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ABSTRACT OF THE DISSERTATION

Efficient Methods for Understanding the Genetic Architecture of Complex Traits

by

Yue Wu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Sriram Sankararaman, Co-Chair

Professor Eleazar Eskin, Co-Chair

Understanding the genetic architecture of complex traits is a central goal of modern

human genetics. Recent efforts focused on building large-scale biobanks, that collect

genetic and trait data on large numbers of individuals, present exciting opportunities

for understanding genetic architecture. However, these datasets also pose several

statistical and computational challenges. In this dissertation, we consider a series of

statistical models that allow us to infer aspects of the genetic architecture of single

and multiple traits. Inference in these models is computationally challenging due to

the size of the genetic data – consisting of millions of genetic variants measured across

hundreds of thousands of individuals. We propose a series of scalable computational

methods that can perform efficient inference in these models and apply these methods

to data from the UK Biobank to showcase their utility.
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CHAPTER 1

Introduction

The main theme of this thesis is to develop efficient algorithms to enable the study

of the genetic architecture of complex traits across large datasets. The key aspects

of the genetic architecture that we are trying to understand in this thesis are the

following:

• How much of the variation in a phenotype is explained by genetic variation?

• How much of the genetic effects of traits are shared? How do we quantify and

identify the shared genetic architecture that reveals pleiotropy?

• Are the genetic effects shared between phenotypes distributed across the genome?

Or could we identify hot spots for potential shared pathways? Can this rela-

tionship be explained by other traits?

1.1 Genetic and phenotypic variation

We first introduce the parameter termed heritability. Heritability is the proportion of

variation in a trait that can be explained by genetic variation. Heritability is an im-

portant parameter in efforts to understand the genetic architecture of complex traits

as well as in the design and interpretation of genome-wide association studies [1].

1



Attempts to understand the heritability of complex traits attributable to genome-

wide SNP variation data have motivated the analysis of large datasets as well as the

development of sophisticated tools to estimate heritability in these datasets.

In large-scale datasets such as the UK Biobank, the number of genetic variants M

is substantially larger than the number of samples N , where M >> N . Thus, linear

mixed models (LMM) have emerged as a key tool for heritability estimation [2, 3, 4,

5, 6]. In Chapter 2, we first introduce the concept of heritability and introduce the

linear mixed model (LMM). We then discuss the computational difficulty of inference

in an LMM and describe our method, RHE-reg, for efficient heritability estimation.

1.2 Shared genetic architecture among traits

We then try to understand the genetic architecture shared across multiple traits using

the parameter termed genetic correlation. Genetic correlation is the correlation of

the effect sizes across a set of genetic variants on a pair of traits [7]. For instance,

if a genetic variant has exactly the same contribution to a pair of traits, the genetic

correlation of the variant across the pair of traits would be 1. Genetic correlation

can provide insights into shared genetic pathways and serve as a starting point to

investigate pleiotropy and causal relationships among traits [8, 9, 10, 11].

In Chapter 3, we introduce two statistical models based on LMMs to estimate

genetic correlations. The first models a pair of traits at a time while the second jointly

models multiple traits. We discuss inference algorithms in these multi-variate LMMs

and propose our method, SCORE, for efficiently estimating genetic correlations.
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1.3 Localizing shared genetic architecture to specific regions

Having detected shared genetic effects across traits, the next question of interest is

whether this relationship is uniformly distributed along the genome or whether it

is enriched in certain regions [11, 12, 10]. In Chapter 4, we discuss extensions of

the multivariate model developed in Chapter 3 into a multi-component multivariate

mixed model.
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CHAPTER 2

A scalable estimator of SNP heritability for

Biobank-scale data

In this chapter, we endeavor to study heritability, i.e., the proportion of variation in

a trait that can be explained by genetic variation.

A central question in biology is to understand how much of the variation in a trait

(phenotype) can be explained by genetics as opposed to environmental factors. The

heritability of a trait is a central notion in quantifying the contribution of genetics

to the variation in a trait. The heritability of a trait refers to the proportion of

variation in the trait that can be explained by genetic variation [1]. The narrow-

sense heritability (h2) refers to the proportion of trait variation that can be explained

by a linear function of genetic variation [13]. Beyond understanding the genetic basis

of a phenotype, heritability determines the power of genetic association studies to

detect genetic variants associated with a phenotype, the accuracy of using genetic

data to predict a phenotype, as well as the response of a phenotype to natural and

artificial selection [14].

While family-based studies enabled the estimation of heritability of a wide va-

riety of traits, the availability of genome-wide genetic variation data has enabled a

direct estimation of the heritability associated with genotyped SNPs, termed SNP
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heritability. Initial attempts to estimate heritability from genomic data focused on

the variation in a trait that could be explained by SNPs that were discovered to be

significantly associated with the trait in a genome-wide association study (GWAS).

These estimates were found to severely under-estimate the narrow-sense heritabil-

ity, a phenomenon known as missing heritability. A major insight into the mystery

of missing heritability emerged in [15] who showed that using all genotyped SNPs

jointly to explain variation in a trait led to a substantially larger estimate of heritabil-

ity than from SNPs that were found to be associated in GWAS. Subsequent analyses

suggest that much of the missing heritability could be explained by the presence of a

large number of SNPs of weak effects that has, in turn, motivated analyses of larger

datasets.

Linear Mixed Models (LMMs) have emerged as a key analytical technique for

estimating the heritability of complex traits using genome-wide SNP variation data.

Beyond their application in estimating SNP heritability, LMMs are widely used in

association tests where they are used to control for population stratification [2, 3, 4, 5,

6], in phenotype and disease risk prediction [16, 17, 18, 19, 15], and in understanding

the relative contribution of genomic regions to variation in a trait of interest [15, 17,

18]. A key step in the application of LMMs is the estimation of their parameters, i.e.,

often referred to as variance components. Estimation of variance components is a

computationally challenging problem on genomic datasets containing large numbers

of individuals and SNPs. The most commonly used method for variance components

estimation in LMMs relies on maximizing the likelihood of the parameters. Often, a

related estimator, known as the restricted maximum likelihood (REML) estimator,

is preferred due to a reduced bias relative to maximum likelihood estimators. Both

maximum likelihood as well as REML estimation, however, rely on computationally
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intensive optimization problems. While a number of methods have been proposed

to improve the computational efficiency of REML estimators [20, 21, 4, 5, 22, 23],

all of these methods rely on iterative optimization algorithms that do not scale well

to Biobank-scale datasets consisting of millions of individuals genotyped at tens

of millions of SNPs. Further, REML has been shown to yield biased estimates of

heritability in ascertained case-control studies [24, 25].

In this chapter, we propose a scalable randomized algorithm to estimate variance

components of a linear mixed model. Our method is based on Haseman-Elston (HE)

regression [26, 27, 28, 29], a Method-of-Moments (MoM) estimator of the heritability

of a phenotype. The HE regression estimator, like other MoM estimators, tends to

be statistically less efficient compared to REML. On the other hand, HE regression

is computationally attractive as it leads to a set of linear equations in the variance

components that can be solved analytically. While this property of HE regression

is appealing, a key computational bottleneck in the application of HE regression is

the computation of an N ×N matrix that summarizes the relationship between all

N pairs of individuals in the dataset. As a result, the computation and memory

requirements of HE scale quadratically with the number of individuals.

Our randomized HE regression (RHE-reg) estimator relies on the observation that

the key bottleneck in HE regression can be replaced by multiplying the N ×M (in-

dividuals × SNPs) matrix of genotypes with a small number, B, of random vectors.

This leads to a randomized estimator with runtime O(NMB) and memory require-

ments O(NM). Further, we leverage the observation that the genotype matrix has

entries in a finite set, i.e., {0, 1, 2} so that the time complexity of the matrix-vector

multiplication reduces to O( NMB
max(log3(N),log3(M))

) [30]. This additional gain in efficiency

can be substantial when the number of SNPs or individuals is large. For example, in
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the UK Biobank, N is of the order of 105 whileM is of the order of 106. Thus, we pro-

pose an estimator of variance components with runtime O( NMB
max(log3(N),log3(M))

+NM)

and memory requirement O(NM).

We apply the RHE-reg estimator to the problem of estimating SNP heritability.

We show that our method yields unbiased SNP heritability estimates. While our

method is statistically inefficient compared to REML (both because it is moment-

based as well as the added randomization), we show in practice that the statistical

inefficiency is minimal, particularly for large sample sizes. Further, our method is

substantially more computationally efficient so that it can be effectively applied to

whole-genome genotype data from hundreds of thousands of individuals. REML

has been shown to yield biased estimates of heritability in ascertained case-control

studies [28, 24] while the RHE-reg estimator can also be applied in this setting.

Finally, since variance component analysis is of interest beyond heritability esti-

mation, the RHE-reg estimator can enable rapid estimation of variance components

in all of the settings in which LMMs are used.

2.1 Models for quantifying the contribution of genetic vari-

ation to trait variation

Assume that we observe genotypes from N individuals atM SNPs. Typically, M >>

N . Let G denote the matrix of genotypes on the traits measured. We define X to

be the N ×M matrix of standardized genotypes obtained by centering and scaling

each column of G so that
∑

n xn,m = 0 for all m ∈ {1, . . . ,M}. Let y denote the

vector of phenotype of size N .
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2.1.1 Linear Mixed Model

We assume the vector of phenotypes y is related to the genotypes by a linear mixed

model (LMM):

y = Xβ + ϵ (2.1)

ϵ ∼ N (0, σ2
eIN) (2.2)

β ∼ N (0,
σ2
g

M
IM) (2.3)

Here y is centered so that
∑

n yn = 0. σ2
e is the residual variance while σ2

g is the

variance component corresponding to the M SNPs. The SNP heritability is defined

as h2 =
σ2
g

σ2
g+σ2

e
.

In this model, we have E [y] = 0 while the population covariance of the phenotype

vector y is:

cov(y) = E
[
yyT

]
− E [y]E [y]T

= σ2
g

XXT

M
+ σ2

eIN

= σ2
gK + σ2

eIN (2.4)

Here K = 1
M
XXT is the genetic relatedness matrix (GRM) computed from all

SNPs.
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2.2 RHE-reg: A scalable estimator of heritability

2.2.1 Method of Moments

The method of moments principle obtains estimates of the model parameters such

that the theoretical moments match the sample moments. In our model, the first

theoretical moment, E [y], is 0 by definition while the corresponding sample moment

is also zero since we standardized the phenotypes. The second sample moment is

yyT and the second theoretical moment is cov(y) = σ2
gK+σ2

eIN . Thus, the method-

of-moments (MoM) estimator of (σ2
g , σ

2
e) is obtained by searching for values of σ2

g , σ
2
e

such that the sample and theoretical moments are close, i.e., by solving an ordinary

least squares (OLS) problem:

(σ̂2
g , σ̂

2
e) = argminσ2

g ,σ
2
e
||yyT − (σ2

gK + σ2
eI)||2F (2.5)

Since the Frobenius norm of a matrix A, ||A||F =
√
tr
[
AAT

]
, the OLS problem

can be re-written as:

(σ̂2
g , σ̂

2
e) = argminσ2

g ,σ
2
e
tr
[
(yyT − (σ2

gK + σ2
eI))(yy

T − (σ2
gK + σ2

eI))
T
]

(2.6)

.

The MoM estimator satisfies the normal equations: tr
[
K2

]
tr [K]

tr [K] N

 σ̂2
g

σ̂2
e

 =

 yTKy

yTy

 (2.7)

Solving the normal equations requires computing tr
[
K2

]
=

∑
i,j K

2
i,j, tr [K] =∑

i Ki,i, y
TKy =

∑
i,j Ki,jyiyj and yTy =

∑N
n=1 y

2
n. The GRM K can be computed

in time O(MN2) and requires O(N2) memory. Given the GRM, computing each of
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the coefficients for the normal equation requires O(N2) time. Finally, given each of

the coefficients, we can solve analytically solve for the σ̂2
g and σ̂2

e . Indeed, we can

write

σ̂2
g =

yT(K − I)y

tr
[
K2

]
−N

(2.8)

Thus, the key bottleneck in solving the HE regression lies in computing the GRM.

2.2.2 RHE-reg

Given that K = 1
M
XXT, we can compute the quantities tr [K] = 1

M

∑
i,j X

2
i,j ,

w = XTy, tr
[
yTKy

]
= 1

m

∑M
m=1w

2
m. For standardized genotypes, tr [K] = N

while tr
[
yTKy

]
can be computed in O(MN) time.

The one remaining quantity that we need to compute efficiently is tr
[
K2

]
. Given

a N × N matrix A and a random vector z with mean zero and covariance IN , we

use the following identity to construct a randomized estimator of the trace of matrix

A (see Appendix B.1 for a proof):

E
[
zTAz

]
= tr [A] (2.9)

Equation 2.9 leads to the following unbiased estimator of the trace of K2 given

B random vectors, z1, . . . ,zB, drawn independently from a distribution with zero

mean and identity covariance matrix IN :

LB ≡ ̂tr
[
K2

]
=

1

B

∑
b

zT
b KKzb

=
1

B

1

M2

∑
b

zT
b XXTXXTzb

=
1

B

1

M2

∑
b

∥XXTzb∥2
2

(2.10)
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In practice, we draw each entry of z independently from a standard normal distri-

bution. We note that the estimator LB involves two matrix-vector multiplications of

N ×M matrix repeated B times for a total runtime of O(NMB).

The RHE-reg estimator (σ̃2
g , σ̃

2
e) is obtained by solving the Normal equations

(Equation 2.7) by replacing tr [K2] with LB. LB tr [K]

tr [K] N

 σ̃2
g

σ̃2
e

 =

 yTKy

yTy

 (2.11)

The RHE-reg estimator of the SNP heritability is then obtained by h2
rhe = σ̃2

s2y

where s2y =
yTy
N−1

is the unbiased estimator of the phenotypic variance.

2.2.3 Sub-linear computations

The key bottleneck in the RHE-reg is the computation of LB which involves re-

peated multiplication of the normalized genotype matrix X by a real-valued vector.

Leveraging the fact that each element of the genotype matrix G takes values in the

set {0, 1, 2}, we can improve the complexity of these multiplication operations from

O(NM) to O( NM
max(log3 N,log3 M)

) using the Mailman Algorithm [30].

2.2.3.1 The Mailman Algorithm

Consider a M × N matrix AT whose entries take values in {0, 1, 2}. Assume that

the number of SNPs M = log3(N). The naive way to compute the product ATb for

any real-valued vector b takes O(log3(N) ∗N) time.

The mailman algorithm decomposes the matrix A as AT = UnP . atUn is a

log3(N)×N matrix whose column contains all possible vectors over {0, 1, 2} of length
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log3(N). And P is an indicator matrix, where entry Pi,j = 1 if the ith column is the

same as jth column in matrix A : A(j) = U (i)
n . The decomposition of matrix A takes

O(N log3(N)) time. The desired product ATb is computed in two steps as c = Pb

followed by Unc, each of which can be computed in only O(N) operations [30].

For a matrix AT with M > ⌈log3(N)⌉, we partition AT into ⌈ M
⌈log3(N)⌉⌉ sub-

matrices each of size ⌈log3(N) × N⌉ each of which can be multiplied in time O(N)

for a total computational cost of O( NM
log3(N)

).

2.2.3.2 Application of the Mailman algorithm to RHE-reg

Now consider the standardized genotype X, which could be written as X = (G −

M )Σ, where M is a matrix where the ith column contains the sample mean of the

ith SNP (M = 1Ng
T), and Σ is an M × M diagonal matrix, with the inverse of

variance of each SNP as the diagonal entries.

Thus, when we compute yTKy = 1
M
yTXXTy = 1

M
∥Σ(GTy −MTy)∥2

2
in

Equation 2.15, computingGTy using the Mailman algorithm takesO( NM
max(log3M,log3N)

)

operations. Similarly, to compute each term in the sum of the randomized estimator

of tr
[
K2

]
(Equation 2.10), XTzb, we can substitute XTzb with ΣGTzb −ΣMTzb

. The first term ΣGTzb can again be computed using O( NM
max(log3M,log3N)

) using the

Mailman algorithm, and the second term ΣMTzb is equivalent to scaling the N -

vector zb which can be computed in time O(N +M).

2.2.4 Computing the Standard Error

We show in the Appendix (Section C.2) that the variance of the RHE-reg estimator

of σ2
g can be approximated by the variance of the exact HE-regression estimator with
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an additional contribution due to the randomization:

Var
[
σ̃2
g

]
≈ Var

[
σ̂2
g

]
+

1

BN2
(

tr[K2]
N

− 1
)2

(
σ2
g

)2
Var

[
zTK2z

]
(2.12)

Here B is the number of samples used and z is a random vector with mean zero

and identity covariance matrix. For samples with low-levels of relatedness, we can

assume K ≈ I and our estimates of σ2
g and tr

[
K2

]
to estimate the variance.

2.2.5 Some remarks on the RHE-reg estimator

1. Equation 2.3 assumes an infinitesimal model for the phenotype. However, all

our results only depend on the second moment of the SNP effect sizes. Thus, the

RHE-reg estimator can yield valid estimates for non-infinitesimal architectures.

2. In a number of settings, it is desirable to include covariates, such as age or sex,

in the analysis. This changes the model in Equation 2.3 to:

y| = Wα +Xβ + ϵ (2.13)

Here W is a N × C matrix of covariates while α is a C-vector of coefficients.

In this setting, we transform Equation 2.13 by multiplying by the projection

matrix V = IN −W (WW T)
−1
W T:

V y = V Xβ + V ϵ (2.14)

The RHE regression estimator applied to Equation 2.14 then must satisfy the
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following moment conditions: JB tr [V K]

tr [V K] N − C

 σ̃2
g

σ̃2
e

 =

 yTV KV y

yTV y

 (2.15)

Here JB is a randomized estimator of tr [V KV K] analogous to Equation 2.10.

