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Abstract

Background: Human movement is a key behavioral factor in many vector-borne disease systems because it influences
exposure to vectors and thus the transmission of pathogens. Human movement transcends spatial and temporal scales with
different influences on disease dynamics. Here we develop a conceptual model to evaluate the importance of variation in
exposure due to individual human movements for pathogen transmission, focusing on mosquito-borne dengue virus.

Methodology and Principal Findings: We develop a model showing that the relevance of human movement at a particular
scale depends on vector behavior. Focusing on the day-biting Aedes aegypti, we illustrate how vector biting behavior
combined with fine-scale movements of individual humans engaged in their regular daily routine can influence
transmission. Using a simple example, we estimate a transmission rate (R0) of 1.3 when exposure is assumed to occur only in
the home versus 3.75 when exposure at multiple locations—e.g., market, friend’s—due to movement is considered.
Movement also influences for which sites and individuals risk is greatest. For the example considered, intriguingly, our
model predicts little correspondence between vector abundance in a site and estimated R0 for that site when movement is
considered. This illustrates the importance of human movement for understanding and predicting the dynamics of a disease
like dengue. To encourage investigation of human movement and disease, we review methods currently available to study
human movement and, based on our experience studying dengue in Peru, discuss several important questions to address
when designing a study.

Conclusions/Significance: Human movement is a critical, understudied behavioral component underlying the transmission
dynamics of many vector-borne pathogens. Understanding movement will facilitate identification of key individuals and
sites in the transmission of pathogens such as dengue, which then may provide targets for surveillance, intervention, and
improved disease prevention.
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Introduction

For vector-borne pathogens heterogeneity in patterns of contact

between susceptible hosts and infectious agents is common [1,2,3].

Some hosts will be exposed to, harbor, and pass on more parasites

than others. Variation in contact patterns can amplify [4,5] or

dampen [6] the rate of transmission, even as it also potentially

reduces disease prevalence and epidemic stability (i.e., likelihood of

an outbreak; [7]). Understanding and describing what drives

heterogeneous contact patterns is thus important for designing

improved disease surveillance and prevention programs [3]. If the

characteristics of hosts most often infectious or important for

transmission are known they could be targeted to more efficiently

prevent disease [8]. To be useful for targeted control across

different contexts the mechanisms underlying heterogeneous

contact patterns must be elucidated. Here we examine the role

of individual human movement as a critical behavioral factor

underlying observed patterns of vector-borne pathogen transmis-

sion, because movement determines exposure to infectious agents;

i.e., bites from infected mosquito vectors.

Little is known about individual human movement patterns

and even less about their epidemiological consequences, even

though such knowledge would be a valuable contribution to the

understanding and control of many vector-borne diseases. We

begin our investigation of this topic by reviewing studies of

human movement. Next, based on an existing typology, we

examine the relevance of movement patterns to the dynamics of

different diseases. Using the mosquito-borne virus dengue as an

example, we develop a conceptual model that illustrates how

human and vector behavior can influence pathogen transmission

dynamics. We end by outlining key issues important to the

design of future research and explaining potential benefits to

disease prevention of an improved understanding of host

movement.
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A Framework: Movement and Scale
Historically epidemiologists have viewed human movement from

the perspective of populations of susceptible hosts moving into high

risk areas or infected hosts moving into susceptible populations as

explanation for disease occurrence and spread. Indeed, across

different scales and diseases, movements of hosts affect pathogen

transmission in a variety of ways. Thirty years ago Prothero [9]

provided a typology to facilitate study of the role of human

movements in epidemiology based on his experience in Africa.

Drawing on geography literature concerned with understanding

human movement [10,11,12], Prothero highlighted the difference

between circulatory movements, where individuals return home

after some period, and migratory movements, which tend to be

permanent changes of residence (see Figure 1 in [11]). He further

characterized movements by their ‘spatial scale’, which he

categorized in terms of a rural-urban gradient, and temporal scale

based on the time and timing of displacements. He qualified these

categories in terms of their relevance to public health. For instance,

seasonal movements from one rural area to another for agriculture

could potentially expose individuals to different ‘ecological zones’

where the risk of malaria or African trypanosomiasis is high [13].

