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The recent proliferation of machine learning (ML) agents that interact with humans

through natural text conversation (e.g. smart phone assistants, chat bots) is predicated on the

unprecedented public availability of user-contributed text (e.g. blogs, product reviews) and

behavioral traces (e.g. purchases, social media interactions). Current methods for building

conversational agents have seen success in highly structured fields like automated help desks and

reservation booking. However, it remains challenging to apply these ML systems to help users

with daily tasks in more natural and intuitive ways. For example, current recommender systems

cannot fluidly engage with users for multiple rounds of conversation.

In this dissertation we focus primarily on developing technologies that allow intelligent
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agents to engage with users in trustworthy, personalized, and interactive ways through the medium

of text. Specifically, my work focuses on 1) explainable dialog models to facilitate meaningful

interviews; 2) a language modeling framework to infer user preferences from dialog; and 3) a

bot-play framework for training explainable and personalized recommender systems to understand

and reflect user feedback over multiple turns of conversation. I finally present two case studies on

applying the aforementioned technologies to build personalized interactive agents that generate

and edit instructional texts (e.g. cooking recipes) to assist users in their daily lives.
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Chapter 1

Introduction

One longstanding goal of artificial intelligence is the development of intelligent agents

that can understand human intents and preferences, and can interact with users accordingly. We

aim to build such agents that are personalized—can provide services and experiences tailored to

an individual user—and interactive—can engage with users and change their behavior based on

human feedback. We build upon extensive work in machine learning that seeks to understand

human behavior and interface with humans via natural text (e.g. spoken dialog, chat logs, product

reviews). Advances in personalized interactive agents can lead to improvements in a wide range

of consumer-focused applications including chatbots, home assistants, customer service, health

and dietary advice, and entertainment media.

The enormous amount of textual data (e.g. dialog transcripts, blogs, product reviews)

and behavioral data (e.g. website purchase records, product ratings) available and continuously

updated to the internet has revealed opportunities and challenges for the study and development

of personalized interactive agents. As online services and platforms cover more diverse and

specific domains, the need for personalization has become ever more relevant. Information and

products that are relevant for one user may not serve another user well, particularly for highly

individual preferences like diet and entertainment. Meanwhile, many user-facing applications

such as product recommendations and cooking recipes are static, affording users no way to tailor

the experience to their own needs and wants.
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We can build personalized interactive agents in two ways: 1) adapting interactive agents

to respond to feedback in ways specifically tailored to each user; and 2) adapting personalized

models (e.g. recommender systems) to accommodate user feedback over multiple rounds of

engagement. Here we focus on interactions in the modality of natural text: models that can

understand and generate text (e.g. a free-text response to a user, or a structured text output like an

instruction set). We have identified three key challenges for personalizing interactive agents:

1. To be trustworthy, the agent must be able to explain its suggestions or outputs to the user.

2. To be personalized, the agent must accommodate natural-text feedback from a user and

from that feedback be able to infer the user’s preferences.

3. To be interactive, the agent must be able to incorporate user feedback into an updated

response (e.g. new suggestions, edited recipes or documents).

1.1 Methods for Personalizing Interactive Agents

In the first part of this dissertation, we present methods to instill trust, personalization, and

interactivity in assistive agents. We have studied how to build explainable models for generating

text, proposed frameworks to understand and infer user preferences from free-form dialog, and

developed techniques to train interactive models with easily accessible corpora.

1.1.1 Explainable Models for Text Generation

With the advent of widely-available chat agents like Amazon Alexa [60] and Microsoft

Cortana [190], humans increasingly interact with machine learning models via the modality of

text.1 However, these assistive agents often rely on powerful language models that encode input

text (e.g. user utterances) into a latent vector space which is then used to generate a response

[13, 77, 236]. These learned methods are black-box, with little to no opportunity for users to

discover why certain decisions or predictions are made.

1While many AI assistants vocalize their responses, typically the model outputs predictions in the form of text,
which is then passed through a text-to-speech service [81].
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Meanwhile, in two-party conversations between humans, the success and perceived

quality of dialog depends heavily on how much each participant understands and trusts each

other’s reasoning. This fundamental principle of human interactions has been observed across

varied domains, including customer service [34], education [33], and healthcare [40, 69].

