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Implications of admixture in the Americas for asthma and ancestry 

Christopher Raymond Gignoux 

ABSTRACT 

Diverse forces have shaped the genomes of individuals throughout the world. It is crucial to 

understand those historical processes to study the genetics of individuals alive today. Nowhere 

else is this more important than in the study of admixed populations. A majority of individuals 

across the Americas are admixed, having received ancestry from sub-Saharan Africans, 

Europeans, and Indigenous Americans. However, to this day, admixed populations remain 

understudied, particularly because harnessing all information from their genomes requires in-

depth population genetic analysis. This is not typically part of standard practice in genome-wide 

association studies. In this work I focus on two important aspects of understanding the history of 

admixed populations of the Americas to identify important associations with medical traits not 

possible using standard genetic analysis techniques. This work consists of two primary parts: 

1) I develop a framework for genome-wide admixture mapping meta-analysis from high density 

SNP genotyping data. I use it to identify a novel, heritable risk factor for asthma in over 7,000 

Latinos at the SMAD2 locus that could not be discovered using standard genotype association 

techniques. I then demonstrate the downstream use of blood-based expression of SMAD2 as a 

biomarker for both risk of exacerbation and poor response to bronchodilators in people with 

asthma. 

2) Along with collaborators I developed the first fine-scale genetic map of indigenous and 

admixed populations across the country of Mexico, to determine how fine-scale differentiation of 

indigenous populations impacts the local communities of mixed ancestry. Using novel extensions 
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of Principal Component Analysis we identify striking geographic correlations with the 

indigenous component of ancestry in admixed individuals, and use this data to identify for the 

first time a clinically meaningful association between indigenous American origins and lung 

function. 

This work also includes an Introduction and Best Practices recommendations on local ancestry 

estimation and methods for admixture mapping, and an Appendix on generating ancestry 

informative marker panels. Relevant code and important functions for running admixture 

mapping and meta-analyzing output will be made publicly available online. 
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Leveraging Mixed Ancestry in Complex Trait Genetics 

 

Population structure is a common issue in genome-wide association studies (GWAS), 

that, when ignored, can lead to false positives as well as decreased power. These 

concerns have caused researchers to identify methods to adjust out the effects of 

population structure or simply focus on populations with less structure. In either case 

choosing to ignore population structure and genetic ancestry results in an incomplete 

picture of underlying genetic variation important in the study of complex traits. Genetic 

ancestry captures important aspects of the haplotype patterns observed in real data. In 

this way ancestry provides important information that can be leveraged for novel 

discoveries GWAS. Here, I present some background on how to harness the genetic 

information from ancestry along the genome to map complex traits in populations of 

mixed ancestry. This set of techniques, also known as admixture mapping, is known to 

be powerful in situations where disease prevalence differs between racial/ethnic groups. 

We also demonstrate other important aspects of admixture mapping: we can achieve 

better coverage across the genome than genotyping and imputation alone since we can 

estimate ancestry in admixed populations accurately across the entire genome. Finally, 

as the field migrates from a focus on common variants to rare variants, we argue that 

patterns of rare variation that contribute to complex traits are likely to be captured in the 

ancestry of admixed individuals, making admixture mapping a particularly exciting tool 

to identify regions for resequencing. We will also release a suite of scripts and tools to 
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assist in performing admixture mapping from genome-wide SNP genotype data, called 

MIXOMATIC, available at: https://code.google.com/p/mixomatic/ 

 

Background 

The past ten years have seen a revolution in genetics both in terms of new data and 

new discoveries. In particular, the advent of genome-wide association studies (GWAS) 

has led to a wealth of new discoveries in the field of complex trait genetics, uncovering 

new pathways and unexpected biological drivers of human physiology. However, the 

field has been plagued with the criticism of so-called “missing heritability”: variants 

identified via GWAS do not explain the heritable portion of a complex trait. Fewer 

genome-wide significant variants have been found than initially expected and these loci 

have explained less of the variance in disease (however notable exceptions include 

Crohn’s disease and age-related macular degeneration). Over the years, novel methods 

to capture additional information from the genome-wide array data, including imputation 

and CNV analysis, have continued to be popular methods for identifying additional 

heritable associated genetic markers from array data.  

 

An important additional source of variation derived from genotype data is ancestry: the 

complex demographic and selective events that have affected our genes over the 

course of human history have shaped the frequencies of variants across the genome, 

thereby affecting the null distribution used in genetic association testing. This is known 

to be an issue in genetic association studies, and multiple solutions are readily available 
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for accounting for potential confounding due to ancestry. Most of these methods involve 

measuring ancestry-related genetic differences, whether using PCA1 or another 

dimensional reduction technique such as clustering2-4, or inferring an expected level of 

confounding with summary measures of population differentiation such as Fst
5. These 

are then incorporated into tests of association in a way to adjust out the effects of 

potential population stratification. This can work to reduce inflation but it can be 

underpowered when ancestry is known to itself be associated with the trait of interest. In 

addition, best practices to account for ancestry in resequencing studies and pooled 

variant analyses remain open problems. This is especially a concern for populations of 

mixed ancestry (referred to as “admixed” populations), who have segments of their 

genome inherited from multiple ancestral populations.  

 

Instead of summarizing ancestry to simply “correct” for its effects, here we discuss the 

possibilities of harnessing direct measures of ancestry along the genome to discover 

associations with complex traits. We will focus primarily on populations with recent 

mixed ancestry (admixed, see Figure 1) as they are most likely to benefit from this kind 

of analysis. Most individuals across the Americas are admixed, including African 

Americans and Hispanic/Latinos. These populations are also understudied in genetic 

epidemiology, since the vast majority of GWAS findings have been identified in 

populations of European descent6. We will discuss the background on how current 

algorithms estimate segments of ancestry in admixed populations (referred to as local 

ancestry estimation, or admixture deconvolution) with genome-wide SNP array data, 
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several methods for using ancestry estimates in trait mapping studies, as well as 

techniques required for combining admixture mapping findings across multiple studies in 

a meta-analysis. At the end we will discuss briefly more sophisticated tests that 

incorporate multiple lines of genetic evidence, such as joint ancestry and genotype 

association tests. 

 

This is designed to be an introduction to relevant algorithms and analyses for admixture 

mapping for individuals interested in genome-wide association studies. Details of 

available methods, particularly computational implementations, to estimate local 

ancestry can be found in the original papers describing the algorithms. Here we will 

focus on how each method can be applied to datasets commonly used in the human 

genetic community.  Scripts and tools will be available at the MIXOMATIC website. 

 

 

Local Ancestry Estimation from Genome-wide Genotype Data 

Human history spans tens of thousands of generations back to our origins in sub-

Saharan Africa. Most of this history takes place in limited regions of sub-Saharan Africa.  

This long period of time has allowed for populations to differentiate from each other, 

particular at the extremes of continents. This is due to the primary method of settlement 

across the world known as the serial founder effect model8 that approximates the initial 

settlement of new habitats as an expansion from a subset of the population that existed 

before. In this way, populations further along in the range expansion have a subset of 
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the genetic diversity of populations that are closer in proximity. While this is a very 

simplistic model, if we ignore admixed populations the serial expansion model fits 

patterns of genetic diversity across the world quite well, as supported both globally and 

within multiple continents8-10. After time this results in a pattern of isolation-by-distance, 

where subsequent migration has been geographically restricted, yielding more highly 

differentiated populations at geographic extremes. 

 

In admixed populations, recent migration has caused at least two previously isolated 

populations to come into contact and interbreed. This process results in a sharing of 

alleles from both ancestries in subsequent generations. These alleles are not inherited 

at random but rather dictated by patterns of recombination, which introduce only a small 

number of breakpoints between maternal and paternal chromosomes in each 

generation. With a small number of generations of admixture compared to the previous 

number of generations of continental population isolation, ancestry will tend to be 

homogeneous across long tracts of the chromosome as there have not been enough 

generations to homogenize alleles. In other words, ancestry LD in admixed 

populations is much higher than genotypic LD. Population genetic theory 

demonstrates that contiguous tracts of ancestry in an admixed population can get into 

the tens of megabases11. This also implies that switchpoints between ancestries along a 

chromosome will tend to be sparse, yielding an expectation of long, contiguous blocks 

of ancestry along a chromosome. This is the primary assumption that algorithms to 

estimate local ancestry use in order to estimate locus-specific ancestry. In Figure 2 we 
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plot the example output of local ancestry estimation for a Puerto Rican individual, for 

context, showing the long tracts of ancestry. 

 

Genome-wide Genotype Arrays and the Concept of Coverage in the Whole 

Genome Sequence Era 

Traditional genome-wide association studies involve SNP genotyping arrays containing 

hundreds of thousands to millions of markers. These markers are enriched for common 

variants with the hope of “tagging” unobserved variation based on underlying patterns of 

linkage disequilibrium (LD) in the neighborhood of each SNP. Coverage is then typically 

evaluated with a fixed pairwise R2 threshold from the array variants to a set of known 

variants, whether from HapMap or the 1000 Genomes Project. Manufacturers can only 

measure coverage for populations that are adequately sampled. In the case of 

European-descent populations estimates of coverage are likely realistic, however for the 

vast majority of populations these estimates are less accurate. In particular, moving 

beyond populations covered or related to those in the 1000 Genomes Project our 

knowledge of patterns of variation is far more limited. 

 

On the other hand, by virtue of the high degree of ancestry LD in populations of mixed 

ancestry, genome-wide local ancestry can be estimated from any high density SNP 

genotyping array. Even if local ancestry estimation is less accurate than direct 

genotyping of tag SNPs, ancestry can capture genetic variation in regions with even 

limited genotype coverage or a high degree of ascertainment bias. 
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In addition, genotype coverage by virtue of correlation structure, is enriched for common 

variation. On the other hand, there is a growing interest in identifying the contributions of 

rare variation in disease risk. Traditionally these are identified through direct 

resequencing. However, rare variants tend to be population specific, which is consistent 

with population genetic theory and has been demonstrated in large sequencing studies 

such as the 1000 Genomes Project7.  Therefore, rare variants are likely better captured 

through ancestry-LD as compared to genotype-LD, making admixture mapping the ideal 

tool to identify rare variants that contribute to complex disease. In addition, admixture 

mapping can combine heterogeneous effects at a single locus by virtue of capturing a 

larger region. With accurate local ancestry estimation available, admixture mapping is a 

complimentary approach to standard GWAS that will maximize the potential for novel 

discoveries from genetic association studies. 

 

Approaches to Local Ancestry Estimation with Genome-wide Data 

A large amount of ancestry estimation was performed prior to the widespread availability 

of genome-wide SNP genotype data. Earlier methods relied on a smaller set of unlinked 

markers and weakly linked ancestry across sites. Typical algorithms include those found 

in STRUCTURE12, ANCESTRYMAP13, and ADMIXMAP14. These have been successful 

for performing admixture mapping with a small AIMs panels (sized in the hundreds to 

thousands of SNPs), and typically use a Bayesian approach to integrate over the error 

in local ancestry estimation and biases in reference data. This, then, allows for mapping 
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of traits even with imperfect local ancestry estimation given a small number of markers. 

These algorithms were not designed to handle dense SNP genotype data and thus will 

not be discussed here. Instead, we will discuss more recent methods designed for 

similar marker densities as found in GWAS, and that provide higher levels of accuracy 

(>95% for Latinos, and >99% for African Americans).  

 

As ancestry is a more precise characteristic of haplotypes rather than diploid genotypes, 

modern local ancestry methods either take as input pre-phased haplotypes or are 

incorporated into diploid measures using phase-aware methods. Current methods are 

typically supervised, requiring haplotypes representative of the ancestral populations fed 

into the algorithm (although there are some exceptions). However with more and more 

data becoming publicly available, identifying reference individuals for training local 

ancestry algorithms will become less challenging over time.  

 

Local ancestry algorithms tend to fall into two categories: those that are based on fixed 

windows and those that are not. The fixed window heuristic uses the explicit assumption 

of ancestry LD: window size is set such that ancestry can reliably assumed to be 

constant across the window. By virtue of fixing the window size these models are 

inherently simpler and more computationally efficient. The likelihood of ancestry coming 

from one of K parental populations can be evaluated within each window. Transitions 

between windows of ancestry then can be modeled using overlapping sliding windows 

or a Hidden Markov Model (HMM). For example, the original version of 
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LAMP/WINPOP15,16 used an approximate joint likelihood of unlinked genotypes (with the 

linked high-density SNP data thinned) across overlapping sliding windows of fixed 

ancestry. This will generate a simple window-based estimator that can be aggregated 

across multiple windows. A similar method was employed by Wall et al.17, who used a 

composite likelihood rather than explicit thinning. As an alternative method of likelihood 

generation, PCADMIX18,19, uses loadings from a chromosome-wide PCA to project 

individuals into PC space in fixed, non-overlapping windows, estimating likelihoods for 

each window haplotype using Gaussian discriminant analysis fitted to the clusters of 

reference individuals. For both LAMP and PCADMIX, an HMM is run after the 

classification to evaluate the most probable ancestry path for each individual.  

 

A recent addition to the fixed-windows approach can be found in RFMIX20, which 

approximates a probability using the ensemble of bootstrapped classifiers known as 

random forests. This method also can use random forests clustering to recruit ancestral 

haplotypes within the admixed individuals to boost accuracy, particularly in situations 

with imperfect reference data available. It also evaluates ancestry between switchpoints 

as a conditional random field, modeling ancestry switches along the chromosome as a 

discriminative process rather than the generative HMM. Another recent algorithm, 

LAMP-LD21, uses a phasing-like approach similar to fastPHASE22 to evaluate the 

likelihood of generating the observed haplotypes from ancestral haplotypes. A higher-

level HMM is used to estimate ancestry switches between windows. As a secondary 

step some of these methods can identify novel switchpoints (for example, a local search 
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around a break in ancestry between windows for a switchpoint with a better fit to the 

observed alleles). WINPOP and LAMP-LD both include this second step.  

 

In contrast, other methods attempt to jointly model ancestry and switchpoints at each 

site along the genome. These methods are based on HMMs estimating ancestry as a 

hidden state from allele to allele generated from differences between ancestral groups, 

using sequential Markovian processes designed to approximate population genetic 

theory expectations under admixture. This genotype-level estimation has the potential to 

localize real switchpoints more accurately, typically at the expense of computational 

efficiency and robustness. The most commonly used method with this kind of approach 

is HAPMIX,23 which uses a similar phasing-inspired approach as LAMP-LD but is limited 

to two ancestral populations while still achieving high accuracy. Similarly, MULTIMIX24 

extended a similar approach to more complex admixtures and included more methods 

for parameter estimation depending on the user’s interests. 

The latest methods as tested by the Thousand Genomes Project25 (e.g., LAMP-LD, 

RFMIX, MULTIMIX, and a 3-way version of HAPMIX) all give robust estimates across 

multiple admixture scenarios, allowing for highly accurate (e.g. >99%) estimation for 2-

way admixture as present in African Americans, and >95% accuracy for 3-way 

admixture as present in Latinos as determined via simulation. Importantly for the user, 

methods are consistently biased in the same genomic regions, suggesting the specific 

choice of algorithm is unlikely to change local ancestry estimation much, nor greatly 

affect admixture mapping results. In MIXOMATIC we provide utilities to translate data 
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to/from both LAMP-LD and RFMIX, but any of the newer generation of local ancestry 

algorithms would be expected to give comparable results that can be used reliably for 

admixture mapping.  

 

 

Using Local Ancestry to Map Traits on the Genome 

Under a neutral scenario, an admixed population will be expected to have admixture 

proportions drawn from a multinomial distribution defined by the overall (or global) 

ancestry proportions26. In the scenario where ancestry at a locus is harboring causal 

variants for a certain disease, ancestry at that locus only is expected to be enriched in 

cases. This intuition brought up the simplest of admixture mapping tests, which does not 

require the recruitment of any controls for analysis, reducing cost and simplifying 

recruitment. By comparing the distribution of ancestry at any locus to the global ancestry 

patterns, each individual can serve essentially as their own control (assuming that the 

locus driving ancestry differences is small enough to negligibly affect the overall 

average genomic ancestries). This locus-specific deviation is typically measured using a 

z-score hypothesis test: measuring the standard deviation either empirically across the 

genome or using the parametric estimation directly from the multinomial distribution.  

This case-only test, while simplistic, has been shown to be the most powerful test for 

admixture mapping, even when the study design includes controls (e.g. 26,27). 
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This may be true in ideal scenarios (and has shown some success in two-way 

admixture scenarios as with African Americans) but this test can be difficult to 

implement in practice. There are several reasons for this relating to both the 

assumptions of the test and the imperfect nature of local ancestry estimation. We outline 

some of the major reasons below: 

1) Deviations in ancestry can be caused by other genomic forces, such as positive 

selection28. In a case-only analysis any positively selected local ancestry would 

appear to be associated. 

2) Case-only analyses by definition ignore controls. Regions of the genome that 

could harbor protective alleles will go unnoticed. 

3) Case-only analyses cannot take into account any other known predictors, which 

can lead to confounding, particularly with multiple correlated phenotypes. 

4) Perhaps most important: local ancestry estimation is imperfect, and this process 

is more accurate in certain parts of the genome than others 29. Regions with 

biased local ancestry estimation, whether through inaccurate algorithms or 

imperfect reference panels can appear to be significant loci 29-31. 

 

Because of these reasons, I argue that it is important to incorporate evidence from both 

cases and controls in our admixture mapping. Regions with ancestry deviation in all 

individuals, whether from a history of positive selection or biased local ancestry 

estimation, would no longer appear significant as the trend would be observed in both 

cases and controls. Including controls at associated loci decreases power somewhat as 
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the control ancestry is also drawn from a distribution (one can think of this as an 

analogous process as adding a degree of freedom), but including them dramatically 

reduces false positives (see an example in figure 3). 

 

A simple case-control test then can be formulated using a generalized linear model 

(GLM), modeling the association between a trait and the number of chromosomes of 

ancestry, incorporating known covariates where appropriate. These covariates can be 

genetic (e.g., accounting for potential ancestry stratification via inclusion of global 

ancestry), or environmental (e.g. fertility measures in the study of breast cancer32). 

GLMs are flexible, interpretable and included in numerous statistical and genetic 

analysis packages including PLINK. This can allow a geneticist to perform admixture 

mapping and interpret the output similar to standard genetic analyses. 

 

Other study designs lend themselves to admixture mapping as well. A trio-based design 

with two parents and an affected proband is typically analyzed using a transmission-

disequilibrium test (TDT33). This same TDT framework is applicable to admixture 

mapping34. Here it is crucial to phase the trios together to estimate the 

transmitted/untransmitted haplotypes. This will remove any potential for Mendelian 

errors that would bias the TDT35. For more complicated family relationships, the GLM 

framework can be extended to include variance components that can account for 

kinship or family relationships. In this way admixture mapping can be performed in 
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complex pedigrees or populations with a high degree of endogamy using linear mixed 

models such as EMMAX36 or GEMMA37. 

 

Note that the contrasts between case-only and case-control analyses are only 

applicable to binary traits. Quantitative traits can be tested for association in a standard 

linear correlation/regression framework similar to that performed with genotypes, or 

categorized into a binary trait if appropriate. 

 

 

Omnibus Admixture Mapping Tests 

In the case of 2-way admixture (such as African-Americans), the results of admixture 

mapping can be captured by only looking at one ancestry. The effect of the other 

ancestry by definition must have the opposite effect. In contrast, populations with more 

complex histories (such as Hispanic/Latinos) have multiple ancestries that must be 

analyzed together to understand fully the patterns of ancestry at any given locus. This 

requires the development of slightly more complicated omnibus tests that can 

accommodate evidence from multiple ancestries. 

To test for an association in the presence of K ancestries, a flexible approach for 

admixture mapping is to use nested GLMs to perform a likelihood ratio test. With case-

control data, the likelihoods are calculated from a full model including K-1 local ancestry 

terms plus all other relevant covariates, and the restricted model that omits the local 

ancestry terms. The result then follows a χ2 distribution with K-1 degrees of freedom. 
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The extra degrees of freedom are needed as one is combining evidence across all 

observed ancestries, but the tradeoff is that the model can combine evidence from all 

ancestries and can identify the regions with the most significant admixture mapping 

values given any combination of ancestries. A similar method can be extended to linear 

mixed models for admixture mapping. 

In contrast to the other scenarios, the TDT itself does not calculate a likelihood, so to 

create a multi-allelic TDT we model counts of transmitted/untransmitted ancestries via 

another GLM in the form of Poisson regression. Here the full regression model counts of 

the transmitted/untransmitted pairs of each set of K ancestries are used, stratified by 

pairs of ancestry terms in the data. The resulting set of observations will be based on 

the total evidence given by all K! pairs of transmitted/untransmitted ancestries. This 

GLM is then compared to a null situation, where each of the counts is only modeled by 

an intercept. By virtue of the a single ancestry in the regression being entirely 

determined by the others, the result of the likelihood ratio test then again follows a χ2 

distribution with K-1 degrees of freedom. This is similar to a McNemar’s test of matrix 

similarity with the removal of a degree of freedom. A more in-depth discussion of these 

is available in Gignoux et al.38, and can be seen in the omnibus admixture mapping 

functions available in MIXOMATIC. 

 

Estimating Local Ancestry at Untyped Sites 

 Typical GWAS meta-analyses require imputation to create a consensus set of 

marker data even if samples are typed across various platforms. For admixture 
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mapping, another form of imputation of missing data is required, but the approach is 

much simpler than typical genotype imputation algorithms. Given the high level of 

ancestry LD, local ancestry at an untyped site can be estimated via linear interpolation 

between the neighboring sites. Essentially this is a distance-weighted average for 

untyped sites, accounting for the possibility of recombination on either side of the 

untyped site (Figure 4). Given the high levels of ancestry LD, most sites on the genome 

will be within a block of ancestry, but the linear interpolation method captures some of 

the uncertainty we observe around switchpoints. This way any data platform can 

imputed up to a reference dataset such as HapMap or 1000 Genomes. In MIXOMATIC 

we provide a function for generating imputed local ancestry calls. 

Depending on the goal, it may be possible, particularly with dense imputation (such as 

1000 Genomes Project data) to use linear interpolation to impute the test statistic 

directly. This method has not been tested extensively but only requires one round of 

imputation, rather than imputing each individual, and so could provide massive 

computational efficiency. The scripts provided can easily be modified to do this if 

appropriate for a researcher’s specific study. 

 

Meta-analysis of Admixture Mapping 

 Admixture mapping results in a similar set of statistics used for GWAS meta-

analysis, including odds ratios and standard errors for single ancestry associations, and 

z-scores. These can be combined using standard meta-analysis techniques. Many 

programs exist for combining p-values; we include Fisher’s method in MIXOMATIC and 
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encourage users to try meta-analysis with covariate testing using METAFOR39, as well 

as some of the powerful random effects models available in METASOFT40.  

 

Estimating the multiple testing burden 

 By virtue of ancestry LD extending across broader regions, the Bonferroni-based 

GWAS threshold of p≤5x10-8, assuming one million independent tests across the 

genome, is overly stringent. Yet with the observed level of correlation in admixture 

mapping it can be difficult to evaluate what constitutes genome-wide significance. The 

gold standard for this is to perform permutations, however these are extremely 

computationally expensive, particularly for a meta-analysis. Approximations of the data 

exist, but these still use correlations from the raw data rather than summary statistics 

shared in a meta-analysis. However, multiple methods exist that attempt to estimate the 

data directly from genotype correlations, including SLIDE41 and spectral methods42, but 

these become difficult to consolidate across studies using multiple arrays.  

 An efficient approximation of the multiple testing threshold first proposed by 

Shriner et al.43 involves serial autoregression along the chromosome. Given that local 

ancestry is typically modeled under Markovian assumptions, this method is well suited 

to modeling correlation structure from site to site. Similar to the local ancestry 

imputation, this measure of correlation can be done either on the local ancestry calls 

themselves or the summary of the data. In our meta-analysis of admixture mapping for 

asthma 38, we used autoregression of the effect size estimates across the meta-analysis 
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resulting in empirical estimates of the multiple testing burden. These are very close to 

estimates given from permutations13,44, while remaining extremely efficient. 

 

We provide a function using a similar method to Shriner et al.43 to calculate the multiple 

testing burden, although we encourage readers to investigate multiple methods or try 

permutations with a high performance computing cluster. 

 

Joint Genotype/Ancestry Tests 

In some situations, particularly given the indirect associations observed in GWAS45, it is 

advantageous to combine evidence from both traditional GWAS and admixture mapping 

at a single locus. In its most basic form, this can also be captured by a likelihood ratio 

test estimated by GLMs, where the difference between the full and restricted models 

includes all the evidence at a locus: both local ancestry and genotype, while the 

restricted model only includes the other covariates. While penalized by multiple degrees 

of freedom, it should have appropriate false positive rates and is not based on heuristics 

or modeling assumptions of associated regions. This method can also be approximated 

by combining p-values from admixture mapping and a GWAS adjusting for local 

ancestry, using a meta-analysis method (for example, Fisher’s method included in 

MIXOMATIC).  

 

The inclusion of the high ancestry LD in the model should serve to decrease the multiple 

testing burden compared to GWAS. For example, using permutations from the Galanter 
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et al. data44 we found that the joint admixture/genotype likelihood ratio in the GALA II 

study of Latinos had a multiple testing burden of 3x10-7 as compared to the standard 

GWAS threshold of 5x10-8. Here the result of the likelihood ratio test would follow a χ2 

distribution with K degrees of freedom (including an extra degree of freedom for 

genotype). This extra degree of freedom is a penalty however multiple groups have 

demonstrated that for many realistic scenarios incorporating both lines of evidence has 

more power than either GWAS or admixture mapping alone 46,47. 

 

Several groups have published on ways of getting around the extra degree of freedom 

penalty. Each has its benefits and disadvantages. Pasaniuc et al.27 used a model of a 

causal allele driving associations in both admixture mapping and GWAS. Their MIX 

statistic combines evidence from both a genotype association adjusting for local 

ancestry and the expected admixture mapping value at that locus driven by the causal 

allele frequencies in the ancestral populations. Because the likelihood is only driven by 

the single variant’s contribution to both genotypic association and local ancestry 

differences, this remains a 1 degree of freedom test, providing increased power in the 

right scenario, particularly for markers with high Fst between ancestral populations. 

However by design their model can only identify associations that fit the expectations of 

their causal model. In practice this may not always fit the data, particularly if the 

genotypic association is indirect. In addition, their standard admixture mapping values 

are given by case-only analysis and can be sensitive to all the potential biases given 
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previously, although case-control admixture mapping values can easily be integrated 

into the MIX framework. 

 

In contrast, Shriner et al.43 used a Bayesian framework called BMIX to combine 

evidence from both association techniques in a two step process. First, admixture 

mapping was performed assuming a uniform prior across the genome. The posterior 

was then approximated using p-value-based likelihoods calculated from relevant central 

and non-central χ2 distributions (with parameters estimated from multiple testing and 

expected power values). That posterior was then used to update the prior for the 

GWAS, stratifying out local ancestry, run as a separate GLM. A GWAS posterior is then 

calculated that combines evidence from both admixture mapping in the form of the 

locus-specific prior and the genotypic evidence beyond that from local ancestry. This 

test then is assumed to be significant then when a posterior value (incorporating the 

multiple testing burden) is above 50%, indicating that the model supports association. 

The BMIX method is far more flexible than MIX as it places no restrictions on causality 

or effect direction, however is more approximate than either the full-df methods or MIX. 

Both MIX and BMIX represent novel breakthroughs to the field, and demonstrate 

increased power by leveraging the rich population history of admixed populations to 

discover new traits. Local ancestry functions in MIXOMATIC will dovetail with both, 

particularly BMIX as it is coded in R and can be incorporated in standard MIXOMATIC 

analysis. 
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Fine Mapping 

 

Unfortunately the downside of high coverage of Ancestry LD means significant ancestry 

peaks tend to be broad, potentially on the order of megabases (similar to linkage 

peaks). This can make it difficult to identify the gene driving the association. One must 

resort to additional association techniques, whether genotypic or gene expression 

association, to identify the specific variation driving the association with ancestry. First, 

identifying the borders of the peaks can be a challenge. Researchers can use a fixed 

threshold of 1 LOD score (or approximated by a change of 1 power term in the p-value), 

a change in likelihood, or choose a fixed p-value threshold to define the bounds of an 

admixture mapping peak around the significant maximum. Regardless of the approach it 

is important to note that these are approximate boundaries. Certainly, identifying the 

gene of interest within the genome-wide significant portion of the admixture mapping 

peak is the ideal scenario, and therefore region deserves further focus. 

 

I will focus on several strategies for genotype fine mapping as gene expression 

validation is similar whether following up on GWAS or admixture mapping hits. With 

genotype/imputation-based fine mapping, the goal is to identify the genotype driving the 

association within the admixture mapping peak. This can happen one of two ways. The 

first is by finding a genotype associated with the outcome. The idea is to identify a 

genotype associated beyond the admixture mapping signal. Typically this will require 

adjustment by local ancestry and not just global ancestry (to account for the known local 
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ancestry effect). Here joint genotype and local ancestry testing can also be used to 

boost results. 

 

The other approach for fine mapping is based on the notion that the local ancestry 

estimates are driven by the genotypes themselves, and so causal genotypes should 

contribute to the local ancestry association. Intuitively markers with a high amount of 

ancestry information should be driving the local ancestry association. An example of this 

can be seen in Fejerman et al.32, where the authors used a greedy search to identify the 

subset of SNPs that best explained their admixture association (ie, when included in the 

model, the local ancestry term went from being genome-wide significant to >0.05), as a 

suggestive list of top variant candidates within the admixture mapping peak. 
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A Pipeline for Admixture Mapping 

Retrieving reference data: For African Americans primarily receiving ancestry from 

western African and European ancestry20, the CEU and YRI populations from 

HapMap/1000 Genomes are publicly available. Native American samples from Mexico 

and South America are publicly available either on the Affymetrix 6.0 platform48, or the 

Illumina 650Y as part of the HGDP49.   