The cost of computing the RHE-reg estimator now includes the cost of com-

puting the inverse of WW T as well as multiplying W by a real-valued vector

for an added computational cost of O(C3 + NC). Typically, the number of

covariates C is small (tens to hundreds) so that the presence of covariance does

not greatly increase the computational burden.

3. The variance components model (Equation 2.3 and 2.4) can be extended in a

straightforward manner to more than two variance components. A number of

recent studies have explored the utility of these models to partition heritability

based on functional annotations as well as other categories. Such extensions

have been considered in recent work [31].

2.3 Experiments

We performed simulations to measure the performance of RHE-reg to other methods

for heritability estimation in terms of accuracy, running time and memory usage.

We compared RHE-reg to two methods for computing REML estimates: GCTA [20]

and BOLT-REML [5] as well as implementations of Haseman-Elston regression.
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2.3.1 Accuracy and robustness

In our first set of simulations, we compared the accuracy of RHE-reg to our implemen-

tation of exact HE-regression as well as GCTA, an implementation that computes

the REML. We simulated genotypes assuming each SNP is drawn independently

from a Binomial distribution with allele frequency that is sampled uniformly from

the interval (0, 1). Given the genotypes, we simulated phenotypes under an infinites-

imal model,i.e., with effect size at each SNP drawn independently from a normal

distribution with mean zero and variance equal to the heritability divided by the

number of SNPs. We considered different values for the true SNP heritability of the

phenotype to be 0.2, 0.5, and 0.8.

In our first series of experiments, we fixed the number of SNPs at M = 10, 000

and varied the number of individuals N = 1k, 2k . . . 10k. In the second series of

experiments, we varied the number of SNPs M = 1k, 2k . . . 10k while fixing the

number of individuals to be N = 10, 000. We repeated each experiment 100 times

in order to assess the variance of each of the estimators. We estimated heritability

using RHE-reg with B = 100 random vectors.

Figure 2.1 compares the estimates of each of the three methods (RHE-reg, HE-

regression, and GCTA) to the true heritability. First, we observe that all three

methods obtain estimates of heritability that are quite close to each other as well as

to the true heritability across the range of parameters explored. Second, RHE-reg and

HE-regression are virtually indistinguishable in the variance of their estimates in each

configuration. This suggests that the randomization makes a negligible contribution

to the statistical accuracy of the MoM estimators. In some cases, RHE-reg even has a

smaller variance than HE-regression. Thirdly, as expected, REML obtains estimators
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that are closer to the true heritability compared to either of the MoM estimators for

a high value of true heritability. For lower values of true heritability (h2 = 0.20, h2 =

0.50), the estimates from REML, HE-regression ,and RHE-reg are comparable. This

result is also expected given that REML is asymptotically equivalent to MoM when

the phenotypic correlation between individuals is small [32, 33]. Finally, the sample

size has a bigger effect than the number of SNPs on the accuracy of each of the

methods, consistent with theory.

Table 2.1: The estimates of heritability from RHE-reg are consistent with

those from GCTA and BOLT-REML on the NFBC data while RHE-reg

is substantially faster.

Method

GCTA BOLT-REML RHE-reg

Runtime h2
g Runtime h2

g Runtime h2
g

(min) (se) (min) (se) (min) (se)

TG 11.28 0.145 8.87 0.148 1.61 0.145

(0.051) (0.051) (0.052)

HDL 10.81 0.325 9.72 0.326 1.30 0.349

(0.051) (0.051) (0.052)

BMI 10.85 0.237 9.29 0.235 1.29 0.200

(0.051) (0.051) (0.052)
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Table 2.2: Understanding the computational efficiency of RHE-reg

Runtime No Mailman No randomized

trace estimate

(min) (min) (min)

TG 1.61 3.70 38.5

HDL 1.30 2.60 36.2

BMI 1.29 2.68 36.7

2.3.2 Scalability

In the second set of simulations, we compared the runtime and memory usage of

different methods. We compared RHE-reg to two REML methods, GCTA [20]

and BOLT-REML [22] (a computationally efficient approximate method to com-

pute the REML) as well as an exact MoM method MMHE [34]. In this experi-

ment, we simulated genotype data consisting of 100, 000 SNPs over sample sizes of

N = 10k, 20k, 30k, 50k, 100k and 500k and then simulated phenotypes correspond-

ing to the genotype data. For each dataset, we ran RHE-reg with B = 100 random

vectors. We performed all comparisons on an Intel(R) Xeon(R) CPU 2.10GHz server

with 128 GB RAM. All computations were restricted to a single core, capped to a

maximum runtime of 12 hours and a maximum memory of 128 GB.

Figure 2.2 shows that both GCTA and MMHE do not scale to large sample sizes

due to the requirement of computing and operating on a genetic relatedness matrix

(GRM) that scales quadratically with N . GCTA could not complete its computation

when running on N = 100K individuals while MMHE did not complete its compu-

tation on N = 50K. BOLT-REML and RHE-reg scale linearly with sample size.
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However, RHE-reg is an order of magnitude faster than BOLT-REML. For example,

on a dataset of a size of 500K individuals, RHE-reg computed the heritability in

about 30 minutes compared to 400 minutes for BOLT-REML. Figure 2.2 shows that

RHE-reg is memory efficient as well.

2.3.3 Understanding the computational efficiency of RHE-reg

Our implementation of RHE-reg relies on two ideas to obtain computational ef-

ficiency: i) the use of a randomized estimator of the trace, and ii) the Mailman

algorithm for fast matrix-vector multiplication. To explore the contribution of each

of these ideas, we compared the runtimes of a MoM estimator with no randomiza-

tion (HE-reg), RHE-reg using standard matrix-vector multiplication and RHE-reg

using the Mailman algorithm. Table 2.2 shows the runtimes of each of these vari-

ants on the NFBC data. We see that the biggest runtime gain arises from applying

the randomized estimator (faster by a factor of 10-12 relative to HE-reg) while the

application of the Mailman algorithm reduces the runtime further by a factor of 2

(Table 1).

2.3.4 Accuracy of RHE-reg as a function of the number of random vec-

tors

To explore the impact of the choice of the number of random vectors B on the

accuracy of RHE-reg, we compared the heritability estimates of RHE-reg to those

obtained from GCTA for the triglyceride (TG) phenotype as a function of B. We

find good concordance between the estimates from RHE-reg and GCTA even for

values of B as low as 10 suggesting that RHE-reg could be even faster in practice
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with little loss in accuracy (Figure 2.3). In practice, the randomized estimator of

trace is sufficient with random vectors of 10. In later discussion of this thesis, the

default choice of random vector is 10 unless otherwise mentioned.

2.4 Application to NFBC data

We compared the statistical accuracy and runtime of BOLT-REML, GCTA, and

RHE-reg on the Northern Finland Birth Cohort (NFBC) dataset. The NFBC dataset

contains 315, 529 SNPs and 5, 326 individuals after applying standard filters (minor

allele frequency > 0.05 and Hardy-Weinberg Equilibrium p-value < 0.01) [35]. We

applied these methods to estimate the heritability of three phenotypes that were

assayed in this dataset: triglycerides (TG), high-density lipoprotein (HDL) and body

mass index (BMI).

We compared the runtime, point estimates of the heritability as well as standard

errors for each of the three methods. We computed RHE-reg with B = 100 random

vectors. As shown in the Table 2.1, the heritability estimates of RHE-reg are concor-

dant with the other methods while being an order of magnitude faster to compute.

We note that the NFBC dataset has a sample size N ≈ 5, 000 so that we expect

RHE-reg to be more accurate on larger datasets.

2.5 Application to UK Biobank

We applied RHE-reg to the estimate the SNP heritability associated with SNPs

genotypes on the UK Biobank Axiom array. The detailed quality control is described

in Section A.2. After quality control, we obtained 291, 273 individuals and 494, 207
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SNPs. We computed the heritability of 40 traits of choice (Section A.1). In Table

2.3, we report the estimated heritability and standard error. Notice that the reported

heritability are on the observed scale for binary traits.

Trait h2g se

HbA1C 0.193 0.012

T1D 0.003 0.002

T2D 0.015 0.002

AgeFinishEducation 0.079 0.004

AgeMenarch 0.271 0.013

DurationOfWalk 0.054 0.003

GettingUpTime 0.099 0.004

MorningEveningPerson 0.061 0.004

SleepDuration 0.073 0.004

AlcoholIntake 0.114 0.005

EverSmoked 0.099 0.004

Former/CurrentSmoker 0.131 0.005

TownsendIndex 0.051 0.003

Angina 0.041 0.003

HeartAttack 0.029 0.002

Asthma 0.085 0.008

CrohnsDisease 0.0088 0.002

Eczema 0.062 0.003

RheumatoidArathritis 0.007 0.002

UlcerativeColitis 0.017 0.002

Bipolar 0.006 0.002

Depression 0.033 0.002
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Height 0.721 0.017

BMI2010 0.329 0.016

BMI 0.329 0.016

Weight 0.348 0.013

Body Fat Percentage 0.309 0.006

Trunk Fat 0.291 0.009

Hip Circumference 0.283 0.014

Waist Circumference 0.272 0.011

Diastolic Blood Pressure 0.183 0.007

Systolic Blood Pressure 0.191 0.007

High Blood Pressure 0.140 0.006

Hypertension 0.173 0.007

Pulse Rate 0.195 0.012

High Cholesterol 0.105 0.011

Total Cholesterol 0.237 0.048

LDL 0.248 0.069

HDL 0.459 0.091

Triglycerides 0.304 0.049

Table 2.3: Heritability and standard error of 40 traits in UK Biobank.

2.6 Discussion

In this chapter, we proposed a scalable estimator of heritability using a randomized

version of the Haseman-Elston regression (RHE-reg). The RHE-reg estimator is

based on performing a small number of multiplications of the genotype matrix with
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random vectors with mean zero and identity covariance. Using the properties of the

genotype matrix, we can compute this estimator using the Mailman algorithm in

O( NMB
max(log3 N,log3 M)

) time on a dataset containing N individuals, M SNPs and with

a small number of B random vectors. We show that this estimator achieves similar

accuracy as REML-based methods on both simulated and real data. RHE-reg can

be effectively applied to whole-genome genotype data of hundreds of thousands of

individuals for rapid variance components estimation.

The model in Equation 2.3 can be extended into a multi-component model

described in detail in [31].
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Figure 2.1: RHE-reg accurately estimates heritability: In the first series of

figures, we fixed the number of SNPs to 10000 and varied the sample size. In Figures

(a-c), we fixed the true heritability to 0.2, 0.5 and 0.8 respectively. In the second

series of figure, we fixed the number of samples to 10000 and varies the number

of SNPs. HE and RHE-reg are indistinguishable. Comparing to GCTA which is a

REML method, MoM methods perform better when heritability is smaller.
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Figure 2.2: RHE-reg is efficient: In both figures, we fixed the number of SNPs to

100,000, and varied the number of samples and compare run time and memory usage.

In the first figure, GCTA did not finish computation on 100K samples. For MMHE

(an exact MoM method), the computation was stopped at a sample size of 50k due

to memory constraints. BOLT-REML scales linearly while RHE-reg is significantly

faster.
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Figure 2.3: Impact of the number of random vectors on accuracy of RHE-

reg: We ran RHE-reg with different number of random vectors B, and compared the

point estimate and standard error to GCTA. The gray area indicates the standard

error computed by GCTA. The RHE-reg estimates converge with increasing number

of random vectors though even 10 random vectors are adequate for accurate estima-

tion.
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CHAPTER 3

Fast estimation of genetic correlation for

biobank-scale data

In Chapter 2, we considered efficient methods for estimating SNP heritability. In

this chapter, we will consider models of how genetic effects are shared across traits.

Genetic correlation is an important parameter that quantifies the genetic basis

that is shared across two traits. Estimates of genetic correlation can reveal pleiotropy,

uncover novel biological pathways underlying diseases, and improve the accuracy of

genetic prediction [7].

While traditionally reliant on family studies, the availability of genome-wide ge-

netic data has led to several approaches to estimate genetic correlation from these

datasets [7]. An important class of methods for estimating genetic correlation relies

on computing the restricted maximum likelihood within a bi-variate linear mixed

model (LMM), termed genomic restricted maximum likelihood (GREML)[36, 25, 5,

37]. However, current GREML methods are computationally expensive to be applied

to large-scale datasets such as the UK Biobank [38].

While GREML methods need individual-level data, several methods [10, 39, 40,

41, 42, 43], such as LD-score regression (LDSC) [10], have been proposed for esti-

mating genetic correlation using GWAS summary statistics. While methods such
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as LDSC often have substantially reduced computational requirements relative to

GREML, LDSC estimates tend to have large standard errors which increase further

when there is a mismatch between the samples used to estimate summary statistics

and the reference datasets that are used to estimate LD scores [44]. High-definition

likelihood (HDL) [43], a more recent summary-statistic based method, has been

shown to be more precise relative to LDSC. HDL, however, requires computing a

singular-value decomposition (SVD) of the LD matrix which increases its runtime.

Further, recent studies [45, 46] have shown that the accuracy of genetic correlation

estimates can deteriorate when there is a mismatch between reference and sample

data. Thus, it is critical to develop methods for estimating genetic correlation that

can work directly with large individual-level datasets.

In this chapter, we propose, SCORE (SCalable genetic cORrelation Estimator),

a randomized Method-of-Moments (MoM) estimator of genetic correlations among

traits using individual genotypes that can scale to the dataset sizes typical of the UK

Biobank. While SCORE can estimate the heritability of traits as well as the genetic

correlation between pairs of traits, we focus on the problem of estimating genetic

correlation in this work. SCORE avoids the explicit computation of the genetic

relationship matrix (GRM). Instead, we show that the genetic correlation can be

computed using a sketch of the genotype matrix, i.e., by multiplying the genotype

matrix with a small number of random vectors.

In simulations, we show that SCORE yields accurate estimates of genetic cor-

relation across a range of genetic architectures (with varying heritability, genetic

correlation, and polygenicity). Relative to summary-statistic methods that can be

applied to Biobank-scale data, SCORE obtains a reduction in the standard error of

44% relative to LDSC and 20% relative to HDL (averaged across all simulations).
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Further, SCORE can estimate genetic correlation on ≈ 500K SNPs in ≈ 300K unre-

lated white British individuals in a few hours, orders of magnitude faster than meth-

ods that rely on individual data (GCTA-GREML and GCTA-HE). Analyzing 780

pairs of traits in 291, 273 unrelated white British individuals in the UK Biobank, the

estimates of genetic correlation at 454, 207 common SNPs obtained by SCORE are

largely concordant with those from LDSC (Pearson correlation r = 0.95). While 245

pairs of traits are identified to have significant genetic correlation by both methods

(using a Bonferroni correction for the number of pairs of traits tested), the reduced

standard error of estimates from SCORE leads to the discovery of the significant

genetic correlations between additional 200 pairs of traits relative to LDSC. Finally,

SCORE detects a significant positive correlation between serum liver enzyme levels

(alanine (ALT) and aspartate aminotransferase (AST)) and coronary artery disease

related traits (angina and heart attack) suggesting that coronary artery disease and

liver dysfunction harbor a shared genetic component.

3.1 Statistical Models

We first define the generative model for a pair of phenotypes, the Bi-variate linear

mixed model. Then we define the generative model over multiple phenotypes.

3.1.1 The Bi-variate Linear Mixed Model (LMM)

We describe our model in the general setting, where the traits are not observed on the

same set of individuals. Assume we have N1 individuals for trait 1 and N2 individuals

for trait 2 of which N individuals (N ≤ N1, N ≤ N2) contain measurements for

both the traits. We have defined X1,X2 to be the N1 ×M and N2 ×M matrices
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of standardized genotypes obtained by centering and scaling each column of the

unstandardized genotype matrices G1 and G2 so that
∑

n xt,n,m = 0 for all m ∈

{1, . . . ,M}, t ∈ {1, 2}. Let y1,y2 denote the two vectors of phenotypes with size N1

and N2 respectively. Additionally, we define an N1 ×N2 indicator matrix, C where

Ci,j = 1 when individual i among samples measured for the first phenotype and j

in samples measured for the second phenotype refers to the same individual and 0

otherwise. We define β1,β2 to be vectors of SNP effect sizes of length M .

We assume the following model relating a pair of traits y1,y2:

y1 = X1β1 + ϵ1

y2 = X2β2 + ϵ2

(3.1)

For the SNP effects, we assume E[β1] = 0,E[β2] = 0 and:

cov(β1,β1) =
1

M
σ2
g1IM

cov(β2,β2) =
1

M
σ2
g2IM

cov(β1,β2) =
1

M
γgIM

(3.2)

Here IM is an M×M identity matrix, σ2
gt denotes the genetic variance associated

with trait t (t ∈ {1, 2}), and γg denotes the genetic covariance. For the environmental

effects, we assume E[ϵ1] = 0,E[ϵ2] = 0 and:

cov(ϵ1, ϵ1) = σ2
e1IN

cov(ϵ2, ϵ2) = σ2
e2IN

cov(ϵ1, ϵ2) = γeC

(3.3)

The genetic correlation parameter ρg is defined as ρg ≡ γg√
σ2
g1

√
σ2
g2

. Importantly,

SCORE does not make additional assumptions on the distribution of the genetic

effect sizes or the environmental noise.
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3.1.2 Multivariate Linear Mixed Model

In a more general case, we define the joint model for multiple traits. We assume that

we have K phenotypes, and thus let β be the M × K effect size matrix, and each

phenotype has the generative model:

yi = Xiβi + ϵi (3.4)

Where for each phenotype i, we have Ni samples. Ni,j are the number of samples

that contain measurements for both traits yi and yj (N ≤ Ni, N ≤ Nj). For

each phenotype, we define X i be the corresponding Ni ×M matrix of standardized

genotypes. βi is the ith column of β, which is the vector of SNP effect sizes for

phenotype i. ϵi denotes trait-specific environmental noise that is independent of the

genetic effect.