His argument was that knowing something about the nature of such

movements would help explain the incidence and prevalence of

disease in a population and provide informed options for control

[9]. In Figure 1 we generalize Prothero’s typology in terms of the

spatial and temporal scale (sensu [14]) of human movement and

extend it to include most vector-borne disease contexts.

At broad spatial scales (e.g., national, international) individual

movements drive pathogen introduction and reintroduction (far

right, Figure 1). Global spread of dengue virus via shipping routes

was characterized by periodic, large, spatial displacements [15].

Globalization and air transportation have changed the dynamic of

pathogen spread by dramatically shortening the time required to

travel around the globe [16,17,18]. The recent chikungunya

epidemic in the Indian Ocean that subsequently spread to Italy is

an example [19]. At finer scales (e.g., regional, urban-rural, intra-

urban; far left of Figure 1), movement associated with work,

recreation, transient migration, and other phenomena is important

to patterns of pathogen transmission and spread [9,20]. Move-

ments into high-risk areas not only lead to individual infection, but

can also contribute to local transmission when infected hosts

return home and infect competent vectors. For example, in the

Chocó region of Colombia most malaria transmission occurs in

rural areas and many cases diagnosed in the city of Quibdó are

due to travel to these areas [21]. Transmission also occurs locally

within Quibdó [22], however, most likely because of infected

travelers returning and infecting competent vectors. Understand-

ing the origin of infections and the relative importance of human

movement at different scales to both local and regional

transmission dynamics would increase effectiveness of disease

prevention programs by, for example, identifying individuals at

greatest risk of contracting and transmitting pathogen.

Generally, a key significance of human movement for vector-

borne disease at any scale lies with exposure to vectors. Exposure is

local in space and time and variation in exposure due to individual

host movement could strongly influence the transmission dynamics

of pathogens. For instance, circulatory movements associated with

working in rural areas and variation in movement patterns among

cultures may explain heterogeneous patterns of onchocerciasis

incidence. While men in Cameroon and Guatemala both

experience similar parasite loads reflecting exposure to vectors

when working in fields, women in the 2 countries show different

patterns of infection partly due to differences in exposure [23]. The

type of movement most relevant for exposure will depend on site

specific differences, the ecology of the arthropod vector, human

behavior, and the relative scale of host and vector movement. For

pathogens transmitted by vectors able to move long distances in

search of a host, fine scale host movements may not be important,

while they are for pathogens transmitted by sessile vectors. Aedes

aegypti—the principal vector of dengue virus—bites during the day

[24], disperses only short distances [25] and is heterogeneously

distributed within urban areas [26,27]. Conversely, humans move

frequently at local scales (bottom-left of Figure 1), allocating

different amounts of time to multiple locations on a regular basis.

This will influence individual risk of infection with dengue virus [28]

and thus overall patterns of transmission [29,30,31].

Methods

The dynamics of human movement, the locations used and the

paths between them, is conceptualized by the ‘activity space’ model

developed in the 60’s by human geographers [12,32,33]. This

model, much like the ‘home-range’ concept in ecology, is effective

because organisms exhibit habitual behavior in their use of space

[34]. For our purposes of studying dengue, the ‘activity space’ refers

to those few locations where humans commonly spend most of their

time [32,35] and ‘movement’ refers to the use of these locations.

Thus, exposure to host-seeking female Ae. aegypti is the sum of

exposure across an individual’s activity space. For other vectors and

pathogens, human movements per se (e.g., walking between the

house and a water source) and/or visits to less common destinations

could be relevant for the transmission of other pathogens (e.g.,

African trypanosomiasis) depending on the behavior of the vector

and the relative scales of vector and host movement.