 

Ensure you have high quality genotype data: low-quality genotypes can cause 

ancestral misclassification15 and confound admixture mapping results. Ensure you 

remove any sites with any high levels of missingness or extreme deviations from Hardy-

Weinberg equilibrium. Remove monomorphic sites if required by the local ancestry 

algorithm. If possible, remove sites C/G and A/T SNPs as these can possibly have 

ambiguous stranding. The find_cg_at.py script in MIXOMATIC will return a list of 

markers for PLINK to filter out given a .bim file. Importantly, given the high levels of 

ancestry LD you do not need the full complement of SNPs to perform accurate local 

ancestry estimation. Certainly a greater number of SNPs should perform better, but as a 

general rule several hundred thousand markers should suffice for accurate local 

ancestry estimation from modern array data20,25. This, then, allows for local ancestry 

estimation utilizing disparate ancestral data from multiple platforms with varying overlap 

in the SNPs genotyped. As an example, local ancestry tracts for 1000 Genomes CLM, 

MXL, and PUR individuals were estimated using Native American reference haplotypes 

from the Affymetrix 6.0 with <200,000 variants overlapping. 
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Create a data freeze of high quality SNPs from your admixed population and then 

intersect with your reference data. Ensure your data is internally consistent and free of 

obvious QC problems using PCA or ADMIXTURE4 to ensure that the reference 

populations are identifying expected ancestry proportions without biases.  

 

Phase and run local ancestry estimation: modern algorithms typically require 

haplotypes, and will be more accurate when haplotypes are used as input17,19. This will 

require parsing scripts, and MIXOMATIC includes parsing scripts to format data both 

into and out of beagle format. In contrast shapeIT uses PLINK binary files as input, but a 

parsing script is provided to send shapeIT output to RFMix. Here if you have individuals 

in trios you will need to ensure that your phaser of choice is expecting family data. Run 

the data through your local ancestry algorithm. This step can be long and particularly 

memory intensive. Once the program finishes, the output will be one value for each 

ancestry per SNP or window, which can then be used for admixture mapping. 

 

Admixture Mapping: Output will be one of K ancestries for each site in each haplotype. 

The output can be used to calculate K ancestry-specific matrices. This will recapitulate a 

biallelic SNP (e.g. whether the ancestry itself is major/minor, and its use in effect sizes). 

Basic GLM functions in MIXOMATIC are provided for logistic and linear models 

incorporating other covariates in R. In addition, we provide a TDT test for trio data 

formatted from beagle including the transmitted/untransmitted haplotypes. 
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Multi-way admixed populations such as Latinos have multiple ancestries at any given 

locus, necessitating a more complex test of omnibus ancestry. Here we provide GLM-

based likelihood ratio tests for omnibus admixture mapping. Similarly we also provide 

joint genotype/ancestry tests. 

 

Ancestry Imputation: imputation of untyped sites via linear interpolation is needed to 

consolidate results across multiple platforms as is common in meta-analyses. Here in 

MIXOMATIC we provide a function in R for interpolation during admixture mapping and 

a faster text-based interpolation using Python. These can interpolate up to Hapmap II, 

1000 Genomes, or any other data set relevant to the researcher. 

 

 

Results from this pipeline can then be used in standard meta-analysis frameworks.  
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Figures 

 

 

 

 

Figure 1. The process of admixture.  At generation 0 the two ancestral populations 

remain distinct as given by the two distinct colors. After one generation, individuals have 

heterozygous ancestry. From then recombination breaks down the ancestry into smaller 

and smaller tracts, yielding the mosaics observed today from high density genotype or 

sequence data.  
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Figure 2. Ancestry karyogram for a Puerto Rican individual in GALA I, as estimated 

using LAMP/WINPOP. The postcolonial process of admixture results in a mosaic of 

ancestry, where individuals tend to have tracts of ancestry 0.5 cM-50cM long. These 

ancestries can be estimated from high-density genotyping data to high accuracy. 
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Figure 3. Case-only analysis in Mexicans can lead to extreme inflation, primarily from 

imperfect reference panels and biased local ancestry estimation. Data is from Mexican 

asthma cases included in Torgerson et al.50. For each ancestry there is a high degree of 

inflation in contrast to the appropriate type 1 error rates in the case-control analyses 

using the same data (see 50). 
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Figure 4. Description of ancestry interpolation/imputation scheme. Given observed 

ancestries in red from local ancestry estimation, our best guess of ancestry at 

unobserved sites is given from a linear interpolation of genetic position (in Morgans), 

here shown as a gray line. Importantly, most interpolated ancestry estimates on the 

genome will be identical to the flanking site. 
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Chapter(2.(An(admixture(mapping(meta3analysis(identifies(an(ancestry3specific(risk(factor(

and(potential(biomarker(for(asthma((

Abstract(

Background+

Asthma!is!a!common!but!complex!disease!with!significant!racial/ethnic!disparities!in!

prevalence,!morbidity,!and!response!to!therapies.!Analysis!of!genetic!ancestry!can!help!to!

explain!these!differences.!

Methods+

We!leveraged!the!mixed!ancestry!in!7,008!Latinos!and!African!Americans!in!the!EVE!

Asthma!Genetics!Consortium!to!perform!an!admixture!mapping!metaManalysis!for!asthma.!

We!replicated!associations!in!GALA!II,!an!independent!study!of!3,774!Latinos.!We!

measured!gene!expression!in!the!whole!blood!of!161!Puerto!Ricans!from!our!replication!

sample!to!identify!potential!biomarkers!for!lung!function,!bronchodilator!drug!response,!

and!exacerbations.!!

Results+

We!identified!a!genomeMwide!significant!admixture!mapping!peak!centered!on!SMAD2!in!

Latinos!(p=6.8!x!10M6),!where!Native!American!ancestry!was!associated!with!increased!risk!

of!asthma!(OR=1.20,!95%!CI=1.07M1.34,!p=0.002)!and!European!ancestry!with!decreased!

risk!(OR=0.86,!95%!CI=0.77M0.96,!p=0.008).!Our!findings!replicated!in!GALA!II!(p=5.3x10M3,!

overall!metaManalysis!p=2.6x10M7).!Asthma!cases!had!28%!lower!whole!blood!expression!of!

SMAD2!compared!with!controls!(95%!CI:12–37%,!p<0.001),!corresponding!to!a!bestMfit!OR!
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of!8.57!(95%!CI=2.57M25.19,!p<0.001).!Lower!SMAD2!expression!was!also!associated!with!

decreased!albuterol!response!and!increased!numbers!of!exacerbations.!

Conclusions+

We!identified!a!LatinoMspecific!association!between!local!ancestry!at!SMAD2!and!asthma,!

and!found!that!decreased!SMAD2!expression!in!the!blood!was!strongly!associated!with!

increased!asthma!risk!and!severity.!Our!findings!may!help!explain!differences!in!asthma!

prevalence!and!morbidity!between!racial/ethnic!groups,!and!identified!SMAD2!expression!

in!blood!as!a!potential!biomarker!for!asthma.!!

Word!Count:!246!!
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(

Introduction((word(count(587)(

Asthma!prevalence!varies!dramatically!between!racial!and!ethnic!groups.!In!the!United!

States,!childhood!asthma!prevalence!is!highest!among!Puerto!Ricans!(24.8%),!intermediate!

among!African!Americans!(16.3%)!and!lowest!among!European!Americans!(7.8%)!and!

Mexican!Americans!(7.8%).1!These!racial/ethnic!disparities!extend!to!asthma!mortality,!

which!is!fourMfold!higher!in!Puerto!Ricans!and!African!Americans!than!in!Mexican!

Americans.2!Substantial!evidence!supports!a!genetic!basis!for!asthma,!with!estimates!of!

heritability!as!high!as!75%.3!GenomeMwide!association!studies!(GWAS)!have!identified!>25!

novel!genetic!risk!factors!for!asthma.4!Nonetheless,!known!genetic!associations!account!for!

only!a!small!proportion!of!the!genetic!basis!of!asthma,!and!have!provided!limited!insight!

into!racial!disparities!in!its!prevalence!and!severity.!This!is!partially!due!to!the!limited!

number!of!GWAS!studies!in!nonMEuropean!populations.5M7!Many!asthmaMassociated!variants!

identified!in!European!Americans!demonstrate!significant!heterogeneity!or!simply!have!

failed!to!replicate!in!nonMEuropean!groups.8,9!In!addition,!rare,!populationMspecific!genetic!

risk!factors!are!likely!to!play!a!role.!These!unexplored!genetic!factors!may!contribute!to!

disparities!in!asthma!prevalence!and!severity!across!populations.!!

!

While!exome!and!wholeMgenome!sequencing!may!identify!novel!variants!associated!with!

complex!disease,10!such!approaches!are!costly!in!large!population!samples!and!present!

numerous!analytic!challenges.!One!alternative!is!to!reMmine!existing!GWAS!data!through!
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admixture!mapping!to!identify!novel!diseaseMassociated!loci!in!diverse!populations!using!a!

less!expensive11!and!more!flexible12,13!methodology.!Latinos!are!primarily!descendants!of!a!

threeMway!admixture!of!Native!American,!European,!and!subMSaharan!African!

ancestors,14,15!and!African!Americans!are!primarily!admixed!descendants!of!subMSaharan!

African!and!European!ancestors.16!This!wide!variation!in!genetic!ancestry,!along!with!

socioeconomic!and!environmental!differences!at!both!individual!and!population!levels,!can!

be!leveraged!to!explore!the!underpinnings!of!disparities!in!asthma!prevalence!and!severity.17!

We!previously!demonstrated!that!variation!in!overall!genetic!ancestry!was!associated!with!

asthma,18!lung!function,19!and!bronchodilator!responsiveness.20!If!the!frequencies!of!

patterns!of!diseaseMcausing!genetic!variation!are!different!between!the!ancestral!

populations!of!admixed!individuals,!the!frequency!of!genetic!ancestry!at!that!locus!will!be!

also!be!different:!these!loci!can!be!identified!through!admixture!mapping.!We!hypothesize!

that!the!dramatic!differences!in!prevalence!between!racial!and!ethnic!groups!make!asthma!

an!ideal!candidate!for!this!technique.!Indeed,!we!have!previously!demonstrated!the!utility!

of!locusMspecific!genetic!ancestry!estimated!from!genomeMwide!association!data!to!identify!

novel!genetic!risk!factors!in!both!African!Americans!and!Latinos21,22.!!

!

Although!admixture!mapping!can!identify!a!locus!in!the!genome,!further!characterization!is!

needed!to!identify!the!relevant!gene.!In!several!instances,!measures!of!gene!expression!

have!augmented!GWAS!studies!in!the!search!for!genes!that!contribute!to!complex!

disease.23,24!Evaluation!of!gene!expression!can!provide!insight!as!to!the!functional!effect!of!

causal!genetic!variation!driving!the!observed!association,!and!characterize!downstream!

effects!in!relevant!tissues.!In!the!case!of!blood!and!other!easily!collected!tissue,!evaluating!
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gene!expression!signals!also!permits!identification!of!novel!biomarkers!for!disease!and!

severity.!

!

We!hypothesized!that!admixture!mapping!could!identify!novel,!potentially!populationM

specific!risk!factors!for!asthma!in!Latinos!and/or!African!Americans.!!Our!prior!metaM

analysis!using!traditional!GWAS!methods!for!asthma!in!three!racial/ethnic!populations!in!

the!U.S.!replicated!a!number!of!known!associated!regions,!and!identified!an!African!

AmericanMspecific!association!at!PYHIN1.25!Here,!we!extend!these!studies!by!performing!an!

admixture!mapping!metaManalysis!for!7,008!Latino!and!African!American!subjects!included!

in!the!EVE!Asthma!Genetics!Consortium!(www.eve.uchicago.edu),!with!the!goal!of!

identifying!novel,!and!potentially!populationMspecific!risk!factors!for!asthma!that!are!

captured!by!ancestry!from!existing!genomeMwide!genotype!data.!!

Methods:((word(count(596)(

We!outline!the!study!approach!in!brief!in!Figure!1.!

Study&Subjects&

Discovery&Population&

We!included!data!from!selfMidentified!Latino!and!African!American!subjects!from!nine!

independent!studies!included!in!the!EVE!Asthma!Consortium!in!our!admixture!mapping!

metaManalysis.!Detailed!descriptions!of!all!studies!are!published!elsewhere.25!EVE!is!a!large,!

multiMethnic!assembly!of!asthma!studies!with!existing!genomeMwide!SNP!genotypes!from!

nine!different!U.S.!institutions.!All!autosomal!genotypes!passing!quality!control!standards!
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were!included!in!the!current!study,!including!3,902!Latinos!and!3,106!African!Americans!

(Table!1).!!

!

Replication&Population&&

We!tested!genomeMwide!significant!associations!from!the!discovery!population!in!the!

GenesMenvironments!&!Admixture!in!Latino!Americans!(GALA!II)!Study,26!a!large,!multiM

center!caseMcontrol!study!of!Latino!children!between!the!ages!of!8M21!years!with!and!

without!asthma!(Table!1!and!Supplementary!Material).!Local!institutional!review!boards!

approved!the!studies!and!all!subjects!and!legal!guardians!provided!written!informed!

assent/consent.!A!total!of!4,041!children!(1,976!participants!with!asthma!and!2,065!

healthy!controls)!were!recruited!from!five!centers!(Chicago,!Bronx,!Houston,!San!Francisco!

Bay!Area,!and!Puerto!Rico)!using!a!combination!of!communityM!and!clinicMbased!

recruitment.!Participants!with!asthma!selfMreported!a!physician!diagnosis!of!asthma!and!

reported!at!least!two!symptoms!(shortness!of!breath,!wheezing,!or!cough!not!associated!

with!upper!respiratory!illness)!or!chronic!use!of!controller!medication!(inhaled!

corticosteroids,!leukotriene!modifying!agents,!theophylline!or!oral!steroids)!in!the!two!

years!preceding!recruitment.!

!

All!individuals!in!GALA!II!were!subject!to!extensive!phenotype!characterization,!including!

pulmonary!function!testing!in!accordance!with!ATS!criteria.!Subjects!with!asthma!were!

evaluated!for!bronchodilator!response.!A!subset!of!3,774!GALA!II!subjects!were!genotyped!

on!the!Affymetrix!Axiom®!GenomeMWide!LAT1!Array27!and!passed!manufacturerM

recommended!standard!quality!control!measures,!yielding!747,129!SNPs.!!
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!

Gene&Expression&Analyses&

Whole!blood!RNA!was!extracted!from!a!random!subset!of!161!individuals!(107!cases,!54!

controls)!of!Puerto!Ricans!from!our!replication!sample!(GALA!II).!Gene!expression!levels!

were!measured!using!quantitative!PCR!and!normalized!using!the!housekeeping!gene!GUS.!

Expression!levels!were!calibrated!using!the!delta!Ct!transformation.!All!samples!had!an!

RNA!integrity!value!>!7.!

&

Statistical&Analyses&

Statistical!analyses!were!performed!using!R,!Python,!and!PLINK!

(http://pngu.mgh.harvard.edu/~purcell/plink/).!Local!ancestry!was!estimated!

individually!for!each!study!using!one!of!two!LAMP!algorithms:!LAMP28!for!caseMcontrol!

studies,!and!LAMPMHAP29!for!familyMbased!studies!to!preserve!transmitted/untransmitted!

haplotype!status.!!

!

We!used!a!2Mdegrees!of!freedom!likelihood!ratio!test!to!jointly!evaluate!the!local!effect!of!

the!three!ancestral!populations!in!Latinos!(Supplementary!Material).!CaseMcontrol!studies!

were!analyzed!using!a!logistic!regression!model,!while!trioMbased!studies!were!analyzed!

with!a!Poisson!regression!model!of!the!counts!of!transmitted!and!untransmitted!alleles.!To!

establish!a!studyMspecific!significance!criterion,!we!employed!an!empirical!autoregression!

framework,!using!the!coda!package!in!R.30!We!combined!the!pMvalues!of!the!likelihood!ratio!

test!using!custom!Python!scripts.!

!
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Gene!expression!levels!between!cases!and!controls!were!compared!using!linear!regression,!

adjusting!for!age,!sex,!and!recruitment!center!and!ancestry!as!appropriate.!We!evaluated!

the!goodnessMofMfit!for!varying!cut!points!of!highM!versus!lowMexpression!as!a!predictor!of!

asthma!status!using!Bayes!Factors!calculated!from!generalized!linear!models.!We!estimated!

the!prediction!power!of!multiple!models!using!selfMreported!exacerbation!scores!

(combining!information!on!hospitalizations,!emergency!department!visits,!and!oral!steroid!

usage),!and!performed!model!selection!in!generalized!linear!models!by!estimating!the!AUC!

of!ROC!curves!and!the!Aikake!Information!Criterion!(AIC).!We!also!compared!estimates!of!

population!attributable!risk!(PAR)!across!genetic!and!environmental!factors.!!

!

Further!details!on!methodology,!including!admixture!mapping!methods,!imputation,!and!

predictive!modeling!are!presented!in!the!Supplementary!Material.!!

Results((word(count(774)(

Admixture&Mapping&Meta>Analysis&and&Replication&

We!performed!local!ancestry!estimation,!ancestry!interpolation,!and!admixture!mapping!

independently!in!five!different!studies,!comprising!a!total!of!3,902!Latino!individuals!from!

the!EVE!Consortium.!A!metaManalysis!using!Fisher’s!method!produced!highly!concordant!

results!to!StoufferMLiptak!weighted!ZMscores;!accordingly,!we!present!only!the!results!from!

Fisher’s!method!and!coefficients!estimated!from!a!fixed!effects!metaManalysis.!

!

We!identified!a!genomeMwide!significant!admixture!mapping!peak!that!was!specific!to!

Latinos!at!18q21!(p=6.8x10M6,!Figure!2A!and!B,!significance!threshold!p<!4.1x10M5,!see!
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Supplementary!Material).!The!ancestry!association!in!Latinos!was!primarily!driven!by!

differences!in!European!(OR=0.86,!95%!CI=0.77M0.96,!p=0.0084)!and!Native!American!

(OR=1.20,!95%!CI=1.07M1.34,!p=0.0016)!ancestry!between!cases!and!controls,!whereas!

African!ancestry!did!not!appear!to!play!a!significant!role!(p=0.42)!(Figure!2C).!The!

admixture!peak!overlapped!two!genes:!SMAD2!and!ZBTB7C!(Figure!2B),!with!ancestry!at!

SMAD2!having!the!strongest!association!with!asthma.!

!!

We!replicated!the!association!between!asthma!and!ancestry!at!18q21!in!an!independent!

sample!of!3,774!Latinos!from!the!GALA!II!Study!(p=5.3x10M3,!Table!S2).!The!direction!of!the!

effect!in!both!the!discovery!and!replication!populations!were!homogeneous!for!both!

European!and!Native!American!ancestries!(OR=0.87,!95%!CI!0.78M0.96,!p<0.01!and!

OR=1.09,!95%!CI!1.02M1.16,!p<0.01!respectively,!see!Table!S2).!Applying!the!same!

admixture!mapping!approach!in!the!3,106!African!Americans!in!EVE,!there!was!no!ancestry!

association!at!18q21!(Figure!S1,!p=0.7).!In!addition!we!found!no!significant!genotype!

associations!in!the!4,531!European!Americans!in!EVE.!

 

Gene&Expression&Associations&with&Asthma&and&Secondary&Phenotypes&

We!measured!the!expression!of!SMAD2,8SMAD38(the!cystolic!heteroMdimeric!partner!of!

SMAD2),!and!ZBTB7C!via!rtMPCR!from!RNA!isolated!from!whole!blood!in!a!random!subset!of!

161!Puerto!Ricans!in!the!replication!study!(GALA!II).!SMAD2!expression!was!significantly!

negatively!associated!with!asthma.!Cases!had!28%!lower!mean!levels!of!SMAD2!expression!

than!healthy!controls!(95%!CI=12M37%,!p<0.001,!Figure!3A).!Neither!SMAD3!nor!ZBTB7C!

showed!any!difference!in!expression!between!asthma!cases!and!controls!(p=!0.8!and!0.9!
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respectively),!and!neither!gene!showed!a!significant!correlation!with!global!or!local!

ancestry.!We!determined,!via!Bayes!Factors,!the!bestMfit!cutpoint!at!66%!of!mean!

expression!in!controls!for!partitioning!lowMvs.Mhigh!expressors.!We!found!that!low!SMAD2!

expression!using!this!cutpoint!was!associated!with!an!8Mfold!increased!odds!of!asthma!(OR!

8.05,!95%!CI!2.57M25.19,!p<0.001).!In!addition,!Puerto!Rican!cases!recruited!in!Puerto!Rico!

had!39%!lower!SMAD2!expression!as!compared!with!Puerto!Rican!cases!recruited!in!

mainland!U.S.!(95%!CI!22M56%,!cutpoint!OR!6.79!(1.99M23.19),!p<0.001);!we!observed!no!

significant!difference!in!controls.!The!association!between!SMAD2!expression!and!asthma!

remained!significant!adjusting!for!islandMvs.Mmainland!or!by!study!center.!

!

After!adjustment!for!known!anthropometric!predictors!of!lung!function!(e.g.,!age,!sex,!and!

height2),!SMAD2!expression!was!not!significantly!associated!with!baseline!lung!function!

across!four!standard!measures!(FEV1,!FVC,!FEF25M75,!and!PEFR).!However,!low!SMAD2!

expression!was!significantly!associated!with!decreased!bronchodilator!drug!response!and!

increased!asthma!exacerbation.!Specifically,!we!found!that!a!10%!decrease!in!SMAD2!

expression!corresponded!to!a!1.7%!decrease!in!bronchodilator!drug!response!(ΔFEF25M75,!

95%!CI!M2.6M!M0.7%,!p<0.01,!Table!2).!SMAD2!expression!was!also!associated!with!ΔFVC,!

however!this!was!not!significant!after!adjusting!for!ΔFEF25M75.!The!correlation!between!

ΔFEF25M75!and!SMAD2!expression!remained!significant!after!adjusting!for!ΔFVC,!supporting!

the!primary!association!between!SMAD2!expression!and!ΔFEF25M75.!Low!SMAD2!expression!

was!also!associated!with!increased!asthma!exacerbation!score!(ordered!logistic!regression!

per!10%!decrease!in!expression,!OR=1.16,!95%!CI=1.01M1.35,!p=0.02,!Table!2).!!

!
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We!then!built!logistic!regression!models!to!test!the!ability!of!SMAD2!expression!to!explain!

asthma!exacerbations.!Individuals!were!dichotomized!into!categories!of!low!risk!(score!of!

≤1,!i.e.,!no!more!than!one!exacerbation)!and!high!risk!(score!≥2,!i.e.,!multiple!or!severe!

exacerbations).!We!applied!three!prediction!models:!use!of!controller!medication!(any!

longMterm!asthma!medication),!response!to!albuterol,!and!SMAD2!expression.!We!limited!

the!analysis!to!79!GALA!II!cases!residing!in!Puerto!Rico!to!minimize!confounding.!

Incorporating!all!three!classes!of!predictors!in!the!model!had!the!highest!ROC!curve!AUC!

(81%,!Figure!3B),!while!minimizing!the!AIC,!thus!providing!good!predictive!power!beyond!

standard!clinical!measurements.!!

!

Transforming!these!observations!to!population!attributable!risks!(PARs)!in!the!context!of!

other!genetic!and!environmental!risk!factors,!low!SMAD2!expression!has!a!PAR!of!40%!

(95%!CI:!17M60).!In!contrast,!established!risk!factors!such!as!obesity,!air!pollution,!and!

wellMreplicated!genotypic!risk!factors!at!17q21!have!a!more!limited!role!in!asthma!(Figure!

2C),!with!the!total!PAR!of!these!risk!factors!(38%,!95%!CI!18M37)!being!lower!than!that!of!

SMAD2!expression!by!itself.!!

!

Discussion((word(count(835)(

!

In!this!novel!investigation!of!admixture!mapping!and!asthma,!we!identified!a!genomeMwide!

significant!association!between!ancestry!at!18q21,!centered!on!the!SMAD2!gene,!and!

asthma!in!a!metaManalysis!including!3,902!Latinos!from!the!EVE!Asthma!Genetics!

Consortium.!We!replicated!this!finding!among!3,774!individuals!in!the!GALA!II!study.!!
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Further!analysis!revealed!the!clinically!important!finding!that!low!SMAD2!expression!is!

associated!with!reduced!bronchodilator!response!and!increased!asthma!exacerbations.!

Absent!our!admixture!mapping!followMup!to!a!large,!consortiumMbased!traditional!GWAS!

metaManalysis,25!this!locus!would!not!have!been!discovered,!as!there!were!no!individual!

genotypic!associations!within!the!admixture!peak!with!a!p<10M4!(Figure!S5).!Notably,!there!

was!no!evidence!for!an!ancestry!or!allelic!association!in!African!and!European!Americans,!

reinforcing!the!populationMspecific!nature!of!the!association!at!18q21.!An!important!and!

unique!contribution!offered!by!admixture!mapping!is!its!increased!coverage!of!genetic!

variation!due!to!increased!ancestry!linkage!disequilibrium!(LD)!as!compared!with!

genotypic!LD.31!Indeed,!the!top!locusMwide!significant!imputed!SNP!in!GALA!II!within!the!

peak!(Figures!S5&S6)!appears!to!be!at!low!frequency!in!Europe!and!Africa,!but!is!common!

on!Native!American!haplotypes!in!Latinos,!consistent!with!the!admixture!signal.!This!is!

important!because!prior!estimates!of!the!coverage!of!commercial!genotyping!arrays!have!

proved!overly!optimistic!in!nonMEuropean!and!admixed!populations.27,32!!

!

However,!increased!ancestry!LD!results!in!larger!blocks!of!the!genome!being!associated!

with!the!outcome,!rendering!identification!of!the!specific!gene!more!challenging!than!with!

traditional!GWAS.!Here,!the!674kb!genomeMwide!significant!peak!overlapped!SMAD2!and!

ZBTB7C.!ZBTB7C!has!no!known!role!in!asthma!pathophysiology!and!limited!functional!

characterization.!In!contrast!SMAD2!is!a!wellMcharacterized!cofactor!involved!in!TGF<β!

signaling.!In!asthma,!the!TGF<β!pathway!has!been!implicated!in!negative!regulation!of!

allergic!airway!inflammation,33!in!airway!remodeling,34!and!in!drug!response.35!In!the!TGF<

β!signaling!pathway,!ligation!of!TGF<β!receptors!activates!the!proximal!transcription!factors!
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SMAD2!and!SMAD3;!these!associate!with!SMAD4!and!translocate!to!the!nucleus!to!regulate!

transcription!of!several!hundred!target!genes!along!with!a!complex!of!DNA!binding!

cofactors.!Lower!levels!of!SMAD2!are!correlated!with!lower!levels!of!TGF<β!Mmediated!

signaling!effect.36!!

!

Although!TGF<β!pathway!genes!are!known!to!play!a!functional!role!in!asthma,!they!have!

rarely!been!identified!via!GWAS,!and!to!our!knowledge!SMAD2!has!not!been!previously!

associated!with!asthma!in!any!genetic!association!study.!However,!it!has!been!associated!

with!several!other!immune!systemMmediated!phenotypes,!including!a!GWAS!of!placental!

abruption37.!Two!previous!metaManalyses25,38!identified!an!association!between!SMAD3,!the!

cytosolic!heteroMdimeric!partner!of!SMAD2,!and!asthma!in!Europeans!and!European!

Americans.!Here,!variation!in!SMAD3!was!not!significantly!associated!with!asthma!through!

admixture!mapping!or!traditional!GWAS!in!either!Latinos!or!African!Americans,!nor!was!

SMAD3!expression!significantly!associated!with!asthma!in!GALA!II.!!

!

Our!findings!support!the!role!of!differential!regulation!of!SMAD2!in!asthma!cases,!and!

highlight!its!potential!use!as!a!biomarker!to!identify!individuals!with!low!bronchodilator!

drug!response!and!increased!risk!of!exacerbation.!In!GALA!II,!the!population!attributable!

risk!of!low!SMAD2!expression!is!a!highly!important!component!of!asthma,!with!a!higher!

PAR!than!many!known!risk!factors!for!asthma,!including!obesity,!NO2!exposure,!17q21!

genotypes,!and!in8utero!smoking,!or!even!all!these!risk!factors!combined!(Figure!3C).!!

!



! 49!

Measuring!SMAD2!expression!in!whole!blood!is!an!attractive!biomarker!candidate!due!to!

its!relative!ease!of!collection,!as!compared!with!lung!tissue.!Including!SMAD2!expression!

levels!improved!the!explanatory!power!of!statistical!models!of!asthma!exacerbations!

beyond!the!use!of!traditional!variables!collected!in!the!clinic.!In!addition!low!SMAD2!

expression!is!associated!with!low!bronchodilator!response!as!measured!by!ΔFEF25M75.!

Incidentally!we!found!no!association!between!SMAD2!expression!and!ΔFEV1,!the!typical!

spirometric!measurement!used!for!assessing!drug!response.!Growing!evidence!suggests!

that!measures!of!FEV1!may!underestimate!asthma!severity!in!children.39!FEF25M75!better!

measures!small!airway!obstruction,!and!has!demonstrated!sensitivity!as!a!measure!of!

airway!obstruction!among!children!and!adolescents!with!asthma,40!even!those!with!normal!