We assume the mean of β is 0, and assume β follows the matrix normal distri-

bution:

β ∼ MN (0, diag(1M),V ) (3.5)

where V is a K ×K matrix :

V (i, j) =


σ2
g,i if i = j

γg,ij otherwise

(3.6)

Where σ2
g,i is the genetic variance associated with phenotype i, and γg,ij denotes the

genetic covariance between phenotype i and j. Thus the genetic correlation between

phenotype i and j is defined as: ρg,ij =
γg,ij√

σ2
g,i

√
σ2
g,j

.
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Notice that β are row-wise independent and identically distributed.

3.2 SCORE: SCalable genetic cORrelation Estimator

3.2.1 Method of Moments for the Bi-variate LMM

SCORE uses a Method of Moments (MoM) estimator to estimate the parameters:

(γg, γe, σ
2
g1, σ

2
g2, σ

2
e1, σ

2
e2).

Since the mean of y1 and y2 are zero, we focus on the covariance. The population

covariance of the concatenated phenotypes y ≡ [yT
1 ,y

T
2 ]

T is now:

cov(y) = E[yyT ]− E[y]E[y]T =

σ2
g1K1 γgKA

γgK
T
A σ2

g2K2

+

σ2
e1IN1 γeC

γeC
T σ2

e2IN2

 (3.7)

Here K1 =
X1X

T
1

M
is the GRM for the samples observed for the first trait while

K2 =
X2X

T
2

M
is the GRM for the samples for the second trait and : KA =

X1X
T
2

M
is

the GRM for pairs of samples across traits.

The MoM estimator is obtained by minimizing the sum of squared differences

between the population and empirical covariances:

(γ̂g, γ̂e, σ̂2
g1, σ̂

2
g2, σ̂

2
e1, σ̂

2
e2) = argminγg ,γe,σ2

g1,σ
2
g2,σ

2
e1,σ

2
e2
||yyT−

(

σ2
g1K1 γgKA

γgK
T
A σ2

g2K2

+

σ2
e1IN1 γeC

γeC
T σ2

e2IN2

)||2F (3.8)

The MoM estimator for the genetic covariance satisfies the normal equations:tr(KAK
T
A) tr(KC)

tr(KC) N

γ̂g
γ̂e

 =

yT
1KAy2

yT
1Cy2

 (3.9)
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where KC =
X1X

T
2 CT

M
. Given the coefficients of the normal equations, we can solve

analytically for γ̂g, and γ̂e.

Given MoM estimates of the variance components, the MoM estimate of the

genetic correlation is given by the plug-in estimate:

ρ̂g =
γ̂g√

σ̂2
g1

√
σ̂2
g2

(3.10)

3.2.2 Method of Moments for the multivariate LMM is equivalent to the

bi-variate model applied to each pair of traits

As in section 3.1.2, we defined multivariate Model for multiple phenotypes. Recall

we have yi now be the ith phenotype out of the total K phenotypes. Let y ≡

[yT
1 , . . . ,y

T
i , . . . ,y

T
K ]

T , then the population covariance is now:

cov(y) = E[yyT ]− E[y]E[y]T =


V (1, 1)K(1, 1) . . . V (1,K)K(1,K)

. . . V (i, j)K(i, j) . . .

V (K, 1)K(K, 1) . . . V (K,K)K(K,K)


(3.11)

+


σT
e,1IN1 . . . γe,1KC(1,K)

. . . σ2
e,iINi . . .

γe,K1C(K, 1) . . . σ2
e,KINK


(3.12)

Recall V is defined in section 3.1.2:

V (i, j) =


σ2
g,i if i = j

γg,ij otherwise

(3.13)
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Here K(i, j) =
XiXj

T

M
is the genetic relatedness matrix (GRM) computed with all

samples that have measurement on phenotype i and j. C(i, j) is an indicator matrix,

where C(i, j)m,n = 1 if the mth entry in yi and nth entry in yj are measures on

phenotype i and j for the same sample, and 0 otherwise. The MoM estimator is

obtained by minimizing the sum of squared differences between the population and

empirical covariance:

{γ̂g} = argmin{γg}||yyT − cov(y)||2F (3.14)

with cov(y) defined in equation 3.12. Thus the MoM estimator for Multivariate
LMM satisfies the normal equations:



tr(K(1, 2)2) 0 . . . tr(K(1, 2)) 0 . . .

0 tr(K(i, j)2) . . . 0 tr(K(i, j)) 0

0 0 tr(K(K − 1, K)2) 0 . . . tr(K(K − 1, K))

tr(K(1, 2)) 0 . . . tr(C(1, 2)) . . . 0

0 tr(K(i, j)) 0 . . . tr(C(i, j)) 0

0 . . . tr(K(K − 1, K)) 0 . . . tr(C(K − 1, K))





γ̂g,12

γ̂g,ij

̂γg,(K−1)K

γ̂e,12

γ̂e,ij

̂γe,(K−1)K



=



yT
1 K(1, 2)y2

yT
i K(i, j)yj

yT
K−1K(K − 1, K)yK

yT
1 C(1, 2)y2

yT
i C(i, j)yj

yT
K−1C(K − 1, K)yK


(3.15)

where γg,ij is a the genetic covariance between phenotype i and j. tr(K(i, j)2)

denotes tr(K(i, j)K(i, j)T ). And yT
i K(i, j)yj =

yT
i XiXT

j yj

M
.

By observing the block-wise pattern of the normal equations, we can conclude

the MoM estimator for the Multivariate LMM is equivalent to estimates obtained by

applying the Bi-variate LMM to each pair of traits.

3.2.3 SCORE: SCalable genetic cORrelation Estimator

Naive computation of the MoM estimate of genetic covariance requires computing

tr(KAK
T
A) which requires O(N1N2M) operations, where N1, N2 are the sample size
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of each of the traits.

To overcome this computational bottleneck, we replace tr(KAK
T
A) with an un-

biased randomized estimate: ̂tr(KAK
T
A) [47].

Given B random vectors, z1, . . . ,zB, zb ∈ RN2 , b ∈ 1 . . . B drawn independently

from a distribution with zero mean and identity covariance, our estimator is given

by:

LB = ̂tr(KAK
T
A) =

1

B

1

M2

∑
b

||X1X2
Tzb||22

The SCORE estimator (γ̃g, γ̃e) is obtained by solving Equation 3.9 by replacing

tr(KAK
T
A) with LB.  LB tr(KC)

tr(KC) N

γ̃g
γ̃e

 =

yT
1KAy2

yT
1Cy2


Here tr(KC) denotes the sum of the squared genotypes for individuals measured on

both traits so that tr(KC) can be computed in time:O(MN).

Computing LB requires multiplying the genotype matrices X1 and X2 with B

vectors resulting in a runtime of O(max(N1, N2)MB).

Leveraging the fact that each element of the genotype matrix takes values in the

set {0, 1, 2}, LB can be computed in timeO(max( N1

max(log3N1,log3M)
, N2

max(log3N2,log3M)
)MB) [30]

(while the standardized genotypes are real-valued, SCORE computes the equivalent

quantities by operating on the unstandardized genotype matrix to be able to lever-

age its discrete entries followed by subtracting the product of the mean of a SNP

and random vectors and scaling by MAF). Combined with our previous efficient esti-

mators of the genetic variance components [48, 31], we obtain an efficient estimator

of ρg. SCORE can also handle fixed-effects covariates (Section C.1). Finally, we
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obtain standard errors of the estimates of ρg using a block Jackknife [49] which can

be computed with little additional computational overhead (Section C.2).

In the setting where the two traits are measured on the same set of individuals, we

can estimate the ρg directly without the need for separately estimating γg, σ
2
g1, and

σ2
g2. This estimator does not rely on any randomized approximations and can be com-

puted in time O NM
max(log3 N,log3 M)

. We term this modification SCORE −OV ERLAP

in next section.

3.2.4 The scenario of completely overlapping samples

Here we describe the Bi-variate Linear Model in section 3.1.1 in the setting where

the two traits are measured on the same set of individuals. Let X denote the geno-

type matrix for which both traits are observed. Denote the concatenated phenotype

vector, y ≡ [yT
1 ,y

T
2 ]

T , concatenated environmental effect vector ϵ ≡ [ϵ1
T , ϵ2

T ]T ,

and concatenated effect size vectorβ ≡ [β1
T ,β2

T ]T . In this setting, the modified

generative model is:

y =

X 0

0 X

β + ϵ (3.16)

In this model, the population covariance of the concatenated phenotype vector y

is given by:

cov(y) = E[yyT ]− E[y]E[y]T =

σ2
g1K γgK

γgK
T σ2

g2K

+

σ2
e1IN γeIN

γeIN σ2
e2IN

 (3.17)

Here K = XXT

M
is the genetic relatedness matrix (GRM). σ2

gt, σ
2
et denote the genetic

and environmental variance components associated with trait t. Our approach to es-

timate both the variance components and the genetic correlation relies on a Method-
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of-Moments (MoM) estimator obtained by equating the population covariance to the

empirical covariance. The empirical covariance of the concatenated phenotype vector

y is estimated by the sample covariance: yyT . The MoM estimator is obtained by

solving the following ordinary least squares problem:

(γ̂g, γ̂e, σ̂2
g1, σ̂

2
g2, σ̂

2
e1, σ̂

2
e2) = argminγg ,γe,σ2

g1,σ
2
g2,σ

2
e1,σ

2
e2
||yyT−

(

σ2
g1K γgK

γgK
T σ2

g2K

+

σ2
e1IN γeIN

γeIN σ2
e2IN

)||2F (3.18)

Setting the gradient of the objective function to zero gives us the normal equa-

tions. We observe that solving for the genetic and environmental covariance pa-

rameters (γg, γe) is decoupled from solving for the variance component parameters:

σ2
g1, σ

2
e1, σ

2
g2, σ

2
e2. Thus, MoM estimates of the covariance parameters can be obtained

by solving the set of normal equations:tr(K2) tr(K)

tr(K) N

γ̂g
γ̂e

 =

yT
2Ky1

yT
2 y1

 (3.19)

The GRM K can be computed in time O(MN2) and O(N2) memory. Given the

GRM, computing the coefficients for the normal equations requires O(N2) time.

Given each of the coefficients, we can solve analytically for γ̂g, and γ̂e:

γ̂g =
yT
1Ky2 − yT

1 y2

tr[K2]−N

Here we have used the property that tr(K) = N due to the use of a standardized

genotype matrix.

Similarly, we can solve the following linear systems for the estimators of each of

the genetic variance parameters:tr(K2) tr(K)

tr(K) N

σ̂2
g1 σ̂2

g2

σ̂2
e1 σ̂2

e2

 =

yT
1Ky1 yT

2Ky2

yT
1 y1 yT

2 y2

 (3.20)
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The estimators for σ2
g1 and σ2

g2 are given by σ̂2
g1 =

yT
1 Ky1−yT

1 y1

tr[K2]−N
and σ̂2

g2 =
yT
2 Ky2−yT

2 y2

tr[K2]−N

Finally, we use estimates of the genetic variance parameters to obtain a plug-in

estimate of the genetic correlation: ρ̂g =
γ̂g√

σ̂2
g1

√
σ̂2
g2

.

Substituting the expressions for the genetic covariance and variances and the

GRM gives us the following estimator of genetic correlation:

ρ̂g =
yT
1Ky2 − yT

1 y2√
yT
1Ky1 − yT

1 y1

√
yT
2Ky2 − yT

2 y2

(3.21)

Directly computing ρ̂g requires only computing XTy1, X
Ty2 and does not re-

quire computation of the GRM. Using the fact that the genotype matrix only con-

tains entries in {0, 1, 2}, we can compute these quantities in time O( NM
max(log3 N,log3 M)

)

[30]. Thus, when phenotypes are measured on the same set of samples, SCORE-

OVERLAP can efficiently estimate ρg with no randomization.

3.3 Experiments

3.3.1 Accuracy

We performed simulations on a subset of 5, 000 unrelated white British individuals

from the UK Biobank so that all methods compared could be run in a reasonable

time. Our simulations used 305, 630 SNPs with minor allele frequency (MAF) above

1% (we chose these SNPs since these were also used for benchmarking the HDL [43]

method and had reference eigenvectors available).

Given the genotypes, we simulated pairs of traits under varying genetic archi-

tectures. Our first set of architectures assumes an infinitesimal model (where all

variants have a non-zero effect on both traits). We varied genetic correlation ρg
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across {0, 0.2, 0.5, 0.8} and the heritability of the pair of traits, (h2
1, h

2
2), across val-

ues of {(0.1, 0.2), (0.2, 0.6), (0.5, 0.5), (0.6, 0.8)} corresponding to the situation where

both traits have low heritability, one trait has low while the other has moderate

heritability, both traits have moderate heritability, and both have high heritability.

Our next set of non-infinitesimal architectures explores traits with medium poly-

genicity and low polygenicity respectively. For each SNP m, we specify a causal

status, cm, which is a 2 × 1 vector with entries taking values in {0, 1} according

to whether SNP m has a non-zero effect on each of the two traits. For medium

polygenicity, causal status at SNP m is drawn independently according to the fol-

lowing distribution: P (cm =

1
1

) = 0.1, P (cm =

0
1

) = P (cm =

1
0

) = 0.2, and

P (cm =

0
0

) = 0.5.

The effect size βm of SNP m on each trait is drawn from the following distribu-
tion:

βm|cm =

1

1

 ∼ N (0,

 σ2
g1

0.3M
γg

γg
σ2
g2

0.3M

 ,βm|cm =

1

0

 ∼ N (0,

 σ2
g1

0.3M
0

0 0

 ,βm|cm =

0

1

 ∼ N (0,

0 0

0
σ2
g2

0.3M



For low polygenicity, we set the probability P (cm =

1
1

) = 0.01, P (cm =0
1

) = P (cm =

1
0

) = 0.05, and P (cm =

0
0

) = 0.89.

The effect size βm for genetic variant m on both traits are drawn from the fol-
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lowing distribution:

βm|cm =

1
1

 ∼ N (0,

 σ2
g1

0.06M γg

γg
σ2
g2

0.06M

),βm|cm =

1
0

 ∼ N (0,

 σ2
g1

0.06M 0

0 0

),βm|cm =

0
1

 ∼

N (0,

0 0

0
σ2
g2

0.06M

)
We vary γg across {0, 0.2, 0.5, 0.8}. Under this model, the true total expected

genome wide genetic correlation for medium polygenicity is {0, 0.06, 0.15, 0.24}, and

{0, 0.0024, 0.03, 0.048} for low polygenicity. Unless specified otherwise, we assume

complete sample overlap, no environmental correlation, set the environmental vari-

ance so that the trait variance is 1, and simulate a total of 100 replicates for each

architecture.

We performed simulations to compare the accuracy of SCORE to other estimators

of genetic correlation under different genetic architectures. Specifically, we compared

SCORE to methods that use individual data (bi-variate GREML [36], bi-variate

Haseman-Elston regression) and methods that rely on summary statistics (LD-score

regression (LDSC) [10] and HDL [43]). Bi-variate GREML (GCTA-GREML) and

Haseman-Elston regression (GCTA-HE) are implemented in the GCTA software.

LDSC is a widely used method to estimate genetic correlation when only summary

statistics from GWAS on pairs of traits are available. HDL is a recent summary-

statistics-based method that has been shown to obtain improved statistical efficiency

relative to LDSC given additional information about LD. We ran all methods on the

same set of SNPs to ensure a fair comparison (see Section A.4 for more details on

data processing and methods).

We performed simulations to assess the estimation accuracy of each method using

a subset of 5,000 unrelated white British individuals in the UK Biobank so that all
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the methods could be run in a reasonable time. Unless otherwise specified, all our

simulations used 305, 630 SNPs with MAF above 1%. We simulated pairs of traits

under a total of 48 genetic architectures: varying heritability of the pair of traits

(h2
1, h

2
2), genetic correlation (ρg), and polygenicity (proportion of causal variants

shared and unique to each trait).

The simulations assume that the two traits are measured on the same set of

individuals so that both SCORE and SCORE-OVERLAP can be applied in this

setting. Since SCORE is a randomized estimator, we first examined the choice of

the number of random vectors (B) on the estimates of ρg. First, we confirmed

that SCORE (with B = 10 and B = 100 random vectors) and SCORE-OVERLAP

yield nearly identical results across the 48 architectures (Table 3.1). Second, we ran

SCORE with different choices of B = 10 random vectors on a single replicate that

was simulated under the infinitesimal architecture with trait heritability (h2
1, h

2
2) =

(0.2, 0.6), and ρg = 0.5. We observe that the standard deviation of ρg estimates across

choices of random vectors is about 18% of the total standard error (SE) indicating

that the choice of B = 10 makes a modest contribution to variability in ρg estimates.

These results lead us to use SCORE with B = 10 as our default.

Across the 48 architectures that we examined, the SE of SCORE ranges from

0.89 to 1.17 relative to the SE of GCTA-GREML with the SE of SCORE being

2.5% higher than that of GCTA-GREML on average (Figure 3.1). Interestingly,

GCTA-HE tends to have a SE of 1.38 times that of SCORE on average (range 1.2

to 1.6). Compared to methods that rely on summary statistics, LDSC has 1.8 times

the SE of SCORE on average (range 1.08 to 2.63) while the SE of HDL relative

to SCORE is 1.24 (range 1.05 to 1.65) (Figure 3.1, Table 3.2). The reduction in

the SE of SCORE relative to the summary statistic-based methods is equivalent to
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a 3.24-fold increase in sample size over LDSC and a 1.56-fold increase in sample

size over HDL on average. We find that the accuracy of SCORE relative to the

other methods is consistent across infinitesimal (Figure 3.2) and non-infinitesimal

architectures (Figure 3.3 for medium and Figure 3.4 for low polygenicity; the bias, SE,

and MSE of each of the methods are listed in Tables 3.3, 3.4, 3.5). We additionally

investigated the accuracy of each of the methods across a larger sample size of 10, 000

unrelated white British individuals chosen so that it was computationally feasible to

run all methods including GCTA-GREML and GCTA-HE. Under a non-infinitesimal

architecture with medium polygenicity, ρg = 0.5 and (h2
1, h

2
2) = (0.2, 0.6). In this

larger sample size, we observe that SE of GCTA-GREML, GCTA-HE, and LDSC

are 0.97, 1.54, and 2.85 times of SCORE respectively, consistent with our results on

a N = 5, 000.