The activity space model represents movement associated with the

regular activity of individuals [36]. We present a version of this model

in Figure 2 for understanding how movements within an urban area

might contribute to risk of exposure. Risk at locations within an

Author Summary

Vector-borne diseases constitute a largely neglected and
enormous burden on public health in many resource-
challenged environments, demanding efficient control
strategies that could be developed through improved
understanding of pathogen transmission. Human move-
ment—which determines exposure to vectors—is a key
behavioral component of vector-borne disease epidemiol-
ogy that is poorly understood. We develop a conceptual
framework to organize past studies by the scale of
movement and then examine movements at fine-scale—
i.e., people going through their regular, daily routine—that
determine exposure to insect vectors for their role in the
dynamics of pathogen transmission. We develop a model
to quantify risk of vector contact across locations people
visit, with emphasis on mosquito-borne dengue virus in
the Amazonian city of Iquitos, Peru. An example scenario
illustrates how movement generates variation in exposure
risk across individuals, how transmission rates within sites
can be increased, and that risk within sites is not solely
determined by vector density, as is commonly assumed.
Our analysis illustrates the importance of human move-
ment for pathogen transmission, yet little is known—
especially for populations most at risk to vector-borne
diseases (e.g., dengue, leishmaniasis, etc.). We outline
several important considerations for designing epidemio-
logical studies to encourage investigation of individual
human movement, based on experience studying dengue.

Human Movement and Vector-Borne Pathogens
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individual person’s activity space will vary depending on the number

of infected, host seeking vectors present and their biting behavior. For

instance, visits to locations during the day are of minimal risk for bites

from nocturnal An. gambiae, but are relatively high for day active Ae.

aegypti (Figure 2). Exposure to vector bites may also depend on how

long a person stays at a given location. If vectors are stimulated by the

arrival of an individual to a location (as may be the case for Ae. aegypti

and Aedes albopictus [37,38]), then a bite is most likely to occur early

after arrival (i.e. the cumulative probability of a bite during a visit, e(t),

accumulates rapidly). Alternatively, for vectors like triatomine bugs,

which are less opportunistic than mosquitoes, long visits will be

expected to pose a higher risk of host-vector contact (e(t) slowly

accumulates over time). How vectors respond to hosts arriving at a

site is important because it weights the risk of visits differently

depending on their frequency and duration. If a vector is stimulated

to host seek by the arrival of a host, then multiple short visits to that

site will carry greater risk than a single long visit of equivalent total

duration.

In summary, a person’s risk of exposure to an infective vector

can be represented with a simple exposure model for indirectly

transmitted disease:

ri~
PJ
j~1

Vj

PK
k~1

ai,j,k
:ei,j,k ð1Þ

Here, the risk of exposure (i.e., being bitten by a vector) for

individual i, ri, over some observation period is simply the sum

across sites visited, j, of vector abundance, Vj, conditioned on the

time and duration of all visits to that site, k, as determined by

vector behavior (where K is the total number of visits during the

observation period). The biting rate, ak, is the number of bites

expected per visit and is drawn from the day biting rate

distribution for the times of the visit.

ak~
Ðt1

t0

a(t):dt ð2Þ

How vectors respond to the appearance of a host at a site is

captured by ek, the cumulative probability of a bite given the time

spent in the site, and is bounded by the unit interval.

ek~
Ðt1{t0

t~0

e(t):dt ð3Þ

Visits, k, are defined by an arrival time, t0, and a departure time,

t1, in hours and are in reference to a single day. At the limit (where

t12t0 = 24 hours), ak becomes the day biting rate, a, and ek goes to

1 and we recover the model often assumed for vector-borne

diseases where exposure occurs in the household. Note that

although we imply here that a site comprises a household or other

edifice because of our focus on dengue, in truth it simply

demarcates a location where the abundance and activity of vectors

is independent of other locations and is defined by the scale of

vector movement.