FEV1.!Prospective!studies!in!diverse!populations!are!required!to!definitively!test!whether!

measuring!SMAD2!expression!can!identify!children!at!high!risk!for!asthma!exacerbation,!

and!therefore!those!who!will!benefit!from!more!intensive!or!targeted!intervention.!

!

Beyond!investigation!of!asthma,!admixture!mapping!is!extensible!to!any!genomeMwide!

analysis!of!disease!prevalence!and!severity!in!an!ancestrally!mixed!population.!It!offers!

superior!economic!and!analytic!efficiencies!by!mining!previously!generated!genomic!data.!

Furthermore,!populationMspecific!findings!identified!by!admixture!mapping!can!have!

clinical!relevance!to!disparities!in!disease!prevalence!and!severity,!as!illustrated!by!the!

associations!of!SMAD2!expression!patterns!with!asthma!prevalence,!poor!bronchodilator!

drug!response,!and!increased!risk!of!asthma!exacerbations.!Our!findings!reinforce!that!

alternative!mapping!strategies,!such!as!admixture!mapping,!may!capture!novel!and!

populationMspecific!findings!that!traditional!GWAS!approaches!alone!cannot!uncover.!As!
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our!appreciation!increases!for!the!heterogeneous!genetic!ancestry!of!numerous!

populations!worldMwide,!more!nuanced!understanding!of!disease!burden!and!treatment!

targets!can!be!uncovered!and!developed!by!incorporating!this!technique.!

!

!
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Tables((

Table!1.!Baseline!characteristics!of!subjects!in!the!metaManalysis.!EVE!Asthma!Genetics!

consortium!Latino!individuals!were!used!for!discovery,!GALA!II!was!used!for!replication!
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along!with!the!African!American!individuals!in!EVE!for!the!initial!admixture!mapping.!

ImputationMbased!fine!mapping!was!performed!in!all!studies!shown.!Other!measures!from!

these!studies!can!be!found!in!Torgerson!et!al.25.!

Table!2.!Associations!of!SMAD2!gene!expression!with!asthma!and!morbidity!outcomes.!

Dichotomous!outcomes!use!a!bestMfit!cutpoint!of!66%!of!healthy!control!SMAD2!expression!

to!estimate!the!odds!ratio.!Measures!of!drug!response!and!exacerbations!are!per!10%!

increase!in!SMAD2!expression.!Static!spirometric!measures!preM/postMalbuterol!

administration!were!not!significant!on!their!own.!

Figure(Legends(

Figure!1.!Study!Approach.!We!began!with!the!Latino!studies!in!the!EVE!Asthma!Genetics!

Consortium,!along!with!reference!individuals!to!perform!local!ancestry!estimation.!We!

performed!ancestry!imputation!via!linear!interpolation!to!create!a!consistent!set!of!sites!

across!studies.!We!performed!admixture!mapping!at!these!interpolated!sites!via!likelihood!

ratio!tests,!then!combined!values!across!studies!at!all!sites!via!metaManalysis.!GenomeMwide!

significance!was!measured!empirically!via!autoregression.30!We!replicated!the!genomeM

wide!signal!at!18q21!in!GALA!II!using!similar!methods.!We!then!used!gene!expression!to!

characterize!associations!with!genes!in!18q21!and!known!interactors!of!those!genes.!

SMAD2!expression!was!strongly!associated!with!asthma!(none!of!the!others!were),!and!so!

we!investigated!associations!with!additional!phenotypes!including!spirometry,!

bronchodilator!response,!and!exacerbations,!as!reported!in!the!Results.!

Figure!2.!Admixture!mapping!metaManalysis!results.!!
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2A:!Manhattan!plot!of!the!genomeMwide!results!of!admixture!mapping!for!asthma!in!3,902!

Latinos!from!the!EVE!asthma!genetics!consortium.!GenomeMwide!significance!threshold!

accounting!for!ancestry!correlation!indicated!via!dashed!line.!The!single!genomeMwide!

significant!peak!in!the!2Mdf!likelihood!ratio!test!is!found!on!chromosome!18.!!

2B:!Summary!of!the!18q21!locus.!LocusZoom41!plot!for!sites!in!the!most!significant!

Hispanic/Latino!admixture!mapping!association!on!18q21,!showing!the!relative!position!of!

the!genes!closest!to!the!top!of!the!peak.!–log10!pMvalues!are!shown!for!the!2Mdf!likelihood!

ratio!test!for!differences!across!all!three!ancestral!populations.!!

2C:!Forest!plots!for!admixture!mapping!across!each!of!three!ancestries!at!the!top!site!in!2B!

(African,!European,!and!Native!American!ancestry,!respectively).!Each!study’s!odds!ratio!is!

displayed!as!a!square!and!corresponding!confidence!interval!with!size!inversely!

proportional!to!the!standard!error.!MetaManalysis!estimates!via!fixed!effects!models!are!

given!as!diamonds.!No!ancestry!shows!no!evidence!of!significant!study!heterogeneity!at!

18q21,!where!European!ancestry!at!SMAD2!confers!protection!from!asthma;!Native!

American!ancestry!confers!increased!risk,!as!presented!in!Table!S1. !

Figure!3.!Whole!blood!SMAD2!expression!analyses.!!

3A:Scatterplots!displaying!SMAD2!expression!in!whole!blood!measured!by!qMPCR!in!GALA!

II!Puerto!Rican!cases!(n=107)!and!controls!(n=54).!Expression!was!calibrated!to!the!

housekeeping!gene!GUS!to!create!relativeMfold!values,!including!means!and!95%!confidence!

intervals.!On!average,!cases!have!25%!lower!expression!of!SMAD2!than!do!controls!

(p=1.2x10M4).!SMAD3,!previously!associated!with!asthma!in!Europeans,!did!not!show!

expression!differences!between!GALA!II!cases!and!controls!(p=0.81,!data!not!shown).!3B:!

Prediction!of!selfMreported!exacerbations!using!clinical!variables!and!SMAD2!gene!
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expression!as!measured!with!ROC!curves!from!logistic!regression.!We!only!looked!at!

individuals!from!the!island!of!Puerto!Rico!to!minimize!confounding.!The!AUCs!for!each!

model!are!displayed!in!the!legend.!CM=Controller!Medication,!Spiro=4!Bronchodilator!

Response!variables!discussed!in!the!main!text.!The!model!incorporating!SMAD2!expression!

predicts!best!according!to!the!AIC.!!

3C:!Population!Attributable!Risk!of!SMAD2!expression!and!ancestry!in!context!with!other!

genetic!and!environmental!risk!factors!in!GALA!II,!colorMcoded!by!type.!Black!is!expression,!

blue!is!genotype,!green!is!ancestry,!and!red!is!environmental!exposure.!!

!
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Table!1.!Basic!characteristics!of!studies!used!in!metaManalysis.!
Study!Name! Genotyping!

platform!
Study!Type! Cases/Controls/Probands! Average!

Age!of!
Onset!(s.d.)!

EVE!Hispanic/Latino!Discovery! ! !
CARE! Affymetrix!6.0! Trios! 42! 1.4!(1.6)!
CHS! Illumina!550K,!

610K!
Case/Control! 606/792! 6.8!(4.8)!

GALA!I!Mexicans! Affymetrix!6.0! Case/Control! 252/151! 8.3!(7.7)!
GALA!I!Puerto!Ricans! Affymetrix!6.0! Case/Control! 277/191! 3.4!(4.8)!
MCCAS! Illumina!550K! Trios! 492! NA!
GALA!II!Hispanic/Latino!Replication! ! !
GALA!II!Mexicans! Affymetrix!

Axiom!LAT1!
Case/Control! 596/661! 5.3!(3.7)!

GALA!II!Puerto!Ricans! Affymetrix!
Axiom!LAT1!

Case/Control! 894/894! 2.6!(2.9)!

GALA!II!Mixed/Other! Affymetrix!
Axiom!LAT1!

Case/Control! 403/326! 4.4!(3.9)!

EVE!African!American!and!African!Caribbeans! ! !
Barbados! Illumina!650Y! Pedigrees! 382! 8.2!(10.6)!
CAG/CSGA/SARP! Illumina!1Mv1! Case/Control! 541/451! 9.8!(12.4)!
GRAAD! Illumina!650Y! Case/Control! 464/471! 11.9!(13.2)!
SAPPHIRE! Affymetrix!6.0! Case/Control! 149/132! 10.5!(11.6)!
EVE!European!Americans! ! !
CAG/CSGA/SARP! Illumina!1Mv1! Case/Control! 742/381! 13.1!(13.7)!
CARE! Affymetrix!6.0! Trios! 217! 2.1!(2.4)!
CAMP! Illumina!550K! Trios! 385! 3.1!(2.5)!
CHS! Illumina!550K,!

610K!
Case/Control! 643/959! 7.0!(5.0)!

!( ( ( (
! !
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Case5Control(Phenotypes( OR((95%(CI)( p5value(

!

Asthma! 8.05!(2.57M25.19)! 4.7x1055(

!

Island!vs!Mainlanda! 6.79!(1.99M23.19)! 0.0022(

! ! ! !Bronchodilator(Response!b( b((95%(CI)( p5value(

!

ΔFEF25M75! M1.7!(M2.6!M!M0.7)! 0.0013(

!

ΔFEV1! M0.1!(M0.2!M!0.4)! 0.40!

!

ΔFVCc! M0.05!(M0.09!M!M0.02)! 0.0068(

!

ΔPEFR! M0.6!(M1.44!M!0.3)! 0.22!

! ! ! !Exacerbation(Score( OR((95%(CI)( p5value(

!

Full!Ordered!Modeld! 0.37!(0.13!M!1.03)! 0.023(

!

More!than!1!! 0.22!(0.05M0.90)! 0.022(

! ! !
!
!
!

!

!

!

!

! !a.!adjusting!for!caseMcontrol!status,!age,!gender!and!admixture!proportions!

b.!measured!as!(post!M!pre)!/!pre!for!all!variables,!all!adjusted!for!Center,!age,!sex!

and!height2!

c.!association!not!significant!when!D(FEF.25.75)!included!in!the!model!

d.!Levels!0M5,!ordered!logistic!regression,!pMvalue!from!likelihood!ratio!test! !
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!

Figure!1.!!
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Figure!2.!

!
!
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Figure!3.!!

!
!
!
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Chapter(3.(Supplementary(Material(

(

Admixture(mapping(meta5analysis(identifies(an(ancestry5specific(risk(factor(and(

potential(biomarker(for(asthma((

(

Supplementary(Methods(

(

Study(Subjects(

!

Discovery(Population(

SelfMidentified!Latino!and!African!American!participants!from!nine!independent!study!

populations!were!included!in!the!initial!metaManalysis!of!genomeMwide!data!(discovery!

population).!The!detailed!methods!for!the!EVE!Asthma!Consortium!

(www.eve.uchicago.edu)!metaManalysis!were!previously!published!and!described!in!detail.1!

EVE!is!a!large,!multiMethnic!assembly!of!asthma!studies!with!existing!genomeMwide!SNP!

genotypes!from!nine!different!institutions!in!the!U.S.!We!used!the!autosomal!genotypes!

passing!the!original!quality!control!standards!and!incorporated!in!the!original!imputation.!

3,902!Latinos!and!3,106!AfricanMAmericans!from!EVE!(Table!1)!were!included!in!the!

present!analysis.!(

!

Replication(Population!!

We!tested!our!most!significant!associations!from!the!discovery!population!in!the!GenesM

environments!&!Admixture!in!Latino!Americans!(GALA!II)!Study!population,!a!large,!multiM
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center!caseMcontrol!study!of!Latino!children!between!the!ages!of!8M21!with!and!without!

asthma!(Table!1).!!A!total!of!4,041!children!(1,976!participants!with!asthma!and!2,065!

healthy!controls)!were!recruited!from!five!centers!(Chicago,!Bronx,!Houston,!San!Francisco!

Bay!Area,!and!Puerto!Rico)!using!a!combination!of!community!and!clinicMbased!

recruitment.!!Participants!with!asthma!selfMreported!a!physician!diagnosis!of!asthma!and!

reported!at!least!two!symptoms!(shortness!of!breath,!wheezing,!or!cough!not!associated!

with!upper!respiratory!illness)!or!chronic!use!of!controller!medication!(inhaled!

corticosteroids,!leukotriene!modifying!agents,!theophylline!or!oral!steroids)!in!the!two!

years!preceding!recruitment.!The!mean!(±SD)!age!of!these!subjects!was!12.5!(3.3)!years,!

55.3%!were!boys.!!Eligible!controls!had!no!reported!history!of!asthma,!lung!disease!or!

chronic!illness,!and!no!reported!symptoms!of!coughing,!wheezing,!or!shortness!of!breath!in!

the!past!two!years.!Controls!were!1:1!frequency!matched!within!each!region!by!catchment!

area!and!age!(within!1!year)!and!recruited!from!the!same!hospitals!or!community!clinics!as!

the!cases.!The!mean!(±SD)!age!of!control!subjects!was!13.7!(3.5),!43.7%!were!boys.!All!

participants!who!met!criteria!for!enrollment!completed!inMperson!questionnaires!related!to!

their!medical,!asthma,!allergic,!social,!environmental!and!demographic!histories.!To!be!

eligible!for!participation,!each!participant!or!parent!must!have!identified!all!four!

grandparents!as!Latino.!!All!participants!with!asthma!underwent!spirometry!to!measure!

baseline!lung!function!and!maximal!bronchodilator!drug!response!to!albuterol.!!Local!

institutional!review!boards!approved!the!studies!and!all!subjects!and!legal!guardians!

provided!written!informed!assent/consent.!!

Enrollment(Criteria(and(Clinical(Phenotyping(
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From!July!2006!through!June!2011,!when!genotyping!began,!a!total!of!4,041!children!

(1,976!participants!with!asthma!and!2,065!healthy!controls)!were!recruited!from!five!

centers!(Chicago,!Bronx,!Houston,!San!Francisco!Bay!Area,!and!Puerto!Rico)!using!a!

combination!of!community!and!clinicMbased!recruitment.!!

!!

Asthma!was!defined!as!selfMreported!physician!diagnosis,!symptoms!and!medication!use!

within!the!last!2!years.!Eligible!controls!had!no!reported!history!of!asthma,!lung!disease!or!

chronic!illness,!and!no!reported!symptoms!of!coughing,!wheezing!or!shortness!of!breath!in!

the!past!two!years.!Controls!were!1:1!frequency!matched!within!each!region!by!catchment!

area!and!age!(within!1!year)!and!recruited!from!the!same!hospitals!or!community!clinics!as!

the!cases.!Participants!were!excluded!if!they!reported!any!of!the!following:!(1)!10!or!more!

packMyears!of!smoking;!(2)!any!smoking!within!1!year!of!recruitment!date;!(3)!history!of!

lung!diseases!other!than!asthma!(cases)!or!chronic!illness!(cases!and!controls);!or!(4)!

pregnancy!in!the!third!trimester.!!

!

All!participants!who!met!criteria!for!enrollment!completed!inMperson!questionnaires!

related!to!their!medical,!asthma,!allergic,!social,!environmental!and!demographic!histories.!

Each!participant!or!parent!was!also!required!to!identify!all!four!grandparents!as!Latino.!

Based!on!fourMgrandparent!information,!we!partitioned!the!study!into!three!major!

categories:!Mexicans,!Puerto!Ricans,!and!Other!(either!individuals!from!other!countries!or!

of!mixed!Latino!ancestry).!In!addition,!all!participants!provided!blood!for!genetic!analysis.!!

All!participants!with!asthma!underwent!spirometry!to!measure!baseline!lung!function!and!

maximal!bronchodilator!drug!responsiveness!to!albuterol.!!Local!institutional!review!
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boards!approved!the!studies!and!all!subjects!and!legal!guardians!provided!written!

informed!assent/consent.!!

(

Medication(Use!!

Subjects!were!asked!to!list!their!asthma!prescriptions!and!responses!were!grouped!into!

five!different!treatment!categories:!(1)!no!medications,!(2)!rescue!inhalers/shortMacting!

beta!agonists!(SABA)!only,!(3)!controller!monotherapy,!(4)!combination!therapy,!and!(5)!

oral!corticosteroids!(OCS).!Monotherapy!included!subjects!who!were!taking!an!inhaled!

corticosteroid!(ICS),!leukotriene!receptor!antagonist!(LTRA),!or!theophylline!to!control!

their!asthma.!The!combination!therapy!group!included!subjects!using!two!or!more!

controller!medications!with!or!without!longMacting!beta!agonists!(LABA).!

(

Exacerbations(

Information!regarding!selfMreported!asthmaMrelated!hospitalizations,!emergency!

department!visit,!and!oral!steroid!use!over!the!12!months!prior!to!recruitment!was!

collected!through!the!administered!questionnaire.!With!these!data,!a!selfMreported!

exacerbation!score!was!assigned!to!each!subject!based!on!the!American!Thoracic!Society!

and!European!Respiratory!Society!consensus!statement!from!2009.2!One!point!was!given!

for!each!report!of!hospitalization!or!emergency!department!visit!in!the!last!12!months.!For!

reported!history!of!oral!steroid!use,!one!point!was!assigned!for!a!report!of!any!oral!steroid!

use!in!the!last!12!months!and!two!points!were!assigned!if!the!subject!reported!greater!than!

two!continuous!weeks!of!oral!steroid!use!over!the!12!months!prior!to!recruitment.!

!
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Pulmonary(Function(Testing!!

Subjects!with!asthma!were!instructed!to!withhold!their!bronchodilator!medications!for!at!

least!8!hours!before!lung!function!testing.!Spirometry!was!performed!according!to!the!

American!Thoracic!Society!standards!(1995).!Standard!measurements!of!airway!

obstruction!included!Forced!Expiratory!Volume!in!one!second!(FEV1),!Forced!Expiratory!

Flow!between!25M75%!of!vital!capacity!(FEF25M75)!and!Forced!Vital!Capacity!(FVC).!!

FEV1/FVC,!and!FEF25–75!are!all!adjusted!for!age,!sex!and!height2!as!covariates,!as!percent!

predicted!equations!are!not!available!for!Puerto!Ricans.!

!

Maximal!bronchodilator!drug!response!(BDR)!was!calculated!as!the!percent!change!in!

baseline!lung!function!(FEV1!and!FEF25M75)!before!and!after!administering!albuterol,!with!a!

15Mminute!waiting!period!following!each!dose.!Albuterol!was!administered!using!an!

extension!tube!connected!to!a!standard!metered!dose!inhaler.!A!total!of!six!(if!<16!years!of!

age)!to!eight!(if!≥16!years!of!age)!total!puffs!of!albuterol!were!administered.!!

!

Genotyping(

Participants!were!genotyped!at!818,154!SNPs!on!the!Affymetrix!Axiom®!GenomeMWide!

LAT1!Array!(World!Array!IV)3,!an!array!optimized!for!imputationMbased!association!studies!

of!Latinos.!Details!of!individual!and!SNP!quality!control!procedures!are!described!in!4.!We!

employed!standard!quality!control!procedures!as!recommended!by!Affymetrix.!!

!We!removed!single!nucleotide!polymorphisms!(SNPs)!with!>5%!missing!data!and!failing!

platform!specific!cluster!quality!criteria!(n=63,328),!along!with!those!out!of!HardyM

Weinberg!equilibrium!(n=1845;!p<10M6)!within!their!respective!populations!(Puerto!Rican,!
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Mexican,!and!other!Latino).!Subjects!were!filtered!based!on!97%!call!rates!and!gender!

discrepancies,!and!run!through!a!pairwise!identity!by!descent!(IBD)!scan!to!identify!related!

individuals!to!remove.!The!total!number!of!subjects!passing!QC!was!3,774!(1,893!cases,!

1,881!controls),!and!the!total!number!of!SNPs!passing!QC!was!747,129.!!

!

!

Admixture(Mapping(Methods(

Admixture!mapping!required!estimating!local!ancestry!at!every!SNP!in!each!study.!Local!

ancestry!was!estimated!separately!for!each!study!via!one!of!two!LAMP!algorithms:!LAMP5!

for!caseMcontrol!studies,!and!a!familyMbased!algorithm!available!in!LAMPMHAP6!for!trio!

studies!that!preserves!transmitted/untransmitted!haplotypes.!For!AfricanMAmericans!we!

used!a!2Mway!admixture!model!in!LAMP!in!an!unsupervised!fashion!as!accuracy!does!not!

increase!by!adding!ancestral!populations7.!For!Latinos!we!ran!LAMP!assuming!3Mway!

admixture!using!the!CEU!and!YRI!from!HapMap8,!Indigenous!Mexican!individuals!from!

HGDP9!that!were!genotyped!on!the!Illumina!650Y,!and!Pima!and!Maya!individuals!kindly!

provided!by!Drs.!Mark!Shriver!and!Abigail!Bigham!that!were!genotyped!on!the!Affymetrix!

6.010,11.!For!each!study!we!used!the!intersection!of!markers!with!available!ancestral!data:!

ancestral!allele!frequencies!for!LAMP,!and!ancestral!haplotypes!for!LAMPMHAP,!phased!

using!Beagle12.!!

!

Ancestry!interpolation:!As!local!ancestry!estimation!can!be!quite!sensitive!to!genotyping!

errors!we!did!not!want!to!estimate!local!ancestry!from!imputed!genotypes.!Therefore,!to!

create!a!consensus!set!of!sites!across!different!genotyping!platforms!we!inferred!ancestry!
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at!untyped!sites!using!linear!(genomic!distance)!interpolation.!In!this!framework,!an!

untyped!site!is!assigned!the!average!of!its!neighboring!genotyped!sites,!weighted!by!the!

genetic!distance!in!bp!from!each.!We!used!this!framework!to!interpolate!local!ancestry!for!

each!study!at!3,192,437!HapMap!II!SNPs.!Given!that!admixture!in!the!Americas!is!a!recent!

phenomenon!we!observed!few!ancestry!switches!per!chromosome!per!individual,!and!thus!

most!of!the!untyped!sites!sat!within!blocks!of!contiguous!ancestry.!

!

Admixture!mapping:!The!effect!of!ancestry!at!each!locus!was!estimated!in!one!of!two!ways.!

For!single!ancestry!testing,!we!coded!ancestry!at!each!position!as!a!biallelic!state!(e.g.,!

African!vs!nonMAfrican).!We!then!used!logistic!regression!for!caseMcontrol!studies!R,13!and!

the!transmission!disequilibrium!test!(TDT)14!for!trio!studies!using!custom!Python15!scripts.!

For!the!complex!pedigrees!in!the!Barbados!study!we!used!MQLS16!for!association!testing,!

and!estimated!an!odds!ratio!and!standard!errors!from!the!ancestry!counts!in!cases!and!

controls!(as!estimated!by!MQLS).!!

!

Importantly,!in!Latinos!we!wanted!to!perform!admixture!mapping!combining!evidence!

across!the!three!ancestries.!To!estimate!the!combined!effect!of!all!ancestries!in!Latinos,!we!

used!a!2Mdegrees!of!freedom!(df)!likelihood!ratio!test!comparing!regression!models!with!

and!without!local!ancestry!terms.!We!used!logistic!regression!for!caseMcontrol!studies!and!

Poisson!regression!models!of!counts!of!transmitted/untransmitted!ancestry!states!for!trio!

studies.!All!logistic!regression!models!were!adjusted!for!genomic!ancestry!as!determined!

using!ADMIXTURE17!on!the!full!autosomal!data.!Our!likelihood!ratio!test!for!caseMcontrol!

analyses!consisted!of!comparing!the!likelihoods!of!two!nested!generalized!linear!models:!
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!

The!statistic! !then!follows!a! 2!distribution!with!2df!(equal!to!

the!number!of!additional!terms!in!the!full!model).!!

Similarly,!for!the!trio!studies!we!compared!likelihoods!of!two!generalized!linear!models,!

although!the!framework!is!more!complicated.!We!modeled!counts!of!

transmitted/untransmitted!ancestry!pairs!at!each!locus!using!a!mixture!of!Poisson!

regression!terms!for!each!ancestry!(e.g.,!transmitted!African/untransmitted!Native!

American,!six!different!combinations!from!three!different!ancestries!in!total).!Each!specific!

ancestry!contributes!to!the!counts!of!the!observed!transmitted/untransmitted!pairs!using!

an!indicator!function:!

!

Each! is!then!a!sixMterm!vector.!To!account!for!the!investigation!of!multiple!

transmitted/untransmitted!ancestries!at!every!locus,!we!adjusted!our!analyses!using!a!6M

term!factor! that!stratified!counts!into!corresponding!pairs!of!transmitted/untransmitted!

ancestries.!Then,!the!joint!effects!of!incorporating!multiple!ancestry!terms!were!modeled!

by!comparing!the!likelihoods!of!two!nested!generalized!linear!models:!

!

full : log p
1− p
"

#
$

%

&
' ~ β0 +β1local1 +β2local2 +β3global1 +β4global2 +ε

restricted : log p
1− p
"

#
$

%

&
' ~ β0 +β1global1 +β2global2 +ε

2 log likelihood( full)
likelihood(restricted)
!

"
#

$

%
& χ

Φlocal = 1∈ transmitted,−1∈ untransmitted, 0 ∈ otherwise{ }

Φlocal

Ξ

full : log counts( ) ~ β0 +β1ΦAfrican +β2ΦEuropean +β3ΦNativeAmerican +β4Ξ+ε

restricted : log counts( ) ~ β0 +β1Ξ+ε
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The!statistic! !then!follows!a! 2!distribution!with!2df!as!the!3!

ancestries!are!collinear!(and!one!ancestry!term!is!dropped).!This!approach!is!similar!to!a!

McNemar’s!test!of!symmetry,!however!our!implementation!saves!a!degree!of!freedom!

given!the!inherent!correlation!structure!of!the!3!ancestries.!Scripts!and!functions!were!

written!in!R!and!Python!and!are!available!upon!request.!

!

Multiple(test(correction:!The!traditional!BonferroniMbased!GWAS!significance!threshold!

of!5x10M8!is!overly!stringent!given!the!increased!ancestry!linkage!disequilibrium!(LD)!in!

admixture!mapping!studies.!To!determine!a!studyMspecific!significance!criterion!we!

employed!an!empirical!autoregression!framework.!We!determined!the!“effective”!number!

of!tests!on!the!genome!by!fitting!an!autoregressive!model!to!the!summary!statistic!data,!

where!overall!correlation!patterns!were!determined!by!estimating!the!correlation!

sequentially!along!the!chromosome.!We!implemented!our!autoregression!using!the!coda!

package!in!R,!similar!to!Shriner!et!al.!18!for!both!odds!ratios!and!pMvalues.!!While!similar,!pM

values!were!slightly!more!conservative,!so!we!chose!to!use!those.!Our!criterion!for!genomeM

wide!significance!was!then!0.05!divided!by!the!total!number!of!effective!tests!across!the!

genome.!

!

Meta5analyses:!Single!ancestry!tests!were!combined!using!fixed!effects!models!in!PLINK19!

to!get!combined!estimates!of!significance,!overall!magnitude!of!effect!and!heterogeneity!

level.!Sites!with!an!I2!value!of!heterogeneity!>!50%!were!inspected!to!determine!whether!a!

random!effects!model!was!warranted!(to!incorporate!betweenMstudy!heterogeneity).!For!

2 log likelihood( full)
likelihood(restricted)
!

"
#

$

%
& χ
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the!joint!ancestry!analyses,!we!combined!pMvalues!using!both!Fisher’s!method!and!

combined!ZMscores!weighted!by!the!square!root!of!the!number!of!cases!as!a!proxy!for!the!

variance,!consistent!with!the!prior!GWAS.!1!In!the!present!study!we!report!results!from!

Fisher’s!method!as!the!methods!yielded!highly!concordant!results.!!

!

Replication(samples(and(genotyping:!We!tested!our!most!significant!associations!in!

GALA!II,!a!large,!multiMcenter!crossMsectional!study!of!participants!with!and!without!

asthma20.!All!individuals!in!GALA!II!selfMidentified!as!“Hispanic”!or!“Latino,”!and!reported!

ethnicity!information!for!all!four!grandparents.!Based!on!fourMgrandparent!information,!we!

partitioned!the!study!into!three!major!categories:!Mexicans,!Puerto!Ricans,!and!Other!

Latino!(including!individuals!from!countries!other!than!Mexico!or!Puerto!Rico,!and!those!of!

mixed!Latino!ancestry).!A!total!of!3,774!individuals!passed!quality!control!(QC)!on!

genotypes!obtained!from!the!Affymetrix!Axiom®!GenomeMWide!LAT1!Array!(World!Array!

IV,!Affymetrix)3,!an!array!optimized!for!imputationMbased!association!studies!of!Latinos.!

SNPs!were!filtered!based!on!standard!quality!control!procedures!as!recommended!by!

Affymetrix.!After!merging!genotypes!with!available!CEU/YRI!genotype!data!from!HapMap!

and!the!1000!Genomes21,!and!Native!Mexican!individuals!typed!on!the!Axiom!LAT1!array,!

we!ended!up!with!568,037!SNPs!for!reference.!Local!ancestry!was!estimated!on!

transmitted/untransmitted!haplotypes!in!trios!using!LAMPMLD6.!Admixture!mapping!was!

performed!using!the!same!methods!as!used!in!the!discovery!studies,!with!an!additional!

correction!for!selfMreported!ethnicity!(Puerto!Rican,!Mexican,!or!Other).!!