The importance of explainable reasoning is also tied to the successful adoption of product

recommendation services [164, 193] and computer interfaces [22].

In order to build more explainable models for text generation, my research focuses on

models that can ground their predictions on user behavioral data and external knowledge, allowing

us to clearly see what information a model relies on to generate responses. I have studied methods

to associate conversations with real-world events in order to generate responses that are topical,

informative, and specific. I specifically study how to model discourse patterns and usage of

external knowledge when asking questions in news interviews. We develop a simple yet effective

method to associate relevant news headlines to media interviews. By training our models to

explain which news articles are most relevant to a conversation, we can generate more fluent and

informative responses compared to strong baselines.

1.1.2 Extracting User Preferences from Dialog

Useful interactive agents must not only be capable of explaining the reason behind their

suggestions—they must also understand user preferences as conveyed through natural dialog.

Users can interact with a variety of chat-bot agents via free text, including for chit-chat [137, 176],

hotel and restaurant booking [13], or product recommendation [113]. While some dialog systems

encode user utterances to directly generate responses [83, 113], users often express explicit

preferences (e.g. a specific cuisine when looking for a restaurant, an actor’s name when looking

for a movie, or a color of fabric when buying clothes) in their statements. Extracting such

preferences is particularly important for task-oriented or goal-oriented dialog systems, including

services offered by Google Assistant [128] or Apple Siri [5].

Preference extraction is often posed as dialog state tracking (DST)—a slot-filling problem
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[106]: given a domain or service (e.g. restaurant booking), we aim to infer the user’s preferences

about a set of attributes (e.g. cuisine or neighborhood). This paradigm is easily adopted for

domains and services with plentiful training data, but cannot be readily applied to new services

or arbitrary new domains. In particular, assistants that are capable of open-domain chit-chat

(e.g. to identify which services a user is most likely to need, or to provide general help to users)

can interact with users wanting to talk about developing events and timely knowledge. In this

zero-shot setting, we aim to develop an agent that can infer specific user preferences for arbitrary

new conversations and previously unseen entities [20]. Models capable of zero-shot DST can be

more useful to users who have specific or rare preferences, such as when recommending products

in a complex space (e.g. books, music) or adding agent capabilities/services.

To address this challenge, my research focuses on using generative modalities to enable

dialog models to infer user preferences in conversations about new domains. I introduce an

ontology-free framework that supports natural language queries for unseen constraints and slots

in multi-domain task-oriented dialog. This allows a service or developer to discover fine-grained

preferences from new conversational topics without costly model re-training. Our generative

question-answering approach improves zero-shot joint goal accuracy by up to 9 points compared

to previous state-of-the-art (SOTA).

I also study how user preferences can be mapped to types—an indication of where

an entity belongs in our taxonomy of knowledge (e.g. Chinese food has a type cuisine). By

teaching models to recognize type knowledge in a broad set of informative documents, we aim

for these models to better recognize new types and topics expressed in dialog. I propose a

multi-task question-answering framework to allow language models to understand and recognize

entities and their types. We demonstrate that our framework allows language models to more

accurately recognize types and concepts found in informational text, as well as infer novel, highly

specific types for unseen entities. We further apply models trained using this framework to

our aforementioned question-answering formulation for zero-shot DST, achieving additional

improvements in zero-shot joint goal accuracy by up to 14.9 points.
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1.1.3 Enabling Multi-Turn Interactive Agents

Once we have a machine assistant that can articulate its reasoning and understand

preferences expressed by the user, the final piece of the puzzle lies in using those preferences

to make new suggestions that better fit the user’s goals. This mirrors a common paradigm of

human interaction in daily life: when trying to accomplish a task (e.g. deciding what to eat,

or buying a product), people regularly refine their preferences and change their advice based

on evolving requirements [164, 249]. For example, when deciding which restaurant to dine at,

people commonly add requirements as they consider suggestions:

• Person A: I’m hungry. Do you know anything good around here?

• Person B: There are a few nice Korean BBQ restaurants nearby.

• A: I’m not feeling Asian, what about something American?

• B:We could check out the new diner that opened up down the block.

• A: I kind of want something fancier.

• B:What about a steakhouse?

• A: Great—let’s go!

When designing a chat assistant to mimic Person B (the recommender), we must be able

to change our suggestions based on subjective feedback (e.g. I kind of want something fancier.).