3.3.2 Robustness

We performed additional simulations to investigate the robustness of SCORE. First,

we verified that the Jackknife standard error estimate used in SCORE is generally

accurate while being conservative for low trait heritability (Table 3.6). Second, we

verified the false positive rate of SCORE is controlled in simulations where ρg is

zero. For each of 100 replicates in a given genetic architecture, we computed p-

values for the two-tailed test of the null hypothesis that ρg is zero. Averaging across

all architectures, we observe that the false positive rate (the fraction of simulations

for which the p-value < 0.05) is 0.04 (Table 3.7).
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3.3.3 The impact of sample overlap

We simulated traits under an infinitesimal architecture with (h2
1, h

2
2) = (0.2, 0.6) and

ρg = 0.5. For each trait, we fixed the sample size to 5000 and varied the proportion

of sample overlap across {0, 0.2, 0.5, 0.8, 1} (ranging from no overlap to complete

overlap). Specifically, for overlap proportion equal to 0, we have 5000 samples with

observations on the first trait and a distinct set of 5000 samples with observations

on the second trait. For overlap proportion equal to 1, we have 5000 samples with

observations on both traits. We estimated genetic correlation with SCORE, LDSC,

and GCTA-GREML.

The SE of SCORE relative to GCTA-GREML and LDSC remains stable as a

function of sample overlap (Figure 3.5 and Table 3.8 for the bias, SE, and MSE of

SCORE, GCTA-GREML, and LDSC as a function of sample overlap).

3.3.4 Accuracy for binary traits

Given 291, 273 unrelated white British individuals in the UK Biobank measured on

459, 792 genetic variants, we simulated pairs of traits under an infinitesimal architec-

ture setting (h2
1, h

2
2) = (0.272, 0.12) and ρg = −0.23 while varying the environmental

correlation across {0.04,−0.04, 0}. To simulate binary traits, we converted the sec-

ond trait to a binary trait by thresholding the underlying continuous trait such that

the prevalence varied across {0.01%, 0.5%, 1%}.

We observe that the ρg estimates of SCORE are unbiased across the range of

prevalence of the binary trait (Table 3.9). Further, the estimates of ρg obtained

by SCORE tend to have relatively low SE provided the prevalence of the trait is

greater than 0.5% (Table 3.9) so that we recommend applying SCORE to traits
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whose prevalence is no less than 0.5%.

Finally, we validated the false positive rate of SCORE with different prevalence

and observed that the false positive rate is not affected by the prevalence of binary

trait (Table 3.7).

3.3.5 Computational Efficiency

We investigated the computational efficiency of SCORE relative to GCTA-GREML

and GCTA-HE. The runtime and memory usage of summary statistic methods

(LDSC and HDL) depends on the time needed to compute LD scores and summary

statistics of each trait. In addition, HDL also requires the computation of the singu-

lar value decomposition (SVD) of LD matrices which is a computationally expensive

step. Thus, we do not include runtimes for LDSC and HDL in these comparisons.

We varied the number of individuals while the number of SNPs was fixed at 454, 207.

Figure 3.6 shows that GCTA-GREML and GCTA-HE could not scale beyond sample

sizes greater than 100,000 due to the requirement of computing and operating on a

GRM (we extrapolate the runtime of GCTA-GREML and GCTA-HE to be about

340 days and 44 days on the set of 291, 273 unrelated white British individuals in

the UK Biobank). On the other hand, SCORE ran in about 1.5 hours on the set of

291, 273 individuals using partial overlap mode with B = 10 random vectors while

the SCORE-OVERLAP variant ran in about 1 hour on the same dataset.

43



3.4 Estimates of genome-wide genetic correlation in the UK

Biobank

We applied SCORE to estimate ρg for pairs of phenotypes in the UK Biobank across

291, 273 unrelated white British individuals and 454, 207 SNPs (Material and Meth-

ods). We compared the ρg estimates obtained by LDSC versus SCORE for a subset

of 28 traits in which LDSC produced valid estimates, i.e., traits for which none of

the ρg estimates were NA (Figure 3.7). While the point estimates of ρg from the

two methods are highly concordant (Pearson correlation r = 0.95), the SE of LDSC

is about 1.57 times that of SCORE on average which is equivalent to a 2.46-fold

increase in sample size using SCORE (see Figures 3.8, 3.9). In total, 192 pairs of

traits were detected to have a significant non-zero ρg by both SCORE and LDSC

after Bonferroni correction for all pairs across the original set of forty phenotypes

(p < 0.05
780

). Consistent with its reduced SE, SCORE found 58 pairs with significant ρg

after Bonferroni correction that were not detected as significant by LDSC (p < 0.05
780

;

stars in Figure 3.7). We conclude that SCORE obtains improved power to identify

statistically significant genetic correlations relative to LDSC.

We obtain concordant results when analyzing all pairs in our initial set of forty

traits. While the point estimates of SCORE and LDSC are highly correlated (Pearson

correlation r = 0.96), the SE of LDSC is about 1.8 times that of SCORE on average,

equivalent to a 3.24-fold increase in the sample size. In this setting, SCORE found

200 additional pairs of traits over LDSC (beyond the 245 pairs identified by both)

while LDSC detected one pair as significant that SCORE did not detect as significant

(Figure 3.7). To understand the impact of random vectors, we repeated our analysis

with a different set of random vectors and observed that the Pearson correlation of
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ρg estimates using the two sets is 0.999 (Figure 3.10).

We also analyzed all pairs in our initial set of forty traits with HDL using the

set of 305, 630 SNPs for which reference eigenvectors are available [43] (Figure 3.11).

The SE of HDL is about 2.53 times that of SCORE on average, which is equivalent

to a 6.4-fold increase in the sample size (HDL failed to converge for 11% of the pairs

where at least one of the traits is binary). Among these pairs, SCORE found 171

additional pairs of traits over HDL (beyond the 239 pairs identified by both) while

HDL detected 14 pairs as significant that SCORE did not detect as significant. The

summary of the ratio of SE of HDL and SCORE is shown in Figure 3.12.

To gain further insights into SCORE, we examined the SE of ρg estimates for

pairs of traits according to whether the traits were both binary, both quantitative,

or had one member of the pair being binary while the other was quantitative. The SE

is largest when both traits are binary, intermediate when one of the traits is binary,

and lowest when both traits are quantitative (average SE: 0.082, 0.035, and 0.02

respectively; Figure 3.13). We note that the SE increases when the prevalence of the

binary trait decreases: the mean SE is 0.017 when the binary trait has prevalence

> 25% while the mean SE is 0.047 for pairs in which the binary trait has prevalence

< 5% (Figure 3.14).

We also applied SCORE to imputed genotypes in 291, 273 unrelated white British

individuals and 4, 824, 392 SNPs (MAF > 1%). SCORE required about 19 hours to

analyze a single pair of traits for imputed SNPs while requiring about 1.5 hours

on array SNPs (scaling linearly with the number of variants). Since SCORE uses

a streaming approach that does not require all SNPs to be stored in memory, it is

memory efficient requiring about 2.3 GB to analyze imputed data. The estimates
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of ρg are largely concordant across array and imputed SNPs (Pearson correlation of

the ρg point estimates using two sets of SNPs is 0.973). We found 423 trait pairs

that have significant non-zero ρg estimates (after Bonferroni correction) across both

imputed and array genotypes while 19 pairs are significant only in the analysis of

imputed genotypes while 22 pairs are significant in the analysis of array genotypes

(Figure 3.15).

To further illustrate its utility, we applied SCORE to estimate genetic corre-

lation between coronary artery disease related traits included in our set of forty

traits (angina and heart attack) and serum biomarkers (alanine (ALT) and aspar-

tate aminotransferase (AST)). Serum liver enzyme levels, including ALT and AST,

are markers of liver health and hepatic dysfunction, and they have been shown to

be associated with cardiovascular disease [50, 51, 52], though the strength and con-

sistency has varied among the studies [50]. We observed significant positive ρg

between ALT/AST and the two coronary artery-disease related trait (0.257 ± 0.04

and 0.169 ± 0.032 for angina with ALT and AST respectively; 0.239 ± 0.053 and

0.148± 0.04 for heart attack with ALT and AST respectively). Our finding of signif-

icant positive ρg suggests that hepatic dysfunction (higher serum levels of ALT and

AST) and coronary artery disease have a shared genetic component.

3.5 Discussion

In this chapter, we defined model base on pairs of phenotypes and multiple traits

jointly. We have described SCORE, a scalable and accurate estimator of genetic cor-

relation. We observe that the estimates of genetic correlation obtained by SCORE

obtain accuracy comparable to GREML [44] while being scalable to Biobank-scale
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data. SCORE can estimate the genetic correlation across pairs of traits when applied

to ≈ 500K common SNPs measured on ≈ 300K unrelated white British individuals

in the UK Biobank within a few hours. In simulations, we showed that, compared

to summary-statistic methods, SCORE obtains a reduction in the average standard

error of 44% relative to LDSC and 20% relative to HDL, equivalent to a 3.24-fold

and 1.56-fold increase in sample size. In application to 780 pairs of traits in the UK

Biobank, SCORE discovered 200 pairs of traits with significant genetic correlation

(after correcting for multiple testing) that were not discovered by LDSC. In appli-

cation to 780 pairs, SCORE discovered 171 pairs of traits with significant genetic

correlation (after correcting for multiple testing) that were not discovered by HDL

while HDL discovered 14 significant pairs not discovered by SCORE. It is plausible

that the results of HDL might be altered by the computation of eigenvectors from

the analyzed genotypes although such an analysis can be computationally expensive

The statistical accuracy gain of SCORE relative to LDSC and HDL can be at-

tributed to several factors. LDSC does not use all the available covariances among

the summary statistics choosing to only model the variance. The LD information as

summarized by the LD scores involves a number of approximations. Typically, LD

scores are computed from an external reference panel. Even when in-sample LD is

used (as we have here), computational considerations lead to the LD scores being

computed from a subset of the samples and restricted to SNPs that fall within a

fixed-length genomic window. While HDL models the covariance structure among

the summary statistics thereby utilizing additional information relative to LDSC,

HDL relies on approximate computations of LD scores like LDSC. To enable com-

putational efficiency, HDL also uses a truncated singular value decomposition(SVD)

of the LD score matrix that can potentially reduce accuracy.
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We discuss several limitations of SCORE. Firstly, SCORE requires access to indi-

vidual genotype and trait data. Summary-statistic methods such as LDSC and HDL

have the advantage of being applicable in settings where access to individual-level

data can be challenging. While summary-statistic methods also have the advantage

of being relatively efficient, it is important to keep in mind that summary statistics

are dependent on specific choices of marker sets and covariates. Applying these meth-

ods to different sets of covariates and marker sets requires regenerating the summary

statistics (and auxiliary information such as LD score matrices). Second, the model

underlying SCORE assumes a quantitative trait. We have shown empirically that

SCORE provides accurate estimates of genetic correlation when applied to binary

traits provided the traits are not too rare (prevalence > 0.5%). It would be of in-

terest to extend SCORE to the setting of binary traits along the lines of the PCGC

method [42]. Finally, while SCORE estimates genome-wide genetic correlation, effi-

cient methods that can partition genetic correlation across genomic annotations can

provide additional insights into the shared genetic basis of traits.
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Polygenicity Method Genetic correlation ρg Bias MSE SE Bias MSE SE Bias MSE SE Bias MSE SE

SCORE h2
1 = 0.1, h2

2 = 0.2 h2
1 = 0.2, h2

2 = 0.6 h2
1 = 0.5, h2

2 = 0.5 h2
1 = 0.6, h2

2 = 0.8

Infinitesimal

OVERLAP 0 -0.0826 0.1019 0.3083 -0.0302 0.0428 0.2048 0.0099 0.0145 0.1201 0.0083 0.0084 0.0912

B=10 0 -0.0826 0.1018 0.3082 -0.0301 0.0428 0.2047 0.0099 0.0145 0.1201 0.0083 0.0084 0.0912

B=100 0 -0.0826 0.1018 0.3082 -0.0301 0.0428 0.2047 0.0099 0.0145 0.1201 0.0083 0.0084 0.0912

OVERLAP 0.2 -0.05 0.132 0.3598 -0.01 0.033 0.1814 0.0147 0.0159 0.1253 -0.0173 0.0089 0.0928

B=10 0.2 -0.05 0.1319 0.3597 -0.01 0.033 0.1813 0.0147 0.0159 0.1253 -0.0173 0.0089 0.0928

B=100 0.2 -0.05 0.1319 0.3597 -0.01 0.033 0.1813 0.0147 0.0159 0.1253 -0.0173 0.0089 0.0928

OVERLAP 0.5 -0.1567 0.0841 0.244 -0.016 0.0266 0.1622 0.0115 0.0137 0.1164 0.0143 0.0047 0.0669

B=10 0.5 -0.1568 0.0841 0.244 -0.0161 0.0266 0.1621 0.0114 0.0137 0.1164 0.0142 0.0047 0.0669

B=100 0.5 -0.1568 0.0841 0.244 -0.0161 0.0266 0.1621 0.0116 0.0138 0.1169 0.0142 0.0047 0.0669

OVERLAP 0.8 -0.3187 0.156 0.2334 -0.1106 0.0309 0.1365 -0.0206 0.0067 0.0789 -0.0016 0.0034 0.0583

B=10 0.8 -0.3187 0.156 0.2333 -0.1107 0.0309 0.1365 -0.0207 0.0067 0.0789 -0.0017 0.0034 0.0583

B=100 0.8 -0.3187 0.156 0.2333 -0.1107 0.0309 0.1365 -0.0207 0.0067 0.0789 -0.0017 0.0034 0.0583

Medium polygenicity

OVERLAP 0 0.0506 0.1227 0.3466 0.0023 0.0349 0.1869 0.0022 0.0198 0.1408 0.0052 0.0091 0.0952

B=10 0 0.0506 0.1226 0.3465 0.0023 0.0349 0.1868 0.0022 0.0198 0.1408 0.0052 0.0091 0.0952

B=100 0 0.0506 0.1226 0.3465 0.0023 0.0349 0.1868 0.0022 0.0198 0.1408 0.0052 0.0091 0.0952

OVERLAP 0.2 0.0259 0.0965 0.3096 0.0116 0.0382 0.1952 -6e-04 0.0161 0.1267 -0.01 0.0065 0.0797

B=10 0.2 0.0259 0.0965 0.3096 0.0115 0.0382 0.1952 -7e-04 0.0161 0.1267 -0.01 0.0065 0.0797

B=100 0.2 0.0259 0.0965 0.3096 0.0115 0.0382 0.1952 -7e-04 0.0161 0.1267 -0.01 0.0065 0.0797

OVERLAP 0.5 0.0317 0.0974 0.3104 0.0039 0.0287 0.1693 0.0197 0.0118 0.1066 0.0076 0.0083 0.0909

B=10 0.5 0.0316 0.0973 0.3104 0.0039 0.0287 0.1693 0.0197 0.0117 0.1066 0.0076 0.0083 0.0909

B=100 0.5 0.0316 0.0973 0.3104 0.0039 0.0287 0.1693 0.022 0.0114 0.1045 0.0076 0.0083 0.0909

OVERLAP 0.8 -0.1181 0.1209 0.3271 0.0116 0.031 0.1758 0.0228 0.013 0.1119 0.031 0.0121 0.1054

B=10 0.8 -0.1182 0.1209 0.327 0.0115 0.031 0.1758 0.0228 0.013 0.1118 0.0309 0.0121 0.1054

B=100 0.8 -0.1182 0.1209 0.327 0.0115 0.031 0.1758 0.0228 0.013 0.1118 0.0309 0.0121 0.1054

Low polygenicity

OVERLAP 0 0.0694 0.136 0.3623 0.0115 0.0452 0.2123 -0.0223 0.0158 0.1236 -0.0091 0.0101 0.0999

B=10 0 0.0694 0.136 0.3622 0.0115 0.0452 0.2123 -0.0223 0.0158 0.1236 -0.0091 0.0101 0.0999

B=100 0 0.0694 0.136 0.3622 0.0115 0.0452 0.2123 -0.0223 0.0158 0.1236 -0.0091 0.0101 0.0999

OVERLAP 0.2 0.0135 0.0594 0.2433 0.0366 0.0424 0.2025 0.018 0.0188 0.136 0.0193 0.0105 0.1004

B=10 0.2 0.0135 0.0594 0.2433 0.0366 0.0424 0.2025 0.018 0.0188 0.136 0.0193 0.0105 0.1004

B=100 0.2 0.0135 0.0594 0.2433 0.0366 0.0424 0.2025 0.018 0.0188 0.136 0.0193 0.0105 0.1004

OVERLAP 0.5 0.0463 0.0992 0.3116 0.0478 0.0261 0.1544 0.0882 0.0215 0.1171 0.0334 0.0121 0.1048

B=10 0.5 0.0463 0.0992 0.3116 0.0478 0.0261 0.1544 0.0882 0.0215 0.1171 0.0334 0.0121 0.1048

B=100 0.5 0.0463 0.0992 0.3116 0.0478 0.0261 0.1544 0.0882 0.0215 0.1171 0.0334 0.0121 0.1048

OVERLAP 0.8 0.0363 0.083 0.2857 0.0953 0.042 0.1815 0.0839 0.0253 0.1353 0.0869 0.0175 0.0998

B=10 0.8 0.0363 0.083 0.2857 0.0953 0.042 0.1815 0.0839 0.0253 0.1353 0.0869 0.0175 0.0998

B=100 0.8 0.0363 0.083 0.2857 0.0953 0.042 0.1815 0.0839 0.0253 0.1353 0.0869 0.0175 0.0998

Table 3.1: Estimates of bias, mean square error, and standard error of

SCORE for varying number of random vectors B = 10, B = 100 and

SCORE-OVERLAP.
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Polygenicity Method Genetic correlation ρg (h2
1, h