!
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Imputation(and(genotype(association:!We!imputed!candidate!regions!using!IMPUTE222!

using!the!phase!1!1000!Genomes!haplotypes,!after!phasing!our!data!using!SHAPEIT.23!We!

used!the!same!criteria!for!source!genotypes!as!the!admixture!mapping!and!previous!metaM

analysis.!Imputation!was!carried!out!using!the!default!and!recommended!settings!in!

IMPUTE2!for!prephased!data!across!a!~5Mb!region!around!SMAD2.!Imputed!genotypes!

with!information!scores!>0.3!were!used!for!downstream!analysis.!We!analyzed!each!study!

using!a!similar!framework!as!described!above!(i.e.,!logistic!regression,!TDT,!and!pedigree!

association!using!EMMAX24).!A!metaManalysis!was!them!performed!using!a!fixed!effects!

metaManalysis!in!PLINK,!and!a!random!effects!metaManalysis!using!the!R!package!metafor.25!!

!

Gene(Expression:(We!measured!the!expression!of!SMAD2,8SMAD3,8and8ZBTB7C!using!

TaqMan®!RTMPCR!assays!in!a!total!of!107!cases!and!54!controls!selected!from!the!Puerto!

Ricans!in!GALA!II.!Total!RNA!was!isolated!from!PAXgene™!Blood!RNA!tubes,!and!RNA!

integrity!was!assessed!with!Aligent’s!BioAnalyzer.!Samples!with!RNA!integrity!<!7!were!

excluded!from!further!analysis.!We!normalized!gene!expression!of!each!target!gene!to!the!

housekeeping!gene!GUS.!We!transformed!fluorescent!values!to!estimate!relativeMfold!

expression!as!2^(MdeltaCT)!for!downstream!analyses!and!investigated!associations!with!

linear,!logistic,!and!ordered!logistic!regressions!in!R.!We!performed!preliminary!expression!

associations!using!the!Wilcoxon!rank!sum!tests.!

!

Gene(Expression(Model(Selection:!Given!that!gene!expression!is!continuous,!we!wanted!

to!find!a!cutpoint!that!would!best!determine!highMvsMlow!gene!expression!to!evaluate!its!

association!with!asthma.!We!estimated!the!maximum!a8posteriori!value!for!a!cutpoint!of!



! 76!

gene!expression!by!calculating!Bayes!Factors!across!the!continuum!of!SMAD2!gene!

expression!levels.!We!used!a!logistic!regression!model!including!relevant!covariates!as!a!

generative!model!for!likelihoods,!and!then!tested!the!hypothesis!that!expression!affects!the!

odds!of!disease,!vs.!the!null!hypothesis!of!no!expression!effect.!In!modeling!both!

hypotheses,!Bayes!Factors!provide!an!evidenceMbased!rationale!for!determining!the!model!

that!best!fits!the!model!of!association.!For!each!percentage!point!in!our!scale!of!normalized!

gene!expression,!we!evaluated!the!odds!ratio,!confidence!interval,!and!Bayes!Factor.!We!

chose!the!bestMfitting!model!to!differentiate!high!vs!low!expression!as!the!cutpoint!with!the!

maximum!Bayes!Factor.!Using!the!AIC!or!another!likelihoodMbased!statistic!is!expected!to!

give!analogous!results.!

!

Population(Attributable(Risk((PAR):!GALA!II!includes!a!large!number!of!genetic!and!

environmental!measures,!allowing!for!the!comparison!of!multiple!types!of!risk!factors.!In!

this!study!we!compared!the!PAR!for!SMAD2!expression!and!ancestry!to!previously!

identified!significant!risk!factors!that!were!also!identified!in!GALA!II.!For!ease!of!

comparison,!we!dichotomized!all!risk!factors!to!estimate!odds!ratios,!and!converted!these!

into!risk!ratios!based!on!a!disease!prevalence!of!20%.!While!this!is!a!single!point!estimate,!

this!represents!a!compromise!between!Mexican,!Puerto!Rican,!and!Other!Latino!prevalence!

estimates.!Varying!prevalence!would!be!expected!to!slightly!change!the!overall!estimates,!

but!less!so!the!proportional!differences.!Prevalence!of!the!risk!factor!was!measured!based!

on!the!observed!values!in!cases!and!controls!in!GALA!II!and!the!prevalence!numbers.!

Obesity!was!categorized!based!on!BMI,26!and!NO2!exposure!was!measured!from!monitoring!

towers!and!residential!history!from!the!first!three!years!of!life!(and!given!a!cutpoint!at!the!
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WHO!level!of!acceptable!exposure27).!We!also!compared!genotypes!at!the!17q21!locus,!

which!represents!the!strongest!and!best!replicated!GWAS!hit!for!asthma.!The!region!of!

interest!in!17q21!spans!multiple!genes,!and!the!top!genomeMwide!significant!marker!

changes!by!study,!but!often!includes!ORMDL3,!GSDMA,!GSDMB,!or!as!in!Galanter!et!al.,4!a!

marker!in!IKZF3.!Plotted!confidence!intervals!were!derived!from!the!confidence!intervals!in!

the!odds!ratios,!holding!other!measurements!constant.!

!

!

Supplementary(Results.(

!

Single(ancestry(admixture(mapping:!In!addition!to!the!likelihood!ratio!test!(see!Online!

Methods),!we!performed!a!metaManalysis!of!single!ancestry!admixture!mapping!across!

Latino!individuals!and!identified!two!genomeMwide!significant!peaks!for!European!ancestry!

(the!ancestry!with!the!most!power!across!all!Latino!groups!to!identify!associations)!at!9q22!

and!12p12!(see!Supplementary!Table!1).!!Both!of!these!peaks!failed!to!replicate!in!GALA!II!

(lowest!pMvalue!=!0.17!and!0.21,!respectively).!PMvalues!for!single!ancestries!approached!

genomeMwide!significance!at!18q12,!particularly!for!Native!American!ancestry.!

!

!

In!Silico!Fine(Mapping:(We!imputed!the!full!set!of!Phase!I!1000!Genomes!within!a!5Mb!

region!centered!on!the!18q21!locus!in!all!study!populations!separately!(12,870!total!

individuals:!7,606!Latino!American,!3,102!African!American,!2,088!European!American)!

using!1000!Genomes!haplotypes28!with!IMPUTE2.29!There!were!no!genomeMwide!
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significant!SNP!associations!with!asthma!within!the!region,!nor!any!locusMwide!significant!

variants!in!the!EVE!metaManalysis.!However,!rs59002988,!a!SNP!40Kb!upstream!of!SMAD2,!

met!locusMwide!significance!in!our!replication!study!(GALA!II,!OR!1.67,!95%!CI!1.32M2.1,!

p=1x10M5).!The!T!allele!of!this!SNP!is!rare!in!Europeans!(~2%),!elevated!in!eastern!Asians!

(16%),!and!common!(>10%)!in!GALA!II!individuals!who!are!homozygous!for!Native!

American!ancestry!at!this!SNP.!The!variant!appears!to!be!more!common!on!Native!

American!haplotypes!of!Puerto!Ricans!(minor!allele!frequency=15%,!Supplementary!Figure!

7),!and!to!have!an!increased!effect!size!(OR!2.2,!95%!CI!1.46M3.29,!p=2x10M4).!

!

!
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Table!S1.!Ancestry!associations!at!18q21,!centered!on!SMAD2.!Summary!characteristics!of!

admixture!mapping!findings!at!the!top!hit!in!the!chr18q21!region.!MetaManalysis!of!

discovery!and!replication!panels!was!performed!with!fixed!effects!assumptions!for!effect!

size!estimates,!and!Fisher’s!method!was!used!for!the!overall!likelihood!ratio!test!metaM

analysis.!

!
18q21( EVE( GALA(II((average)( Combined(

African(p( 0.42! 0.16! 0.27!

African(OR( 0.91!(0.73M1.14)! 1.05!(0.98M1.13)! 1.04!(0.97M1.11)!

( ! ! !European(p( 8.35x10M3! 5.83x10M3! 1.36X10M4!
European(OR( 0.86!(0.77M0.96)! 0.87!(0.78M0.96)! 0.86!(0.80M0.93)!

( ! ! !Native(
American(p( 1.63x10M3! 6.26x10M3! 9.15x10M5!
Native(
American(OR( 1.20!(1.07M1.34)! 1.09!(1.02M1.16)! 1.11!(1.05M1.17)!

( ! ! !Overall(p( 6.80x1056( 0.017((min(0.0053)( 2.6x1057(
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Table!S2.!Suggestive!regions!in!the!EVE!Latino!admixture!mapping!study,!as!defined!by!a!

minimum!pMvalue!<!0.001,!out!to!0.01!on!each!side.!Joint!refers!to!the!2Mdf!likelihood!ratio!

test!for!all!ancestries.!If!a!region!was!identified!in!multiple!ancestry!scans,!the!ancestry!

with!the!smallest!pMvalue!was!used!and!the!other!ancestry!information!is!given!in!

parentheses.!Coordinates!are!in!hg18.!

!

Associated!
Ancestry! Chr! Start! End! minimum!

p! Genes!in!Peak!

Native! 1! 20716967! 21885179! 3.48x10M4!

USP48,8HP1BP3,8
SH2D5,8CDA,8EIF4G3,8
RAP1GAP,8NBPF3,8
KIF17,8ECE1,8ALPL,8
PINK1,8
LOC100506801,8
DDOST,8FAM43B8

Joint! 1! 23046750! 24398722! 3.67x10M4! None8

Native!
(European)! 1! 218900613! 219027538! 8.97x10M4! MARC2,8MARK1,8

C1orf115,8MARC18

European! 1! 222843773! 223116557! 9.93x10M4! CNIH38

European! 1! 226684711! 227897382! 6.67x10M4!

DUSP5P,8ACTA1,8
NUP133,8RAB4A,8
TAF5L,8RNF187,8
CCSAP,8RHOU,8
ABCB10,8
HIST3H2BB,8URB2,8
MIR4666A,8
HIST3H2A,8SPHAR8

Joint! 2! 57596338! 58186261! 5.85x10M4! None8

Native! 3! 4015247! 4556887! 5.48x10M4! ITPR1,8SUMF1,8
SETMAR8

Joint! 3! 40060302! 41086194! 2.62x10M4! None8

Joint! 3! 95606242! 96292801! 4.09x10M4! None8

European! 4! 23534331! 23968123! 3.19x10M4! None8

African! 4! 48077300! 52634909! 4.05x10M4!

OCIAD2,8OCIAD1,8
SLC10A4,8ZAR1,8
SPATA18,8SGCB,8
CWH43,8SLAIN2,8
FRYL,8DCUN1D4,8
LRRC668

African! 5! 55678536! 57344829! 1.60x10M4!
SETD9,8GPBP1,8
MAP3K1,8ACTBL2,8
MIER38

Native! 5! 60547184! 61124131! 1.94x10M4! ZSWIM6,8C5orf648
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Native! 5! 62620986! 63502012! 6.70x10M4! HTR1A,8RNF1808

Joint! 5! 73710967! 74034961! 7.35x10M4! None8

Joint!(Native)! 5! 80682142! 81813860! 3.57x10M4!

ATG10,8ACOT12,8
SSBP2,8RPS23,8
ATP6AP1L8(CKMT2,8
LOC100131067,8
RASGRF2,8ZCCHC9)8

African!(Joint)! 5! 178998248! 180340825! 4.43x10M4!

FLT4,8CANX,8
C5orf60,8MAML1,8
OR2Y1,8LOC729678,8
RNF130,8LTC4S,8
LOC100859930,8
MAPK9,8CNOT6,8
RASGEF1C,8MGAT1,8
MIR1229,8C5orf45,8
CBY3,8SQSTM1,8
BTNL8,8SCGB3A1,8
ZFP62,8TBC1D9B,8
MGAT4B,8MIR340,8
GFPT28

Joint! 6! 90202813! 90311362! 8.35x10M4! None8

Joint! 7! 55129505! 55621885! 9.39x10M4! None8

Joint! 7! 117211513! 117400523! 3.64x10M4! None8

Joint! 7! 118344280! 118830576! 7.12x10M4! None8

Joint! 8! 28677088! 29253448! 4.64x10M4! None8

African! 8! 56410052! 56871124! 7.63x10M4! XKR4,8TGS1,8SBF1P1,8
TMEM688

Native! 8! 75215069! 75733856! 4.27x10M4!

FLJ39080,8
MIR5681A,8
MIR5681B,8JPH1,8
GDAP18

European! 9! 88694862! 90508804! 6.04x10M4!

LOC392364,8
LOC286238,8
CTSL1P8,8
LOC100506834,8
FAM75C2,8
LOC494127,8
FAM75C1,8C9orf170,8
LOC440173,8CTSL1,8
CTSL3,8CDK20,8GAS1,8
NXNL2,8SPIN1,8
FAM75E1,8DAPK18
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European!
(African,!Joint)! 9! 96446960! 100419073! 1.67x10M6!

LOC100507346,8
LOC100499484,8
TMOD1,8NCBP1,8
FOXE1,8MIR27B,8
HABP4,8MIR23B,8
C9orf3,8MIR2278,8
LOC158434,8
LOC158435,8TSTD2,8
GABBR2,8TRIM14,8
HIATL2,8ZNF782,8
FANCC,8LOC340508,8
ZNF510,8HSD17B3,8
LOC286359,8
C9orf174,8
LINC00092,8XPA,8
TDRD7,8ZNF367,8
LOC441454,8HEMGN,8
AAED1,8LOC441455,8
CORO2A,8NANS,8
ANP32B,8MIR24,8
LOC100132781,8
FAM22G,8CDC14B,8
MIR3074,8C9orf156,8
ERCC6L2,8
LINC00476,8CTSL2,8
SLC35D2,8PTCH1,8
TBC1D28(ANKS6,8
COL15A1,8FBP1,8
FBP2,8GALNT12)8

African! 9! 108352743! 108738041! 9.81x10M4! ZNF4628

Joint! 10! 51824523! 52200679! 9.38x10M4! None8

African! 10! 83972038! 84362276! 3.10x10M4! NRG38

Native! 10! 100396273! 101144430! 7.93x10M4! CNNM1,8HPSE28

European!
(Native)! 10! 102072780! 102969197! 7.40x10M4!

MIR608,8PDZD7,8
KAZALD1,8NDUFB8,8
SCD,8PAX2,8C10orf2,8
WNT8B,8TLX1,8
MRPL43,8
LINC00263,8SFXN3,8
PKD2L1,8HIF1AN,8
TLX1NB,8LZTS2,8
SEC31B,8FAM178A,8
SEMA4G8(ACTR1A,8
ARL3,8BTRC,8
C10orf76,8C10orf95,8
CUEDC2,8DPCD,8
ELOVL3,8FBXL15,8
FBXW4,8FGF8,8
FLJ41350,8GBF1,8
HPS6,8KCNIP2,8LBX1,8
LDB1,8
LOC100289509,8
LOC100505761,8
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MGEA5,8MIR146B,8
MIR3158,8NFKB2,8
NOLC1,8NPM3,8
PITX3,8POLL,8PPRC1,8
PSD,8SUFU,8
TMEM180,8TRIM8)8

European!
(Native)! 12! 21952123! 25112841! 1.67x10M5!

MIR920,8C12orf77,8
BCAT1,8ST8SIA1,8
CMAS,8ABCC9,8
ETNK1,8LINC00477,8
LRMP,8KIAA0528,8
SOX58

Joint! 12! 40400256! 41129450! 7.16x10M4! None8

African! 13! 67676298! 68122400! 7.40x10M4! None8

Joint! 14! 22233894! 23109399! 3.47x10M4! None8

Joint! 14! 23958088! 24164696! 8.49x10M4! None8

European!
(Native)! 16! 15398985! 16537826! 3.98x10M4!

MYH11,8KIAA0430,8
MPV17L,8NOMO3,8
NDE1,8FOPNL,8
MIR484,8C16orf45,8
PKD1P1,8ABCC6,8
MIR3179,8ABCC1,8
MIR31808

Joint! 17! 69510566! 71397400! 7.96x10M4! None8

Joint! 18! 6230094! 6746661! 7.96x10M4! None8

Native! 18! 38783085! 39434024! 4.92x10M4! SYT4,8RIT28

Joint!
(European,!
Native)1!

18! 40530823! 44316091! 1.71x10M4!

C18orf25,8SLC14A2,8
SLC14A1,8ATP5A1,8
HAUS1,8LOXHD1,8
RNF165,8MIR4319,8
SIGLEC15,8SETBP1,8
PSTPIP2,8EPG5,8
HDHD2,8SMAD2,8
TCEB3C,8TCEB3B,8
ZBTB7C,8TCEB3CL,8
IER3IP1,8KATNAL2,8
ST8SIA5,8
LOC100506888,8
PIAS28

Joint! 18! 49677502! 49903778! 9.83x10M4! None8

Joint! 22! 46376748! 46640808! 1.26x10M4! None8
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1!Peak!had!a!gap!in!joint!analysis!from!chr18:42207149M42218476,!where!the!pMvalues!
were!above!0.01!to!a!maximum!of!0.0128.!However!given!how!close!the!two!peaks!were,!
we!combined!them!into!a!single!entry!in!the!table.!
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Figure!S1.!Omnibus!tests!of!admixture!mapping!in!both!the!Latino!(left,!2Mdf)!and!AfricanM

American!(right,!1Mdf)!studies!in!the!discovery!sample!in!EVE!at!the!top!hit!on!18q21.!The!

metaManalysis!pMvalue!in!Latinos!is!6.8x10M6!while!in!AfricanMAmericans!it!is!0.7.!

!

!
!
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Figure!S2!(next!page).!Manhattan!plots!of!singleMancestry!admixture!mapping!for!African,!

European,!and!Native!American!ancestry,!respectively.!Peaks!on!chr9p31!and!chr12p12!

show!up!as!genomeMwide!significant!although!they!do!not!replicate!in!GALA!II.!Peaks!

encompassing!SMAD2!approach!genomeMwide!significance!in!both!the!EuropeanM!and!

Native!AmericanMspecific!admixture!mapping!metaManalyses.!!
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Figure!S2
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Figure!S3.!Qqplots!of!allelic!association!in!the!SMAD2!region!following!imputation!using!

1000!Genomes!Phase!I!haplotypes.!Top!panel!shows!the!qqplot!for!GALA!II!only,!bottom!

left!shows!GALA!II!and!EVE!Latinos,!and!bottom!right,!shows!the!QQplot!for!all!of!EVE!

(including!the!African!American!and!European!American!studies).!Associations!were!

performed!using!logistic!regression,!TDT,!or!mixed!model!analysis!(EMMAX)!depending!on!

study!design.!Association!testing!was!done!ignoring!the!effects!of!local!ancestry.!

!
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Figure!S4.!Comparisons!of!coefficients,!standard!errors,!and!pMvalues!(respectively)!from!

imputed!allelic!associations!in!GALA!II!with!and!without!local!ancestry.!In!each!comparison,!

the!estimates!for!variants!including!both!local!and!global!ancestry!are!plotted!on!the!xMaxis!

and!with!only!global!ancestry!on!the!yMaxis.!The!most!significant!sites!are!ranked!similarly!

in!either!model.!

!
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Figure!S5.!Locuszoom!plot!of!GALA!II!fine!mapping!using!1000!Genomes!haplotypes!for!

imputation!in!the!neighborhood!of!the!18q21!admixture!mapping!peak.!Of!all!the!study!

types,!only!GALA!II!provided!a!regionMwide!significant!allelic!association!at!rs59002988.!

!
!

!
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Figure!S6.!Minor!allele!frequencies!of!our!fine!mapping!top!hit,!rs59002988,!as!estimated!

from!all!individuals!in!GALA!II!with!homozygous!ancestry!at!the!locus.!Lines!represent!95%!

confidence!intervals.!Consistent!with!observations!that!the!SNP!has!elevated!allele!

frequencies!in!eastern!Asians!in!1000!Genomes,!we!observe!significantly!higher!allele!

frequencies!in!the!Native!American!haplotypes!than!in!the!other!two.!!

!
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Figure!S7.!qqplots!from!the!original!EVE!allelic!associations!for!the!chr18!region!around!

SMAD2!(+/M!1,000!SNPs,!although!may!be!missing)!split!by!population.!Unlike!the!

admixture!results,!there!is!limited!evidence!from!the!genotypes!themselves!for!variants!

associated!with!asthma,!aside!from!some!moderate!inflation!in!AfricanMAmericans.!No!

allelic!association!in!any!of!the!populations!has!a!pMvalue!lower!than!10M4.!

!
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!!

Figure!S8.!Distribution!of!selfMreported!exacerbation!scores!calculated!in!the!individuals!in!

GALA!II!with!measured!SMAD2!expression.!
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!

Figure!S9.!Evaluation!of!Odds!Ratios!and!cutpoints!along!the!spectrum!of!possible!values!

for!SMAD2!expression.!BestMfit!cutpoint!as!discussed!in!the!main!text!corresponds!to!the!

black!line.!
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Chapter(4:(The(Genetic(History(and(Structure(of(Mexican(Populations(

(joint!work!with!Dr.!Andres!MorenoMEstrada,!Stanford!University)!

Abstract:  

Mexico harbors one of the most culturally and ethnically diverse populations of the Americas, 

yet fine-scale patterns of genome-wide variation remain understudied. Here we present genomic 

data for 511 individuals from 20 indigenous populations, combined with 420 mestizo individuals 

from 11 cosmopolitan populations throughout Mexico. We found three major genetic 

components geographically restricted to Northern, Central/Southern, and Southeastern 

populations, with gene flow from Mayans in the Yucatan peninsula to Central Mexico, likely 

through a coastal route along the gulf. We implemented a novel ancestry-specific PCA analysis 

(ASPCA) to investigate sub-continental ancestry for genomic segments of inferred European and 

Native American origin derived from admixed genomes. We identified a hidden correlation with 

geography revealed in the indigenous segments of admixed Mexicans resembling a map of 

Mexico. We evaluate the biomedical implications of this hidden population structure on 

measures of lung function in Mexican and Mexican American children with asthma. We 

identified a significant association between ASPCA scores and lung function. Understanding 

fine-scale ancestry patterns is critical for the next generation of medical and population genetic 

studies. 

 

One Sentence Summary:  

Indigenous and cosmopolitan Mexican populations are highly structured and genomic patterns of 

variation mirror geography within Mexico, informing future medical genomic studies. 
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 Main Text:  

Understanding local patterns of human population structure is crucial to evaluate the geographic 

stratification of genetic variants. Recent studies have shown that the majority of human genomic 

variable sites are rare and exhibit little sharing among diverged populations (1). Moreover, 

because rare variants tend to be enriched for potentially functional mutations, their 

characterization is likely to lead to novel disease associations affecting local populations. 

Previous genome-wide surveys have provided insight into global (2, 3) and continental patterns 

of population structure across Africa (4), Europe (5), and the Americas (6), among others. 

However, regional and local genomic surveys are needed as a first step towards the discovery of 

geographically restricted variation, especially in those regions where populations are likely to be 

highly structured (7). In the Americas, the founding population size was likely very small 

(perhaps as few as several hundred people (8)) and, therefore, indigenous Americans show very 

low genetic diversity within groups (the lowest of any continental population) yet high 

divergence among groups (9). As a result, present day indigenous populations (and individuals 

with some indigenous ancestry) may harbor local private alleles rare or absent elsewhere, 

including functional and medically relevant variants (10, 11).  

Here we report local patterns of variation for 511 Native Mexican individuals from 20 

indigenous groups covering most geographic regions across Mexico based on nearly 1 million 

genome-wide autosomal SNPs. By combining with genotype data from 500 additional mestizo 

individuals sampled in cosmopolitan areas of 11 different Mexican states as well as Mexican 

Americans, we evaluate the impact of sub-continental ancestry into the admixed genomes of 

cosmopolitan populations within Mexico and US-based Mexican communities. We also 

demonstrate the biomedical implications of this fine-scale geographic structure by identifying an 
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association between values of sub-continental ancestry and estimates of lung function in 456 

Mexican child-parent trios from the Mexico City Childhood Asthma Study (MCCAS)(12) and 

see consistent effects in an independent study of 219 child-parent trios from Mexico City and the 

San Francisco Bay Area, which were part of the Genetics of Asthma in Latino Americans 

(GALA I) Study (13). 

 

Native Mexican Diversity 

Recent continent-wide surveys of Native American genetic diversity have described a genetic 

continuity from Mesoamerica southwards (6, 14, 15), pointing to present day Mexico as a 

geographic area of transition where a major breakpoint of diversity likely took place during the 

settlement of the Americas. Native Mexicans show closer genetic distances from the ancestral 

population of indigenous Americans and larger effective population sizes compared to South 

American natives (14), suggesting that they hold one of the major sources of diversity at a 

continental scale. Since the pioneering work by Lisker and others using classical markers (16, 

17), significant efforts have been made to characterize native Mexican diversity, mostly 

analyzing either single-locus markers of uniparental transmission(15, 18), or limited autosomal 

loci (19, 20). By increasing both marker density across the genome and population sampling, we 

are able to get a much finer resolution of population relationships across indigenous Mexican 

groups.  

We used principal components analysis (PCA) to summarize the major axes of genetic variation 

in Mexicans after removing individuals with >10% of European admixture. As expected, PC1 

and PC2 separate Africans and Europeans from Native Mexicans, but PC3 differentiates 

indigenous populations within Mexico following a clear northwest-southeast cline (Fig. 1A). A 
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total of 0.89% of the variation is explained by PC3, nearly 3 times as much as the variation 

accounted by the north-south axis of differentiation within Europe (0.30%, according to (5)). The 

northernmost (Seri) and southernmost (Lacandon) populations define the extremes of the 

distribution within sampled Native Mexicans. Higher PCs show well-defined population clusters, 

indicating high levels of divergence between groups (Fig. S1).  

An important feature of Native American population history is the strong bottleneck associated 

with the peopling of the continent, followed by population expansions. To evaluate whether this 

translates into different signatures among contemporary Native Mexicans, we compared 

observed cumulative runs of homozygosity (cROH) along chromosome 1 against simulated data 

using a rejection algorithm framework in REJECTOR (21) (see Methods), allowing us to 

estimate effective population sizes during bottleneck and current Ne (Fig. S2 and S3). For 

instance, we estimate that as few as 71 individuals accounted for the deme size of the Seri 

population during the bottleneck, while its current Ne is about 1200 individuals. The Seri 

constitute one of the most historically isolated groups in present day Mexico. In contrast, larger 

ethnic groups, such as the Maya, have expanded from a couple of hundred to more than 3,500 

individuals (Fig. 1B and S2). Interestingly, the estimated Ne during the bottleneck is comparable 

across all studied populations and rather low: 178 on average, consistent with previous estimates 

on the number of founders of the Americas (8). 

To measure population differentiation among extant groups we computed overall pairwise FST 

combining all autosomal sites (Fig. 1C). The highest value was observed between Seri and 

Lacandon (0.14), followed by Tojolabal (0.12) and Triqui (0.10). Both Seri and Lacandon also 

showed elevated FST values across all other populations, while lowest FST values were observed 

among groups from central Mexico and within the Yucatan peninsula (Fig. 1C). To evaluate the 
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impact of population isolation in genetic similarity, we measured the total length of segments 

inferred to be identical by descent (IBD) among all possible pairs of individuals using 

GERMLINE (22) with a minimum threshold of 5cM (see Methods). We visualized both 

between- and within-population connections binned into nine levels of relatedness (Figure S4). 

Figure 1D shows the approximate location of sampled populations and their connections among 

individuals sharing segments of total IBD above 20cM (corresponding to the genomic equivalent 

of 3rd cousins or closer relatives). We observed high within-population IBD levels compared to 

between-populations, indicating that after splitting, indigenous populations have largely 

remained isolated. Some exceptions include either Nahua (e.g., NAJ, NXP, NAG) or Mayan 

(e.g., MYA.C, MYA.Q, MYA.Y) populations, both of which are some of the most populous 

indigenous groups in Mexico, resulting in a lower probability of observing within-population 

connections in our sample. Two groups of closely related populations show higher number of 

between-population connections: Totonac and Nahua from Puebla (NXP and NFM), and Tzotzil, 

Tojolabal, and Lacandon from Chiapas (Fig. 1D).  

In order to formally evaluate the probability of gene flow between populations after splitting, we 

used TreeMix (23) to construct a maximum likelihood tree allowing for a fixed number of 

migration events between populations. Figure 1E shows the splitting pattern without migration, 

which recapitulates the north-south gradient of differentiation observed in our previous analyses 

with Seri and Lacandon showing the highest levels of drift from the ancestral population, 

followed by Tojolabal. Shared clades denote clear regional relationships, such as all northern 

populations branching out from the same initial split at the root, followed by individual 

population splits and two major clades: one grouping all populations from the southern states of 

Guerrero and Oaxaca (Triqui, Zapotec south, Zapotec north, Mazatec, and Nahua Guerrero), and 
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the other all six Mayan speaking populations from the state of Chiapas and the Yucatan 

peninsula (Tzotzil, Tojolabal, Lacandon, Maya Campeche, Maya Quintana Roo, and Maya 

Yucatan). When running TreeMix allowing for migration edges in the tree, the matrix of 

residuals is used to infer pairs of populations with the poorest fit, thus becoming candidates for 

testing a better fit involving migration between them. Recent admixture can bias these 

estimations so we removed all indigenous samples with more than 2% of European ancestry as 

inferred by ADMIXTURE (24). We focused on the maximum likelihood trees for the top three 

events of migration (m=1 to 3) inferred from the data (Fig. S5). Interestingly, the first migration 

inference (m=1) involves gene flow from the Maya in Yucatan (MYA.Y) to the node of the 

Totonac (TOT), whose ancestors are believed to have built the large pre-Columbian city of El 

Tajin, located near the coast of the Gulf of Mexico, revealing a possible coastal corridor of gene 

flux between the Yucatan Peninsula and Central/Northern Mexico. The strongest migration rate 

(consistently greater than 50%) was detected between two closely related Nahua populations 

(NXP and NFM) both at m=2 and m=3. In the latter case an additional gene flow event was 

inferred from the Totonac to the neighboring Nahua in Puebla (NXP), consistent with the IBD 

patterns observed in Fig. 1D.  