Previous work in conversational agents generally fall under three bins. First are interactive search

agents which ask the user questions about specific attributes of products (e.g. Do you want a

blue dress?) in order to narrow the search space of relevant products [12, 104, 247, 105]. These

models often limit the user’s agency, requiring them to give binary feedback on the queried

attribute.

On the other hand, dialog agents interact with the user in the form of natural language,

allowing users to freely give feedback [113, 83]. Dialog agents learn to respond to users
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by training over carefully curated, human-annotated corpora of domain-specific conversation

transcripts. As a result, it can be prohibitively expensive to collect the data to train such models

for complex domains where users have specific preferences (e.g. electronics purchases, alcohol

recommendations, or health advice).

Finally, conversational critiquing systems allow users to interact with a wide range of

possible attributes at each turn, incrementally constructing user profiles. However, current

critiquing systems can only be trained for next-item recommendation [227, 133, 4] or a single

turn of critiquing [3]. These models thus struggle to incorporate user feedback in multi-turn

settings like our example above.

We address the downsides of these three existing approaches by proposing a simple

yet effective bot-play framework to train multi-turn conversational recommender systems. Our

framework uses review data to synthesize and model user feedback over multiple turns of

conversation, allowing us to train conversational recommenders on any domain with user-written

reviews—without the need for expensive transcript collection. We demonstrate that our method

is model-agnostic and allows simple matrix factorization and linear recommender systems to

out-perform SOTA techniques for conversational recommendation.

1.2 Case Studies: Personalized Interactive Agents for
Instructional Texts

In the second part of this dissertation, we present two case studies on applying our

techniques to build trustworthy, personalized, and interactive assistants to generate instructional

texts for daily use. We specifically focus on generating cooking recipes: tools that can help

millions of home cooks discover dishes that fit their culinary preferences while reflecting their

dietary requirements.

First, I propose a method to generate instructions given some known ingredients and a

user’s previously consumed recipes. While previous methods for generating recipes would return
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the same recipe for each set of ingredients [92, 102], cooks are more likely to cook dishes that fit

their individual tastes. Our model allows users to, for example, find something new and tasty to

cook with the ingredients they have in their refrigerator. We compute attention scores over the

user’s previously consumed recipes to guide the instruction generation. These scores also allow

the model to explain to the user from where each instruction takes its inspiration.

Next, I build a system to edit recipes to assist home cooks with dietary restrictions. As we

are mainly concerned with agents that can interact with humans via natural language, we build

on previous work in controllable text generation [174]. While prior techniques for controllable

generation focus on stylistic attributes of text including politeness [135, 153], formality [234],

and persona [111, 141], we seek ways to control the substance of generated text based on complex

preferences. For example, cooks and diners with dietary restrictions are poorly-served by existing

online resources. We aim to edit generated recipes to satisfy the complex requirements—that all

ingredients are safe for the user, and the recipe is structurally sound (can be followed to create real

food). We show that our system can create new versions of recipes that satisfy dietary constraints

and can be successfully cooked.

1.3 Thesis Organization

This thesis is organized into two parts and seven chapters. Part 1 contains chapters 2, 3,

and 4, which comprise our work in a) building explainable models for natural text generation, b)

extracting preferences from natural-text user utterances in dialog, and c) teaching recommender

systems to incorporate user feedback. Part 2 contains two case studies—chapters 5 and 6—on

applying our work to assistive agents for daily life, specifically for generating novel instructional

texts (cooking recipes) to satisfy user preferences and specific constraints. Finally, we conclude

the dissertation and discuss future topics of research in Chapter 7.

We provide a brief overview of the main contributions in each chapter as follows:

Modeling Media Discourse with Knowledge Grounding: In this chapter, we perform
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the first large-scale analysis of discourse in media dialog and its impact on generative modeling

of dialog turns, with a focus on interrogative patterns and use of external knowledge. Discourse

analysis can help us understand modes of persuasion, entertainment, and information elicitation

in such settings, but has been limited to manual review of small corpora. We introduce

INTERVIEW—a large-scale (105K conversations) media dialog dataset collected from news

interview transcripts—which allows us to investigate such patterns at scale. We build a dialog

model that learns to align relevant external knowledge to interviews and predict discourse

patterns. We demonstrate that our model quantitatively and qualitatively outperforms strong

discourse-agnostic baselines for dialog modeling—generating more specific and topical responses

in interview-style conversations.