2
2)

(0.1, 0.2) (0.2, 0.6) (0.5, 0.5) (0.6, 0.8)

Infinitesimal

LDSC/SCORE 0 1.79 1.79 2.41 2.32

HDL/SCORE 0 1.35 1.2 1.42 1.35

LDSC/SCORE 0.2 1.26 1.64 2.63 2.32

HDL /SCORE 0.2 1.05 1.48 1.47 1.5

LDSC/SCORE 0.5 1.69 2 2.19 2.6

HDL/SCORE 0.5 1.65 1.14 1.18 1.39

LDSC/SCORE 0.8 1.4 1.62 1.95 2.16

HDL/SCORE 0.8 1.26 1.23 1.41 1.28

Medium polygenicity

LDSC/SCORE 0 1.4 1.96 2.08 2.07

HDL/SCORE 0 1.25 1.41 1.21 1.36

LDSC/SCORE 0.2 1.74 2.09 2.15 2.28

HDL/SCORE 0.2 1.44 1.54 1.38 1.4

LDSC/SCORE 0.5 1.49 1.96 2.59 2.37

HDL/SCORE 0.5 1.41 1.32 1.54 1.42

LDSC/SCORE 0.8 1.6 2.01 2.42 2.2

HDL/SCORE 0.8 1.17 1.45 1.61 1.23

Low polygenicity

LDSC/SCORE 0 1.08 1.92 2.57 2.17

HDL/SCORE 0 1.11 1.18 1.27 1.15

LDSC/SCORE 0.2 1.79 1.57 1.97 2.24

HDL/SCORE 0.2 1.31 1.07 1.29 1.3

LDSC/SCORE 0.5 1.18 2.25 2.49 1.9

HDL/SCORE 0.5 1.08 1.44 1.26 1.29

LDSC/SCORE 0.8 1.45 1.81 2.47 2.37

HDL/SCORE 0.8 1.24 1.28 1.38 1.36

Table 3.2: Ratio of SE of summary-statistic methods relative to SCORE

(N = 5, 000 individuals, M = 305, 630 SNPs).
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Figure 3.1: Comparison of the estimates of genetic correlation from SCORE

with GCTA-GREML, GCTA-HE, LDSC, and HDL .
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Figure 3.2: Comparison of the estimates of genetic correlation from SCORE with

GCTA-GREML, GCTA-HE, LDSC, and HDL in small-scale simulations (N = 5, 000

unrelated individuals, M = 305, 630 SNPs) under infinitesimal genetic architectures.

We simulated pairs of phenotypes under 16 different infinitesimal genetic architectures. Panel

A, B, C, D correspond to a different value of the genetic correlation chosen from the set:

{0, 0.2, 0.5, 0.8}. Within each panel, we varied the SNP heritability for the pair of traits across

{(0.1, 0.2), (0.2, 0.6), (0.5, 0.5), (0.6, 0.8)} (see Simulations to assess accuracy section of Materials

and Methods). We plot the standard error (SE) of each method relative to GCTA-GREML. We

estimate the standard error of the relative SE using Jackknife (error bars denote 1 standard error).
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Method Genetic Bias MSE SE Bias MSE SE Bias MSE SE Bias MSE SE

correlation ρg h2
1 = 0.1, h2

2 = 0.2 h2
1 = 0.2, h2

2 = 0.6 h2
1 = 0.5, h2

2 = 0.5 h2
1 = 0.6, h2

2 = 0.8

GCTA-GREML 0 -0.0818 0.0998 0.305 -0.029 0.0395 0.197 0.0096 0.013 0.114 0.0014 0.0076 0.0871

GCTA-HE 0 -0.104 0.217 0.454 0.0366 0.0878 0.294 0.0026 0.0268 0.164 0.0225 0.0148 0.119

HDL 0 -0.0265 0.172 0.414 -0.0095 0.0606 0.246 0.0185 0.0294 0.17 0.007 0.0153 0.123

LDSC 0 0.0519 0.3055 0.5503 -0.007 0.1343 0.3665 -0.0014 0.0837 0.2894 0.0083 0.045 0.2119

SCORE 0 -0.0826 0.102 0.308 -0.0302 0.0428 0.205 0.0099 0.0145 0.12 0.0083 0.0084 0.0912

GCTA-GREML 0.2 -0.0571 0.123 0.346 -0.0103 0.0328 0.181 0.0074 0.0152 0.123 -0.0114 0.0077 0.0868

GCTA-HE 0.2 -0.188 0.261 0.475 -0.0234 0.0554 0.234 0.029 0.0321 0.177 -0.0263 0.0157 0.123

HDL 0.2 -0.094 0.151 0.377 0.0254 0.0729 0.269 0.0236 0.0346 0.184 0.0027 0.0194 0.139

LDSC 0.2 -0.0946 0.2134 0.4522 0.0134 0.0885 0.2973 0.0177 0.1088 0.3293 0.0051 0.0463 0.215

SCORE 0.2 -0.05 0.132 0.36 -0.01 0.033 0.181 0.0147 0.0159 0.125 -0.0173 0.0089 0.0928

GCTA-GREML 0.5 -0.158 0.0858 0.247 -0.012 0.0244 0.156 0.0159 0.0121 0.109 0.0092 0.0045 0.0662

GCTA-HE 0.5 -0.142 0.161 0.375 -0.0394 0.0593 0.24 0.0181 0.0224 0.149 0.0111 0.0116 0.107

HDL 0.5 -0.162 0.188 0.401 -0.0195 0.0345 0.185 0.0047 0.0189 0.138 0.0207 0.009 0.0928

LDSC 0.5 -0.3298 0.278 0.4114 -0.0955 0.1143 0.3243 0 0.0649 0.2547 0.0308 0.0312 0.1739

SCORE 0.5 -0.1567 0.0841 0.244 -0.016 0.0266 0.1622 0.0115 0.0137 0.1164 0.0143 0.0047 0.0669

GCTA-GREML 0.8 -0.317 0.156 0.235 -0.106 0.0283 0.131 -0.0232 0.0073 0.082 -0.0004 0.0033 0.0571

GCTA-HE 0.8 -0.389 0.287 0.369 -0.115 0.0446 0.177 -0.023 0.0139 0.116 0.0093 0.0061 0.0778

HDL 0.8 -0.391 0.239 0.294 -0.154 0.0518 0.168 -0.0421 0.0141 0.111 -0.0114 0.0057 0.0748

LDSC 0.8 -0.4841 0.3415 0.3273 -0.1851 0.0833 0.2215 -0.0727 0.029 0.1541 -0.019 0.0162 0.1257

SCORE 0.8 -0.319 0.156 0.233 -0.111 0.0309 0.137 -0.0206 0.0067 0.0789 -0.0016 0.0034 0.0583

Table 3.3: Bias, mean square error and standard error of genetic correlation

estimation methods in simulations corresponding to Figure 3.2 (N = 5, 000

individuals, M = 305, 630 SNPs).
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Figure 3.3: Comparison of the estimates of genetic correlation from SCORE with

GCTA-GREML, GCTA-HE, LDSC, and HDL in small-scale simulations (N = 5, 000

unrelated individuals, M = 305, 630 SNPs) under non-infinitesimal architectures with

medium polygenicity. We simulated pairs of phenotypes under 16 different non-infinitesimal

genetic architectures. The probability of a variant being causal for both traits is 0.20, and

the probability of a variant being causal for exactly one of the traits is 0.10. Panels (A, B,

C, D) correspond to a different value of the genetic correlation at SNPs causal for both traits:

{0, 0.2, 0.5, 0.8}. The causal variants are distributed uniformly across the genome. Within each

panel, we varied the per-SNP heritability of variants causal for both traits to be proportional to

{(0.1, 0.2), (0.2, 0.6), (0.5, 0.5), (0.6, 0.8)} (see Simulations to assess accuracy section of Materials

and Methods). We plot the SE of each method relative to GCTA-GREML. We ran LDSC with

in-sample LD and HDL with eigenvectors that preserve 90% variance. We estimate the standard

error of the relative SE using Jackknife (error bars denote 1 standard error).
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Method Genetic Bias MSE SE Bias MSE SE Bias MSE SE Bias MSE SE

correlation ρg h2
1 = 0.1, h2

2 = 0.2 h2
1 = 0.2, h2

2 = 0.6 h2
1 = 0.5, h2

2 = 0.5 h2
1 = 0.6, h2

2 = 0.8

GCTA-GREML 0 0.0414 0.12 0.344 0.003 0.0343 0.185 -0.0025 0.0157 0.125 -0.0011 0.0075 0.0866

GCTA-HE 0 0.0964 0.243 0.484 0.0163 0.0502 0.223 0.0103 0.0328 0.181 -0.0051 0.0159 0.126

HDL 0 0.0626 0.193 0.434 -0.0225 0.0699 0.263 0.0103 0.0292 0.171 0.0155 0.0171 0.13

LDSC 0 0.0608 0.2375 0.4835 -0.0273 0.1344 0.3656 0.0179 0.0862 0.2931 0.0301 0.0399 0.1975

SCORE 0 0.0506 0.123 0.347 0.0023 0.0349 0.187 0.0022 0.0198 0.141 0.0052 0.0091 0.0952

GCTA-GREML 0.2 -0.0034 0.12 0.347 0.0143 0.0376 0.193 -0.0055 0.0159 0.126 -0.007 0.0058 0.0759

GCTA-HE 0.2 0.0162 0.2 0.447 0.0182 0.0706 0.265 -0.0073 0.0298 0.172 -0.0247 0.0168 0.127

HDL 0.2 -0.0066 0.198 0.445 0.0155 0.0902 0.3 0.005 0.0307 0.175 -0.0121 0.0125 0.111

LDSC 0.2 -0.0846 0.2979 0.5392 0.0209 0.1664 0.4073 -0.0089 0.0744 0.2726 0.0052 0.033 0.1815

SCORE 0.2 0.0259 0.0965 0.31 0.0116 0.0382 0.195 -0.0006 0.0161 0.127 -0.01 0.0065 0.0797

GCTA-GREML 0.5 0.0292 0.102 0.319 0.0081 0.0289 0.17 0.0182 0.0121 0.108 0.0068 0.0075 0.0861

GCTA-HE 0.5 -0.0213 0.146 0.382 0.0061 0.0576 0.24 0.0138 0.0226 0.15 0.0155 0.0155 0.123

HDL 0.5 0.0137 0.124 0.352 -0.0255 0.0552 0.234 0.0223 0.0304 0.173 0.0055 0.0167 0.129

LDSC 0.5 -0.1026 0.2247 0.4628 -0.0634 0.1138 0.3313 -0.0142 0.0766 0.2764 -0.0202 0.0467 0.2151

SCORE 0.5 0.0317 0.0974 0.31 0.0039 0.0287 0.169 0.0197 0.0118 0.107 0.0076 0.0083 0.0909

GCTA-GREML 0.8 -0.112 0.12 0.328 0.0146 0.0301 0.173 0.0164 0.0134 0.115 0.036 0.0095 0.0904

GCTA-HE 0.8 -0.0941 0.212 0.451 0.0307 0.0454 0.211 0.0151 0.0277 0.166 0.0288 0.0185 0.133

HDL 0.8 -0.155 0.172 0.385 0.0355 0.0665 0.255 0.0362 0.0336 0.18 0.0453 0.019 0.13

LDSC 0.8 -0.2322 0.3293 0.5248 0.0022 0.125 0.3536 0.0144 0.0733 0.2704 0.0134 0.0542 0.2324

SCORE 0.8 -0.118 0.121 0.327 0.0116 0.031 0.176 0.0228 0.013 0.112 0.031 0.0121 0.105

Table 3.4: Bias, mean square error and standard error of genetic correlation

estimation methods in simulations corresponding to Figure 3.3 (N = 5, 000

individuals, M = 305, 630 SNPs).
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Figure 3.4: Comparison of the estimates of genetic correlation from SCORE with

GCTA-GREML, GCTA-HE, LDSC, and HDL in small-scale simulations (N = 5, 000 un-

related individuals, M = 305, 630 SNPs) under non-infinitesimal architectures with low

polygenicity. We simulated pairs of phenotypes under 16 different non-infinitesimal genetic archi-

tectures. The probability of a variant being causal for both traits is 0.01, and the probability of a

variant being causal for exactly one of the trait is 0.05. Panels (A, B, C, D) correspond to a different

value of the genetic correlation at SNPs causal for both traits: {0, 0.2, 0.5, 0.8}. The causal variants

are distributed uniformly across the genome. Within each panel, we varied the per-SNP heritability

of variants causal for both traits to be proportional to {(0.1, 0.2), (0.2, 0.6), (0.5, 0.5), (0.6, 0.8)} (see

Simulations to assess accuracy section of Materials and Methods). We plot the SE of each method

relative to GCTA-GREML. We ran LDSC with in-sample LD and HDL with eigenvectors that

preserve 90% variance. We estimate the standard error of the relative SE using Jackknife (error

bars denote 1 standard error).
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Method Genetic Bias MSE SE Bias MSE SE Bias MSE SE Bias MSE SE

correlation ρg h2
1 = 0.1, h2

2 = 0.2 h2
1 = 0.2, h2

2 = 0.6 h2
1 = 0.5, h2

2 = 0.5 h2
1 = 0.6, h2

2 = 0.8

GCTA-GREML 0 0.0396 0.1156 0.3377 0.0188 0.0339 0.183 -0.0248 0.0153 0.1213 -0.0084 0.0084 0.0912

GCTA-HE 0 -0.0011 0.1867 0.4321 0.0314 0.0715 0.2656 -0.02 0.028 0.1662 -0.0041 0.0138 0.1174

HDL 0 0.0286 0.1395 0.3724 0.0212 0.0635 0.2511 -0.007 0.0245 0.1565 -0.0058 0.0132 0.1145

LDSC 0 -0.0844 0.1544 0.3838 0.0206 0.1595 0.3989 0.0035 0.1012 0.3181 0.0082 0.0471 0.2168

SCORE 0 0.0694 0.136 0.3623 0.0115 0.0452 0.2123 -0.0223 0.0158 0.1236 -0.0091 0.0101 0.0999

GCTA-GREML 0.2 -0.0198 0.0722 0.268 0.0296 0.031 0.1736 0.014 0.0167 0.1285 0.0115 0.0089 0.0936

GCTA-HE 0.2 0.0051 0.1576 0.3969 0.0224 0.0701 0.2639 0.012 0.0273 0.1647 0.0315 0.0165 0.1245

HDL 0.2 0.0812 0.1502 0.379 0.0744 0.0527 0.2173 0.0054 0.031 0.1761 0.0143 0.0171 0.1302

LDSC 0.2 0.0072 0.2668 0.5165 0.0589 0.105 0.3187 -0.0129 0.0719 0.2678 0.0119 0.0506 0.2246

SCORE 0.2 0.0135 0.0594 0.2433 0.0366 0.0424 0.2025 0.018 0.0188 0.136 0.0193 0.0105 0.1004

GCTA-GREML 0.5 0.0353 0.1053 0.3226 0.0472 0.0206 0.1356 0.0893 0.0206 0.1122 0.0379 0.0102 0.0936

GCTA-HE 0.5 0.0019 0.1984 0.4454 0.0411 0.0584 0.2382 0.1056 0.0352 0.1552 0.0527 0.021 0.1352

HDL 0.5 0.0171 0.1102 0.3315 0.0397 0.0537 0.2284 0.1039 0.0327 0.1481 0.0362 0.0195 0.1348

LDSC 0.5 0.1266 0.1518 0.3684 0.0636 0.1265 0.3499 0.0994 0.0952 0.2921 0.0514 0.0423 0.1992

SCORE 0.5 0.0463 0.0992 0.3116 0.0478 0.0261 0.1544 0.0882 0.0215 0.1171 0.0334 0.0121 0.1048

GCTA-GREML 0.8 0.0725 0.1016 0.3103 0.0939 0.0411 0.1796 0.0814 0.0235 0.1297 0.0876 0.0156 0.0888

GCTA-HE 0.8 -0.0097 0.1859 0.431 0.0844 0.0649 0.2405 0.0806 0.0393 0.1811 0.0765 0.0189 0.1144

HDL 0.8 0.1205 0.144 0.3598 0.0922 0.0625 0.2324 0.0993 0.0447 0.1867 0.0888 0.0262 0.1353

LDSC 0.8 0.0414 0.1724 0.4132 0.1331 0.1256 0.3284 0.0853 0.1186 0.3337 0.0741 0.0614 0.2365

SCORE 0.8 0.0363 0.083 0.2857 0.0953 0.042 0.1815 0.0839 0.0253 0.1353 0.0869 0.0175 0.0998

Table 3.5: Bias, mean square error and standard error of genetic correlation

estimation methods in simulations corresponding to Figure 3.4 (N = 5, 000

individuals, M = 305, 630 SNPs).
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Polygenicity (h2
1, h