It is noteworthy that the different Nahua groups, while unified by historically speaking the same 

language, stem from different nodes in the tree. For example, NAJ from Jalisco is separated from 

the node giving rise to NXP and NFM (both from Puebla); and NAG from Guerrero is grouped 

together with Zapotec and other groups from southern Mexico. This translates into a lack of a 

single ancestry relating all the studied Nahua groups (as opposed to the Mayan groups, for 

instance), suggesting that current groups identified as Nahua are likely the result of linguistic and 
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cultural assimilation over genetically distinct groups, probably as a result of the extended 

domination of the Nahua-speaking Aztec empire in pre-Columbian times. 

To identify loci showing extreme allele frequency gradients given the geographic origin of the 

individuals, we applied the SPA method(25) to the combined set of Native Mexican populations 

using their known coordinates (see Methods). Incorporating a model to infer the logistic slope of 

allele frequencies as a function of geographic positioning, SPA was used to scan the genome for 

SNPs that show steep allele frequency changes, which can result from the impact of recent 

positive selection.  A total of 50 candidate regions were identified within the top 0.1% of the 

SPA score distribution (Table S3). SNPs in the MHC region have the most extreme allele 

frequency slopes, a region known to have been targeted by selection (26-28). Other immunity 

genes outside the MHC region are also among the top regions, including PSMD9 and TNFAIP3, 

followed by PEAK1 and PTPRD, involved in cell growth. Extreme values were also observed in 

the MFN2 gene region, which may play a role in the pathophysiology of obesity (29), as well as 

in HBS1L, which has been identified as a quantitative trait locus (QTL) controlling fetal 

hemoglobin level(30). When looking at the geographic distribution of the genotypes from the 

best SNP in the HBS1L region (rs1014021, see Fig. S6), we observed that the gradient is driven 

by southern Mexican populations showing high derived allele frequencies (60% on average). The 

full scan of SPA scores is available in Figure S7, where SNPs with extreme values correspond to 

potential regions under selection.  

 

Mexican population substructure 

In order to characterize the structure of indigenous populations and its impact in the admixture 

patterns of cosmopolitan Mexican samples we used ADMIXTURE, an unsupservised mixture 
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model algorithm, to analyze the combined dataset of continental source populations (including 

our 20 native Mexican populations, 16 European populations, and 50 West African Yorubas), 

and 420 admixed individuals from 11 Mexican states as well as 49 Mexican Americans from the 

Los Angeles area (Fig. 2A and 2B). At K=3, each set of reference parental groups gets its own 

cluster, with the exception of some Native Mexican groups such as Nahua and Maya, previously 

documented to have considerable proportions of European admixture (9, 31). Across the 

Mexican cosmopolitan samples we observe a clear gradient of increase Native American, and 

decreasing European, ancestry moving southwards, consistent with previous genome-wide 

reports of Mexican admixture patterns (32). African ancestry proportions are low on average 

(4.9%) and remain similar across most regions with the exception of the coastal states of 

Veracruz and Guerrero. Both states are known to have had increased slave trade activity (33), 

and some individuals from these states today show considerably higher proportions of African 

ancestry (up to 34%), also consistent with previous analyses of a subset of these samples at K=3 

(32). However more in-depth analyses of ancestry were not possible in such initial screening as a 

single Native Mexican group, the Zapotec, was used as potential source population, precluding 

any further detection of sub-continental ancestry.  

With a larger reference panel of 20 native populations we observe more detailed substructure at 

higher K values. We explored clustering patterns from K=2 through 20 (Fig. S8) and focus on 

K=9 for showing the lowest cross-validation error across runs (Fig. S9). At this level the Native 

cluster breaks down into six separate Native American components (Fig. 2B). Three of them are 

restricted to isolated populations (Seri, Lacandon, and Tojolabal), showing little sharing with 

neighboring indigenous groups. The other three show a wider but geographically well-defined 

distribution. First, there is a northern component represented by Tarahumara, Tepehuano, and 
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Huichol, which gradually decreases southwards until is virtually absent in Oaxaca and beyond. 

The second one is represented by southern populations from Oaxaca including Triqui, Zapotec, 

and Mazatec, reaching 99.9% in most Triqui individuals, and gradually decreasing northwards. 

In contrast there is a sudden disruption moving towards the Yucatan peninsula, where this 

southern component is limited to account for an average of 20% of the genome as it is mostly 

replaced by a local Mayan component, the third major component observed (Fig. 2B, bottom 

panel). Interestingly, this Mayan component is also present at ~10-20% in central native 

populations, but not in southern Oaxaca, supporting the hypothesis of a coastal or maritime route 

of gene flow between the Yucatan peninsula and central Mexico bypassing the mountain range 

of the Tehuantepec isthmus.  

When looking at the distribution of these native components in the admixed genomes of 

cosmopolitan samples we observed a striking correlation with the patterns described before. 

Sonora and neighboring northern states show the highest average proportions (15%) of the 

northern native component (light blue in Fig 2B, bottom), while only traces are detected in 

Oaxaca and the Yucatan peninsula. Conversely, the southern native component is the most 

prevalent across states reaching maximum values in Oaxaca and decreasing northwards. 

Cosmopolitan samples from the Yucatan peninsula are the only ones whose Native American 

fraction of the genome is dominated by the Mayan component, while all other states show 

smaller and decreasing proportions northwards. Likewise, Mayan-related local components, 

Tojolabal and Lacandon, are detected above 1% exclusively among individuals from the 

neighboring states of the Yucatan peninsula. In contrast to population samples from particular 

states, Mexican Americans sampled in Los Angeles (MXL) do not share a homogeneous pattern, 

denoting their diverse array of origins within Mexico. Additionally, we detected substructure 
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within the European component at K=9 with a clear gradient of differentiation between northern 

European and southern Mediterranean populations, in agreement with previous analyses (5, 34). 

In all Mexican samples, the majority of its European ancestry comes from the southern 

Mediterranean component, consistent with historical records about the admixture process 

between Spanish Europeans and native Mexicans. The map in Figure 2A summarizes individual 

admixture proportions into population averages for each continental ancestry at K=3 and each 

native component at K=9. For instance, Oaxaca and Campeche share similar continental patterns, 

showing the highest averages of native ancestry at K=3 (85% and 80%, respectively). However, 

when broken down at K=9, we unveil that their native proportion is composed by completely 

different profiles, dominated by their corresponding local native components.  

In order to formally test whether a correlation exists between the admixture proportions of each 

native component and geographic distance between samples, we ran a linear regression using 

individual values against their sampling location along a 45o NW-SE axis along the length of the 

country. Figure 2C shows the geographic distribution of the six Native American components 

and the correlation with geographic location of cosmopolitan samples, all of which were highly 

associated with geography (joint Kruskal-Wallis test for latitude and longitude, all components p 

<10-6). Using Kriging interpolation we have also estimated the continuous geographic 

distribution of each native component across the full set of cosmopolitan populations throughout 

Mexico (Fig. S10).  

 

Sub-continental origin of haplotypes measured from admixed genomes 

The level of resolution that can be achieved in assessing admixed genomes’ ancestry is largely 

dependent of the reference panel used to define potential source haplotypes. Most genomic 
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studies involving Mexican admixed genomes have made use of continental-level ancestral 

populations (32) while more recent ones have explored sub-continental ancestry to a limited 

extent, such as (35), or (36), who used three Mexican and five South American indigenous 

populations to evaluate a large cohort of Mexican samples. The Native components of the 

Mexican individuals all clustered as a single group next to the native Mexican reference 

populations.  

We used our extensive reference panel of ancestral populations and novel statistical methods to 

explore the ancestral components of admixed Mexican genomes at a finer scale. First, we 

estimate local ancestry along the genome for each individual using PCADMIX, a PCA-based 

method supporting phased haplotype data and three-way admixture deconvolution (37, 38). Then 

we consider only those sites within genomic segments of inferred European, African or Native 

American ancestry and mask the rest of the genome to perform PCA with sub-continental 

reference panels (Fig. S11) In order to handle the large amount of missing data resulting from 

masking ancestry-specific segments across the genome, we implemented a novel Ancestry-

Specific PCA (ASPCA) by adapting the subspace PCA algorithm introduced by (39) to handle 

phased haplotype data (see Methods). Previous implementations have adapted the same 

algorithm to genotype data (36), thus limiting the analysis to loci of homozygous ancestry. We 

applied ASPCA to admixed individuals with more than 25% of Native American or European 

ancestry (due to the lower amount of data from African segments we did not run ASPCA for the 

African component). Figure 3A shows the ASPCA of each Mexican individual’s European 

haplotypes in the context of source European populations (data from (40, 41)), where they 

overlay over Southwest European samples, mostly from the Iberian Peninsula. The distribution 

of ASPCA values extends to a few outliers closer to Central European and Italian samples. 
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Notably, no European haplotypes from Mexican individuals fall within the Basque cluster, who 

group separately from the rest of Iberian samples. The Mexican population as a whole primarily 

has received ancestry then from Iberians, consistent with the primary Spanish colonization in 

Mexico. Figure 3B in contrast shows Mexican individuals’ Native American haplotypes 

analyzed together with the Native Mexican reference panel. PCA space is dominated by the 

highly endogamous Native populations noted in prior analyses, but when plotting the ASPCA 

values for the admixed individuals only, we discover a strong correlation between Native 

ancestry and geography within Mexico (Fig. 3C). Here ASPC1 represents a geographic gradient 

from west to east and ASPC2 one from north to south, where the distribution of haplotypes 

highly resembles a geographic map of Mexico. Three main clusters are identified: that of 

individuals sampled in northern states, the one from central/southern states, and the one 

composed by individuals from the Yucatan peninsula. There is a gradual overlap between the 

first and second cluster of haplotypes, while the separation between the second and the third is 

much more abrupt, in agreement with the observed distribution of the Native components as 

described above. These results demonstrate that the structure in the admixed individuals is 

largely determined by fine-scale Native American ancestry. The correlation between ASPC 

values and geography is striking and is remarkable that it is uncovered only from the Native 

segments of cosmopolitan Mexican individuals. 

To validate our results, we ran a supervised clustering analysis of Native segments from the 

admixed Mexican genomes using FRAPPE (42) at K=6 (Fig. S12) and confirmed that, on 

average, Mexicans sampled from different regions of Mexico derive differential ancestral 

contributions from each of the Native American components (see Methods).  
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Biomedical implications of sub-continental ancestry 

We investigated whether the hidden population structure unveiled with ASPCA would also have 

biomedical relevance via investigating associations with physiological phenotypes. We focused 

on lung function testing via spirometry. Presently, lung function testing is one of the few clinical 

applications where self-reported race/ethnicity is used in interpreting a “normal” range and 

classifying disease and severity (43, 44).  

We used physiologic measures of lung function among Mexican and Mexican American children 

with asthma from two independent studies: The Genetics of Asthma in Latino Americans 

(GALA I) study (13, 45) here comprising 68 probands from Mexico City (MX) and 120 Mexican 

American probands from the San Francisco Bay Area (SF), genotyped on the Affymetrix 6.0 

array. The Mexico City Children’s Asthma Study (12, 46) (MCCAS) comprised 492 probands all 

from Mexico City and was genotyped on the Illumina 550K. We focused on these two studies as 

they are trio-based ensuring accurate long-range haplotypic inference. We performed ASPCA 

separately for each study using our Native Mexican reference panel given the heterogeneity 

between the two genotyping platforms and to minimize potential distortions in principal 

components from unequal population sizes (47) (Fig S13). Given that ASPCA is unitless we then 

normalized each set of ASPC scores for comparison across studies, and used fixed effects meta-

analysis where appropriate to estimate effect sizes and confidence intervals for the two studies 

combined.  

First, as GALA I included individuals from two sampling locations we tested for detectable 

substructure in the ASPCA values to see if we could predict recruitment location merely from 

ASPCA values. Figure S13 (bottom) shows the ROC curve for the logistic regression classifying 

MX vs. SF cases based on their ASPCA values of Native American ancestry, with an AUC of 
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80%. Incorporating these values into a fuller model adjusting for overall global ancestry 

proportions (here both African and Native American), both ASPCs were significant: ASPC1 OR 

per SD: 0.44 (95% CI 0.22-0.68), p=3.8x10-4, ASPC2 OR per SD: 0.52 (95% CI 1.03-2.75), 

p=0.039. The ASPCs defined similar axes as in the population structure analyses (Fig. S13). We 

observe that the region of Native ancestry most associated with immigration to the San Francisco 

Bay Area is in the Northwest of Mexico (joint ASPC likelihood ratio test p=6.4x10-5), closest to 

the border with the USA, and independent of overall continental ancestry proportions. 

With only proband cases in both studies we looked for associations between ASPC values and 

measures of lung function. We focused on forced expiratory volume in the first second (FEV1), a 

standard measure of lung function used in clinical settings, as it is known to have ethnic 

heterogeneity [Hankinson 1996] and has previously been associated with ancestry (43). We used 

robust linear models (see Methods) to be less sensitive to outliers in our ASPC projections. We 

stratified by study and looked for associations with percent predicted values (44) to account for 

age, sex and height, while separately adjusting for overall ancestry proportions to minimize 

confounding. However it is important to note that these values are specific to children with 

asthma as neither study measured lung function in healthy controls.  

We observed a significant association between FEV1 and ASPC1, with a combined p-value of 

0.0045 (-2.2% decrease per 1 SD, 95% CI (-3.74 - -0.69)), corresponding to the East-West 

component observed previously. MCCAS was significant on its own, while GALA I had a 

p=0.06, albeit with a much reduced sample size. The normalized association was remarkably 

homogeneous between GALA I and MCCAS given the differences in genotype platform, 

sampling locations, timing, and recruitment criteria (Fig. 4A). ASPC2, on the other hand, did not 

have a significant association with FEV1. The combined results here indicate that sub-continental 
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ancestry as measured by ASPCA is important for characterizing clinical measurements, even 

independent of the overall admixture proportions.  

To put the results in geographic context, we used the association with ASPC1 to infer expected 

values of FEV1 across the mestizo samples from different states to estimate the expected change 

in lung function moving west to east across Mexico. Given the relationship with observed 

ASPCA values in GALA I we used extrapolated normalized values by state to infer the expected 

amount of change in FEV1 for children with asthma in each state. We plot the means by state and 

predicted confidence intervals in Figure 4B based on the association observed in GALA I and 

MCCAS. Consistent with studies involving children with asthma we see expected values slightly 

below 100%. While each has fairly wide confidence intervals, the overall association results in 

an expected 7.3% average decrease in lung function between Sonora to the west and Yucatan to 

the east. This can have high downstream effects when diseases like asthma and chronic 

obstructive pulmonary disease (COPD) are partially diagnosed based on specific spirometric 

values.  

A similar, significant association was previously demonstrated with African ancestry in African 

Americans (43). Using that same model the observed decrease of 7.3% in FEV1 would be 

associated with a 33% increase in African ancestry in African Americans. In addition, lung 

function and FEV1 values are known to decline with age. The 7.3% change is similar to that of a 

30 year old Mexican American individual of average height aging 10.3 years if male or 11.8 

years if female (44). Given that specific percent predicted thresholds are used as part of the 

diagnostic criteria of diseases such as asthma and COPD, individual sub-continental ancestry can 

potentially influence diagnoses despite population-specific reference equations. 
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Haplotype structure and haplotype sharing 

Different population genetic profiles are known to influence the outcome of genetic association 

studies and the replication of significant GWAS hits across worldwide populations. Part of that 

variation is explained by the ancestry composition of each individual and the geographic 

stratification of the population. Therefore, the use of catalogs of human genetic variation 

ascertained in certain continental reference populations, may not be sufficient when the target 

population’s ancestry is not fully represented in such panels. To assess to which extent 

continental populations from publicly available panels are capturing the haplotype variation 

found in cosmopolitan Mexican populations, we performed a genome-wide haplotype sharing 

analysis based on 100 Kb sliding windows. Figure 4C shows the proportion of haplotypes shared 

between the combined set of mestizo samples and different combinations of HapMap continental 

populations before and after including a combined set of Native American samples (see 

Methods). Any of the continental source populations alone (YRI, CEU, NAT) shares a limited 

proportion of haplotypes with mestizo samples (21.6%, 59.3%, and 78.6%, respectively). 

Although Mexican-American samples (MXL) were included in both the HapMap and 1000 

Genomes catalogs, their average sharing only goes up to 81.2% and to 90.5% when combining 

MXL with all continental HapMap populations. It is only after adding Native American samples 

to this previous combination that nearly 100% of haplotypes are shared, maximizing the chances 

of capturing most of the variation using our catalogue of Mexican-specific variation. 

Continental ancestry also varies across the genome and the relative proportion of African, 

European, and Native American ancestry at a given locus may affect the replication success of 

associations reported in any of the ancestral populations. By providing a local ancestry map 

averaging the proportions of European versus Native ancestry in the combined Mexican sample 
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(Fig. S14) we scan the genome for local ancestry fluctuations that may affect power in genetic 

studies. While we observed no genome-wide significant deviations in local ancestry patterns, the 

natural fluctuations in local ancestry can impact medical studies. For instance, one of the genes 

associated with age-related macular degeneration in populations of European descent (ARMS2) is 

located in one of the strongest peaks of Native American ancestry enrichment (Fig. S14-15), 

where up to 66% of the sampled Mexican haplotypes occur in a Native American background. 

Early age-related macular degeneration has been reported to have higher prevalence among 

Hispanics (48), but its local ancestry profile may limit the possibility of replicating the associated 

variants reported in European individuals while simultaneously increasing the possibility for 

discovering new population-specific risk variants. 

Much effort has been invested in detecting common genetic variants associated with complex 

disease and replicating associations across populations. But functional and medically relevant 

variation may be rare and, thus, population-specific so without detailed knowledge about the 

geographic stratification of genetic variation, false-positive associations and lack of replication 

are likely to dominate the outcome of genetic studies in uncharacterized populations. Population 

structure as determined by cryptic relatedness is expected to be elevated in the populations 

sampled here, potentially complicating genetic association studies. However it also suggests that 

methods directly harnessing that structure, such as identity-by-descent mapping (22, 49, 50) may 

prove fruitful. 

 

Conclusions 

Here we have reported hitherto undetected fine-scale patterns of population substructure within 

Mexico and refined the genetic picture of relationships among indigenous groups. We 
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demonstrate that such structure has been shaped by extreme isolation between ancestral 

populations and that it directly impacts the genetic composition of admixed individuals from the 

same regions. Furthermore, our work demonstrates that fine-scale population structure going 

back centuries is not merely a property of isolated or rural indigenous communities. Rather, 

individuals from large cosmopolitan cities reflect the underlying genetic ancestry of local native 

populations, arguing for a strong relationship between the indigenous and the Mexican mestizo 

population and, therefore, against any social segregation between them. Most importantly, this 

has relevant biomedical implications both within Mexico and U.S.-based Mexican communities, 

as the observed association between genes, geography, and physiological phenotypes indicates 

the importance of understanding not just overall ethnicity but also the role of fine-scale patterns 

of ancestry in complex traits and disease diagnosis. 
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Fig. 1. Genetic structure of Native Mexican populations. (A) Principal component analysis of 

Native Mexicans with HapMap YRI and CEU samples color coded by geographic regions. 

Population labels as detailed in Table S1. (B) Simulated posterior distribution of effective 

population sizes in the Seri and the Maya based on cumulative runs of homozygosity (cROH), 

generated by sampling from a uniform distribution of Ne and keeping simulated parameters 

within 20% of the observed cROH with REJECTOR. Estimates are given for the contemporary 

deme size and for that during the bottleneck of Native Americans. Parameters for the other 

studied populations are available in Fig. S2 and S3. (C) Pairwise FST values among Native 

Mexican populations ordered geographically. (D) Pairwise matches between individuals sharing 

more than 20 cM of the genome as measured by the total of segments identical-by-descent 
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(IBD). Each line denotes a connection between two individuals and each dot represents one 

individual, with positions on the map indicating approximate sampling locations. The pattern 

across different populations shows high within-population sharing compared to between-

populations. Results from the full range of IBD thresholds are shown in Fig. S4. (E) TreeMix 

graph representing population splitting patterns of the 20 Native Mexican groups studied. The 

length of the branch is proportional to the drift of each population. African, European, and Asian 

samples were used as outgroups to root the tree (Fig. S5), but a maximum likelihood tree with 

only Native Mexicans is shown in order to get a closer view at their drift parameter differences. 
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Fig. 2. Mexican population structure. (A) Map showing geographic locations of sampled 

populations and admixture average proportions. Population codes are detailed in Table S1. Dots 
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correspond to Native Mexican populations color-coded according to K=9 clusters identified in B 

(bottom), and shaded areas are states in which cosmopolitan populations were sampled. Pie 

charts summarize per-state average proportions of cosmopolitan samples at K=3 (European in 

red, West African in green, and Native American in gray). For each state, bars show the total 

Native American ancestry decomposed into average proportions of the native subcomponents 

identified at K=9. (B) Global ancestry proportions at K=3 (top) and K=9 (bottom) estimated with 

ADMIXTURE for the combined dataset of 1,282 individuals including African, European, 

Native Mexican, and cosmopolitan Mexican samples (detailed in Table S1). From left to right 

Mexican populations are displayed North-to-South. (C) Interpolation maps showing the spatial 

distribution of the six native components identified at K=9. Contour intensities are proportional 

to ADMIXTURE values observed in Native Mexican samples with crosses indicating sampling 

locations. For each native cluster, scatter plots with linear fits show ADMIXTURE values 

observed in cosmopolitan samples versus a distance metric summarizing latitude and longitude 

(long axis) for the eleven sampled states. Within each plot from left to right: Yucatan, 

Campeche, Oaxaca, Veracruz, Guerrero, Tamaulipas, Guanajuato, Zacatecas, Jalisco, Durango, 

and Sonora. Values are adjusted relative to the total Native American ancestry of each individual 

(see Methods for details). 

!

!

!
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Fig. 3. Sub-continental ancestry of admixed Mexican genomes. (A) Ancestry-specific PCA 

(ASPCA) of European segments from cosmopolitan Mexican samples (black circles) together 

with our reference panel of 1,387 European individuals from POPRES (labeled by country code) 

plus 55 additional samples from Spain (yellow labels). Each black circle represents the combined 

set of Mexican haplotypes called European along the haploid genome of each sample with >25% 

of European ancestry. Axes were rotated 16 degrees counterclockwise to approximate the 

geographic orientation of population samples over Europe. Inset map shows POPRES countries 

of origin color-coded by region (areas not sampled in gray and Switzerland in intermediate shade 

of green to denote shared membership with EUR W, EUR C, and EUR S). Population codes and 

regions within Europe are detailed in Table S1. (B) ASPCA analysis of Native American 

segments from Mexican cosmopolitan samples (colored circles) together with our dataset of 20 
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indigenous Mexican populations (labeled by population code). Samples with >10% of non-native 

admixture were excluded from the reference panel as well as population outliers such as Seri, 

Lacandon, and Tojolabal. (C) Zoomed detail of the distribution of the Native American fraction 

of cosmopolitan samples throughout Mexico. Native ancestral populations were used to define 

PCA space (prefixed by NAT) but removed from the background to highlight the sub-continental 

origin of admixed genomes (prefixed by MEX). Each circle represents the combined set of 

haplotypes called Native American along the haploid genome of each sample with >25% of 

Native American ancestry. Inset map shows the geographic origin of cosmopolitan samples per 

state color-coded by region. All participants were required to have 4 grandparents born in the 

same state (see Methods for details).  

!
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Fig. 4. Biomedical implications of the genetic substructure of Mexican populations. (A) 

Coefficients and 95% confidence intervals for associations between ASPC1 and lung function 

measures (FEV1) from Mexican participants of the Genetics of Asthma in Latino Americans 

(GALA I) study, and the Mexico City Childhood Asthma Study (MCCAS), as well as both 

studies combined (see Methods for details). (B) Extrapolations based on normalized ASPC1 

values of estimated FEV1 values by state, using the regression model in Fig. S13 (C) Genome-

wide proportions of haplotypes shared between the combined sample of Mexican mestizo 

populations and different continental populations in autosomal chromosomes. The “NatMex” 

panel here consists of 71 individuals from 3 indigenous groups, one from each of the major 

genetic components identified in Fig. 2. Haplotype sharing analysis was performed using the 

subset of Mexican samples with the largest intersection of genotyped SNPs (785,663) with 
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HapMap3 populations, which included 312 Mexican mestizos from diverse cosmopolitan 

populations (see Methods for details). 

!
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Chapter 5: Supplementary Materials for 

The Genetic History and Structure of Mexican Populations 

Materials and Methods 

 

Sample collection and genotyping 

Institutional review board (IRB) approval for this project was obtained from Stanford University 

(File: NOT03H02) for obtaining and analyzing de-identified DNA specimens from participating 

institutions. Written informed consent was obtained from all participants and research/ethics 

approval and permits were obtained from the following institutions: the University of 

Guadalajara, the National Institute of Medical Sciences and Nutrition Salvador Zubirán 

(INNSZ), and the National Institute of Genomic Medicine (INMEGEN). Samples were collected 

over several years by researchers from these institutions under protocols consistent with 

biomedical and/or population genetics studies aimed at characterizing the genetic diversity of 

Mexican populations. Sampling locations and summary data for the populations included in the 

study are detailed in Table S1. A total of 362 samples from 15 indigenous populations were 

genotyped at the University of California, San Francisco (UCSF) by using Affymetrix 6.0 arrays 

and 466 samples were genotyped at the National Institute of Genomic Medicine (INMEGEN) by 
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using a combination of Affymetrix 500K and Illumina 550 arrays. Samples genotyped at 

INMEGEN include 370 cosmopolitan samples from 10 different Mexican states and 96 samples 

from three indigenous populations, which were collected as part of the Mexican Genomic 

Diversity Project (MGDP)(1). All participants were required to have 4 grandparents born in the 

same state. Overall, this combined genotyping effort generated SNP array data for 828 samples 

from 28 different Mexican populations. All samples were genotyped from genomic DNA 

extracted from blood.  

 

Data curation 

Curation of Native Mexican samples: a total of 458 samples were initially genotyped (362 by 

using Affymetrix 6.0 arrays and 96 by using Affymetrix 500K arrays). The number of markers 

included in the Affymetrix 6.0 SNP array determined our starting SNP density before 

intersecting with data from additional arrays. A total of 909,622 SNPs were successfully 

genotyped. We removed 2,919 SNPs with duplicate marker names, 1,217 SNPs with no physical 

position in the NCBI Build 36.1 human reference sequence (hg18 assembly), and 8,087 SNPs 

failing Hardy-Weinberg equilibrium at 1x10-5. We restricted to autosomal SNPs and samples 

with more than 90% of genotyping rate. We removed 3 samples due to evidence of being 

duplicates of another sample. As part of the recruiting strategy, 40 trios and 6 duos were included 

to improve phasing accuracy of haplotype-based analyses and ancestral reference panels for 

admixture deconvolution (see below). One trio showed an excess of Mendel errors and was thus 

excluded from trio phasing. Subsequently, the 46 individuals constituting the offspring of all 

trios and duos were removed from most of the analyses. We did not systematically filter for 

second-degree or lower relatives as part of our initial curation given that some of the subsequent 
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analyses make use of IBD information to describe within- and between-population connections 

among pairs of individuals across Native Mexican populations (see sections below). We then 

excluded 8 individuals due to a high proportion (>30%) of non-Native ancestry, as these are 

likely to correspond to sampling exceptions rather than being part of the population’s admixture 

pattern. This was confirmed by PCA analysis where these samples appeared to be outliers 

relative to others from the same population. Since the scope of the study is to assess the 

population structure, including the characterization of recent admixture events among Native 

Mexicans, we did not initially filter genomic segments or individuals with some degree of non-

Native ancestry. However, more stringent filters were applied as needed for particular analyses 

as detailed in the subsequent sections below. After data curation, the number of Native Mexican 

samples genotyped for this study was 401 (Table S1).  

Curation of Cosmopolitan Mexican samples: Out of the 370 cosmopolitan samples genotyped at 

INMEGEN, 313 were genotyped by using both Affymetrix 500K arrays and Illumina 550K 

arrays (covering 7 Mexican states), and 57 samples were genotyped by using Illumina 550K 

arrays only (covering 3 additional Mexican states). For the subset of cosmopolitan samples 

genotyped with both arrays, genotype data for nearly 1 Million SNPs were available for analyses. 

 

Data integration 

To combine our dataset with additional preexisting data and assembly continental reference 

panels of potential ancestral populations relevant to the Mexican admixture process, our data 

were integrated with previously genotyped datasets from various sources. Additional Mexican 

data included Affymetrix 500K genotypes for 53 Native individuals from 2 Mexican indigenous 

populations (2), Affymetrix 6.0 genotypes from 49 Mexican-Americans (MXL) sampled in Los 
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Angeles, California as part of the International HapMap project phase 3, and Affymetrix 500K 

genotypes for 50 Mexicans of admixed origin sampled in Guadalajara, Jalisco included in the 

Population Reference Sample (POPRES) data set. European data were obtained from a selected 

subset of 204 European samples from POPRES to be included as part of the reference panel of 

ancestral populations. Inclusion criteria were based on maximizing geographic representation of 

regions within Europe and equalizing sample sizes to those available for the Native Mexican 

populations (i.e., around 20, see Table S1). The collections and methods for the POPRES 

Sample are described by Nelson et al. (3). The datasets used for the analyses described in this 

manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000145.v1.p1 through dbGaP accession number phs000145.v1.p1. 