Type-Aware Question-Answering for Zero-shot Dialog State Tracking: In this chapter,

we study Dialog State Tracking (DST): an integral part of modern dialog systems that aims to

track user preferences and constraints (slots) in task-oriented dialogs. In real-world settings

with constantly changing services, DST systems must generalize to new domains and unseen

slot types. We introduce a novel ontology-free generative question-answering framework that

supports natural language queries for unseen constraints and slots in multi-domain task-oriented

dialogs. Our model improves joint goal accuracy (JGA) in zero-shot domain adaptation settings

by up to 9% (absolute) over the previous state-of-the-art on the MultiWOZ 2.1 dataset. We further

introduce a method to instill fine-grained type knowledge—identifying entities and their place in

a taxonomy of knowledge—in language models with text-to-text pre-training on type-centric

questions leveraging knowledge base documents and knowledge graphs. We create theWikiWiki

dataset: entities and passages from 10MWikipedia articles linked to the Wikidata knowledge

graph with 41K types. Models trained on WikiWiki achieve further SOTA performance in

zero-shot DST benchmarks, accurately infer entity types in Wikipedia articles, and can discover

new types deemed useful by human judges.

Transcript-Free Conversational Recommendation with Rationales: In this chapter,

we study conversational recommender systems that offer a way for users to engage in multi-turn
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conversations to find items they enjoy. For users to trust an agent and give effective feedback, the

recommender systemmust be able to explain its suggestions and rationales. We develop a two-part

framework for training multi-turn conversational recommenders that provide recommendation

rationales that users can effectively interact with to receive better recommendations. First, we

train a recommender system to jointly suggest items and explain its reasoning via subjective

rationales. We then fine-tune this model to incorporate iterative user feedback via self-supervised

bot-play. Experiments on three real-world datasets demonstrate that our system can be applied to

different recommendation models across diverse domains to achieve state-of-the-art performance

in multi-turn recommendation. Human studies show that systems trained with our framework

provide more useful, helpful, and knowledgeable suggestions in warm- and cold-start settings. Our

framework allows us to use only product reviews during training, avoiding the need for expensive

dialog transcript datasets that limit the applicability of previous conversational recommender

agents.

Personalized Cooking Recipe Generation from Historical Interactions: In this chapter,

we consider the novel problem of personalized recipe generation to assist users with culinary

preferences but incomplete knowledge of ingredients for a specific dish. We aim to expand a

name and incomplete ingredient details into complete natural-text instructions aligned with the

user’s historical preferences. We attend on technique- and recipe-level representations of a user’s

previously consumed recipes, fusing these ‘user-aware’ representations in an attention fusion

layer to control recipe text generation. Experiments on a new dataset of 180K recipes and 700K

interactions show our model’s ability to generate plausible and personalized recipes compared to

non-personalized baselines.

Assistive Recipe Editing: In this chapter, we seek to help home cooks with dietary

restrictions by tackling the challenge of controllable recipe editing: adapting a base recipe to

satisfy a user-specified dietary constraint. This task is challenging, and cannot be adequately

solved with human-written ingredient substitution rules or existing end-to-end recipe generation

models. We tackle this problem with SHARE: a System for Hierarchical Assistive Recipe
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Editing, which performs simultaneous ingredient substitution before generating natural-language

steps using the edited ingredients. By decoupling ingredient and step editing, our step generator

can explicitly integrate the available ingredients. Experiments on the novel RecipePairs dataset

demonstrate that SHARE produces convincing, coherent recipes that are appropriate for a target

dietary constraint. We further show through human evaluations and real-world cooking trials

that recipes edited by SHARE can be easily followed by home cooks to create appealing dishes.
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Chapter 2

Modeling Media Discourse
with Knowledge Grounding

Figure 2.1. Our dialog model incorporates grounding documents alongside dialog history. We
also leverage the dialog patterns and interrogative positioning by the host via auxiliary losses.