2
2) ρg ŜE SE

Infinitesimal

0.1, 0.2 0 0.45 0.42

0.2, 0.6 0 0.2 0.2

0.5, 0.5 0 0.12 0.12

0.6, 0.8 0 0.09 0.09

0.1, 0.2 0.2 0.4 0.38

0.2, 0.6 0.2 0.19 0.19

0.5, 0.5 0.2 0.12 0.12

0.6, 0.8 0.2 0.09 0.09

0.1, 0.2 0.5 0.41 0.3

0.2, 0.6 0.5 0.18 0.17

0.5, 0.5 0.5 0.11 0.11

0.6, 0.8 0.5 0.07 0.07

0.1, 0.2 0.8 0.41 0.34

0.2, 0.6 0.8 0.18 0.15

0.5, 0.5 0.8 0.09 0.09

0.6, 0.8 0.8 0.05 0.05

Medium polygenicity

0.1, 0.2 0 0.45 0.39

0.2, 0.6 0 0.19 0.19

0.5, 0.5 0 0.12 0.14

0.6, 0.8 0 0.09 0.09

0.1, 0.2 0.2 0.43 0.39

0.2, 0.6 0.2 0.18 0.19

0.5, 0.5 0.2 0.12 0.12

0.6, 0.8 0.2 0.09 0.08

0.1, 0.2 0.5 0.43 0.36

0.2, 0.6 0.5 0.18 0.18

0.5, 0.5 0.5 0.12 0.11

0.6, 0.8 0.5 0.09 0.09

0.1, 0.2 0.8 0.44 0.36

0.2, 0.6 0.8 0.20 0.18

0.5, 0.5 0.8 0.12 0.11

0.6, 0.8 0.8 0.1 0.11

Low polygenicity

0.1, 0.2 0 0.39 0.38

0.2, 0.6 0 0.21 0.2

0.5, 0.5 0 0.12 0.12

0.6, 0.8 0 0.1 0.09

0.1, 0.2 0.2 0.35 0.29

0.2, 0.6 0.2 0.19 0.2

0.5, 0.5 0.2 0.12 0.14

0.6, 0.8 0.2 0.19 0.2

0.1, 0.2 0.5 0.42 0.33

0.2, 0.6 0.5 0.18 0.16

0.5, 0.5 0.5 0.13 0.12

0.6, 0.8 0.5 0.09 0.1

0.1, 0.2 0.8 0.35 0.3

0.2, 0.6 0.8 0.19 0.18

0.5, 0.5 0.8 0.12 0.12

0.6, 0.8 0.8 0.1 0.1

Table 3.6: Assessment of Jackknife estimates of standard error (N = 5, 000

samples and 305, 630 SNPs, block size = 4, 000 SNPs). We report the average

of estimates of standard error across 100 replicates.
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Small-scale simulations

Polygenicity (h2
1, h

2
2) FPR

Infinitesimal

0.1, 0.2 0.014

0.2 ,0.6 0.037

0.5, 0.5 0.01

0.6, 0.8 0.07

Medium polygenicity

0.1, 0.2 0

0.2, 0.6 0.026

0.5, 0.5 0.071

0.6, 0.8 0.02

Low polygenicity

0.1, 0.2 0.065

0.2, 0.6 0.054

0.5, 0.5 0.05

0.6, 0.8 0.06

Large-scale simulations

Prevalence (h2
1, h

2
2) FPR

Continuous 0.272, 0.12 0.04

50% 0.272, 0.12 0.08

10% 0.272, 0.12 0.07

1% 0.272, 0.12 0.08

0.5% 0.272, 0.12 0.02

0.01% 0.272, 0.12 0

Table 3.7: The false positive rate of SCORE is controlled. We evaluated the

false positive rate of SCORE in simulations where ρg is zero. We considered small-

scale (N = 5, 000 individuals and M = 305, 630 SNPs) and large-scale simulations

(N = 291, 273 individuals and M = 305, 630 SNPs). We also considered simulations

with binary traits with varying prevalence. Standard error estimates were obtained

using a Block Jackknife with a block size of 4000 SNPs. For each genetic architecture,

we performed 100 replicates and reported the FPR as the rate with which SCORE

rejects the null hypothesis of ρg = 0.
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Figure 3.5: Comparison of the estimates of genetic correlation from SCORE with

GCTA-GREML and LDSC as a function of sample overlap (M = 305, 630 SNPs). We

vary the proportion of sample overlap across {0, 0.2, 0.5, 0.8, 0.1}. For sample overlap proportion of

0, we have a total of 10, 000 samples where each sample only has observation on one of the traits.

For overlap proportion of 1, we have a total 5, 000 samples with each sample having observations

on both traits (see Simulations to assess the impact of sample overlap in Materials and Methods).

We report the SE of SCORE and LDSC relative to GCTA-GREML. We ran LDSC with in-sample

LD. We estimate the standard error of the relative SE using jackknife.
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Method Overlap Proportion Bias MSE SE

LDSC

0 -0.1672 0.1405 0.3355

0.2 0.0044 0.0921 0.3035

0.5 0.1708 0.1022 0.2702

0.8 0.0808 0.0815 0.2737

1 -0.0955 0.1143 0.3243

SCORE

0 -0.0037 0.0405 0.2013

0.2 0.2242 0.0753 0.1582

0.5 0.2843 0.0916 0.1036

0.8 0.2722 0.087 0.1428

1 -0.016 0.0266 0.1622

GCTA-GREML

0 -0.0063 0.0383 0.1956

0.2 0.2635 0.0957 0.1619

0.5 0.3301 0.1219 0.1137

0.8 0.2371 0.0788 0.1505

1 -0.012 0.0244 0.1558

Table 3.8: Accuracy of SCORE, LDSC, and GCTA-GREML as a function

of varying sample overlap corresponding to Figure 3.5.
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h2
1 h2

2 ρg ρe Prevalence ρg SE p-value

0.272 0.12 0 0 Continuous trait 0.001 0.018 0.53

0.272 0.12 -0.23 0 Continuous trait -0.238 0.093 0.39

0.272 0.12 -0.23 0 50% -0.238 0.097 0.41

0.272 0.12 -0.23 0 25% -0.239 0.101 0.43

0.272 0.12 -0.23 0 10% -0.238 0.103 0.44

0.272 0.12 -0.23 0 1% -0.234 0.124 0.75

0.272 0.12 -0.23 0 0.5% -0.248 0.134 0.18

0.272 0.12 -0.23 0 0.01% -0.215 0.205 0.44

0.272 0.12 -0.23 -0.04 Continuous trait -0.211 0.107 0.08

0.272 0.12 -0.23 -0.04 0.01% -0.243 0.342 0.70

0.272 0.12 -0.23 0.04 Continuous trait -0.221 0.089 0.52

0.272 0.12 -0.23 0.04 0.01% -0.235 0.352 0.89

Table 3.9: Estimates of ρg as a function of the prevalence of binary traits

(N = 291, 273 individuals and 305, 630 SNPs). We report the average of the

point estimates of ρg, the SE and p-value of a test of the null hypothesis that the

estimates of ρg are unbiased. We compute p-values of a test of no bias from the

Z-score defined as ρg
SE/10

.
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Figure 3.6: Comparison of the runtime of SCORE with GCTA-GREML

and GCTA-HE as a function of the number of sample.
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Figure 3.7: Comparing SCORE with LDSC in 28 traits the UK Biobank.
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Figure 3.8: Standard error estimates of genetic correlation between 28 UK

biobank phenotypes with LDSC and SCORE corresponding to Figure 3.7.
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Figure 3.9: Ratio of standard error estimates of genetic correlation between

28 UK biobank phenotypes with LDSC and SCORE corresponding to

Figure 3.7.
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Figure 3.10: Estimates of genetic correlation in the UK Biobank with dif-

ferent random vectors.
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Figure 3.11: Genetic correlation estimates in the UK Biobank on array

SNPs for 40 traits in Table A.1.
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Figure 3.12: Ratio of standard error estimates of genetic correlation be-

tween 40 UK biobank phenotypes with HDL and SCORE corresponding

to Table A.1.
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Figure 3.13: Standard error of genetic correlation estimates from SCORE

stratified by the type of phenotype pairs.
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Figure 3.14: Standard error of genetic correlation estimates from SCORE

as a function of the prevalence of the binary phenotype when applied to

a pair of phenotypes where one of traits in the pair is binary.
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Figure 3.15: Comparison of the p-values of ρg estimates obtained by SCORE

in the UK Biobank on imputed versus array SNPs.
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CHAPTER 4

Efficiently partitioning genetic correlation to

specific regions of the genome

In Chapter 3, we investigated the shared genetic architecture among traits across

the genome through the lens of genome-wide genetic correlation. Given that two

traits show substantial genome-wide genetic correlation, a key question of interest

is whether the correlation is enriched within certain groups (e.g. a set of genes)

or distributed relatively evenly across the genome [11, 12, 10]. In addition, a pair

of traits can have significant positive and negative genetic correlations in different

regions that lead to a genome-wide genetic correlation of zero [40].

To investigate this question, we start by extending the multivariate model in

Chapter 3 into a multi-component model and propose a scalable estimator, SMORE.

Having a scalable estimator, we applied SMORE to traits in the UK Biobank to

estimate genetic correlation in sets of genes that are identified as expressed in specific

tissues by [53]. We investigate the genetic correlation of a few diseases to other

complex traits within these gene sets and compared these estimates to genome-wide

genetic correlations. Our findings could elucidate the shared biological pathways,

highlight disease-relevant tissues, and improve our understanding of the etiology of

complex traits and diseases.
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4.1 Statistical Models and Estimators

4.1.1 Multivariate Multi-component Linear Mixed Model

Assume we have K phenotypes and each phenotype is associated with the generative

model:

yi = Xiβi + ϵi (4.1)

Here for each phenotype i, we have Ni samples. Ni,j are the number of samples that

contain measurements for both traits yi and yj (N ≤ Ni, N ≤ Nj). For each pheno-

type, we define X i as the corresponding Ni ×M matrix of standardized genotypes.

βi is the vector of SNP effect sizes while ϵi denotes trait-specific environmental noise

that is independent of the genetic effect. We assume that SNPs can be assigned to

one or more than one of P annotation groups, where in each group p, we have Mp

SNPs. Let 1p be the M × 1 indicator vector indicating if the SNPs belong to group

p.

Additionally, we let β be the M × K matrix with columns being the genetic

effects and assume that E[β] = 0. We assume that β is a sum of matrix normal:

β =
P∑

p=1

MN (0, diag(1p),V p) (4.2)

where V p is a K ×K matrix for the pth annotation group:

V p(i, j) =


σ2
gp,i if i = j

γgp,ij otherwise

(4.3)
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Here σgp,i denotes the genetic variance component for the pth annotation group for

phenotype i, and γgp,ij denotes the genetic covariance between phenotype i and j

in annotation p. Importantly, we do not impose any constraints on the grouping

of SNPs, e.g. the genetic variant could belong to more than one annotation group

and could be randomly distributed along the genome or a continuous region. How-

ever, we assume that variances and covariance from multiple annotation groups are

independent and additive. The genetic correlation parameter for group p between

phenotype i and j is defined as ρgp,ij =
γgp,ij√

σ2
gp,i

√
σ2
gp,j

.

Additionally, the trait-specific environmental noise in each individual is assumed

to have zero mean and variance of σ2
e,i for the i

th trait. If an individual has measure-

ments on both trait i, j, the environmental covariance is denoted as γe,ij

4.1.2 Method of Moments(MoM) for multi-component multivariate model

Our proposed method SMORE uses a scalable method-of-moments (MoM) estimator

for the genetic correlations, {γ̂gp,i}. SMORE works by finding values of the model

parameters, i.e., the group-specific variance components and genetic covariances,

such that minimizing the distance between the population and sample moments.

Here we first describe the MoM estimator in the multi-component multivariate

model. Since the mean of yi,∀i ∈ {1, . . . , K} are zero, we focus on the covariance.

The population covariance of the concatenated phenotypes y ≡ [y1
T , . . . ,yi

T , . . . ,yK
T ]T
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is now:

cov(y) = E[yyT ]− E[y]E[y]T =
∑
p


V p(1, 1)Kp(1, 1) . . . V p(1,K)Kp(1,K)

. . . V p(i, j)Kp(i, j) . . .

V p(K, 1)Kp(K, 1) . . . V p(K,K)Kp(K,K)



+


σ2
e,1IN1 . . . γe,1KC(1,K)

. . . σ2
e,iINi . . .

γe,K1C(K, 1) . . . σ2
e,KINK

 (4.4)

Here Kp(i, j) =
Xi,pXj,p

T

Mp
is the genetic relatedness matrix (GRM) computed with

the SNPs in functional annotation group p. C(i, j) is an indicator matrix, where

C(i, j)m,n = 1 if the mth entry in yi and nth entry in yj are measures on phenotype

i and j for the same sample, and 0 otherwise. The MoM estimator is obtained by

minimizing the sum of squared differences between the population and empirical

covariance:

{γ̂gp} = argmin{γgp}||yyT − cov(y)||2F (4.5)

with cov(y) defined in equation 4.4. The MoM estimator for the genetic covariances
{γgp,ij} satisfies the normal equations:



tr(K(1, 2)2) 0 . . . tr(K(1, 2)) 0 . . .

0 tr(K(i, j)2) . . . 0 tr(K(i, j)) 0

0 0 tr(K(K − 1, K)2) 0 . . . tr(K(K − 1, K))

tr(K(1, 2)) 0 . . . tr(C(1, 2)) . . . 0

0 tr(K(i, j)) 0 . . . tr(C(i, j)) 0

0 . . . tr(K(K − 1, K)) 0 . . . tr(C(K − 1, K))





γ̂gP,12

γ̂gP,ij

̂γgP,(K−1)K

γ̂e,12

γ̂e,ij

̂γe,(K−1)K



=



yT
1 KP (1, 2)y2

yT
i KP (i, j)yj

yT
K−1KP (K − 1, K)yK

yT
1 C(1, 2)y2

yT
i C(i, j)yj

yT
K−1C(K − 1, K)yK


(4.6)

where γgP,ij is a vector for the genetic covariance for all P annotation groups

between phenotype i and j. Here we define a P × P matrix tr(K(i, j)2) where
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tr(K(i, j)2)p,q = tr(Kp(i, j)Kq(i, j)). y
T
i KP (i, j)yj is a P × 1 vector, where the pth

entry is yT
i Kp(i, j)yj =

yT
i Xi,pX

T
j,pyj

Mp
, corresponding to annotation group p. Given

the coefficients of the normal equations, we can solve analytically for {̂γgp,ij}, γ̂e,ij.

Given the MoM estimates of the variance components, the MoM estimate for the

genetic correlation for annotation p between phenotype i and j , i ̸= j is given by

the plug-in estimate:

ρ̂gp,ij =
γ̂gp,ij√

σ2
gp,i

√
σ2
gp,j

(4.7)

Due to the block-wise property of the normal equations in equation 4.6, this

MoM estimator is equivalent to solving the Bi-variate model between each pair of

phenotypes independently.

4.1.3 MoM estimator for Bivariate multi-component model

In this section, we consider only 2 phenotypes, y1 and y2, and show that the MoM

estimator is equivalent to Equation 4.6. Let β1 and β2 be the vectors of effect sizes

for phenotype 1 and 2. Let 1p be the M × 1 indicator vector for annotation group

p, where 1p,m = 1 if mth SNP belongs to group p, and 0 otherwise.

We assume that the effect size has mean of 0, and the effect sizes have the

covariance:

cov(β1,β2) =
P∑

p=1

σ2
gp,1diag(1p)

cov(β2,β2) =
P∑

p=1

σ2
gp,2diag(1p)

cov(β1,β2) =
P∑

p=1

γ2
gp,12diag(1p)

(4.8)
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Here σ2
gp,1 and σ2

gp,2 denote the genetic variance associated with trait 1 and 2 for

group p respectively. And γgp,12 denotes the genetic covariance associated with group

p between trait 1 and 2. The trait-specific environmental noise in each individual is

assumed to have zero mean and variance σ2
et, t ∈ {1, 2} for trait t.

We assume that phenotypes y1 and y2 have the following generative model:

y1 = X1β1 + ϵ1

y2 = X2β2 + ϵ2

(4.9)

where X1 and X2 are the standardized genotypes for phenotype 1 and 2. Thus the

estimator for σgp, 12, σ2
gp,2 The population covariance of y is now:

cov(y) =

 ∑
p σ

2
p,1

X1,pX
T
1,p

Mp

∑
p γgp,12

X1,pX
T
2,p

Mp∑
p γgp,12

X2,pX
T
1,p

Mp

∑
p σ

2
p,2

X2,pX
T
2,p

Mp

 (4.10)

Now we let y be the concatenated phenotype, y ≡ [yT
1 ,y

T
2 ]. We derive the estimator

by minimizing:

{ ̂γp,12, γe,12} = argminγp,12,γe,12||yyT − cov(y)||TF (4.11)

Thus the MoM estimator for the genetic covariances for {γgp,ij} satisfies the

following normal equations:tr(K(1, 2)2 tr(K(1, 2))

tr(K(2, 1)) tr(C(1, 2))

γ̂gp,12

γe,12

 =

y1Kp(1, 2)y2

yT
1C(1, 2)y2

 (4.12)

Here as we defined in the previous section, tr(K(1, 2)2) is a P × P matrix, where

tr(K(1, 2)2)p,q = tr(Kp(1, 2)Kq(1, 2)) = tr(
X1,pX

T
2,pX1,qX

T
2,q

MpMq
). yT

1KP (1, 2)y2 is a

P × 1 vector, where the pth entry is corresponding to the pth annotation group

yTKp(1, 2)y2. C(1, 2) is an indicator matrix, where C(1, 2)m,n = 1 if the mth entry
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in y1 and nth entry in y2 are measurements on the same sample, and 0 otherwise.

In other words, tr(C(1, 2)) equal to the total number of samples that have measure-

ments on both phenotype 1 and 2. This estimator is equivalent to solving all pairs

of phenotypes jointly as described in the previous section.

4.1.4 Non-overlapping and overlapping grouping

Assume we have in total P annotation groups. Recall that for each group p, we

have an M × 1 indicator vector 1p, 1p,m = 1 if mth SNP belongs to group p, and 0

otherwise. If every genetic variant belongs to no more than one annotation group,

in other words, if
∑

p 1p,m ≤ 1, we refer this annotation group has non-overlapping

group.