Additional European populations from Spain (n=55) included Basque, Andalusian, and Galician 

(4), and additional HapMap samples included 25 Tuscans (TSI) and 25 Utah residents of 

Northern European descent (CEU). Finally, 50 Yorubans from Ibadan, Nigeria (YRI) from 

HapMap were included as reference panel for West African ancestry. A total of 511 additional 

samples were integrated from previously generated datasets. The dataset analyzed here is the 

result of merging autosomal SNP array data from these different sources and consists of up to 

1,282 samples, including 454 Native Mexicans from 20 indigenous populations, 469 

cosmopolitan Mexican samples from 12 locations, and 359 ancestral European and West African 

populations.  

Three main working datasets with variable SNP densities were constructed after merging 

multiple datasets and reapplying data quality control filters (now raised to 95% of call rate for 

SNPs and samples and excluding SNPs with ambivalent strandedness). Namely, one dataset was 

constructed considering the intersection of Affymetrix and Illumina data (71,581 SNPs), one 
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consisting of Affymetrix data only (372, 692 SNPs), and one combining the union of both 

Affymetrix and Illumina arrays (785,663 SNPs).  

Table S2 describes the details of these three datasets. Most of the analyses presented here are 

based on the Affymetrix dataset (including data from 500K and 6.0 arrays) as this combination 

offered the best balance between SNP density and number of populations included (both 

indigenous and cosmopolitan). Nonetheless, we also used the combined dataset of Affymetrix 

and Illumina arrays in those analyses that were more robust to lower marker densities and where 

maximizing the number of populations was essential. Likewise we used the union of these 

platforms in those analyses requiring the densest dataset though across a limited number of 

populations. 

The steps described above correspond to our initial data curation and the resulting datasets (listed 

in Table S2) constituted the base of all population structure analyses. However further filters 

were applied to exclude additional samples or integrate additional data for particular analyses as 

described below. 

 

Population structure of Native Mexicans 

We used the Affymetrix dataset (372, 692 SNPs) in all the analyses focused on Native Mexican 

populations. We restricted to individuals having >90% of Native American ancestry (average 

proportion of Native American ancestry among remaining individuals was 97.26%). Therefore, 

in addition to the initial data curation steps described above, the following samples were 

removed from the Affymetrix dataset: 
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Principal component analysis (PCA) and population differentiation: We used EIGENSOFT(5) to 

perform PCA and R package was used to generate the plots. Pairwise FST values for each 

population comparison were calculated using the estimator of Weir & Cockerham (6, 7), and 

ggplot2(8) was used to create the plots.   

 

Rejection algorithm and demographic estimation: To infer basic parameter estimates about each 

Native Mexican population, in particular, bottleneck strength and current Ne values, we 

implemented a demographic estimation method using approximate Bayesian computation via 

rejection algorithm as built into REJECTOR2 (9). We focused on a tract length statistic sensitive 

to bottlenecks known as cumulative Runs Of Homozygosity (cROH). We assigned ROH based 

on sliding windows, a minimum of 50 SNPs in a tract, and allowing for no more than one 

heterozygous SNP per 500kb window. This set of criteria similar to other researchers who 
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identified ROH in humans (see (10-12)), except that we used imputed genotypes from BEAGLE 

to avoid missing data issues. Given that these tracts are length-based and not dependent on the 

site frequency spectrum these are unlikely to be highly affected by ascertainment bias. Indeed 

previous simulations indicate accurate recovery of demographic parameters is possible using 

cROH statistics calculated from array genotypes (12).  

We generated a set of simulations similar to Henn et al.: moving forward in time, we begin with 

a fixed large population size, then the population experiences a bottleneck and subsequent 

recovery to modern day deme size, with demographic parameters drawn from uniform priors. 

We used the computationally efficient approximate coalescent simulator MaCS (13) for 

simulation, and a tolerance (alpha level) of 20% between the observed and simulated sequences 

to accept or reject simulations. To make simulations tractable, we only investigated ROH on 

chromosome 1, and to use the maximum density of genotyped SNPs, we restricted to Native 

Mexican populations for which Affymetrix 6.0 array data was available (see Table S1). For each 

population we generated 100,000 simulated data sets. Acceptance rates varied between ~1-3%. 

For estimating final parameters, we employed a density-based smoothing in R over each 

histogram of accepted runs to estimate modes and 95% confidence intervals of each parameter of 

interest based on the profile approximate likelihoods. We then created plots with both the real 

histograms and the smoothed density values, plotting the informative portion of the accepted 

runs, both in summary form (Fig. S2) and the individual profiles (Fig. S3). 

 

Identity-by-descent (IBD) analysis: Genotype data were phased using BEAGLE (14, 15) with 

available duos and trios used as training sets. We estimate the amount of DNA shared identically 

by descent (IBD) using the GERMLINE software (16), with a 5 cM threshold to eliminate false 
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positive IBD matches. All 5 cM or greater segments shared IBD between pairs of individuals 

were summed, and binned into 9 categories as detailed below. We then used the graph 

visualization software ShareViz [http://www.cs.columbia.edu/~itsik/sharevizWeb/shareviz.html] 

to visualize within- and between-population relationships of pairs of individuals (Fig. 1D and 

S4). 

 

 

 

 

Population Tree analysis: trees have been widely used in population genetics to visualize the 

relationships among populations. While providing a valuable initial assessment of population 

relationships, a bifurcation tree might be a simplistic representation of human population history 

as it assumes population splits with no further gene flow between them. To overcome this 

problem, new methods have been recently developed allowing for the inclusion of gene flow 

between edges and representing population relationships by means of a reticulated graph rather 

than a strict bifurcation tree. Here we used TreeMix v1.0 (17) to infer patterns of population 

splitting and mixing from genome-wide allele frequency data. It estimates the maximum 

likelihood tree for a given set of populations given a Gaussian approximation to allele 
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frequencies, and then attempts to infer a number of admixture events. Before adding migration, 

we run TreeMix with our set of 20 Native Mexican populations and HapMap continental 

populations (YRI, CEU, and ASN) as outliers to help us set the root of the tree in subsequent 

runs (Fig. S5). Although not representing a perfect fit to the data, we used the maximum 

likelihood tree without migration to evaluate the general topology and the extent of population 

drift in terms of allele frequency shift from an ancestral population. We then used the residuals 

matrix to identify pairs of populations showing poor fits in the initial tree. These are then 

considered as candidates around which we add migration edges and try new rearrangements of 

the tree now accounting for n number of migration events. As a test run, we first used our 

previous panel (Native Mexicans plus CEU and YRI) adding MXL from HapMap as a 

population with known recent admixture. The resulting graph with allowed migration events 

showed that the strongest signal of gene flow comes from CEU to MXL, consistent with known 

historical records of these populations. Given that recent admixture can bias the signals detected 

by TreeMix, we restricted further runs with migrations to individuals with ≥98% of Native 

American ancestry in order to infer historical admixture events among Native Mexican 

populations. This filter removed the following samples in addition to the ones removed by the 

90% filter: 
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Scan for extreme allele frequency gradients: We used the spatial ancestry analysis (SPA) method 

(18) to identify SNPs with steep allele frequency gradients in Native Mexicans. A supervised 

analysis was performed using known latitude and longitude coordinates of sampling locations for 

the combined set of indigenous populations from our Affymetrix global dataset (see Table S2). 

Seri and Lacandon were subsequently removed to avoid possible bias due to their extreme 

isolation as revealed in previous analyses. Empirical p-values for each SNP were obtained by 

rank transformation of the raw SPA scores. Candidate regions were then defined by selecting the 

top 0.1% of SNPs of the empirical distribution, and subsequently merging SNPs separated by 

less than 500 kB into a single region. In order to avoid spurious outliers, we required that 

candidate regions spanned at least 1kB (i.e., a minimum of two outlier SNPs per region). A total 

of 50 candidate regions were identified within the top 0.1% of the score distribution 

(summarized in Table S3), and the genotypes for the most extreme SNP within each region are 

plotted in Figure S6. The full genome scan of SPA scores is available in Figure S7.  
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Population structure of cosmopolitan samples 

We used the combined Affymetrix + Illumina dataset (71,581 SNPs) to run cluster-based 

analysis and PCA on the full set of samples listed in Table S1. This allowed us to include the 

maximum number of cosmopolitan samples to evaluate the impact of Native American 

substructure in the composition of admixed Mexican genomes.  

Structure analysis: We used the block relaxation algorithm implemented in ADMIXTURE (19) 

to estimate individual ancestry proportions given K ancestral populations. We initially run from 

k=2 through 20 using the global dataset with the maximum number of available individuals to 

explore general clustering patterns. We then filtered first- and second-degree relatives and 

selected subsets of HapMap and POPRES individuals to roughly equalize sample sizes to those 

available for Native Mexican populations (Table S1). We found extensive substructure not only 

among the ensemble of recently admixed cosmopolitan Mexican samples, but also among the 

different ancestral populations. This was true not only for Native Mexican populations, but also 

for Europeans showing varying proportions from different clusters within Europe (fig. S8). 

Therefore, rather than using reference individuals as supervised training samples (which are 

assumed to have 100% ancestry from some ancestral population), we ran an unsupervised 

analysis to let ADMIXTURE estimate ancestry values across all samples. We used the default 

setting (folds=5) to perform ADMIXTURE’s cross-validation procedure for evaluating fit of 

different values of K. Figure S9 shows the cross-validation error for each run, where k=9 showed 

the lowest error estimates (0.49798), indicating that sub-continental clustering levels are a 

sensible modeling choice for Mexican populations rather limiting to the usual continental-level 

structure of k=3. Additionally, we found constantly increasing Log likelihood values for all runs 

from k=2 to k=10 (fig. S9), where k=9 showed the maximum number of population-level 
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clusters among Mexicans. An additional European sub-continental component was detected at 

k=10 and found to be restricted to the Basque population and shared to a limited extent with 

other Iberian populations (fig. S8). At k=11, a group of 3 MXL samples clustered apart showing 

full membership to their own component, reflecting possible cryptic relatedness among them. 

Due to their shared ancestry with other Mexican cosmopolitan samples, residual proportions of 

this “MXL component” were also assigned to most of the remaining individuals, which is 

probably not the best description of their actual ancestral components given the observed 

patterns at earlier ks. This is also reflected in the subtle drop of the Log likelihood increasing 

curve when compared to all other runs. This component remained stable across higher ks, while 

other population-specific components appeared among Native Mexicans from k=12 through 20, 

but with less clear contribution into the admixed Mexican genomes (fig. S8). Likewise, all 

clusters detected at k=9 remained constant throughout the rest of runs up to k=20. In conclusion, 

as a result of the observations detailed above, we found k=9 to be the most informative run for 

purposes of characterizing sub-continental ancestry of Mexican populations, and therefore, 

several subsequent analyses described below were based on ADMXTURE proportions at k=9. In 

order to check for possible convergence variation, we performed 10 additional runs using 

different random seeds per run and the program converged after detecting the same clusters 

previously observed in all cases. We also estimated parameter standard errors using 200 

bootstrap replicates per run. In general, standard errors were lower for individuals showing 

complete membership to highly divergent populations, such as Yoruba, Seri, Triqui, Tojolabal, 

and Lacandon (average error <0.01). In contrast, the two components accounting for most of the 

error at k=9 were Northern versus Southern European (standard error =0.029). The average error 

across all individuals and components was 0.016. The number of markers used is also known to 
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affect the performance of cluster-based algorithms. According to the ADMIXTURE guidelines 

(19), 10,000 markers suffice for continental-level distinction, while numbers closer to 100,000 

are recommended for within-continent separation, assuming for instance European populations 

(i.e. FST < 0.01). Given that we are using more than 71,000 markers (using our global Affymetrix 

+ Illumina dataset) and that all ancestral populations involved have FST > 0.02, we expect our 

ancestry estimates to be reasonably accurate. Nonetheless, we also ran k=2 through k=20 using 

the global Affymetrix dataset (>370,000 markers) using the same settings described above and 

there were no significant differences in parameter estimates for individuals represented in both 

datasets. 

Correlation of cluster membership and geographic coordinates: From the clustering patterns 

observed across Mexican states in the ADMIXTURE analysis, a clear correlation can be 

appreciated between the geographic location of samples and their membership to the six main 

Native Mexican clusters. To formally test for significance with Latitude and Longitude we 

performed a linear regression for each component. We transformed latitude and longitude to 

create estimates across the “long axis” of Mexico, running NW-SE to better summarize the 

geography of Mexico in a single distance rather than latitude or longitude alone. Because the 

southern component decreases both northwards and towards the Yucatan peninsula, the 

correlation is less pronounced when Campeche and Yucatan samples are included. 

Admixture maps: We used Kriging methods to interpolate ADMIXTURE proportion values for 

displaying the six native components identified at K=9 across both Native Mexican and 

cosmopolitan samples (Fig. S10). ADMIXTURE values from cosmopolitan samples (which 

usually show varying proportions of non-native admixture) were adjusted so that the sum of 
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ancestry proportions coming from Native American components equals 1. Contour maps were 

created using MapViewer (Golden Software).  

 

Local ancestry estimation 

We used a PCA-based admixture deconvolution method (PCAdmix, (20)) to estimate local 

ancestry across the genome. This method uses phased genotype data to estimate posterior 

probabilities of ancestry for windows along each chromosome. First, ancestral populations are 

thinned for SNPs with r2<0.8 in order to remove highly linked alleles from different populations, 

which can overfit and lead to spurious ancestry transitions. Second, chromosomes for each 

individual in a population are artificially strung together to create two extended chromosomal 

haplotypes; this step allows us to use the full genome for PCA, and it is of special relevance 

when masking ancestry-specific portions of the genome (see below). Then, PCA on a number 

k≤3 of ancestral populations is performed and the admixed population is projected into the 

determined k≤3 PCA space. PC loadings are used as weights in a weighted average of the allele 

values in a window of 40 SNPs. These haploid window scores are then used as observed values 

in a Hidden Markov Model (HMM) to assign posterior probabilities to the ancestry in each 

window (where chromosome were considered separately). Two complementary algorithms, 

Viterbi and forward-backward  are used to compute posterior probabilities for each window. 

PCAdmix was implemented in C++ and is available at https://sites.google.com/site/pcadmix/. 

Additional performance testing and details of the implementation for this approach are available 

in (20-22). 

The choice of k=3 ancestral populations for running PCAdmix was informed by ADMIXTURE 

results and is consistent with other investigations of ancestry in Latinos (Fig. 2B). Although 



! 144!

continental-level ancestral populations are a good model at k=3, we observed that PCAdmix 

performance was improved when including reference panels representing a diverse set of 

haplotypes. In Mexicans, we expect most of the ancestry variation to come from the Native 

American (NAT) component rather than the European (EUR) or African (AFR) components. To 

empirically test the performance of different NAT reference panels in our Mexican dataset, we 

run PCAdmix in a subset of 30 random samples using separately the different populations for 

which we had available trio data: Tepehuano (TEP), Nahua (NAH), and Maya (MYA). We 

limited to available trio data as PCAdmix takes phased data as input. When comparing the 3 

different possible NAT ancestral populations we observed that comparable results were obtained 

when run separately. However, the proportion of windows called “unknown” was lower when 

using all three NAT populations combined. Therefore we constructed our reference panel by 

combining five trios from each NAT population (those five showing the highest proportions of 

NAT global ancestry, 15 trios total), plus 15 CEU, and 15 YRI trios as continental reference 

samples. We then separately run PCAdmix in two sets of admixed Mexican samples, the 23 

complete MXL trios from HapMap3, and the 362 unrelated cosmopolitan samples from MGDP 

(N=312) and POPRES (N=50). The former set was trio phased using BEAGLE whereas the 

latter was population phased using phased MXL haplotypes as training set. Figure S11 shows a 

schematic diagram of the workflow to assign local ancestry and further analyze ancestry-specific 

fractions of the genome.  

Local ancestry scan: We plotted Viterbi posterior probabilities per window against physical 

distance along autosomal chromosomes to identify peaks of ancestry enrichment across the 

genome. We limited to EUR and NAT ancestries since AFR ancestry values were based on much 



! 145!

lower number of counts, making deviations from the mean incomparable. The R package ggplot2 

was used to visualize normalized ancestry proportions (Fig. S14).  

 

Ancestry-specific PCA (ASPCA) 

We implemented a modified version of the subspace PCA (ssPCA) method originally described 

by Raiko et al. (23) to handle the large amount of missing data resulting from masking ancestry-

specific segments across the genome of multiple individuals. Previous implementations have 

adapted the same algorithm to genotype data (24). However, no method is currently available for 

applying subspace PCA to haplotype data. To project ancestry-specific haplotypes derived from 

the admixed genomes of Mexican cosmopolitan samples we restricted to individuals with more 

than 25% of their genomes inferred from each continental ancestry. Continental reference panels 

were constructed to project Native American and European blocks separately. Three populations 

(Seri, Lacandon, and Tojolabal) were excluded from the Native American panel due to evidence 

of extreme divergence compared to the rest of populations (and no NAT segments from admixed 

genomes were projected onto those clusters). The final panel consisted of 17 Native American 

parental populations. Our European reference panel included 1,387 POPRES individuals from 

throughout Europe with 4 grandparents from the same country (3, 25) plus 55 additional samples 

from Spain (4). We did not project AFR segments due to the low number of haplotypes across 

the population sample. To validate the consistency of our ASPCA results we performed a 

supervised structure analysis using frappe (26) and observed clustering patterns in agreement 

with our ancestry-specific distribution in PCA space. Our implementation of the method is 

described in what follows. 
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Overview of the ASPCA method (subspace learning algorithm): The method we describe here is 

a close adaptation of the subspace learning algorithm described in (23) to haplotype data. This 

implementation can be found in the software PCAmask, and mathematical details of the 

implementation can be found at http://arxiv.org/abs/1306.0558. 

 

Ancestry-specific clustering analysis 

We!implemented!a!modified!version!of!the!frappe!clustering!algorithm!(26)!in!order!to!

accommodate!partial!missing!resulting!from!masking!specific!sites!of!the!genome.!Our!

analyses!of!ancestryMspecific!segments!of!the!genomes!in!the!Mexican!individuals!rely!on!

haplotype!data.!This!leads!to!the!generation!of!heterozygous!missing!sites!at!SNPs!inferred!

to!be!heterozygous!for!the!desired!ancestry.!Since!the!original!frappe!method!developed!by!

Tang!et!al.!cannot!process!partially!missing!genotypes,!we!adapted!the!algorithm!to!process!

haplotype!data.!The!algorithm!relies!on!an!EM!algorithm!to!jointly!infer!overall!ancestry!

proportions!in!admixed!individuals!and!the!ancestral!allele!frequencies!at!all!sites!used!in!

the!panel.!While!the!standard!frappe!implementation!integrates!over!the!two!observed!

alleles!at!every!genotype,!this!integration!is!eliminated!for!haplotype!data.!Specifically,!in!

the!M!step,!an!estimate!for!the!ancestral!allele!frequencies!is!obtained!from!the!best!guess!

for!ancestry!proportions!using!the!modified!equation:!

€ 
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∑
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where!pmk!is!the!allele!frequency!for!ancestral!population!k!at!marker!m,!him!is!the!

observed!allele!on!haplotype!i8(0/1Mbased),!and!O!is!the!set!of!all!haplotypes!carrying!the!
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desired!ancestry!at!marker!m.!Eimk!is!a!computational!device!indicating!the!expected!

ancestral!contribution!of!ancestor!k!at!haplotype!I!on!marker!m.!Similarly,!an!estimate!for!

the!overall!ancestral!contribution!qik!of!ancestral!population!k!at!haplotype!i!is!obtained!

from:!
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where!the!denominator!simply!corresponds!to!the!total!number!of!unmasked!sites!across!

all!haplotypes!used!in!the!analysis.!Finally,!in!the!E!step!of!the!EM!algorithm!the!quantity!

Eimk!is!updated!based!on!the!new!estimates!for!overall!ancestry!proportion!and!estimated!

allele!frequencies:!

€ 

Eimk
n+1 =

pmk
n+1qik

n+1

pmk'
n+1qik'

n+1

k'=1

K

∑
!

This!step!is!identical!to!the!original!version!of!the!algorithm.!!

 

Biomedical associations with ASPCA values 

We leveraged two studies of childhood asthma in Mexicans and Mexican Americans to 

determine important pulmonary associations with ancestry-specific PCA values. In particular, we 

focused on lung function as measured via spirometry using standard clinical measurements as 

ancestry has been shown previously to affect lung function (27). Both studies were trio-based 

ensuring long-range phase determination in the probands and were all of affected children. For 

continuous lung function measurements, we transformed raw spirometric values into percent 
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predicted values, which are already adjusted for typical anthropometric measurements (e.g. age, 

sex, and height) (28). Informed consent was obtained from all individuals at the study sites prior 

to sample collection. Both studies have been described in detail elsewhere. The genotypes 

included the same thresholds for quality control filtering, as described in (29). We briefly 

describe each study below. 

The Genetics of Asthma in Latino Americans (GALA I) study is a trio-based study of Latinos 

(30) that was genotyped on the Affymetrix 6.0 array (31, 32). For this study we filtered to 

individuals sampled in Mexico City and the San Francisco Bay Area with 4 grandparents that all 

identified as Mexican or Mexican American. We used PCAdmix for local ancestry estimation 

with the same reference ancestral haplotypes as before, combined with global admixture 

modeling via ADMIXTURE (33). After filtering for individuals with spirometry data and 

adequate levels of Native American ancestry for use with ASPCA we were left with 68 

individuals from Mexico City and 120 from the Bay Area.  

The Mexico City Childhood Asthma Study (MCCAS) consists of trio-based sampling of 

individuals with asthma along with their parents, genotyped on the Illumina 550 platform (34, 

35). All sampling was performed at a single site within Mexico City. As these samples were 

generated on an Illumina platform, we used the Native Mexican samples from the Human 

Genome Diversity Panel (36) combined with CEU and YRI genotypes, for local ancestry 

estimation using PCAdmix. We used global ancestry estimates from frappe (26) estimated 

previously (34). After filtering for individuals with spirometry and adequate levels of Native 

American ancestry we included 341 individuals in downstream analysis. 

As the two datasets involved different numbers of SNPs and different numbers of individuals, we 

applied ASPCA independently to each dataset to minimize distorting the ASPCA values of the 
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reference individuals. To simplify comparisons across the two datasets, we used the normalized 

values of ASPCs 1 and 2, along with global ancestry covariates, to test for associations with 

population structure and lung function. As PCA, or ASPCA for that matter, is unitless, 

normalizing provides a standard for comparing across multiple ASPCA runs.  

First, as GALA I includes individuals both from Mexico City and the San Francisco Bay Area, 

we wanted to investigate whether ASPCA values were associated with recruitment center. To do 

this, we used a likelihood ratio test of two different logistic regression models: a full model with 

ASPC1 & 2 along with global ancestry covariates; and a restricted model with simply the global 

ancestry terms. The statistic 2*log (likelihood ratio) then follows a 2-degree of freedom chi-

squared distribution (one for each ASPC). We performed marginal tests for each ASPC using t-

tests. We also estimated the raw AUC for a ROC curve including the two ASPCs using the 

epicalc package in R. 

Next, for each study, we ran a separate robust linear model (rlm via MASS in R) to predict forced 

expiratory volume in the first second (FEV1), using the ASPC values and adjusting for global 

ancestry covariates. We used robust linear models rather than OLS as PCA can have outliers that 

can potentially bias OLS estimation. Given normalized ASPC1 & 2 values, the regressions took 

the form: 

 

 

 

Where age, sex and height are incorporated in the percent predicted values to be able to compare 

effects across the entire growth curve. Global ancestry terms are used to adjust for any residual 

%(predicted)FEV1 ~ β0 +β1z(ASPC1)+β2z(ASPC2)+β3African+β4Native+ε
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population stratification, and to ensure that overall levels of Native American ancestry do not 

confound potential associations with ASPCs 1 and 2. 

We performed these regressions separately for GALA I and MCCAS, then combined the effect 

sizes for ASPC1 and 2 via fixed effects meta-analysis in the R package metafor. These values 

were then used for p-value testing as they represented the largest combined sample and were 

independent replication with different recruiters, study designs, and genotyping arrays. We 

extrapolated based on the ASPCA values including GALA I to the data from 8 states to 

determine the change in FEV1 due to differences in the origin of Native American ancestry. For 

context then we compared our observed results with that explained by change in lung function 

due to age (28) and African ancestry levels in African Americans (27).  

We repeated these same analyses for two other values of lung function: forced vital capacity 

(FVC) and the FEV1/FVC ratio, however, neither of these values were significantly associated 

with either ASPC1 or ASPC2 in any marginal test or meta-analysis and were not investigated 

further. 

 

Haplotype sharing analysis 

We used the densest dataset (785,663 SNPs) consisting of 674 unrelated samples genotyped on 

both Affymetrix 500K and Illumina 550K SNP arrays. This included a combined group of 71 

Native Mexicans (Tepehuano n=20, Zapotec n=21, and Maya n=30), as well as another 

combined group of 312 Mexican cosmopolitan samples from the states of Guerrero (n=50), 

Guanajuato (n=48), Sonora (n=48), Tamaulipas (n=17), Veracruz (n=50), Yucatan (n=49), and 

Zacatecas (n=50). Sampling locations are reported in Table S1. To evaluate the level of 
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haplotype sharing with diverse populations from other regions of the world we also included a 

subset of HapMap continental reference samples. Namely, CEU (n=62), YRI (n=100), MXL 

(n=44), and CHB+JPT (n=85). Merged and curated genotype data were phased using BEAGLE 

software (14, 15). To phase the Mexican mestizo samples, we used the 22 MXL trios from 

HapMap3 as training set, whereas the Tepehuano and Maya trios were used to improve phasing 

of the Zapotec. Tepehuano (n=10 trios) and Maya (n=15 trios) were trio phased separately. 

HapMap populations with available trio data (CEU n=31 trios, YRI n=50 trios, and MXL n=22 

trios) were also trio phased, whereas for CHB+JPT (n=85 unrelated individuals) we performed 

population phasing.  

Genome-wide haplotype sharing (GWHS): To determine the potential use of Mestizo and Native 

population data as reference for the genetic analysis of candidate regions and GWAS in 

Mexicans, we performed GWHS analysis using all available SNP genotypes within 100Kb 

fragments of the genome. We used BEAGLE phased genotype data and then estimated all 

plausible haplotypes within each segment across populations using PHASE (37, 38). GWHS was 

assessed by comparing the number of common haplotypes (with frequency >5% across 

populations) shared between Mexican Mestizos and the different HapMap populations as well as 

Native Mexicans (Fig. 4C).  

The proportions shared between Mexicans and HapMap populations were comparable (SD from 

1.4 to 3.0) across chromosomes. On average, Mexicans shared 21.6% with YRI, 54.8% with 

CHB+JPT, 59.3% with CEU, 78.6% with Natives and 81.2% with MXL. The proportion of 

shared haplotypes with CEU+CHB+JPT was 76.2%, and this was increased to 90.5% when the 

MXL group was added, and finally to 98.8% when Mexican Natives were included as reference 

(Fig. 4C). These results indicate more sharing than those previously reported (1) due to a higher 
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density of markers included in the analysis capturing more LD, and the availability of data from 

Native Mexicans. 

Tag SNP selection efficiency in candidate regions: To determine the potential use of Mestizo and 

Native Mexican tagSNPs for targeted studies, 10 gene candidate regions were selected for 

containing SNPs previously associated to diseases or traits of clinical interest including, non-

alcoholic fatty acid disease (PNPLA3), dyslipidemias (ABCA1), age-related macular 

degeneration (ARMS2), response to hepatitis C treatment (DDRGK1), Crohn’s disease (NOD2), 

asthma (PTGDR, NOTCH4 and GC), metabolic syndrome (ApoB) and systemic lupus 

erythematosus (IKZF1). All genes are included in the Catalog of Published Genome-Wide 

Association Studies (http://www.genome.gov/gwastudies), two of them, ABCA1 (39) and 

PNPLA3 (40) house genetic variants that have been identified in Mexicans or Hispanic 

populations. 

Across all populations analyzed we identified tag SNPs in these 10 candidate gene regions using 

Tagger, the tag SNP selection algorithm from Haploview software (41), with SNPs of frequency 

>5%, considering pairwise tagging only and r2 threshold of 0.8. We evaluated the performance 

of tag SNPs and their underlying coverage by estimating coverage from tagSNPs to the rest of 

the SNPs available in each gene using a pairwise r2 approach. In a similar fashion to the GWHS 

analysis, we evaluated the mean best r2 coverage based on the tag SNPs determined using 

various reference panels. Out of the 10 candidate loci, 2 had fewer than 10 SNPs and were 

dropped for this analysis, resulting in 8 genes evaluated using multiple reference ancestral 

groups. While the individual results vary from gene to gene, using the whole reference panel of 

Mexican Mestizos resulted in the best tagging performance overall, better than using the MXL 

population from HapMap3 (Fig. S15). The results of this analysis underline the importance of 



! 153!

using reference datasets of populations with the same LD structure for a better analysis of 

genetic variation in recently admixed populations such as Mexicans. 