2.1 Introduction

Much of the news, information, and punditry the general public listens to and reads

consists of media dialog—a category of open-domain conversations between an interviewer and

interviewee centered on world events and situational context. A system for modeling media dialog

from the perspective of one of these roles can help us better understand how media persuades and

informs the public [194]. While recent work in dialog modeling has focused on goal-oriented

[13], spontaneous [188], or synthetic open-domain chit-chat [118, 39, 60], there is a paucity of

large-scale analysis of discourse and knowledge grounding in media dialog. In this chapter, we

aim to build a framework for modeling media dialog in a way that explains which news articles

and events are most relevant to the conversation and predicts discourse patterns over future turns.
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Media dialog differs linguistically and in purpose from unstructured, spontaneous

conversation such as open-domain chitchat, and both the topical content and interlocutor intent

are heavily influenced by the social, cultural, and temporal setting [221]. The study of media

dialog has traditionally focused on individual and manual review of small-scale (<200K word)

news corpora [10, 208], and we see an opportunity to scale some forms of discourse analysis to

tens of thousands of such documents. In this chapter, we perform the first large-scale automatic

analysis of structural components (response-type patterns) and question type categorization on

media dialog, specifically for English news interviews.

We show that predicting discourse features can improve generative dialog modeling

performance, demonstrating the degree to which discourse structure impacts an interviewer’s

choice of response type and content. News interviews are also heavily situation-grounded

and contextualized by past events and world knowledge. We explore methods to associate

each conversation with a selection of world facts, and show that by modeling interviewers as

knowledge-grounded speakers mediating a conversation we are able to generate relevant and

specific utterances fitting their role.

Our main contributions in this chapter are:

1. We collect a dataset of 105K media dialogs (23K two-party dialogs)1 encompassing two

decades of National Public Radio (NPR) radio programs, on which we conduct extensive

experiments;

2. We present a probabilistic framework to link a dialog with facts from a large corpus of

grounding documents and show that it improves downstream dialog modeling performance

compared to a strong TF-IDF baseline;

3. We introduce two auxiliary losses to guide utterance generation in a media dialog setting:

look-ahead dialog structure prediction and question-attribute prediction. We show that

these losses significantly improve generation quality via automatic and human metrics.
1https://www.kaggle.com/shuyangli94/interview-npr-media-dialog-transcripts
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2.2 Related Work

Media dialog—specifically, the news interview—has seen study primarily in the field

of speech transcription, diarization, and speaker role modeling [24, 101]. These works have

typically focused on techniques to annotate broadcast audio transcripts [80] in order to cluster

different news stories from a continuous broadcast stream [79]. While Barzilay et al. [9] and Liu

[125] note that transition points between speaker roles (e.g. anchor and guest) can determine the

high-level topical flow of a news conversation, we investigate the impact of discourse patterns on

the semantics of specific utterances.

Such research is currently limited by a lack of accessible corpora for the study of media

dialog at scale. The Defense Advanced Research Projects Agency (DARPA) has undertaken

efforts to collect and transcribe broadcast conversations [196, 32]. However, it proves difficult to

adopt these datasets as widely available benchmarks on dialog modeling tasks, as they come with

a substantial cost ($100-$1000 per annum per dataset). More recent efforts to amass such data

have either focused on collecting large volumes of conversation fragments with noisy transcripts

[11] or human transcripts for a smaller set of long-form open-domain radio programs [139]. We

contribute an open-access large-scale corpus of broadcast media dialog annotated with response

types, demonstrating that these are useful for modeling interviewer utterances.

We explore the application of discourse analysis [45] on this large media dialog corpus

in order to discover, confirm, and leverage discourse patterns regarding interrogative forms,

speaker agency, and references to external knowledge. As noted by Weizman [221] in their deep

study of Israeli news television, structure in media dialog (in contrast to spontaneous natural

conversation) is uniquely determined by its speaker role dynamics. Wang et al. [217] investigate

the detection of one such dynamic: agreement/disagreement between speakers. Ma et al. [134]

classify discourse relations (e.g. comparative, temporal) between two turns of dialog, but do not

study discourse structure. In this chapter we extend our analysis to other properties of interviewer

utterances (e.g. subjectivity, polarity, dialog act patterns) [73] in the context of generative
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Figure 2.2. Example conversation from INTERVIEW with annotated discourse analysis. Text
highlighted in blue indicates the question of interest, uttered by the host. The dialog triplet is
marked in red.

dialog modeling. Structured approaches for dialog modeling employ a simple concatenation

of dialog history in a transformer-based architecture [245]. We draw inspiration from Luan

et al. [130] who demonstrate the usefulness of a multi-task framework for speaker-conditioned

dialog modeling. Guu et al. [66] propose a framework for jointly learning document retrieval

and language modeling, and we propose a similar model to learn task-specific annotation of

grounding documents.