However, if a genetic variant belongs to more than one annotation group, then

the annotation groups share some some genetic variants, and we refer this type of

annotation as overlapping grouping. For this type of annotation, we need to make

an additional assumption that the variance components and covariances are additive

among groups. Specifically, the effect size of mth SNP βT
m follows the following

multivariate normal distribution:

βm ∼ N (0,
∑
p

1p,mV p) (4.13)

where V p is a K ×K matrix for total K phenotypes defined as following:

V p(i, j) =


σ2
gp,i if i = j

γgp,ij otherwise

(4.14)

Here σgp,i denotes the genetic variance component for the pth annotation group for

phenotype i, and γgp,ij denotes the genetic covariance between phenotype i and
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j in annotation p. Thus the total variances explained by genetic variance in the

annotations for phenotype i is
∑

p σ
2
gp,i, and the total covariance between phenotype

i and j explained by the genetic variants in all annotation groups are
∑

p γgp,ij

4.1.5 SMORE: Scalable Multivariate multi-component genetic cORre-

lation Estimator

Naive computation of the MoM estimate of genetic covariance requires computing

tr(Kp(i, j)Kq(i, j)) for all p, q ∈ [1, . . . P ] and for all pairs i, j ∈ [1, . . . K]. Each

entry requires O(NiNjmax{Mp,Mq}) operations, where Ni, Nj are the sample size

of each of the traits, and Mp,Mq are the number of genetic variants in an annotation

group.

To overcome this computational bottleneck, we replace each tr(Kp(i, j)Kq(i, j))

with an unbiased randomized estimate: ̂tr(Kp(i, j)Kq(i, j)) [47].

Given B random vectors, z1, . . . ,zB, zb ∈ RN2 , b ∈ 1 . . . B drawn independently

from a distribution with zero mean and identity covariance, our estimator is given

by:

Lij,pq = ̂tr(Kp(i, j)Kq(i, j)) =
1

B

1

M2

∑
b

||Xi,pXj,q
Tzb||22

The SMORE estimator (γ̃g, γ̃e) is obtained by solving Equation 4.6 by replacing
each matrix tr(K(i, j)2) with matrix Lij, where Lij is a P × P symmetric matrix
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with the pth row qth column entry being Lij,pq.



L2
12 0 . . . tr(K(1, 2)) 0 . . .

0 L2
ij . . . 0 tr(K(i, j)) 0

0 0 LT
K−1,K 0 . . . tr(K(K − 1, K))

tr(K(1, 2)) 0 . . . tr(C(1, 2)) . . . 0

0 tr(K(i, j)) 0 . . . tr(C(i, j)) 0

0 . . . tr(K(K − 1, K)) 0 . . . tr(C(K − 1, K))





γ̂gp,12

γ̂gp,ij

̂γgp,(K−1)K

γ̂e,12

γ̂e,ij

̂γe,(K−1)K



=



yT
1 KP (1, 2)y2

yT
i KP (i, j)yj

yT
K−1KP (K − 1, K)yK

yT
1 C1,2y2

yT
i Ci,jyj

yT
K−1CK−1,KyK


(4.15)

Computing Lij,pq requires multiplying the genotype matrices X i,p and Xj,q with

B vectors resulting in a runtime of O(max(Ni, Nj)max(Mp,MqB). Regardless of

annotation groups are overlap or not, we only need to compute the product of genetic

variant to random vector once. Thus the total compute time for Lij,pq∀p, q ∈ [1 . . . P ]

can be computed in time O(max(Ni, Nj)MB), where M is the total number of

genetic variants.

Leveraging the fact that each element of the genotype matrix takes values in the

set {0, 1, 2}, runtime could be further reduce toO(max( Ni

max(log3Ni,log3M)
,

Nj

max(log3Nj ,log3M)
)

MB) [30] (while the standardized genotypes are real-valued, SMORE computes the

equivalent quantities by operating on the unstandardized genotype matrix to be able

to leverage its discrete entries followed by subtracting the product of the mean of

a SNP and random vectors and scaling by MAF). Combined with our previous effi-

cient estimators of the genetic variance components [48, 31], we obtain an efficient

estimator of {ρgp}.

Further, SMORE uses a streaming algorithm that has scalable memory require-

ments and uses an efficient block Jackknife with a block size to estimate standard

errors with little additional computational overhead. SMORE also provided multi-
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threading option, where the computation for each group could be executed in parallel

to maximize the computation efficiency.

4.2 Related Work

In order to assess the accuracy of SMORE, we compare the estimates to GREML

[36, 25]. To apply GREML, we construct the GRM (genetic relationship matrix)

with the genetic variants in each annotation separately. GREML estimates the ge-

netic correlation by solving the bi-variate model with restricted maximum likelihood

method [36, 25] in each annotation group separately. We use the estimate of GREML

as a baseline and show that SMORE achieves similar accuracy as GREML with sta-

tistical efficiency in the following simulations.

A number of recent methods have been proposed for computing the local genetic

correlation [39, 54] though these methods do not support arbitrary partitions and

are not equivalent to the model we defined, thus not in the scope of comparison.

4.3 Experiments

4.3.1 Accuracy and robustness

We performed simulations on a subset of 10, 000 unrelated white British individuals

from the UK Biobank so that all methods compared could be run in a reasonable

time. Our simulations used 454, 207 SNPs with minor allele frequency (MAF) above

1% (see Section A.2 for details).

We first consider the case in which annotation groups are not overlapping. Given
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the genotypes, we simulated pairs of traits under varying genetic architectures :

constant genetic correlation, strong regional genetic correlation, opposite regional

genetic correlation, and regional genetic correlation without genome-wide genetic

correlation[11]. In each scenario, we assign genetic variants into one of four groups

with same probability. We assign the annotation groups in 2 ways: 1. randomly

assigned and 2. continuously assigned. With the randomly assigned annotation, each

annotation is distributed along the genome, where as continuously assigning cause the

annotations in continuous region, with each region being 1/4 of the genome. The true

genetic correlations are: {0.2, 0.2, 0.2, 0.2}, {0.05, 0.05, 0.5, 0.2}, {−0.2, 0.2, 0.6, 0.2},

{−0.2, 0, 0.2, 0}. The heritability for two traits are 0.27, 0.12 uniformly distributed

along genome.

We also evaluated the case where annotation groups overlap. We assume two

groups with true genetic correlation being {−0.1, 0.4}. For a given SNP, the proba-

bility of belonging to both group is 1/3, and 1/3 probability belonging only to one

of the group and 1/3 belonging only to the other one. The heritability of two traits

are fixed to 0.27, 0.12.

In each architecture, we simulated 100 replicates, estimate genetic correlations

with SMORE and GREML, and report the bias, mean squared error (MSE) and the

standard error for each method in average of the annotation groups in Table 4.1. We

observe that SMORE performs as well as GREML with no bias and similar MSE.

SMORE is as statistical efficient as likelihood based method GREML.

We also estimate genetic correlations by applying SMORE-SEP to one annotation

group at a time. We refer to this approach as SMORE-SEP. We compare the results

to the results obtained by estimating the annotation groups jointly. In Table 4.2, we
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Table 4.1: Estimates of bias, mean square error (MSE) and standard error

(SE) of genetic correlation estimation methods in simulations.

architecture Software Bias MSE SE

constant
SMORE -0.0061 0.1592 0.1593

GREML -0.0063 0.1514 0.1514

zero
SMORE -0.0001 0.1585 0.1586

GREML -0.0001 0.1552 0.1552

enrich
SMORE -0.0025 0.1552 0.1555

GREML -0.0027 0.1523 0.1523

opposite
SMORE -0.0174 0.153 0.1548

GREML -0.0182 0.1514 0.1511

overlap
SMORE -0.0217 0.1244 0.125

GREML -0.021 0.1214 0.121

compare the bias, the mean squared error (MSE) and standard error of estimating

the genetic correlation separately and jointly. We observe that estimating genetic

correlations separately yields almost identical accuracies to joint estimation.

4.3.2 Power analysis

In this section, we simulate a pair of phenotypes with the full UK Biobank with

291, 273 and 454, 207 SNPs. We randoms assign the genetic variants into two groups,

varying the size of the first group being {1, 000, 2, 000, 5, 000, 10, 000, 20, 000, 50, 000}

with a fixed genetic correlation of −0.2. The rest of variants are assigned to the

other group with genetic correlation 0.2. We aim to assess the sufficient group size

to identify significant genetic correlation.

For a more realistic setting, we consider two more scenarios, where we randomly
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Table 4.2: Accuracy of genetic correlation estimates when annotations are

considered separately and jointly

architecture Software Bias MSE SE

constant
SMORE -0.0061 0.1592 0.1593

SMORE-SEP -0.0061 0.1592 0.1593

zero
SMORE -0.0001 0.1585 0.1586

SMORE-SEP -4e-04 0.1584 0.1585

enrich
SMORE -0.0025 0.1552 0.1555

SMORE-SEP -0.0191 0.234 0.4836

opposite
SMORE -0.0174 0.153 0.1548

SMORE-SEP 0.0149 0.153 0.1548

picked 2000 genes and 500 genes being the first group, and the rest being the second

annotation group. The first annotation group has the true genetic correlation of 0.5,

and the second annotation group has the true genetic correlation of −0.2.

For each scenario, we simulate 100 replicates to report the standard error of the

genetic correlation estimates on the first annotation group. With the simulations

that two annotation groups have a true genetic correlation in opposite directions,

we aim to find out the annotation size that has the power to identify the genetic

correlation in practice. In Table 4.3, we observe that with a true genetic correlation

of 0.2, the annotation with ≥ 10, 000 SNPs has a p-value < 0.05. In the simulations

with randomly chosen genes as annotations, we observed that 500 genes (∼ 7, 000

SNPs) is sufficient to reject the null hypothesis.

In reality, the regions and annotations we are interested in might have a higher

true genetic correlation > 0.5, thus fewer SNPs are sufficient.
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Table 4.3: Power analysis for SMORE

Annotation size (SNPs) Standard error p-value

1,000 0.283 0.479

2,000 0.190 0.293

5,000 0.106 0.059

10,000 0.072 0.005

20,000 0.045 8e-06

50,000 0.034 4e-09

Annotation size (genes) Standard error p-value

2000 0.036 3e-44

500 0.076 6e-10

4.3.3 False positive rate

In this section, we simulated a pair of phenotypes with the full UK Biobank with

291, 273 and 454, 207 SNPs. Again, we generate annotation groups by randomly

assigning the genetic variants into two groups, varying the size of the first group being

{1, 000, 2, 000, 5, 000, 10, 000, 20, 000, 50, 000}, and the rest of the genetic variants as

the second group. We fixed the true genetic correlation of the first group to 0 and

that of the second group to 0.5. For each annotation, we simulated 100 replicates.

With the first annotation group having the true genetic correlation of 0, the goal

of this experiment is to assess the probability of rejecting the null hypothesis of no

genetic correlation in the first annotation group.

In Table 4.4, we report the false positive rate for the first annotation group. We

observe that the false positive rate is controlled (<= 0.05), irrespective of the size of
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annotation group.

Table 4.4: SMORE has a controlled false positive rate

Annotation size false positive rate

1,000 0.02

2,000 0.06

5,000 0.05

10,000 0.05

20,000 0.03

50,000 0.05

4.4 Functional Annotations

4.4.1 Tissue Specific Annotations

The specifically expressed gene (SEG) annotations are generated following previous

work [53]. Given a matrix of normalized gene expression values across genes, [53]

computed t−statistics for specific expression in the focal tissue for each gene. There

are in total 53 annotations, one for each focal tissue. For each focal tissue, we pick the

top 2000 genes as the annotation. Unlike in [53], we do not add windows around the

genes. In Figure 4.1, we plot the percentage of overlapping genes between all pairs of

annotations. Outside of brain tissues, most annotation pairs have an overlap of less

than 0.25 (500 genes) while we observe a high overlap in genes that are specifically

expressed in brain-related tissues.
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4.5 Analysis of the UK Biobank

We applied SMORE to estimate ρg for pairs of phenotypes in the UK Biobank across

291, 273 unrelated white British individuals, and 454, 207 SNPs . We computed the

genetic correlation within SEG annotations between a focal trait and the rest of the

traits from Table A.1 for each of the three diseases chosen as a focal trait.

4.5.1 Focal trait: Depression

In Figure 4.2, we plot a heatmap of the genetic correlation in SEG annotations

between depression and the remaining traits from Table A.1. The full squares denote

significant genetic correlation after Bonferroni correction for the total number of

tests (39× 53 pairs). We find several traits that have significant genetic correlation

with depression: asthma, ever smoked, former/current smoker, easiness getting up,

and Townsend index. Between depression and smoking-related traits (ever smoked,

former/current smoker), the signals are found in genes specifically expressed in the

lung. Between depression and the traits with significant genetic correlations, the

signals are found in prostate and breast mammary tissue, which could suggest a

gender effect that has not been completely removed by including gender as a covariate

in the analysis.

4.5.2 Focal trait: Autoimmune diseases

In this section, we take autoimmune diseases (asthma and eczema) as focal traits.

In Figure 4.3, we plot the heatmap of the genetic correlation in SEG annotations

between asthma and the rest 39 from Table A.1. Similarly, we plot the heatmap for
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eczema for in Figure 4.4.

We observe that, as asthma and eczema are both autoimmune diseases with a

strong genome-wide genetic correlation of 0.475(pval = 2.55e − 41) 3.11, there are

significant positive genetic correlations in 22 out of total 53 tissues. Notably, there

are significant genetic correlations in all the gene sets that are specifically expressed

in brain-related tissues.

Despite the strong positive genetic correlation between Asthma and Eczema, the

genetic correlation pattern of each of the diseases versus other 38 traits sometimes

show opposite patterns. For instance, while asthma has positive genetic correlations

with anthropometric traits (e.g., Trunk fat and Body fat percentage) while eczema

has overall negative genetic correlations with significant signals too.

We also observe signals of genetic correlations in gene sets that are not reflected

in genome-wide analyses. Although there is no significant genome-wide genetic cor-

relation between eczema and hypertension (−0.088, p=6.2e − 04) 3.11, we found

significant genetic correlation within the genes specifically expressed in artery aorta

tissue. This is an example of the utility of regional genetic correlation that is not

apparent in genome-wide genetic correlation analyses.

4.5.3 Focal trait: Type 2 Diabetes

In Figure 4.5, we plot a heatmap of the genetic correlation in tissue specifically

expressed gene sets between asthma and the remaining 39 traits from Table A.1.

For type 2 diabetes, we observe strong genetic correlation signals in the tissues

that have been reported relevant to the disease: skeleton muscle, liver, kidney, and

intestines. We also observe strong genetic correlations to HbA1C in all brain-related
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tissues, and heart-left-ventricle tissue. We observe some gene sets that are specifically

expressed in digestive-related tissues (e.g., colon transverse, minor salivary gland

tissues) that harbor significant genetic correlation with anthropometric traits (eg.

weight, trunk fat, body fat percentage).

4.6 Discussion

We have introduced a multivariate multi-component LMM to estimate genetic corre-

lation in specific genomic annotations and proposed an efficient estimator SMORE.

In simulations, we have shown that SMORE is unbiased and nearly as statistically

efficient as a maximum likelihood estimator while being highly scalable. SMORE has

a controlled false positive rate across these simulations and enough power to detect

signals of genetic correlation provided the annotation of interest has an adequate

number of variants.

In the application of SMORE to traits in the UK biobank, we identified a signifi-

cant genetic correlation between eczema and hypertension in genes that are expressed

in specific tissues even when the traits do not have significant genome-wide genetic

correlation. There are many other ways to define annotations of interest including

based on population genomic principles (minor allele frequency range) or other func-

tional genomic data. SMORE offers a powerful tool to perform arbitrary queries to

identify pleiotropy within genomic regions and annotations.
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Figure 4.1: Gene overlap between specific gene expression annotations

across tissues.
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Figure 4.2: Genetic correlation between Depression and other traits in

tissue specifically expressed genes.
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Figure 4.3: Genetic correlation between Asthma and other traits in tissue

specifically expressed genes
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Figure 4.4: Genetic correlation between Eczema and other traits in tissue

specifically expressed genes
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Figure 4.5: Genetic correlation in tissue specifically expressed gene set for

Type 2 Diabetes and other traits.
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CHAPTER 5

Conclusions

5.1 Contributions

In this thesis, we started with a basic statistical model – a linear mixed model

(LMM) – that can be used to estimate the SNP heritability of a single trait. We

then extended the LMM into bi-variate and multivariate settings that allow for more

than one trait to be considered allowing for estimates of genetic correlation. We then

considered models that are more flexible – relaxing the assumption that the genetic

architecture is uniform along the genome.

For each of these statistical models, we proposed scalable randomized method-

of-moments (MoM) estimators. These estimators are derived by equating the first

two sample moments to population moments. Importantly, these estimators can

be computed efficiently on genotype datasets containing hundreds of thousands of

individuals and millions of genetic variants. This computational efficiency stems

from the property that, instead of computing the exact genetic relationship matrices

(GRM) (as in MoM estimators), our estimators use random vectors to approximate

the trace of the GRM and the square of the GRM. This approximation leads to

the runtime of these estimators having a linear scaling with the sample size and the

number of genetic variants. The computation time is further reduced to sub-linear in
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the sample size and number of genetic variants by utilizing the property of genotype

matrix, that the entries are discrete and take values from {0, 1, 2}.

Having developed a set of scalable estimators, we analyze the genotypes and traits

in the UK Biobank to find novel signals. The tools we have developed are extremely

flexible and allow users to query arbitrary sets of traits and genomic regions in large

biobank datasets.

5.2 Future Directions

Our estimators require access to individual genotypes. This requirement makes it

challenging to apply to biobanks that do not make their genotypes available. Ex-

tending these estimators to the setting where only summary statistics are available

is an important direction for future work.