Figure 1. A framework for human movements and their relevance to vector-borne pathogen transmission. Movements are
characterized in terms of their spatial and temporal scale, which are defined in terms of physical displacement (Dxy) and time spent (Dt, frequency
and duration). Generally, movements of greater spatial displacement involve more time, but this is not necessarily always the case.
doi:10.1371/journal.pntd.0000481.g001

Human Movement and Vector-Borne Pathogens
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Site-specific exposure risk is calculated as:

rj~Vj

PI
i~1

PK
k~1

aj,i,k
:ej,i,k ð4Þ

and has units of bites*humans for the observation period. Note

that in this formulation, risk among individuals using the same site

is assumed to be independent (i.e., the expected number of bites at

a site is the product of humans present and vector activity). This

may not be realistic if hosts occupy a site at the same time, which

would be expected to dilute the number of bites individual hosts

receive, and can be corrected (see below) by incorporating the

actual amount of time individual humans spend in a location. The

estimate of risk, rj, can be used to estimate the transmission rate,

R0, which is the number of secondary infections expected from the

introduction of a single infective individual into a wholly

susceptible population. Woolhouse et al. (1997) use the following

approximation for R0:

R0!
PJ
j~1

v2
j

hj
ð5Þ

where vj is the proportion of vectors at site j, hj is the proportion of

hosts living in site j, and J is the total number of sites. Risk as

estimated above is incorporated by replacing vj with site associated

risk, rj, discounted by the proportional use of that site within some

interval by people, hj:

R0e!
PJ
j~1

rj

hj

� �2
: 1

hj
ð6Þ

For example, if a site is used by 2 individuals for 6 hours each

over a week, hj = (2 humans * 6 hours)/(24 hours/day * 7 days)

= 0.07 humans. The activity space model elaborated here

illustrates that host and vector behavior are very important for

determining who gets bitten and has the greatest risk of

contracting or transmitting a pathogen.

Results

The activity space model when coupled with our knowledge of

vector behavior provides a tool for determining what human

movements are important for transmission (e.g., Figure 1).

Specifically, it allows us to identify places and individuals that

contribute disproportionately to pathogen transmission dynamics.

For example, consider the following scenario depicted in Figure 3

Figure 2. The activity space model. Space is plotted in the xy plane and time on the z axis. In this example daily movements for a week are
represented. Points in the xy plane are sites visited and the polygon depicts the activity area. Vertical arrows indicate time spent at a site. Thickness of
arrows indicates frequency of visitation and length shows duration. Red arrows are for the home and here we assume a person is in the home every
night of the week. Dashed lines represent movement between sites with velocity indicated by the angle of the line. Grayed-out regions of the cube
represent night-time. Not shown is variation in vector abundance among sites. Plotted along the back axis for time are representative curves of biting
rates, a(t), for Ae. aegypti (green), a day biting mosquito, and Anopheles gambiae (black), a night biting mosquito. Plotted to the right of the large
black arrow is a cumulative biting probability, e(t), as a function of time spent in the location. See text for more detail.
doi:10.1371/journal.pntd.0000481.g002

Human Movement and Vector-Borne Pathogens
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for a human population at risk for dengue virus infection like the

one we are studying in Iquitos, Peru (Figure 3, Text S1 and Table

S1). Briefly, individuals spend their time at a number of different

sites, both commercial and residential, during their regular weekly

activities (Sites, first column in Figure 3). Sites have different

numbers of female mosquitoes and are visited at different rates and

for different durations. We can estimate the risk of exposure to

host-seeking female mosquitoes (ri) for each person (columns 1–13

in Figure 3) at each site (rows in Figure 3) and then estimate R0. In

this particular example, R0 as approximated when accounting only

for the home (eq. 5) is 1.3 and the site with the highest estimated

risk is house 5 (in bold in column under R0). If we account for

exposure at all locations in addition to the home and assume the

biting rate at night is 10% of the rate during the day [39], our

estimate of R0 (eq. 6) jumps nearly 3-fold and the most important

site is 13, a clinic (in bold under R0e). This latter result arises

because of the relatively large number of bites per person expected

at that site, determined largely by the significant amount of time a

single person spends there (e.g., their workplace). In this example,

all individuals except individual 10 experience the greatest

exposure to bites in their homes because that is where they spend

the most time. Individual 10, however, experiences the highest risk

at site 4, which represents their workplace. This individual is also

at the greatest risk in the host population.