2.3 INTERVIEW: A Media Dialog Corpus

We collect a new dataset of 105K multi-party interview transcripts for 7 programs on

National Public Radio (NPR)2 over 20 years (1999–2019). These transcripts contain in total

3M turns comprising 7.5M sentences (127M words) from 184K speakers, of which 287 are

interviewers. To investigate host-mediated media dialog, we curate a subset, INTERVIEW 2P,

with two roles: an interviewer and a guest, comprising 23K two-party conversations encompassing

455K turns, with 1.24M sentences and 21.7M words. In these two-party conversations, each

speaker takes an average of nine turns per dialog. Guests tend to speak longer on their turns, with

1.6x as many sentences spoken and 2x as many words per turn. Meanwhile, hosts ask five times

as many questions as guests, with 40% of their dialog turns containing questions. When asking

2https://www.npr.org/
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Table 2.1. Comparative media dialog dataset statistics, including the two-party (2P) and full
INTERVIEW dataset. Note that RadioTalk does not contain full conversations

Dataset Year Structured # Dialogs # Turns # Words

RadioTalk [11] 2019 ✗ 5.98 M 116 M 2.9 B
TAL [139] 2020 ✓ 663 163,808 7.4 M

INTERVIEW 2P 2020 ✓ 23,714 454,739 21.7 M
INTERVIEW 2020 ✓ 105,848 3,199,856 126.7 M

questions, hosts and guests use interrogative forms [184] at the same rate (65%).

We avoid modeling salutations and sign-offs (which tend to be formulaic, and specific to

the radio station) by restricting the target turns to those with at least three prior turns and two

following turns of conversation, resulting in a target training set of 87K host-only turns and 11K

host-only turns for dev and test.

2.3.1 Comparison with Other Datasets

Open-domain dialog datasets have traditionally focused on either spontaneous (e.g. tele-

phone calls) or goal-oriented conversation, and there is a paucity of English-language media

dialog datasets—that is, dialog corpora comprising semi-structured conversations for the purpose

of information elicitation and presentation. The closest such datasets are This American Life

[139], a dataset of several hundred long-form expository podcast episodes, and RadioTalk [11],

which comprises over one million ten-minute snippets of talk radio transcripts. While these

corpora are derived from broadcast media, episodes of the former contain a broad range of

expository speakers who are not professional journalists, while the latter dataset is constructed via

an automated transcription system with a 13%+ word error rate and does not contain full conver-

sations (segments from radio conversations are transcribed). We compare INTERVIEW statistics

to other English media dialog datasets in Table 2.1.

Traditional media dialogs (e.g. news interviews) comprise a significant body of media

consumed by the general public and we believe there is value in the large-scale study of such

media. Efforts to collect and transcribe broadcast news span the world, from the French EPAC

16



corpus [43] to Arabic and Chinese news manually transcribed via the GALE program [32]. To

our knowledge, no attempt has yet been made to analyze the discourse patterns or trends in

such data—these datasets have primarily been used to support the development of automatic

speech recognition, transcription, and machine translation systems. Early efforts to collect

English-language broadcast conversation transcripts [162] similarly aimed to build smaller,

high-quality parallel corpora for speech transcription. The large-scale study of discourse in media

dialog is not supported in such corpora, and the INTERVIEW corpus enables such analysis at

scale for English-language media.

2.4 INTERVIEW Discourse Analysis

We tackle three aspects of discourse analysis that can be scaled to INTERVIEW: 1) Dialog

patterns that emerge through new interviews; 2) Large scale annotation of interviewer question

types (dialog acts); and 3) Obtaining grounding documents that provide situational context for an

interview. We study these features in context of English broadcast news interviews.

2.4.1 Dialog Patterns

The news interview setting revolves around sets of questions and answers—naively, one

may assume the interviewer to be the sole questioner. However, media dialog has steadily deviated

from this rigid structure, tending toward the broadly conversational [44]. Each participant may

be at turns jovial, inquisitive, and critical, and this is reflected in question-answer patterning.