By modeling multiple traits within a region or annotation, we can also attempt

to answer the question: within this region or annotation of interest, to what extent is

the genetic signal of a trait explained by that of several predictor phenotypes? This

leads us to derive the notion of group-specific conditional genetic correlation.

Given the annotation group p, the correlation between two phenotypes, yi and

yj, conditional on a set of other phenotypes yZ , i /∈ Z, j /∈ Z, is denoted by ρgp,ij|Z .

This could be computed from V p, as defined in equation 4.4, the effect size β is

row-wise independent and identically distributed. The partial covariance γgp,ij|Z =

V p(i, j)−V p,iZV
−1
p,ZZV p,Zj, where V p,iZ is a submatrix from V p between phenotype

i and phenotypes in Z. V p,ZZ is the submatrix of V p among phenotypes in Z only.

And the partial variance σ2
gp,i|Z = σgp,i−V p,iZV

−1
p,ZZV p,Zi. So we could compute the
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partial correlation specific for annotation group p as ρgp,ij|Z =
γgp,ij|Z√

σ2
gp,i|Z

√
σ2
gp,j|Z

. We can

thus estimate the group-specific conditional genetic correlation using the estimates

from SMORE.
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APPENDIX A

Details on the UK Biobank dataset

A.1 Phenotypes in the UK Biobank

In Table A.1, we list the phenotypes in the UK Biobank that we analyze in this

thesis. The phenotypes could be classified into 9 groups: glucose metabolism and

diabetes, socioeconomic and general medical information, environmental factors,

coronary artery disease related, autoimmune disorder, psychiatric disorders, anthro-

pocentric, blood pressure and circulatory, and lipid metabolism.

These traits were chosen to be representative of different phenotypic categories.

Further, these traits have low missingness ( < 30%), and high prevalence for binary

traits (> 0.5%). The typical approaches for dealing with missing data consist of

either omitting the missing sample in the analysis or imputing the missing entry.

Each of these approaches can lead to reduced power to detect the genetic signals

or can bias estimates. Thus, we focus on phenotypes with low missingness in this

thesis. In these 40 phenotypes, there are 14 binary traits, 3 categorical traits, and

23 continuous traits. The binary (e.g. disease status) and categorical traits (e.g.

alcohol intake) are treated as continuous in our analyses. While not strictly justified,

our empirical results show that treating these traits as continuous do not introduce

any substantial bias.

99



Category Trait Field ID

Lipid metabolism traits Triglycerides 30870

Lipid metabolism traits HDL 30760

Lipid metabolism traits LDL 30780

Lipid metabolism traits Total Cholesterol 30690

Lipid metabolism traits High Cholesterol 1473

Blood pressure and circulatory

traits

Pulse Rate 102

Blood pressure and circulatory

traits

Hypertension 1065

Blood pressure and circulatory

traits

High Blood Pressure 6150

Blood pressure and circulatory

traits

Systolic Blood Pressure 4080

Blood pressure and circulatory

traits

Diastolic Blood Pressure 4079

Anthropometric traits Waist Circumference 48

Anthropometric traits Hip Circumference 49

Anthropometric traits Trunk Fat 23127

Anthropometric traits Body Fat Percentage 23099

Anthropometric traits Weight 23098

Anthropometric traits BMI 21002

Anthropometric traits BMI2010 23104

Anthropometric traits Height 50

Psychiatric disorders Depression 20002, 41270,

20544
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Psychiatric disorders Bipolar 20002, 41270,

20544

Autoimmune disorders Ulcerative Colitis 20002, 41270

Autoimmune disorders Rheumatoid Arthritis 20002, 41270

Autoimmune disorders Eczema 1452, 6152

Autoimmune disorders Crohn’s Disease 1462

Autoimmune disorders Asthma 1111, 6152

Coronary artery disease related

traits

Heart Attack 1075, 6150

Coronary artery disease related

traits

Angina 1074, 6150

Environmental factor traits Townsend Index 189

Environmental factor traits Former/Current Smoker 20116

Environmental factor traits Ever Smoked 20160

Environmental factor traits Alcohol Intake 1558

Socioeconomic and general medical

information traits

Sleep Duration 1169

Socioeconomic and general medical

information traits

Morning Evening Person 1180

Socioeconomic and general medical

information traits

Easiness of Getting up 1170

Socioeconomic and general medical

information traits

Duration Of Walk 874

Socioeconomic and general medical

information traits

Age Menarch 2714
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Socioeconomic and general medical

information traits

Age Finish Education 845

Glucose metabolism and diabetes

traits

T2D 20002, 2976,

41270

Glucose metabolism and diabetes

traits

T1D 1222

Glucose metabolism and diabetes

traits

HbA1C 30750

Table A.1: UK Biobank traits analyzed in this work

A.2 Quality control for genotypes

We restricted most of our analysis to SNPs genotyped on the UK Biobank Axiom

array, filtering out markers that had a high missingness rate (> 1%) and low mi-

nor allele frequency (< 1%), and we exclude the major histocompatibility complex

(MHC) region. Moreover, SNPs that fail the Hardy-Weinberg Equilibrium (HWE)

test at significance threshold 10−7 were removed. We also filter the samples that have

a genetic kinship with any other sample (samples having any relatives in the dataset

using the field 22021: Genetic kinship to other participants) and restricted the study

to samples with self-reported British white ancestry (field 21000 with coding 1001).

After quality control, we obtained 291, 273 individuals and 454, 207 SNPs.

We performed similar quality control on the imputed genotypes in the UK Biobank:

filtering out markers with high missingness rate (> 1%), low MAF (< 1%), with

HWE p-value < 1× 10−7, and fall within the MHC region.
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After quality control, we obtained 4, 824, 392 SNPs.

A.3 Covariates

In this thesis, unless otherwise mentioned, all analyses conducted on UK Biobank

are corrected for the following covariates: age, gender, principal components 1− 10,

assessment center, and genotype measurement batch. We treat covariates as fixed

effects in our methods. For running summary statistics-based method, e.g. LDSC,

HDL, the covariates are included while generating the summary statistics.

A.4 Data processing

LD scores were computed from 305, 630 SNPs chosen for the simulations. The LD

scores were computed from a random subset of 50, 000 individuals in the UK Biobank

(the individuals used in our simulations were a subset of the 50, 000 individuals used

to compute LD score). For analysis of UK Biobank data, LD scores were computed

on 459, 792 SNPs common SNPs (MAF > 1%) present on the UK Biobank Axiom

array. LD scores were computed using flags −− l2 and −− ld− wind− kb2000.0.

Summary statistics input to LDSC were generated using PLINK. We used lin-

ear regression to generate summary statistics for continuous traits and categorical

traits and logistic regression for binary traits. In computing summary statistics for

traits in the UK Biobank, we include the following covariates: age, gender, principal

components 1-10, assessment center, and genotype measurement batch. We used the

same covariates as input to SCORE.

We ran LDSC under default settings with an unconstrained intercept.
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APPENDIX B

Appendix to: A scalable estimator of SNP

heritability for Biobank-scale data

B.1 Randomized Estimator of trace of a Matrix

For a N ×N matrix, A, a randomized estimator of tr [A] is t̂r [A] ≡ 1
B

∑
b zb

TAzb,

where zb are i.i.d. random vectors with each entry drawn from a standard normal

distribution. To see this:

E[zTAz] = E[tr(zTAz)] zTAz is a scalar

= E[tr
[
zzTA

]
] cyclic property of the trace

= tr
[
E[zzTA]

]
trace and expectation are linear

= tr
[
E[zzT ]A

]
A is fixed

= tr [A] using the distributional assumptions on z

B.2 Bias of the RHE-reg Estimator

Our estimator of tr
[
K2

]
is LB ≡ t̂r[K2] = 1

B

∑
B zT

b KKzb. The RHE-reg estima-

tors for (σ2
g , σ

2
e) are given by:

σ̃2
g

σ̃2
e

 = A−1

yTKy

yTy

 where A =

LB N

N N

.
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We first compute the expectation of this estimator :

E

σ̃2
g

σ̃2
e

 = E[A−1

yTKy

yTy

]
= E[A−1]E

yTKy

yTy

] since random vectors zb and y are independent

We know that E[yyT ] = cov(y) = σ2
gK + σ2

eI. We can compute E[yTKy]:

E[yTKy] = E[tr
[
yTKy

]
] yTKy is a scalar

= E[tr
[
yyTK

]
] cyclic property of the trace

= tr
[
E[yyTK]

]
expectation and trace are linear

= tr
[
E[yyT ]K

]
as K is constant

= tr
[
σ2
gK

2 + σ2
eK

]
= σ2

gtr
[
K2

]
+Nσ2

e using tr [K] = N

And for E[yTy], we have;

E[yTy] = E[tr
[
yTy

]
] yTy is a scalar

= E(tr
[
yyT

]
] cyclic property of the trace

= tr
[
E[yyT ]

]
expectation and trace are linear

= tr [K]σ2
g +Nσ2

e

= Nσ2
g +Nσ2

e

Defining b ≡ E[ 1
LB−N

] and computing A−1 =

 1
LB−N

−1
LB−N

−1
LB−N

LB

N(LB−N)

, we have
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E

σ̃2
g

σ̃2
e

 = E[A−1]E[

yTKy

yTy

]
=

 b −b

−b 1
N
+ b

tr [K2
]
+Nσ2

e

Nσ2
g +Nσ2

e


=

 b(tr
[
K2

]
−N)σ2

g

b(N − tr
[
K2]

]
σ2
g + σ2

g + σ2
e


We approximate b = E[ 1

LB−N
] using Taylor expansion. As we have : f(y) ≈ f(x) +

f ′(x)(y − x) + 1
2
f ′′(x)(y − x)2. Let X ≡ LB − N , and thus µx = E[LB − N ] =

tr
[
K2

]
−N . We have f(x) = 1

x
, f ′(x) = − 1

x2 , f
′′(x) = 2

x3 .

Thus :

b = E[f(X)] ≈ E[f(µx) + f ′(µx)(X − µx) +
1

2
f ′′(µx)(X − µx)

2]

= f(µx) +
1

−µ2
x

E[X − µx] +
1

2

2

µ3
x

E[(X − µx)
2

=
1

µx

+
1

µx

σ2
x

µ2
x

where σ2
x = var(X).

Thus E[µx

x
] = 1 + σ2

x

µ2
x
. Thus E[σ̃2

g ] = σ2
g +

σ2
x

µ2
x
σ2
g , E[σ2

e ] = σ2
e −

σ2
x

µ2
x
σ2
g , E[σ̃2

g + σ̃2
e ] =

σ2
g + σ2

e .
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For σ2
x, we have:

σ2
x = E[(LB − tr

[
K2

]
)2]

= var(LB)

= var(
1

B

∑
B

zT
b K

2zb) zb are independent

=
1

B2

∑
B

var(zT
b K

2zb) zb are identically distributed

=
1

B

∑
i,j

KT
i Kjzizj elements of z are independent

=
1

B

∑
i

K2
i =

1

B
tr
[
K2

]
Here Ki is the ith column of K.

Thus, substituting µx and σ2
x, we get E[σ̃2

g ] = σ2
g + 1

B

tr[K2]
(tr[K2]−N)2

σ2
g = σ2

g +

1
B

1

tr[K2]−2N+ N2

tr[K2]

σ2
g . The bias of the estimator decreases with larger number of ran-

dom vectors B.

B.3 Standard Error Estimate for the RHE-reg estimator

We define var(y) ≡ Σ = σ2
gK+σ2

eI. As we know σ̃2
g = yT (K−I)y

LB−N
. Let σ̃2

g ≡ A
B
where

A ≡ yT (K − I)y and B ≡ LB −N . Define µA ≡ E[A], µB ≡ E[B], σ2
A ≡ var(A) and

σ2
B ≡ var(B). From Lemma 2, we have

var(σ̃2
g) = var(

A

B
)

=
1

(µB)2
σ2
A − 2

µA

(µB)3
cov(A,B) +

(µA)
2

(µB)4
σ2
B

=
1

(µB)2
σ2
A +

(µA)
2

(µB)4
σ2
B
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as A,B are independent. By using Lemma 1, we have:

µA = E[yT (K − I)y] = (tr
[
K2

]
−N)σ2

g

σ2
A = var(yT (K − I)y) = 2tr [Σ(K − I)Σ(K − I)]

µB = tr
[
K2

]
−N

σ2
B =

tr
[
K2

]
B

Thus we have:

SE(σ̃2
g) =

1

tr
[
K2

]
−N

√
2tr [Σ(K − I)Σ(K − I)] +

1

B
(σ2

g)
2tr

[
K2

]
In order to estimate the standard error of σ̃2

g , we use the plug-in estimator:

ŜE(σ̃2
g) =

1

LB −N

√
2tr [yyT (K − I)Σ(K − I)] +

1

B
(σ̃2

g)
2LB (B.1)

Each term in this estimator could be efficiently computed in O( NMB
max(log3 N,log3 M)

) .

Useful identities

Lemma 1: For a random vector z that is distributed according to a multivariate

normal distribution: z ∼ N (0,C) and for symmetric matrices A and B.

cov(zTAz, zTBz) = 2tr [CACB]

Thus

E[(zTAz)(zTBz)] = 2tr [CACB] + E[(zTAz)]E[(zTBz)]

= 2tr [CACB] + tr [AC] tr [BC]
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Lemma 2: For two random variables, A and B, where B is either discrete or has

support [0,∞), and E[A] = µA, E[B] = µB.

var(
A

B
) ≈ 1

(µB)2
var(A) + 2

−µA

(µB)3
cov(A,B) +

(µA)
2

(µB)4
var(B)
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APPENDIX C

Appendix to: Fast estimation of genetic

correlation for biobank-scale data

C.1 Modeling fixed-effect covariates

Let W1 and W2 denote the corresponding covariate matrices for each trait. To

include covariate, the generative model in Equation 3.1 is modified to:

y1 = W 1α1 +X1β1 + ϵ1

y2 = W 2α2 +X2β2 + ϵ2

(C.1)

Here W 1 is a N1 × C1 matrix of covariates while α1 denotes the fixed effect effect.

Similarly, W 2 is a N1 × C2 matrix of covariates while α2 is a fix effect effect of

C2-vector. We multiply each of the equations in Equation C.1 by the projection

matrices V 1 = IN1 −W 1(W
T
1W 1)

−1W T
1 and V 2 = IN2 −W 2(W

T
2W 2)

−1W T
2 :

V 1y1 = V 1X1β1 + V 1ϵ1

V 2y2 = V 2X2β2 + V 2ϵ2

(C.2)

Similar to Equation 3.8, the MoM estimator is obtained by minimizing the sum

110



of squared differences between the population and empirical covariance as :

(γ̂g, γ̂e, σ̂2
g1, σ̂

2
g2, σ̂

2
e1, σ̂

2
e2) =

argminγg ,γe,σ2
g1,σ

2
g2,σ

2
e1,σ

2
e2
||ỹỹT − (

σ2
g1K̃1 γgK̃A

γgK̃A

T
σ2
g2K̃2

+

 σ2
e1V 1 γeV 1CV 2

γeV 2C
TV 1 σ2

e2V 2

)||2F
where ỹ =

V 1y1

V 2y2

, K̃1 =
V 1X1X

T
1 V 1

M
and K̃2 =

V 2X2X
T
2 V 2

M
, K̃A =

V 1X1X
T
2 V 2

M
, and

K̃C =
V 1X1X

T
2 V 2CT

M
.

Thus the MoM estimator for genetic covariance satisfies the normal equations:tr(K̃AK̃A

T
) tr(K̃C)

tr(K̃C) N

γ̂g
γ̂e

 =

 yT
1 K̃Ay2

yT
1V 1CV 2y2

 (C.3)

SCORE replaces tr(K̃AK̃A

T
) with an unbiased randomized estimate L̃B using B

random vectors, z1, . . . ,zB, zb ∈ RN2 , b ∈ 1 . . . B drawn independently from a dis-

tribution with zero mean and identity covariance matrix IN2 . The estimator of

tr(K̃AK̃A

T
) is given by:

L̃B =
1

B

1

M2

∑
b

||V 1X1X
T
2V 2zb||22

The SCORE estimator is thus obtained by solving Equation C.3 by replacing
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tr(K̃AK̃A

T
) with L̃B. L̃B is an unbiased estimator for tr(K̃AK̃A

T
) since

E[L̃B] =
1

B

1

M2

∑
b

E[zT
b (V 1X1X

T
2V 2)

TV 1X1X
T
2V 2zb]

=
1

B

∑
b

E[zTb K̃A

T
K̃Azb]

=
1

B

∑
b

E[tr(zTb K̃A

T
K̃Azb)]

=
1

B

∑
b

E[tr(zbz
T
b K̃A

T
K̃A)]

=
1

B

∑
b

tr(E[zbz
T
b K̃A

T
K̃A])

=
1

B

∑
b

tr(E[zbz
T
b ]K̃A

T
K̃A)

=
1

B

∑
b

tr(IN2K̃A

T
K̃A)

= tr(K̃A

T
K̃A)

The projection matrix V 1,V 2 need not need be computed explicitly. While com-

puting XT
2V 2zb, we only need to compute the residual of W 1(W

T
1W 1)

−1W 1
Tzb,

where the additional computation has the complexity of O(N1C1) where C1 is the

number of covariates, which usually is a relatively small number.

C.2 Jackknife Standard Error

In order to compute the standard error using block Jackknife [49], we partition the

standardizedN×M genotype matrixX into J non-overlapping blocks,X(1),X(2), . . . ,X(J)

where X(j) ∈ {1, . . . , J} is an N × M
J

matrix.

We define ρ̂g(j) to be the estimator of genetic correlation computed after excluding
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genotype block X(j) from X. Also, we define ρg(j) ≡ 1
J

∑
j ρ̂g(j)

Thus, the jackknife estimate of the standard error is given as

ŜE(ρ̂g) =

[
J − 1

J

J∑
j=1

(ρ̂g(j) − ρg(j))
2

] 1
2

(C.4)
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