This example illustrates that the key sites are not necessarily

those of greatest vector abundance, as is commonly assumed. For

this example scenario, R0j increases monotonically with vector

abundance when transmission is assumed to occur only in the

home (Figure 4). When exposure rates are accounted for, however,

there is no relationship between R0j and vector abundance

(Figure 4). Similarly, people living where vector abundance is

greatest are not necessarily at greater risk. Human movement and

subsequent variation in exposure thus becomes more important

than vector density per se. Because heterogeneity in contact

patterns has a large influence of the rate of pathogen transmission,

variation in exposure rates due to individual movement patterns

could have considerable impact on disease dynamics [40,41].

Discussion

To fully understand the implications of movements, however,

data should be incorporated into network, individual-based or

metapopulation models [5,42,43]. Network models, in particular,

capture heterogeneity explicitly and intuitively, allowing precise

prediction of trends and patterns in human infection and disease

[44]. For dengue, one imagines a dynamic network of individuals

most likely to become infected or infect mosquitoes and of

locations where transmission is most likely to occur [29]. These are

the key nodes of pathogen transmission that, if identified and

understood, would be excellent targets for intervention (e.g., [8]).

The value of estimating actual exposure rates and incorporating

these into models to better understand pathogen dynamics is clear

for dengue, which is mostly transmitted when people are engaged

in daily activities [29]. For this reason we are currently monitoring

human movements in Iquitos, Peru. The activity space model as

we describe it, however, highlights that movements may be

important for the transmission of many pathogens typically

thought to be transmitted at night when hosts are inactive. Sand

Figure 3. Example scenario of risk of exposure due to individual movements. Individuals (i, represented by columns) live in and visit a
number of sites (j, rows) for different durations and frequencies during a regular week. Each site is infested with a number of female mosquitoes, V.
Grey shading indicates the home of each individual. Risk of a mosquito bite, ri, is calculated as described in the text and is presented here for each
individual given the number of visits and time spent at different locations during a typical week. Numbers in bold are maxima for each column. Here
the probability of a mosquito bite at night (in the home) is assumed to be 10% of all other times. The sum of individual risk is shown along the
bottom of the figure. Overall transmission rate estimated without, R0, and with exposure, R0 e, considered are shown in the bottom-right and
underlined. See Text S1 and Table S1 for further details.
doi:10.1371/journal.pntd.0000481.g003
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fly vectors of American visceral leishmaniasis are active at dusk

[45], move short distances [46], and are heterogeneously

distributed among homes [47], which, in combination with

human behavior, may be key to understanding leishmaniasis

incidence patterns [48,49]. Similarly, Michael et al. [50] found

that 27% of Culex quinquefasciatus resting within households had fed

on hosts from outside that home despite its nocturnal habit, with

implications for transmission of lymphatic filariasis. There are thus

many reasons for increased examination of individual human

movement patterns.

Measuring Movements
As an aid to future research, in the remainder of this article we

discuss key issues and considerations for designing studies of

human movement based on our experiences with dengue.

Spatial scale. The first question to ask when one seeks to

measure human movements and evaluate their role in pathogen

transmission concerns spatial scale. This can be determined by the

disease dynamic of interest; e.g., spread of a pathogen to new

geographic areas vs. sustained transmission at a given locale. If the

question concerns local transmission, then relevant movements

will be those placing susceptible hosts in high risk locations at times

when infection risk is high. General information about a particular

system may guide this process. Assumptions regarding the

importance of movements should be made cautiously because

heterogeneity in exposure can have a dramatic effect on infection

risk.