Heritage [73] frames the analysis of media discourse in terms of the third-turn receipt, where

1) they ask a question; 2) the interviewee responds; and 3) the interviewer chooses how to

proceed. We are motivated by this, as well as studies of question-response-confirmation patterns

in spontaneous dialog [209]. We focus on discourse patterns in response type triplets beginning

with an interviewer (host) question.

We define a triplet as {𝑟1, 𝑟2, 𝑟3} where the response type at utterance 𝑖 is a question or an

answer: 𝑟𝑖 ∈ {Q,A}. By imposing a binary label on each utterance, we are able to efficiently
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mine all occurrences of each of eight possible host-guest-host patterns across our 23K dialogs.

We find that a structured interrogative Q-A-Q pattern comprises 27% of all cases, while 20% of

the time the host poses a non-interrogative third response (Q-A-A). Guests respond to questions

with questions of their own only 7% of the time, supporting the theory that interviewers serve

as the primary mediators in such conversations [221]. Manual inspection evinces recurring

action patterns corresponding to interviewer stance-taking and agendas ranging from cooperative

to confrontational. For example, the conversation segment in Figure 2.2 is comprised entirely

of Q-A-Q patterns, with the host prompting [73] the guest, re-contextualizing and refocusing

the guest’s stance for the benefit of the audience. To leverage the inter-dependence of action

choice (question or answer) and stance-taking (implicitly or explicitly via utterance content)

[67], we propose to predict the subsequent response type triplet while modeling an interviewer

utterance. We thus explore how utterance phrasing and structure may depend on projected or

desired conversation directions.

2.4.2 Question Types as Dialog Acts

In their role as a mediator, interviewers can shape the narrative by posing different types of

questions to guests. Weizman [221] posits that this choice of question type is influenced by dialog

context and conversation flow. We examine ways to structurally bias our model to take advantage

of conversational context in order to ask appropriate interviewer questions. Based on common

interviewing guides3 and linguistic analysis of open-ended questions in a conversational setting

[86], we define three interrogative aspects (attributes): 1) Polarity: determining if the question

is yes/no (polar) or open-ended; 2) Subjectivity: determining if it demands a factual answer or

invites a subjective opinion; and 3) Combativeness: whether the question is confrontational

or clarifying. Our mode of categorization resembles that of Gnisci and Bonaiuto [58], who

add additional categories that are more relevant to the study of equivocation in confrontational

interviews. While previous works have primarily used question polarity and interrogative forms

3http://prndg.org/host-interviewing-tips
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Table 2.2. F1 score of question-type classifier models on the test set for different base classifier
architectures, using single-utterance (left) and full dialog history (right) as model inputs.

Single Utterance With Dialog History
MLP CNN LSTM BERT MLP CNN LSTM BERT

Polarity 55.61 68.20 66.87 75.31 68.71 74.71 70.49 80.20
Combativeness 48.91 57.19 49.70 58.10 60.81 65.87 60.54 70.14
Subjectivity 50.87 53.91 51.96 66.92 61.21 67.98 63.09 76.92

to improve diversity in spontaneous dialog generation [248], we explore how a news interviewer

constructs question contents given desired interrogative aspects.

We hired two expert annotators to assess a question based on these three aspects. We

provided interviewer questions alongside corresponding dialog histories, and annotators marked

the binary presence/absence of each aspect for each question. The first host question from

Figure 2.2—Should [Trump] be taunting a dictator with nuclear weapons about the size of his

nuclear button?—would be marked as polar, subjective, and combative, as it asks the guest

whether (polar) they endorse (subjective) an intentionally ridiculous statement (combative). We

collected 1,000 questions in this manner, each labeled by both annotators. The inter-annotator

agreement (Cohen’s kappa [31]) for each of the binary labeling tasks—polar vs. open-ended,

subjective vs. objective, combative vs. clarifying—was 0.8 for polarity, 0.72 for subjectivity and

0.7 for combativeness. We observed questions in this sample to be 60.2% polar, 38.7% subjective,

and 29.5% combative.

Automatic Classification

We label the remainder of INTERVIEW by training a multi-label classifier, fine-tuning

BERT [38] to predict the presence of each attribute in our human-annotated set of questions.