To search for a potential relationship between the enrichment in a particular ancestral component 

in the region with the haplotype sharing and tagging results, we analyzed the local ancestry 

estimations for each of the 10 regions included in this analysis. We did not find any clear 

relationship between local ancestry and proportion of shared haplotypes. Looking at more detail 

in the haplotype diversity observed in these regions we could identify that in those regions with 

the highest European or Native American ancestral contribution, corresponding respectively to 

ABCA1 and ARMS2, this differential ancestry is not related with differences in haplotype 

diversity or tagging performance. In both cases, ancestral contribution differences are clearly 

related to differences in the frequency of specific haplotypes, that even if shared with all other 

populations, show distinct frequency differences in ancestral groups. The previous is shown in 

ARMS2 for which all common haplotypes (>1%) present in either Mestizo and Native Mexican 

groups are shared in at least one HapMap group, but in which two of them are enriched in Native 

Mexicans (87%) and Mestizo (72%), compared to CEU (50%). 

The results of the genome-wide and candidate region haplotype diversity showed that Mexican 

Native and Mestizo groups show a haplotype structure not fully represented in continental 

groups of the HapMap3 reference population set, which is comparable to other publicly available 

resources such as 1000 Genomes in terms of the Mexican diversity represented. Even including 

the closely related MXL population as reference, does not achieve the same effect than using the 

combined Mexican groups, the later most probably due to the fact that Mexican-Americans 

included in the MXL sample have a heterogeneous origin and thus a genetic structure of limited 

representation when compared to a comprehensive sample across the country. These results 



! 154!

support the fact that a deep genetic characterization and inclusion in association studies of 

recently admixed populations such as Mexicans represent a great opportunity to discover new 

genetic variation of relevance for biological traits and disease.  

The selection of tag SNPs in candidate regions is of critical relevance for the improvement of 

genetic studies in Latin America, as this approach would enable the selection of small sets of 

SNPs for cost-effective study designs in candidate regions derived from GWAS or WGAS in 

other populations, with the aim of looking for new variants or haplotypes contributing to the 

genetic structure of biological traits or disease risk. Our results show that using the Mexican 

dataset generated here as reference population translates into a better haplotype capture than 

using SNP sets based on the use of combinations of population groups from currently available 

catalogs of variation. 
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Figure S1: Principal component analyses based on the global dataset of ancestral and admixed 

Mexican populations. (A) Left: Global dataset of Native Mexicans combined with HapMap3 YRI 

African and CEU European samples. Right: Global dataset of Native Mexicans alone. (B) 

Combined dataset of ancestral reference samples (African, European, and Native Mexican) and 

admixed Mexican samples from cosmopolitan populations throughout Mexico and Mexican-

Americans in the Los Angeles area. Populations are color-coded by geographic regions as 

follows: North (N), Central west (CW), Central east (CE), South (S), and Southeast (SE). Left: 

we observe a continuous dispersion of admixed individuals between the European and native 

Mexican cluster along PC1, reflecting their genome-wide average of native ancestry. PC2 

separates a few individuals with higher African ancestry, predominantly from the coastal states 

of Veracruz and Guerrero. Right: along PC3, cosmopolitan samples from different states tend to 
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be separated by the different native clusters in a north-to-south direction. For example, Yucatan 

and Campeche individuals form an elongated cluster that is clearly pulled in the direction of the 

Mayan individuals. Likewise, those Sonora individuals with higher native proportions fall closer 

to northern native clusters. However, the separation is much more subtle among states from 

central Mexico, probably because standard PCA methods rely on genome-wide averaged signals 

from diploid genomes, making it difficult to ascertain finer scale patterns of differentiation. 
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Figure S2: Summary of parameter estimates for the effective population size in different Native 

Mexican population samples. Estimated deme size during bottleneck and current Ne are given 

per population showing 95% confidence intervals. Parameters were estimated from cumulative 

runs of homozygosity (cROH) on chromosome 1 via a rejection algorithm comparing observed 

and simulated data with REJECTOR (see Methods for details). In order to use the maximum 

density of genotyped SNPs along chromosome 1, we restricted to Native Mexican populations 

for which Affymetrix 6.0 array data was available (see Table S1).  
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Figure S3: Individual population profiles of the simulated posterior distribution of effective 

population sizes in different Native Mexican samples. For each population, contemporary Ne 

(top histogram) and bottleneck strength (bottom histogram), were estimated by sampling from a 

uniform distribution of Ne and keeping simulated parameters within 20% of the observed cROH 

with REJECTOR (see Methods). Each histogram shows the frequency of accepted simulations 

and the smoothed density values used for estimating the final parameters shown in Fig. S2. 
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Figure S4: Patterns of relatedness within and between Native Mexican populations as measured 

by the total amount of segments identical-by-descent (IBD) shared between pairs of individuals. 

Each dot represents one individual and each line denotes a pairwise match between two 

individuals sharing more than a given amount of total IBD. Values of total IBD (in cM) were 

binned into consecutive categories corresponding to the following proportions of the genome: 

50% and above, 25%, 12.5%, 6.75%, 3.37%, 1.69%, 0.85%, 0.42%, and 0.21%, which intend to 

reflect the first 9 degrees of relatedness. Each plot shows the network of connections resulting 

from each of these IBD thresholds. Specific bin ranges are indicated in cM next to each plot. In 

order to provide geographic context, individuals were arbitrarily placed in positions that 
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approximate the location of the sampled populations. The pattern across different populations 

shows high within-population sharing compared to between-populations for bins above 20 cM.  
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Figure S5: Maximum likelihood trees as inferred by TreeMix representing splitting patterns of 

Native Mexican populations and inferred migration events. (A) Graph depicting the relationships 

between Native Mexican populations along with three continental outgroups (HapMap YRI, 

CEU, and CHB). The length of the branches is proportional to the drift of each population. The 

resulting topology informed the position of the root in subsequent analyses (i.e., between all four 

Northern native populations and the rest). (B) TreeMix graph of Native Mexican populations 

alone without allowing for migration. The matrix next to each graph summarizes the residuals 

from the fit of the model to the data, where extreme values indicate populations that could be 

better modeled when adding migration to the model. (C) Models allowing for 1 to 3 events of 
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migration (m = 1 through 3). Trees were constructed using the known topology from B and 

including samples with more than 98% of Native American ancestry. Arrows indicate migration 

edges and directionality of gene flow. Color intensity is proportional to the inferred amount of 

gene flow according to the migration weight bar. Residuals for each model are presented in 

pairwise matrices next to each graph.  

 

Figure S6: Genotype maps for the SNPs with the highest SPA score within each of the top 50 

regions showing the most extreme allele frequency gradients across Native Mexican populations. 

Each circle represents one sample color-coded by its genotype. Each cluster represents one 

population with positions based on known latitude (y-axis) and longitude (x-axis) coordinates. 
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Some scattering was added to the position of individuals within each cluster to avoid overlap of 

samples sharing the same coordinates.  

 

Figure S7: Genome scan for SNPs with steep allele frequency changes given the known location 

of Native Mexican populations. The y-axis represents the steepness of the slope for each SNP as 

measured by SPA scores, with values > 2 highlighted in blue. Candidate regions (red blocks) 

were identified by selecting the top 0.1% of SNPs of the empirical distribution, and subsequently 

merging SNPs separated by less than 500 kB into a single region. In order to avoid spurious 

outliers, we required that candidate regions have at least two outlier SNPs. The genomic 

annotation of the 50 candidate regions identified is summarized in Table S3. 



! 165!



! 166!

Figure S8: Unsupervised ADMIXTURE results from K=2 through 20 based on the intersection 

of Affymetrix and Illumina data (71,581 SNPs) from 1,282 samples (454 Native Mexicans, 469 

Mexican mestizos, 309 Europeans, and 50 Yorubas). Each vertical bar represents an individual 

and the y-axis the proportion of the genome assigned to each of the ancestral clusters. Substantial 

substructure dominates the Native American component of both indigenous and cosmopolitan 

Mexican samples. European substructure is mainly driven by two sub-continental components 

following a North-South gradient, with the Basque clustering apart from the rest at K=10 and 

higher. We limited the representation of West Africans to a subset of HapMap YRI samples due 

to the study’s emphasis on Native American diversity (see Table S1 for details). 
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Figure S9: ADMIXTURE metrics at increasing K values based on Log-likelihoods (A) and 

cross-validation errors (B) for results shown in Fig. S8. While increasing clustering levels were 

associated with a continuous increase of likelihood values (left), K=9 showed the lowest error 

after cross validation (right). 
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Figure S10: Spatial distribution of the major Native American components across Mexican 
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populations. Interpolation maps are shown for ADMIXTURE values at K=9 observed among 

indigenous (left column) and cosmopolitan (right column) samples. Black crosses on the maps of 

each column indicate sampling locations of indigenous and cosmopolitan populations, 

respectively. From top to bottom the six pairs of maps correspond to the six Native American 

components identified at K=9 (shown at the bottom and in Fig. S8). Contour maps were 

generated using Kriging interpolation methods, where intensities are proportional to 

ADMIXTURE values. For the group of cosmopolitan samples (thus with higher non-native 

admixture proportions), values were adjusted relative to the total Native American ancestry of 

each individual (see Methods for details). 
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Figure S11: Diagram of the analytical strategy used for inferring sub-continental ancestry in 

admixed genomes. The starting point consists of genome-wide SNP data from admixed Mexican 

individuals. Unrelated individuals and family trios are population phased and trio phased, 

respectively, using BEAGLE. Next, phased haplotypes are used to estimate local ancestry along 

the genome using PCAdmix and continental reference samples. Then, taking Viterbi calls at each 

locus, ancestry-specific regions of the genome are masked to separately analyze European, 

African, and Native American haplotypes in a PCA framework together with large sub-

continental reference panels of putative ancestral populations (see Methods for details). We refer 

to this methodology as ancestry-specific PCA (ASPCA) and the code is packaged into the 

software PCAmask. Additional details available at Moreno-Estrada et al. 

(arxiv.org/abs/1306.0558). 
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Figure S12: Supervised ancestry-specific clustering analysis of Native American haplotypes 

derived from admixed cosmopolitan Mexican genomes. On the x-axis bars represent haploid 

genomes for all admixed individuals with >25% of global Native American ancestry, that is, one 

individual is usually represented by two bars. The y-axis indicate native ancestry proportions at 

K=6 using our reference panel of Native Mexican populations (see Table S1). Given the low 

overall contribution of isolated native components into the mestizo population (as identified in 

Fig. 2), we excluded Seri, Lacandon, and Tojolabal from the reference panel. Since our ancestry-

specific approach relies on haplotype data, we used a modified version of the FRAPPE algorithm 

to estimate admixture proportions in the presence of missing sites at SNPs inferred to be 

heterozygous for the desired ancestry (see Methods). Individuals are grouped into regions as 
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described in Table S1. Because we required more than 25% of Native American ancestry to be 

included in the analysis, some regions are represented by less individuals that the actual sample 

size, such as mestizo individuals from Northern states of Mexico, where overall proportions of 

Native American ancestry are considerably lower than in the rest of the territory. The six clusters 

identified to run the algorithm on supervised mode were: Northern Native Mexicans, Huichol 

(which clustered on their own in previous analyses), Native Mexicans from Central West, 

Central East, South, and Southeast Mexico (excluding Seri, Lacandon, and Tojolabal). Overall, 

the results replicate the observations from our ASPCA analysis: on average, Mexicans sampled 

from different regions of Mexico derive differential ancestral contributions from each of the 

Native American components. 
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Figure S13: ASPCA analysis of Native American segments from Mexican participants of the 

GALA I study (left) sampled in Mexico City (GALA MX, gray circles) and the San Francisco 

bay area (GALA SF, black circles), and participants of the MCCAS study (right) sampled in 

Mexico City (black circles), analyzed together with our dataset of 20 indigenous Mexican 

populations (labeled by population identifier and color-coded by region of origin). Samples with 

>10% of non-native admixture were excluded from the reference panel as well as population 

outliers such as Seri, Lacandon, and Tojolabal. Here, a total of 803 phased haploid genomes (280 

MX and 523 SF) represent the GALA Mexican sample and 1900 the MCCAS cohort. Bottom: 

ROC curve for the logistic regression of ASPCA values separating Mexico City (MX) versus 

San Francisco (SF) cases from the GALA I study (see main text for details).  
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Figure S14: Local ancestry scan in the combined set of cosmopolitan Mexican samples showing 

normalized Z scores of Native American versus European ancestry proportions along autosomal 

chromosomes. African ancestry not shown due to the small sample size of African haplotypes 

across individuals. Local ancestry calls were estimated using PCAdmix and counts were scaled 

to the total sample size. Dashed lines indicate two standard deviations away from the mean. 

Results are based on 372,692 SNPs and 362 samples with available Affymetrix data (see Table 

S1). 
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Figure S15: Tagging efficiency using Mexican Mestizos or HapMap Populations as reference. 

The mean best R2 coverage based on the tag SNPs determined using various reference panels 

was evaluated in a subset of candidate gene regions of biomedical interest. While the individual 

results vary from gene to gene, using the whole reference panel of Mexican Mestizos from 

resulted in the best tagging performance overall, notably, better than using the MXL population 

from HapMap3. 
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Table S1. Summary data for 32 Mexican populations and continental reference panels included 
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Table S2. Three working datasets generated for this study 
Name( Samples( SNPs( Average(call(

rate(
Notes(

global.illu.affy.unrel! 1,282! 71,581! 98.93%! All!samples!as!reported!in!Table!S1!
global.affy.unrel! 1,224! 372,692! 98.85%! All!samples!with!available!

Affymetrix!data!
mex.hapmap.unrel! 674! 785,663! 99.30%! Samples!with!both!Affymetrix!and!

Illumina!data!
Note:!The!unrel!suffix!denotes!that!all!individuals!being!part!of!the!offspring!of!trios!or!duos!
have!been!removed.!
 
 

Table S3. Top 0.1% values of the distribution of SPA scores from the combined dataset of 
Native Mexican populations 
Chr Starta End Width Best SNPb Min p-value Genes Best genec Dist. to 

best gene 
1 11872557 11968650 96094 rs2336384 8.52E-05 KIAA2013, PLOD1, 

MFN2 
MFN2 0 

1 161201354 161675875 474522 rs12035861 0.000296765 RGS4, RGS5, NUF2 C1orf110 96125 
2 40965587 41032954 67368 rs17026994 0.000505381  SLC8A1 439875 
2 67630022 67696704 66683 rs6546319 0.00044074  ETAA1 205667 
2 100567880 100688625 120746 rs7594990 0.000102839  PDCL3 8468 
2 186314170 186316584 2415 rs9646802 0.00072869 FSIP2 FSIP2 0 
3 57369806 57483052 113247 rs7612786 0.000370221 DNAH12 DNAH12 0 
3 62970589 63023776 53188 rs2367592 2.06E-05  LOC285401 92815 
4 54185643 54240061 54419 rs17083248 0.000781578  LNX1 60000 
4 94741372 94769749 28378 rs1435481 0.000658171 GRID2 GRID2 0 
4 182295342 182339600 44259 rs10021323 7.64E-05 LINC00290 LINC00290 22304 
4 188288936 188887227 598292 rs10007836 0.000138098 LOC339975 LOC339975 0 
5 43106913 43208653 101741 rs782978 6.76E-05 ZNF131 ZNF131 0 
5 167854709 168124390 269682 rs2305729 0.000634665 RARS, FBLL1, PANK3, 

MIR103A1, MIR103B1, 
SLIT3 

RARS 0 

6 29467091 30222934 755844 rs757262 5.88E-06 OR12D2, OR11A1, 
OR10C1, OR2H1, 
MAS1L, LOC100507362, 
UBD, SNORD32B, 
OR2H2, GABBR1, MOG, 
ZFP57, HLA-F, HLA-F-
AS1, IFITM4P, HCG4, 
LOC554223, HLA-G, 
HLA-H, HCG4B, HLA-A, 
HCG9, ZNRD1-AS1, 
HLA-J, ZNRD1, 
PPP1R11, RNF39, 
TRIM31, TRIM40 

TRIM40 0 

6 87217610 87706172 488563 rs33993504 0.000167481 HTR1E MIR548AD 236583 
6 135376293 135416925 40633 rs1014021 0.000808023 HBS1L HBS1L 0 
6 138271512 138272800 1289 rs6570193 0.00020274  TNFAIP3 26658 
7 144649450 144715640 66191 rs700260 0.000564147  TPK1 551561 
7 152649615 152947294 297680 rs367566 3.23E-05  ACTR3B 466219 
8 29469355 29592864 123510 rs6558130 7.93E-05  C8orf75 109135 
8 74233577 74249632 16056 rs4415303 0.000232123  LOC100130301 66581 
9 8256584 8323100 66517 rs10815823 3.53E-05 PTPRD PTPRD 0 
9 9716233 9741606 25374 rs1768892 0.000937306 PTPRD PTPRD 0 
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9 84954051 84977207 23157 rs17086018 0.000252691  RASEF 86188 
10 30395199 30537672 142474 rs639390 0.000308518  MTPAP 120140 
10 51939492 52023192 83701 rs3011707 0.000611159 SGMS1 SGMS1 0 
10 70630454 70635003 4550 rs7091695 0.000664048 SUPV3L1 SUPV3L1 0 
10 99194516 99269150 74635 rs7081796 0.000475999 EXOSC1, ZDHHC16, 

MMS19, UBTD1 
EXOSC1 0 

11 91664434 91856736 192303 rs922006 0.000528888 FAT3 FAT3 59399 
12 5690939 6215341 524403 rs3782652 0.000105778 ANO2, VWF, CD9 ANO2 0 
12 95329431 95333800 4370 rs11108495 0.000467184  CDK17 13551 
12 120774822 120869596 94775 rs895960 1.76E-05 HPD, PSMD9, WDR66 PSMD9 0 
12 123332538 123356470 23933 rs2342468 0.000402542 ZNF664-FAM101A, 

FAM101A 
ZNF664-
FAM101A 

0 

13 24226680 24496118 269439 rs12019525 0.000332024 RNF17, CENPJ, 
TPTE2P1 

RNF17 9621 

14 76137790 76187720 49931 rs1642822 0.000431925  ESRRB 99857 
14 101526284 101565047 38764 rs4906175 0.000775702 DYNC1H1 DYNC1H1 0 
14 102971177 103183235 212059 rs11160756 0.000193925 MARK3, CKB, 

TRMT61A, BAG5, 
APOPT1, KLC1 

KLC1 0 

15 44942157 44943871 1715 rs7177307 0.000699307 MIR548A3 MIR548A3 0 
15 75444737 75457456 12720 rs1565757 8.81E-06 PEAK1 PEAK1 0 
16 21538199 21573398 35200 rs16972765 0.000179234 METTL9, IGSF6 METTL9 0 
16 49909748 50235764 326017 rs7204626 6.46E-05  LOC388276 382001 
16 67284570 67372449 87880 rs6499193 0.000356999 CDH3, CDH1 CDH3 0 
17 72212760 72229750 16991 rs11868472 0.000628789 MXRA7,JMJD6 MXRA7 0 
18 18338350 18707615 369266 rs607660 0.000546517  CTAGE1 131796 
18 24563233 24611667 48435 rs356925 0.000899109  CDH2 570163 
19 52785167 52869070 83904 rs2098718 0.000141037 GLTSCR1 GLTSCR1 0 
20 13911728 14073728 162001 rs6105211 0.000223308 SEL1L2,MACROD2 MACROD2 0 
20 36944868 37107381 162514 rs6129158 0.000376098 PPP1R16B,FAM83D,DH

X35 
DHX35 5601 

20 37613066 37625204 12139 rs6129366 0.000661109  LOC339568 338399 
aDistances!are!given!in!base!pairs!(bp)!and!positions!map!to!the!human!genome!build!hg18!
bBest!SNP!is!the!SNP!with!the!highest!SPA!score!within!each!region!
cBest!gene!is!the!closest!gene!to!the!SNP!with!the!highest!SPA!score!within!each!region!!
!
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Appendix(1(

(

An(Algorithm(for(Identifying(Ancestrally(Informative(Markers((AIMs)(

(

A!common!approach!to!lowMcost!ancestry!estimation!is!to!genotype!a!small!number!of!

markers!(approximately!50M500)!that!provide!a!high!degree!of!ancestry!information,!rather!

than!go!through!the!expense!of!genomeMwide!array!genotyping.!These!ancestry!estimates!

can!then!be!used!for!candidate!gene!analyses!or!overall!characterizations!of!admixture!

patterns!for!various!geographic!regions!or!medical!studies,!or!can!be!incorporated!in!the!

design!of!smaller!custom!arrays!to!adjust!for!potential!population!stratification!and!

thereby!reduce!confounding!in!genetic!association!testing.!Several!panels!previously!

existed!(e.g.!(1,82)),!but!these!panels!typically!were!not!based!on!a!specific!portable!

algorithm!and!therefore!are!less!extensible!to!novel!situations.!!

!

In!partnership!with!the!Latin!American!Cancer!Epidemiology!Consortium(3),!we!were!

tasked!with!developing!a!panel!of!markers!that!could!be!used!for!Latino!populations!across!

the!Americas!(with!ancestry!primarily!from!Native!Americans,!Europeans,!and!subMSaharan!

Africans).!These!should!be!broadly!applicable!for!ancestry!estimation!in!all!Northern,!

Southern,!and!Caribbean!populations!identifying!as!Hispanic!or!Latino,!therefore!having!

the!goal!of!modeling!the!admixture!process!with!consistently!representative!AIMs!from!all!

three!ancestral!populations.!Here!I!will!present!the!basic!algorithm!used!in!Galanter!et!al.!

and,!following!it,!the!Python!code!that!is!also!available!at!https://code.google.com/p/aimsM

project/.!!
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!

Intuitively,!we!can!think!of!an!ideal!AIM!as!being!a!SNP!where!ancestry!is!perfectly!

correlated!to!allele!state.!With!these!markers!there!would!be!a!oneMtoMone!correspondence!

between!observed!allele!and!ancestry!at!that!locus.!While!rare,!the!marker!for!the!Duffy!

Null!blood!type!(rs12075)!approaches!this!level!of!ancestry!information,!and!so!do!certain!

markers!on!the!Y!chromosome!and!mitochondrial!genome,!for!example,!those!that!track!

the!OutMofMAfrica!migration.!Alternatively,!a!SNP!with!poor!ancestry!information!would!

have!similar!allele!frequencies!in!all!populations!studied,!making!ancestry!impossible!to!

infer!from!that!marker!alone.!Most!markers!on!the!genome!fall!along!the!spectrum!

somewhere!in!the!middle,!with!imperfect!association!between!ancestry!and!genotype.!

!

In!AIMS_GENERATOR!we!use!a!statistic!for!capturing!this!spectrum!of!ancestry!information!

originally!developed!by!Rosenberg!et!al.!(4)!called!the!In!statistic.!By!virtue!of!being!

developed!expressly!to!determine!ancestry!from!information!theoretic!principles,!this!

statistic!is!ideal!for!use!in!identifying!AIMs!from!genomeMwide!genotype!data.!The!statistic!

is!related!to!the!betterMknown!Fst!across!a!wide!range!of!minor!allele!frequencies!for!

pairwise!comparisons!of!population!allele!frequencies.!In!our!implementation,!we!calculate!

pairwise!In!values!for!all!3!pairwise!comparisons!of!3!ancestral!groups,!then!use!those!

metrics!to!create!an!unrooted!tree!for!each!population!at!each!SNP.!This!turns!pairwise!In!

values!into!locusMspecific!branch!lengths!(LSBL,!See!Figure!1).!SNPs!with!maximal!ancestry!

informativeness!then!have!the!longest!branch!lengths.!The!ideal!AIMs!panel!then!is!one!that!

balances!maximal!ancestry!informativeness!for!each!population!with!independent!
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inheritance!(therby!prioritizing!markers!that!are!unlinked),!to!ensure!that!each!marker!

chosen!contributes!novel!ancestry!information.!

(

Pre5processing(genotype(data(

The!program!uses!summary!files!generated!by!plink(5)!for!the!ancestral!populations!of!

interest.!In!particular,!we!chose!to!calculate!allele!frequencies,!HardyMWeinberg!

Equilibrium!pMvalues,!and!linkage!disequilibrium!values!as!measured!by!R2.!We!begin!with!

highMquality!genotypes!using!standard!genotype!QC!methods!typical!for!genomeMwide!

association!studies!(e.g.!filtering!for!SNPs!with!low!missingness,!good!genotype!clustering,!

etc.).!We!then!prune!markers!that!are!highly!divergent!Hardy!Weinberg!in!the!ancestral!

populations!(as!this!is!an!assumption!of!typical!ancestry!estimation!methods).!After!that,!

we!prune!markers!that!show!substantial!heterogeneity!within!continents!(via!a!chiM

squared!test!of!allele!frequencies)!to!ensure!generalizability!of!findings!for!each!ancestral!

group.!Populations!representative!of!ancestry!from!the!same!region!are!then!merged!in!

plink!to!calculate!minor!allele!frequencies.!Our!version!of!the!code!checks!for!minor/major!

allele!flips!(common!in!AIMs,!given!the!large!discrepancy!in!allele!frequencies)!between!

reference!populations.!LD!is!calculated!based!on!the!sliding!window!in!plink,!and!the!user!

has!options!for!both!a!minimum!physical!distance!and!correlation!level!that!is!allowable!in!

the!AIMs!panel.!!

(

Running(AIMS_GENERATOR(

An!outline!of!the!algorithm!is!given!in!Figure!2.!The!program!is!written!in!Python!and!

should!run!on!any!platform!after!installing!the!Numpy/Scipy!Python!libraries.!It!will!use!its!
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own!interactive!command!prompt!and!will!ask!for!the!relevant!paths!to!each!set!of!relevant!

files!generated!from!plink.!It!will!then!calculate!pairwise!In!values!and!the!branch!lengths!

for!each!population!that!correspond!to!each!SNP,!and!store!that!output!in!a!text!file!for!later!

use.!The!program!uses!a!greedy!approach!to!identify!SNPs,!beginning!with!the!best!AIM!in!

the!data.!After!that!first!AIM!is!included,!the!population!with!the!smallest!total!LSBL!(the!

least!amount!of!ancestry!information)!is!targeted!and!the!best!AIM!left!for!that!population!

is!found.!Provided!that!this!new!AIM!is!independent!of!the!first!one!(via!the!physical!and!

correlation!buffers!given!by!the!user),!it!is!included,!the!total!LSBLs!are!recalculated,!and!

the!algorithm!cycles!back!to!finding!the!population!with!the!smallest!total!LSBL.!By!

checking!at!each!step!to!the!total!LSBL,!the!program!adapts!to!varying!degrees!of!

population!structure!and!does!not!give!a!fixed!number!of!AIMs!relevant!to!each!population.!

!

The!output!of!AIMS_GENERATOR!is!a!ranked!list!of!AIMs!identified!in!the!genome.!We!

provide!in!Galanter!et!al.!accuracy!metrics!for!various!sized!AIMs!panels!as!compared!to!

genomeMwide!array!data!as!a!gold!standard,!and!certainly!larger!panels!provide!the!most!

accurate!results.!However,!it!is!important!to!note!that!even!small!panels!of!AIMs!(ie!fewer!

than!50!markers)!still!allow!individuals!to!account!for!population!stratification!in!their!

data.!While!the!ancestry!estimates!themselves!may!have!increased!noise,!they!still!provide!

enough!information!to!be!used!as!a!covariate!to!capture!potential!population!stratification!

in!genetic!association!studies.!

(

AIMs(panel(developed(by(AIMS_GENERATOR(
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The!first!version!of!the!algorithm!was!used!to!develop!a!panel!of!446!markers!for!

Sequenom!assays.!After!filtering!out!variants!that!were!poor!candidates!for!the!genotyping!

platform,!the!resulting!panel!was!able!to!estimate!ancestry!highly!accurately:!<0.1!RMSE!

for!all!ancestries!across!diverse!populations!of!mixed!ancestry.!By!virtue!of!being!broadly!

relevant!to!the!populations!of!mixed!ancestry!in!the!Americas,!the!AIMS_GENERATOR!

results!were!used!to!pick!AIMs!in!the!design!of!both!the!Illumina!and!Affymetrix!exome!

arrays.!!

(

Multi5population(extension(to(AIMS_GENERATOR(

Our!original!implementation!was!specifically!designed!for!3!ancestral!populations.!!As!such!

the!calculation!of!LSBL!is!simple!as!the!unrooted!tree!topology!is!fixed.!With!additional!

ancestral!populations,!the!values!become!more!complicated!as!the!tree!topologies!can!

change,!and!rootMtip!branch!lengths!are!less!interpretable.!Therefore!as!an!extension!to!

AIMS_GENERATOR!we!have!chosen!to!balance!pairwise!In!values,!rather!than!branch!

lengths,!with!K>3!ancestral!populations.!The!algorithm!iterates!similarly!to!before!in!a!

greedy!fashion.!Comparisons!to!genomeMwide!genotype!data!for!an!admixed!population!

with!5!ancestries!(6)!indicate!that!this!forthcoming!version!of!AIMS_GENERATOR!provides!

more!accurate!AIMs!panels!than!other!methods,!including!an!algorithm!based!on!PCA!

correlations!(7)!and!a!genetic!algorithm!using!allele!frequency!differentiation!(8).!!
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!!

Figure(1.!A!diagram!demonstrating!the!locusMspecific!branch!length!statistic.!For!each!SNP,!

pairwise!In!values!are!calculated!from!allele!frequencies.!These!are!transformed!into!an!

unrooted!tree,!where!the!distance!from!the!centroid!to!each!population!is!the!LSBL,!the!

statistic!used!by!AIMS_GENERATOR.!
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!