Type of movement. Next, one should ask what to measure.

The term ‘movement’ is used somewhat ambiguously. Are we

interested in just the sites where individuals spend their time on a

regular basis (high spatial and temporal resolution) or whether

they are in the home/city or elsewhere? Do we want travel

information (outside of an urban area) that specifies exactly where

people go or just a general notion? Are specific routes important,

or should only destinations be considered? These details will,

again, depend on the question, system, and resources and methods

for measuring movements.

Where we work in Peru, dengue transmission is primarily

focused in urban areas of Iquitos and the mosquito vector, Ae.

aegypti, is not found in the majority of rural areas outside of the city.

As such, we are comfortable excluding movements to rural areas

because people are unlikely to be infected there. We only need

know that they were not in Iquitos, and where they were is only

important if that location has dengue as well. If we were studying

malaria, we might do the opposite and ignore movements within

urban Iquitos where malaria is not transmitted. In our study of

local dengue transmission we want high spatial and temporal

resolution because Ae. aegypti cluster at the scale of individual

households and bite during the day [26]. For malaria, regional

movements to and from fishing or logging camps are a likely

dynamic driving transmission patterns and simply knowing to

which camps individuals move to on a periodic or seasonal basis

and the routes taken should be sufficient to understand the spatial

dynamics of that disease (G. Devine, personal communication).

Measurement method. A third question concerns how to

measure movements. A number of methods and technologies are

currently available that allow tracking of individual movements

(Table 1). The choice of the appropriate method is dependent on

the scale of the study and the disease in question. If the scale of

interest is broad, then data from transit networks may be suitable,

as has been done in studies of the global spread of SARS and

influenza [17,51,52]. For finer scales, lack of appropriate means

for measuring movements is one reason so little has yet been done

in a rigorous, quantitative fashion (Vasquez-Prokopec et al.

unpublished). The technology has long been available in some

form, but has proved too cumbersome and expensive for large

scale use with humans. Indirect devices commonly used in the

social sciences, such as travel diaries, are a good source of

information when used rigorously, but have seen limited use in the

study of indirectly transmitted pathogens, perhaps because of

inherent bias and imperfect recall.

All available technologies have pros and cons (Table 1). GPS has

often been considered to measure exposure, but because of cost,

size, battery life, and other technical limitations has yet to be used

incisively to study human movements (Vasquez-Prokopec et al.

unpublished). Cellular phones hold promise where the technology is

available and use is universal (e.g., [35]), but are awkward to use for

prospective studies and in low-resource settings and come with

privacy issues. GPS seems to hold the greatest potential for the

combination of low cost, ease of use, spatial accuracy, and fewer

privacy issues than cellular phones because only location informa-

tion is recorded. We are currently using a GPS device in Iquitos,

Peru that weighs less than 25 g, records for .3 days continuously,

and is under $50 (Vasquez-Prokopec et al. unpublished). Size and

battery life of tracking devices are critical in human studies because

they are key to acceptance by participants for long term use

(minimizing coverage bias, Paz Soldan et al., unpublished, [53]).

Except for cellular phones owned by participants, any currently

available device is only useful for prospective investigation.

To evaluate the role of movements on disease dynamics

retrospectively–that is, after identifying an infected individual–

the options are limited. Cellular phones may be useful in certain

contexts: e.g., where the technology is accepted and widely used

(Table 1). Otherwise, instruments reliant on recall such as diaries,

questionnaires, or interviews are required. These methods are

imperfect, yet can provide valuable information when coupled

with other tools. For instance, Geographic Information Systems

permit production of detailed maps for a region that can be used

to elicit recall of visits to certain sites (Paz Soldan et al.

unpublished). Recall instruments should be sensitive to the local

social and cultural contexts. As such, active collaboration with

Figure 4. Estimates of R0 plotted against vector density at sites.
R0 is calculated assuming exposure occurs only within homes, R0 e is
calculated taking exposure rates into account based on representative
activity patterns of several hypothetical individuals living in a
community like Iquitos, Peru, where we are studying dengue
transmission (Figure 3).
doi:10.1371/journal.pntd.0000481.g004

Human Movement and Vector-Borne Pathogens
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social scientists versed in the local culture is critical for the

development of an interview device with sufficient sensitivity.

