation Algorithms for NP-

Hard Problems, D. S. Hochbaum, Ed. PWS, Boston, 1997, pp. 94{143.

[6] Hoffman, A. J. On simple combinatorial problems. Discrete Mathematics 106/107

(1992), 285{289.

[7] Huang, Y. Software Dependability Measurement during Testing. PhD thesis, Univer-

sity of California, San Diego, La Jolla, CA, 1994.

[8] Keil, J. M. Finding Hamiltonian circuits in interval graphs. Information Processing

Letters 20 (1985), 201{206.

[9] Marathe, M. V., Ravi, R., and Rangan, C. P. Generalized vertex covering in

interval graphs. Discrete Applied Mathematics 39 (1992), 87{93.

[10] Rose, D. J., Tarjan, R. E., and Lueker, G. S. Algorithmic aspects of vertex

elimination on graphs. SIAM Journal on Computing 5, 2 (June 1976), 266{283.

28