Figure(2.(Graphical!description!of!the!AIMS_GENERATOR!algorithm!from!Galanter!et!al.!!
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Appendix(2(

AIMS_GENERATOR(python(code(

''' 

AIMs generator 

Joshua Galanter and Chris Gignoux 

 

This program will take genotype files and allele frequency files from plink as well 

as a pairwise LD file and will generate sets of AIMs based on informativeness. 

Also available at: https://code.google.com/p/aims-project 

''' 

 

import sys 

from sys import stdout 

import os 

from math import log 

from numpy import * 

from scipy import stats 

 

 

def calc_sigma(af1, af2): 

 return af1 + af2 

 

 

def calc_delta(af1, af2): 

 return abs(af1 - af2) 

 

 

 

def calc_Fst(af1,af2): 

 '''Calculates pairwise Fst given allele frequencies''' 

 if (af1 == 0 and af2 == 0) or (af1 == 1 and af2 == 1): 

  return 0 
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 return calc_delta(af1, af2) ** 2 / (calc_sigma(af1, af2) * (2 - calc_sigma(af1, 

af2))) 

 

 

 

def calc_In(af1, af2): 

 '''calculate Rosenberg et al.'s In statistic for pairs of populations''' 

 if (af1 == 0 and af2 == 0) or (af1 == 1 and af2 == 1): 

  return 0 

 if af1 == 1: 

  af1 = 0 

  af2 = 1 - af2 

 elif af2 == 1: 

  af1 = 1 - af1 

  af2 = 0 

 sigma = calc_sigma(af1, af2) 

 delta = calc_delta(af1, af2) 

 a_exp = -0.5 * log(sigma ** sigma * (2 - sigma) ** (2 - sigma)) 

 b_exp = 0.25 * log( (sigma + delta) ** (sigma + delta) * (2 - sigma - delta) ** 

(2 - sigma - delta) * (sigma - delta) ** (sigma - delta) * (2 - sigma + delta) ** (2 - 

sigma + delta) ) 

 # return sum 

 return a_exp + b_exp 

 

 

 

def calc_lsbl(ab, ac, bc): 

 '''Calculates locus specific branch length given three pairwise statistics 

(either In or Fst)''' 

 a = (ab + ac - bc)/2 

 b = (ab + bc - ac)/2 

 c = (ac + bc - ab)/2 

 return (a, b, c) 
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def calculate_ld(ldfile, rsq_threshold = 0.1): 

 '''read in LD and position calculated in PLINK for all snps in LD, given a 

window sizepassed as a parameter.''' 

 lddict = {} 

 while True: 

  try: 

   for total, line in enumerate(file(ldfile)): 

    pass 

   for i, line in enumerate(file(ldfile)): 

    if i > 0: 

     if i % (total/20) == 0: 

      print '%sImporting LD file:  [%s%s]' 

%('\b'*50, '=' * (i * 20 / total), ' ' * (19 - (i * 20 / total))), 

      stdout.flush() 

     line = line.strip().split() 

     if float(line[-1]) > rsq_threshold: 

      #print line 

      snpA = line[2] 

      snpB = line[5] 

      if snpA in lddict: 

       lddict[snpA].append(snpB) 

      else: 

       lddict[snpA] = [snpB] 

      if snpB in lddict: 

       lddict[snpB].append(snpA) 

      else: 

       lddict[snpB] = [snpA] 

   print 

   return lddict 

  except: 
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   print 'File error; LD file is not in the correct format.' 

   ldfile = getFile(prompt, 'LD') 

   continue 

 

 

 

def getFile(prompt, type, verbose = False): 

 ''' 

 This function will get a filename entered by the user. 

 ''' 

 print 'Please enter a filename for a %s file.' %(type.replace('_', ' ')) 

 print 'You can also enter \'ls\' to list directory contents or \'pwd\' to print 

the current directory.' 

 while True: 

  sys.stdout.write(prompt) 

  line = sys.stdin.readline() 

  filename = line.strip().split()[0] 

  if filename == 'pwd': 

   print os.getcwd() 

  elif filename == 'ls': 

   filelist = os.listdir(os.getcwd()) 

   for i in filelist: 

    print i 

  else: 

   try: 

    f = open(filename) 

    f.close() 

    return filename 

   except: 

    print 'That was not a valid filename.' 

    return getFile(prompt, type, verbose) 
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def get_LD(prompt = '> '): 

 ''' 

 This function will read in a plink "ld" file to get pairwise LD between SNPs. 

 It will return a SNP - list of SNP's dictionary, where the list of SNPs 

consists 

 of all the SNPs in LD above the LD threshold with the index SNP. 

 ''' 

 filename = getFile(prompt, 'LD') 

 while True: 

  print 'Enter LD threshold, between 0 and 1' 

  sys.stdout.write(prompt) 

  line = sys.stdin.readline() 

  try: 

   ld_threshold = float(line.strip().split()[0]) 

   if ld_threshold > 0 and ld_threshold < 1: 

    return calculate_ld(filename, ld_threshold) 

   else: 

    print 'LD threshold must be a number between 0 and 1.' 

    continue 

  except: 

   print 'LD threshold must be a number between 0 and 1.' 

   continue 

 

 

 

def get_bim(prompt = '> ', filename = ''): 

 ''' 

 This function will read in a plink "bim" file to get the chromosomal positions. 

 It will output a SNP - (chromosome, position) dictionary, as well as a 

dictionary of 

 alleles (minor, major). 

 ''' 
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 if filename == '': 

  filename = getFile(prompt, 'plink bim (position)')   

 try: 

  print 'Reading in position data...' 

  posdict = dict([[line.strip().split()[1],(line.strip().split()[0], 

line.strip().split()[3])] for line in file(filename)]) 

  alleledict = dict([[line.strip().split()[1],(line.strip().split()[4], 

line.strip().split()[5])] for line in file(filename)]) 

  return (posdict, alleledict) 

 except: 

  print 'File error; bim file is not in the correct format.' 

  return get_bim(prompt) 

 

 

 

def get_freq(population, nsnps = -1, prompt = '> ', filename = ''): 

 ''' 

 This function will read in a plink "frq" file to get minor allele frequencies. 

 ''' 

 if filename == '': 

  filename = getFile(prompt, population + ' allele frequency') 

 try: 

  print 'Reading allele frequency data...' 

  freq = file(filename) 

  freq.readline() 

  if nsnps == -1: 

   return [line.strip().split() for line in freq.readlines()] 

  else: 

   snps = [] 

   for i, line in enumerate(freq.readlines()): 

    if i > nsnps: 

     print 'Error, there are more SNPs in the frequency 

file than in the bim file' 
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     return get_freq(population, nsnps, prompt) 

    if i % (nsnps/20) == 0: 

     print '%sImporting frequency file:  [%s%s]' 

%('\b'*50, '=' * (i * 20 / nsnps), ' ' * (19 - (i * 20 / nsnps))), 

     stdout.flush() 

    snps.append(line.strip().split()) 

   return snps  

 except: 

  print 'File error; allele frequency file is not in the correct format.' 

  return get_freq(population, nsnps, prompt) 

 

 

 

def correct_freq(freq, mafdict): 

 n = 0 

 for i, snp in enumerate(freq): 

 

  if snp[2] == '0': 

   if snp[3] == mafdict[snp[1]][1]: 

    freq[i][2] = mafdict[snp[1]][0] 

   else: 

    freq[i][4] = '1' 

    freq[i][3] = mafdict[snp[1]][1] 

    freq[i][2] = mafdict[snp[1]][0] 

  elif snp[2] == mafdict[snp[1]][1]: 

   n += 1 

   freq[i][4] = str(1-float(snp[4])) 

   freq[i][2] = mafdict[snp[1]][0] 

   freq[i][3] = mafdict[snp[1]][1] 

  #if snp[1] == 'rs548824': 

  # print '\nIdentified the SNP' 

  # print freq[i], mafdict[snp[1]][0] 

 print '\nFixed %s out of %s minor allele frequency flips' %(n, i) 
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 return freq 

 

 

def sort_snps(snps, positions): 

 print 'Sorting snps...' 

 return sorted(snps, key = lambda order: (positions[order[1]][0], 

positions[order[1]][1])) 

 

 

def calc_pairwise_aims(positions, pop1_frq, pop2_frq): 

 ''' 

 Calculates the pairwise aims statistics for two populations given their allele 

frequencies. 

 Returns a list of aims, that include SNP, chromosome, position, 

 allele frequency in population 1, allele frequency in population 2, 

 sigma (the sum of allele frequencies), delta (the difference in allele 

frequencies), 

 pairwise Fst, and pairwise In 

 ''' 

 aims = [] 

 ignored = 0 

 for i, snp in enumerate(pop1_frq): 

  #if snp[1] == 'rs548824': 

  # print 'Identified the SNP' 

  # print snp 

  # print pop2_frq[i] 

  if int(snp[0]) > 22: 

   # ignore non-autosomal SNPs 

   ignored += 1 

   continue 

  else: 

   if i % (len(pop1_frq)/20) == 0: 
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    print '%sCalculating pairwise AIMs statistics:  [%s%s]' 

%('\b'*61, '=' * (i * 20 / len(pop1_frq)), ' ' * (19 - (i * 20 / len(pop1_frq)))), 

    stdout.flush() 

   af1 = float(pop1_frq[i][4]) 

   af2 = float(pop2_frq[i][4]) 

   #if snp[1] == 'rs548824': 

   # print '\nIdentified the SNP' 

   # print 

'snp\tchr\tposition\t%s_allele_freq\t%s_allele_freq\tsigma\tdelta\tFst\tIn\n' 

   # print snp[1], positions[snp[1]][0], positions[snp[1]][1], 

af1, af2, calc_sigma(af1, af2), calc_delta(af1, af2), calc_Fst(af1,af2), 

calc_In(af1,af2) 

   # print 

   aims.append([snp[1], positions[snp[1]][0], positions[snp[1]][1], 

af1, af2, calc_sigma(af1, af2), calc_delta(af1, af2), calc_Fst(af1,af2), 

calc_In(af1,af2)]) 

 return aims 

 

 

 

def sort_pairwise_aims(unsorted_aims, stat = 'In'): 

 ''' 

 Sorts the pairwise aims statistics given a set of aims.  It can sort on the 

basis 

 of In or Fst.  Defaults to In. 

 ''' 

 if stat == 'In': 

  print '\nsorting output...' 

  aims = sorted(unsorted_aims, key = lambda order: order[8]) 

  aims.reverse() 

  return aims 

 elif stat == 'Fst': 

  print '\nsorting output...' 
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  aims = sorted(unsorted_aims, key = lambda order: order[7]) 

  aims.reverse() 

  return aims 

 else: 

  print 'Invalid sort command, returning unsorted aims.' 

  return aims 

 

 

 

def output_pairwise_aims(aims, pop1, pop2, outfilename, n = -1): 

 ''' 

 Writes the AIMs statistics to a file, given the filename.  n is an optional 

 parameter that specifies how many AIMs to output.  It defaults to -1 (all) 

 ''' 

 print 'Writing pairwise AIMs statistics for %s/%s populations to file %s' 

%(pop1, pop2, outfilename) 

 outfile = file(outfilename, 'w') 

 outfile.write('snp\tchr\tposition\t%s_allele_freq\t%s_allele_freq\tsigma\tdelta

\tFst\tIn\n' %(pop1, pop2)) 

 lines = 0 

 for line in aims: 

  if lines == n: 

   return 

  else: 

   outfile.write('%s\n' % ('\t'.join([str(val) for val in line]))) 

   lines += 1 

 return 

 

 

 

def calc_pop_aims(positions, pop1_frq, pop2_frq, pop3_frq, AB_pairwise_aims, 

AC_pairwise_aims, BC_pairwise_aims, populations): 

 ''' 
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 Calculates the locus specific brach length statistics for three populations, 

given the 

 pairwise AIMs statistics of three populations.  It returns a tuple containing 

three lists, 

 one for each of the three populations.  The lists contain variables for: 

 rsID, chromosome, position, allele frequency, locus specific branch length 

(LSBL) by Fst, and LSBL by In 

 ''' 

 pop1_aims = [] 

 pop2_aims = [] 

 pop3_aims = [] 

 #print 'The length of the NAM/AFR pairwise AIMS is', len(AB_pairwise_aims) 

 #print 'The length of the NAM/EUR pairwise AIMS is', len(BC_pairwise_aims) 

 #print 'The length of the EUR/AFR pairwise AIMS is', len(AC_pairwise_aims) 

 #print 'The length of the NAM pop frequency file is', len(pop1_frq) 

 n = 0 

 for i, snp in enumerate(pop1_frq): 

  if int(snp[0]) > 22: 

   # ignore non-autosomal SNPs 

   continue 

  else: 

   if i % (len(pop1_frq)/20) == 0: 

    print '%sCalculating branch length AIMs statistics:  

[%s%s]' %('\b'*66, '=' * (i * 20 / len(pop1_frq)), ' ' * (19 - (i * 20 / 

len(pop1_frq)))), 

    stdout.flush() 

   threeway_Fst = calc_lsbl(AB_pairwise_aims[n][7], 

AC_pairwise_aims[n][7], BC_pairwise_aims[n][7]) 

   threeway_In = calc_lsbl(AB_pairwise_aims[n][8], 

AC_pairwise_aims[n][8], BC_pairwise_aims[n][8]) 

   pop1_aims.append([snp[1], positions[snp[1]][0], 

positions[snp[1]][1], float(pop1_frq[i][4]), threeway_Fst[0], threeway_In[0], 

populations[0]]) 
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   pop2_aims.append([snp[1], positions[snp[1]][0], 

positions[snp[1]][1], float(pop2_frq[i][4]), threeway_Fst[1], threeway_In[1], 

populations[1]]) 

   pop3_aims.append([snp[1], positions[snp[1]][0], 

positions[snp[1]][1], float(pop3_frq[i][4]), threeway_Fst[2], threeway_In[2], 

populations[2]]) 

   n += 1 

 print '\n' 

 return (pop1_aims, pop2_aims, pop3_aims) 

 

 

 

def sort_pop_aims(unsorted_aims, stat = 'In'): 

 ''' 

 Sorts the locus specific branch length aims statistics given a set of aims.  It 

can sort on the basis 

 of In or Fst.  Defaults to In. 

 ''' 

 if stat == 'In': 

  print 'sorting output...' 

  aims = sorted(unsorted_aims, key = lambda order: order[5]) 

  aims.reverse() 

  return aims 

 elif stat == 'Fst': 

  print 'sorting output...' 

  aims = sorted(unsorted_aims, key = lambda order: order[4]) 

  aims.reverse() 

  return aims 

 else: 

  print 'Invalid sort command, returning unsorted aims.' 

  return aims 
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def output_pop_aims(aims, population, outfilename, n = -1): 

 ''' 

 Writes the AIMs statistics to a file, given the filename.  n is an optional 

 parameter that specifies how many AIMs to output.  It defaults to -1 (all) 

 ''' 

 print 'Writing AIMs statistics for %s population to file %s' %(population, 

outfilename) 

 outfile = file(outfilename, 'w') 

 outfile.write('snp\tchr\tposition\tallele_frequency\tLSBL(Fst)\tLSBL(In)\n') 

 lines = 0 

 for line in aims: 

  if lines == n: 

   return 

  else: 

   outfile.write('%s\n' % ('\t'.join([str(val) for val in 

line[0:6]]))) 

   lines += 1 

 return 

 

 

 

def calc_all_aims(positions, pop1_frq, pop2_frq, pop3_frq, pops, n = -1, outstem = 

'aimsfile'): 

 ''' 

 Calculates all aims statistics, given three lists of population frequencies.  

It will calculate 

 and save to files all three pairwise aims statistics, as well as the population 

specific locus 

 specific branch length statistics.  It will return a tuple of LSBLs. 

 ''' 

 AB_aims = calc_pairwise_aims(positions, pop1_frq, pop2_frq) 

 sorted_AB_aims = sort_pairwise_aims(AB_aims) 
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 outfile = outstem + '_' + pops[0] + '_' + pops[1] + '.aims' 

 output_pairwise_aims(sorted_AB_aims, pops[0], pops[1], outfile, n) 

 

 AC_aims = calc_pairwise_aims(positions, pop1_frq, pop3_frq) 

 sorted_AC_aims = sort_pairwise_aims(AC_aims) 

 outfile = outstem + '_' + pops[0] + '_' + pops[2] + '.aims' 

 output_pairwise_aims(sorted_AC_aims, pops[0], pops[2], outfile, n) 

 

 BC_aims = calc_pairwise_aims(positions, pop2_frq, pop3_frq) 

 sorted_BC_aims = sort_pairwise_aims(BC_aims) 

 outfile = outstem + '_' + pops[1] + '_' + pops[2] + '.aims' 

 output_pairwise_aims(sorted_BC_aims, pops[1], pops[2], outfile, n) 

  

  

 pop1_aims, pop2_aims, pop3_aims = calc_pop_aims(positions, pop1_frq, pop2_frq, 

pop3_frq, AB_aims, AC_aims, BC_aims, pops) 

 

  

 sorted_pop1_aims = sort_pop_aims(pop1_aims, 'In') 

 outfile = outstem + '_' + pops[0] + '.aims' 

 output_pop_aims(sorted_pop1_aims, pops[0], outfile, n) 

 

 sorted_pop2_aims = sort_pop_aims(pop2_aims, 'In') 

 outfile = outstem + '_' + pops[1] + '.aims' 

 output_pop_aims(sorted_pop2_aims, pops[1], outfile, n) 

 

 sorted_pop3_aims = sort_pop_aims(pop3_aims, 'In') 

 outfile = outstem + '_' + pops[2] + '.aims' 

 output_pop_aims(sorted_pop3_aims, pops[2], outfile, n) 

 

 return (sorted_pop1_aims, sorted_pop2_aims, sorted_pop3_aims) 
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def too_close(index_snp, snp_list, positions, population, distance = 100000): 

 if snp_list == [None]: 

  print 'returning none' 

  return False 

 else: 

  for snp in snp_list: 

   if snp == None: 

    print snp 

    print 'snp is empty' 

    return False 

   else: 

    if snp[6] == population: 

     if snp[1] == index_snp[1]: 

      if abs(int(snp[2]) - int(index_snp[2])) <= 

distance: 

       # print snp[0:3], 'and', 

index_snp[0:3], 'are too close' 

       return True 

 return False 

  

 

 

def get_aims(positions, lddict, alleles, populations, pop1aims, pop2aims, pop3aims, 

excluded = set(), distance = 100000, n = 500): 

 aimslist = [] 

 print 'Generating informativeness dictionary for %s' %(populations[0]) 

 pop1stat = dict([[aims[0],aims[5]] for aims in pop1aims]) 

 print 'Generating informativeness dictionary for %s' %(populations[1]) 

 pop2stat = dict([[aims[0],aims[5]] for aims in pop2aims]) 

 print 'Generating informativeness dictionary for %s' %(populations[2]) 

 pop3stat = dict([[aims[0],aims[5]] for aims in pop3aims]) 

 print 'Initializing statistics' 
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 pop1info = 0. 

 pop2info = 0. 

 pop3info = 0. 

 pop1pos = 0 

 pop2pos = 0 

 pop3pos = 0 

 pop1_numaims = 0 

 pop2_numaims = 0 

 pop3_numaims = 0 

 ldex = set() 

 pop1ex = set() 

 pop2ex = set() 

 pop3ex = set() 

 n_aims = 0 

 n_het_excluded = 0 

 while n_aims < n: 

  found = False 

  if (pop1info < pop2info) and (pop1info < pop3info): 

   aim = pop1aims[pop1pos] 

   #print 'Selected aim %s for evaluation' %(aim[0]) 

   pop1pos += 1 

   if (aim[0] not in (ldex | excluded)) and not too_close(aim, 

aimslist, positions, populations[0], distance): 

    print 'Found an AIM for %s, %s; %s AIMs found so far' 

%(populations[0], aim[0], len(aimslist) + 1) 

    found = True 

    aimslist.append(aim) 

    pop1_numaims += 1 

  elif pop2info < pop3info: 

   aim = pop2aims[pop2pos] 

   pop2pos += 1 

   #print 'Selected aim %s for evaluation' %(aim[0]) 
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   if (aim[0] not in (ldex | excluded)) and not too_close(aim, 

aimslist, positions, populations[1], distance): 

    print 'Found an AIM for %s, %s; %s AIMs found so far' 

%(populations[1], aim[0], len(aimslist) + 1) 

    found = True 

    aimslist.append(aim) 

    pop2_numaims += 1 

  else: 

   aim = pop3aims[pop3pos] 

   pop3pos += 1 

   #print 'Selected aim %s for evaluation' %(aim[0]) 

   if (aim[0] not in (ldex | excluded)) and not too_close(aim, 

aimslist, positions, populations[2], distance): 

    print 'Found an AIM for %s, %s; %s AIMs found so far' 

%(populations[2], aim[0], len(aimslist) + 1) 

    found = True 

    aimslist.append(aim) 

    pop3_numaims += 1 

  if found: 

   n_aims += 1 

   #print 'Found %s aims so far.' %(n_aims) 

   try: 

    ldex = ldex | set(lddict[aim[0]]) 

   except: 

    print 'snp %s is not in the ld dictionary.' %(aim[0]) 

   pop1info += pop1stat[aim[0]] 

   pop2info += pop2stat[aim[0]]    

   pop3info += pop3stat[aim[0]] 

  else: 

   if aim[0] in excluded: 

    #print 'Excluded an AIM for heterogeneity' 

    n_het_excluded += 1 

 print 'The total locus specific In for the three populations are:' 
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 print 'For population %s, found %s aims out of %s evaluated, for a total LSBL 

of %s' %(populations[0], pop1_numaims, pop1pos, pop1info) 

 print 'For population %s, found %s aims out of %s evaluated, for a total LSBL 

of %s' %(populations[1], pop2_numaims, pop2pos, pop2info) 

 print 'For population %s, found %s aims out of %s evaluated, for a total LSBL 

of %s' %(populations[2], pop3_numaims, pop3pos, pop3info) 

 print 'A total of %s AIMs were excluded due to heterogeneity' %(n_het_excluded) 

 return aimslist 

 

 

 

def print_aims(aims, filename, pop1frq, pop2frq, pop3frq, populations): 

 pop1dict = dict([[snp[1],snp[4]] for snp in pop1frq]) 

 pop2dict = dict([[snp[1],snp[4]] for snp in pop2frq]) 

 pop3dict = dict([[snp[1],snp[4]] for snp in pop3frq]) 

 outfile = file(filename, 'w') 

 outfile.write('snp\tchr\tposition\t%s_AF\t%s_AF\t%s_AF\tpopulation\tLSBL(Fst)\t

LSBL(In)\n' %(populations[0], populations[1], populations[2]))   

 for i, aim in enumerate(aims): 

  outfile.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % (aim[0], aim[1], 

aim[2], pop1dict[aim[0]], pop2dict[aim[0]], pop3dict[aim[0]], aim[6], aim[4], aim[5])) 

 

 

 

def chi(table): 

 observed = array(table) 

 rowsum = observed.sum(axis = 1) 

 colsum = observed.sum(axis = 0) 

 expected = (rowsum[:, newaxis] * colsum) / sum(rowsum) 

 return stats.chisquare(expected.reshape(-1), observed.reshape(-1)) 
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def calc_het(populations, filenames, pop_freq, mafdict, posdict, prompt = '>', 

threshold = 0.01): 

 print 'Calculating heterogeneity for the following populations:', 

 for i in populations: 

  print i, 

 print 

 allele_freqs = [] 

 heterogeneity = [] 

 for i, filename in enumerate(filenames): 

  allele_freqs.append(sort_snps(correct_freq(get_freq(populations[i], 

len(posdict), prompt, filename), mafdict), posdict)) 

 for i, snp in enumerate(pop_freq): 

  table = [] 

  for j, filename in enumerate(filenames): 

   minor_allele_count = float(allele_freqs[j][i][4]) * 

float(allele_freqs[j][i][5]) 

   major_allele_count = (1. - float(allele_freqs[j][i][4])) * 

float(allele_freqs[j][i][5]) 

   table.append([minor_allele_count, major_allele_count])  

  heterogeneity.append(chi(table)) 

 return heterogeneity 

 

 

 

def exclude_het(hetfile, frq, threshold = 0.01): 

 print 'Finding SNPs to exclude on the basis of heterogeneity...' 

 exclude = set() 

 for i, snp in enumerate(frq): 

  if hetfile[i][1] < threshold: 

   exclude.add(frq[i][1]) 

 print 'Excluding %s SNPs on the basis of heterogeneity...' %(len(exclude)) 

 return exclude 
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if __name__ == '__main__': 

 interactive = False 

 test = True 

 dev = True 

 verbose = dev 

 prompt = '> ' 

 if interactive: 

  print 'What are the ancestral groups?  (enter them separated by enter)' 

  sys.stdout.write(prompt) 

  pop1 = sys.stdin.readline().strip().split()[0] 

  sys.stdout.write(prompt) 

  pop2 = sys.stdin.readline().strip().split()[0] 

  sys.stdout.write(prompt) 

  pop3 = sys.stdin.readline().strip().split()[0] 

   

  populations = (pop1, pop2, pop3) 

  posdict, alleledict = get_bim(prompt) 

   

  print 'Now we will need allele frequency files for the three ancestral 

groups.' 

  nam_freq = correct_freq(get_freq(populations[0], len(posdict), prompt), 

alleledict) 

  afr_freq = correct_freq(get_freq(populations[1], len(posdict), prompt), 

alleledict) 

  eur_freq = correct_freq(get_freq(populations[2], len(posdict), prompt), 

alleledict) 

  print 'Now we will calculate all the AIMs stats.' 

  print 'Please enter a file prefix for the output files.' 

  sys.stdout.write(prompt) 

  outfile = sys.stdin.readline().strip().split()[0] 

  print 'How many AIMs do you want calculated? (-1 if you want all SNPs 

included)' 
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  sys.stdout.write(prompt) 

  try: 

   n_aims = int(sys.stdin.readline().strip().split()[0]) 

  except: 

   print 'Sorry, you did not enter an integer, defaulting to all 

SNPs' 

   n_aims = -1 

   

  lddict = get_LD(prompt) 

   

  print 'What distance do you want between AIMS? (defaults to 100Kb)' 

  sys.stdout.write(prompt) 

  try: 

   distance = int(sys.stdin.readline().strip().split()[0]) 

  except: 

   print 'Sorry, you did not enter an integer, defaulting to 100Kb' 

   distance = 100000 

  print 'How many AIMs do you want? (defaults to 500)' 

  sys.stdout.write(prompt) 

  try: 

   n = int(sys.stdin.readline().strip().split()[0]) 

  except: 

   print 'Sorry, you did not enter an integer, defaulting to 500' 

   n = 500 

 else: 

  populations = ('NAM', 'AFR', 'EUR') 

  ldfile = 'NAM.ld' 

  lddict = calculate_ld(ldfile, 0.1) 

  posfile = 'pos.bim' 

  posdict, alleledict = get_bim(prompt, posfile) 

  nam_freq_file = 'NAM.frq' 

  eur_freq_file = 'EUR.frq' 

  afr_freq_file = 'AFR.frq' 
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  nam_freq = sort_snps(correct_freq(get_freq(populations[0], len(posdict), 

prompt, nam_freq_file), alleledict), posdict) 

  afr_freq = sort_snps(correct_freq(get_freq(populations[1], len(posdict), 

prompt, afr_freq_file), alleledict), posdict) 

  eur_freq = sort_snps(correct_freq(get_freq(populations[2], len(posdict), 

prompt, eur_freq_file), alleledict), posdict) 

 

  threshold = 0.01 

  eur_pops = ('SPA', 'TSI', 'CEU') 

  eur_files = ('SPA.frq', 'TSI.frq', 'CEU.frq') 

  eur_het = calc_het(eur_pops, eur_files, eur_freq, alleledict, posdict, 

prompt = '>') 

   

  afr_pops = ('YRI', 'LWK') 

  afr_files = ('YRI.frq', 'LWK.frq') 

  afr_het = calc_het(afr_pops, afr_files, afr_freq, alleledict, posdict, 

prompt = '>') 

 

  nam_pops = ('MAY', 'TEP', 'ZAP', 'NAH', 'QUE', 'AYM') 

  nam_files = ('MAY.frq', 'TEP.frq', 'ZAP.frq', 'NAH.frq', 'QUE.frq', 

'AYM.frq') 

  nam_het = calc_het(nam_pops, nam_files, nam_freq, alleledict, posdict, 

prompt = '>') 

 

 

  exclude = exclude_het(eur_het, eur_freq, threshold) | 

exclude_het(afr_het, afr_freq, threshold) | exclude_het(nam_het, nam_freq, threshold) 

  print 'A total of %s AIMs have significant heterogeneity' %(len(exclude)) 

 

 n_aims = -1 

 dist = ['100k', '250k', '500k', '1m'] 

 distances = [100000, 250000, 500000, 1000000] 

 number = ['500', '1000'] 
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 for i, distance in enumerate(distances): 

  for j, n in enumerate([500, 1000]): 

   outfile = 'LACE_aims_' + dist[i] + '_' + number[j] 

   print outfile 

   nam_aims, afr_aims, eur_aims = calc_all_aims(posdict, nam_freq, 

afr_freq, eur_freq, populations, n_aims, outfile) 

   my_aims = get_aims(posdict, lddict, alleledict, populations, 

nam_aims, afr_aims, eur_aims, exclude, distance, n) 

   print_aims(my_aims, outfile + '.aims', nam_freq, afr_freq, 

eur_freq, populations) 
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