Technologies such as GPS can be used to facilitate development of

a recall instrument and to validate it. Location aware technologies,

however, are not a gold standard for measuring movement

because of precision and accuracy limitations, problems of

compliance and use (Paz Soldan et al. unpublished), and other

factors that can disrupt tracking (e.g., interference from buildings).

Moreover, GPS does not indicate an individual’s activity, which

could be critical for determining risk [e.g., did they enter the house

or stay on the sidewalk? 53]. Combining objective (e.g., GPS) and

recall methods may be the best way to efficiently follow individual

movements on a large scale and to qualify those movements with

regard to disease risk.

Observation interval. A fourth question concerns how long

to observe individual movements. The answer will depend on the

question being asked and available resources. In the case of

dengue, infection can occur up to 2 weeks prior to the

manifestation of symptoms. For a retrospective study, 14–15

days would be the right observation period. Conversely, in a

prospective study the length of the observation period will depend

on the relative importance of rare movements. Studies of human

movements in developed societies reveal markedly regular

patterns, especially during the work-week [32,35,54,55,56].

Conversely, there may be significant instability in movements on

weekends or at other times (e.g., vacations). For regular

movements during the work week, at least 2 weeks of

observation are needed. For more variable movements/times,

substantially longer observation periods will be necessary [54].

The need for long-term observation reinforces the need to ensure

acceptability of tracking devices by the study population and

emphasizes the importance of device wearability (Paz Soldan et al.

unpublished, Vasquez-Prokopec et al. unpublished).

Data management. Although gathering movement information

is becoming more feasible, handling movement data remains a

challenge [53]. GPS and other devices provide tracks of movements

that must be processed into data useable in analyses: for example,

the locations visited, frequency of visitation, and time spent during

visits. Tools are becoming available to facilitate data processing

(e.g., [57,58,59]) that integrate with existing GIS and statistical

software packages (e.g., Arc-GIS, R). Such tools will facilitate data

analysis.

Table 1. Methods for measuring human movement.

Method Description Pros Cons Ideal use

Recall Commonly used in studies of
exercise and physical activity,
in diary or close-ended formats

Captures both quantitative
and qualitative information;
used internationally in
chronic disease research.

Subject to memory decay, social
desirability, and other response
biases. Have been used primarily
in developed countries.

Not as primary outcome but to
validate and inform electronic
instrumentation and other more
objective measures

Telemetry Commonly used in wildlife
studies, involves a transmitter
placed on an individual and
antennas (fixed or mobile)
for locating the transmitter.

Can be inexpensive, long
battery life of transmitters,
well established method,
range dependent.

Short range, Difficult to get
precise location information,
expensive for large scale use
(i.e. establishing an array of
antennas), interference in urban
areas.

Wildlife diseases, not practical for
use with humans.

RFID Radio Frequency Identification
Device, used to track
inventories, individuals in
hospitals. Involve a small ‘tag’
and an antenna to detect tag.

Tag is very small, easy to
wear, and battery lasts a
very long time.

Short range, requires network
of antennas to track movements
in an area, which can become
expensive.

Very good option for tracking
movements to and from
predefined locations, e.g., for
movements to commonly used
water sources.

GPS Global Positioning System.
Global, satellite-based,
location aware system.

Only requires a receiver,
works everywhere, provides
exact positional information,
devices are becoming very
small and inexpensive.

Large data post-processing
requirement, short battery life,
custom devices are expensive
while commercial options not
tailored to research use.

Reductions in cost and device size
make GPS the best option for
tracking movements where cellular
phone use is not universal.

GSM-GPS GSM assisted GPS. Devices
use the GSM cellular network
to improve the satellite signal
and provide positional
information when satellites are
out of reach due to
interference.

Same as GPS with the
additional benefit of location
information inside buildings
and other places the satellite
signal cannot reach.

Additional positional information
depends on cellular network,
feature requires data transmission,
network fees and arrangements
necessary, very short battery life.

Because the additional advantage
of these devices relies on a cellular
network, either GPS or cellular
phones will often be better
options.

Cellular phone The position of cellular phones
can be approximated through
triangulation using the cellular
network.

Where cellular phone use is
universal, movement data
can acquired from network
providers without any
inconvenience to study
participants.

Potential for bias (positions are
recorded when phones are used),
low spatial precision, requires
network agreement, privacy
issues, most individuals need
personal phones.

For large scale studies of the
collective dynamics of populations,
regional movements and
movements within large
metropolitan areas

Cellular phone,
AGPS

Assisted-GPS on cellular
phones works by the same
mechanism as GSM-GPS,
utilizing the cellular network
to assist in acquiring
positional information.

High spatial precision,
potential for high coverage
where cellular phone use is
common, no need to
purchase devices.

Dependent on cellular network,
requires data transmission, may
require custom software or
other means to acquire data
while avoiding privacy issues. Can
be very expensive without a special
arrangement with a network provider.

Most useful for studying
movements in developed
countries were cellular network
coverage is high and most people
have personal phones. Also good
for urban areas where GPS signal is
imperfect.

doi:10.1371/journal.pntd.0000481.t001

Human Movement and Vector-Borne Pathogens

www.plosntds.org 7 July 2009 | Volume 3 | Issue 7 | e481



Conclusions
Because patterns of contact between pathogens and susceptible

hosts are heterogeneous, disease interventions can be made more

effective and efficient by targeting the key points or ‘nodes’ of

transmission [3]. Even where heterogeneous patterns are clearly

documented, not knowing the factors driving such patterns

impedes one’s ability to effectively target control. Is a biting

preference toward young adults [60] because they are intrinsically

more attractive to a host-seeking mosquito or, because of their

behavior, they are more likely to be exposed to mosquitoes?

Although many different causes of host-vector contact heteroge-

neity have been proposed [summarized by 6], variation in

exposure due to human behavior is likely to be key across disease

systems. The role of other risk factors (e.g., host-preference) will

always be conditioned by exposure rates. The study of human

movement is thus critical to the identification of key individuals

and key locations. Nevertheless, movements have largely been

neglected in studies of indirectly transmitted disease even though it

is becoming increasingly easy to measure.

Quantifying and describing human movements promises more

than just characterization of key heterogeneities. Quantification of

the collective dynamics of human populations provides informa-

tion necessary for models intended to predict disease outbreak and

spread and to evaluate control alternatives to halt epidemics

[8,35,51]. Buscarino et al. [61], for instance, predict that

movements within a population have an important effect on the

epidemic threshold, lowering this as individuals move over larger

distances more frequently. Additionally, quantifying movements

and applying that information to a variety of diseases creates the

opportunity to identify common places where infection occurs

across diseases and, thus, the potential to leverage public health

programs by allowing limited resources to be targeted to the most

important locations for more than one disease.

Rigorous examination of the role of human movement across

different scales will significantly improve understanding of

pathogen transmission, which will be critical to increasing the

effectiveness of disease prevention programs. As transmission rates

are reduced through intervention efforts, we expect the impor-

tance of heterogeneity in exposure to increase and to play an even

more important role in pathogen persistence. Characterization of

movements will thus not only facilitate the elimination of disease, it

will help to prevent its return.

Supporting Information

Text S1 Calculating individual risk.

Found at: doi:10.1371/journal.pntd.0000481.s001 (0.06 MB

DOC)

Table S1 Example space time budget from human movements.

Found at: doi:10.1371/journal.pntd.0000481.s002 (0.05 MB XLS)
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