We concatenate dialog history and the interviewer question separated by a [SEP] token and

prepend a [CLS] token. We calculate binary cross entropy loss over a linear projection of the

final hidden state of the [CLS] token. BERT achieves 80.20, 70.14, and 76.92 F1 scores for

polarity, combativeness and subjectivity respectively on the test set in four epochs.
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Algorithm 1: Pseudocode for probabilistic linking procedure initialized from TF-IDF.
Initialize document assignments from TF-IDF priors;
while Average validation perplexity decreases do

Learning: Update the model with current assignments for 𝑁 epochs;
for each 𝑑 in Dialogs do
Sample 𝐾 documents from top 50 TF-IDF priors;
for each 𝑘 in 𝐾 do
Condition each response in the dialog with 𝑘 , and calculate perplexity;
Aggregate at the dialog level;

Choose 𝑘 that yields the lowest perplexity;
Assignment: Gather all 𝑘’s for each dialog to update current assignments;

We consider multiple baselines: 1) an MLP model using Bag-of-Words input features; 2)

a CNN [52] with 2 convolution layers; and 3) a Bi-LSTM [63] network with max-pooling of

final hidden layers. We initialize all embeddings with BERT embedding vectors. As shown in

Table 2.2, BERT achieves the highest F1-score. Including dialog history improves classification

performance, confirming that the type of question asked depends on conversational context. This

suggests that we may also be able to better predict question content through jointly leveraging the

dialog history and question type. Both human annotators and our model find predicting polarity

the easiest, and combativeness the most difficult.

2.4.3 Knowledge Grounding

Media dialog is frequently characterized by references to world knowledge, current events,

and factual information. This can be learned to some extent in large language models pre-trained

on diverse text corpora [161], and such models can act as knowledge stores [27]. However,

for tasks involving complex reasoning and induction it remains beneficial to provide models

with externally linked knowledge [146, 47]. Specifically for dialog modeling, the Wizard of

Wikipedia [39] and Topical Chat [60] corpora consist of grounding documents linked with

open-domain chit-chat. As such, we explore methods to link grounding knowledge documents for

each conversation in INTERVIEW, drawn from NPR news articles from the past two decades.

We aim to link documents that can best inform conversation content and structure as measured
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Figure 2.3. (a) Bar plot depicts test perplexity for linking algorithms: None (no grounding),
TF-IDF, and PL/PL3 which indicate probabilistic linking with re-assignment at every 1/3 epochs
respectively. Validation perplexity by epoch (b) shows that PL3 converges faster and to a better
optimal.

by downstream dialog modeling performance.

TF-IDF Linking

We assess a strong retrieval baseline for grounding document linking, using TF-IDF

[178] to find relevant documents for each conversation. To support large-scale TF-IDF similarity

computation, we use the Lucene-based ElasticSearch [62] engine4 to calculate TF-IDF similarity

between full interview texts and the concatenation of the document headline and body, returning

the 50 most similar grounding documents for each INTERVIEW conversation. We aim to link

documents that would be reasonably relied on by the speakers at the time of the interview, and as

such for each interview exclude articles that were published after the interview itself.

Probabilistic Linking

While TF-IDF based document linking provides a co-occurence-based similarity measure

between documents and conversations, it is not guaranteed to improve dialog modeling perfor-

mance. Thus, we train a linking model such that conditioning on linked documents has a positive

effect on dialog modeling performance. We use a two-phase coordinate ascent framework as

described in Algorithm 1. In the Learning phase, a dialog model is trained based on the available

4https://aws.amazon.com/elasticsearch-service/
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assignments, and its weights are fixed (frozen). Then, in the Assignment phase, we compute a

re-assignment that maximizes dialog model performance under different possible assignments.

Searching over the complete document set is computationally infeasible, so we perform an

approximate greedy search over possible documents ordered by their TF-IDF prior score.

We compare the performance of a Transformer [210] language model provided with

grounding documents assigned by different algorithms in Figure 2.3a. A model without

grounding scores by far the worst in terms of perplexity, which indicates that knowledge

grounding is important for modeling media dialog. While TF-IDF assignments significantly

improve performance compared to no grounding, probabilistic grounding models achieved the

best performance. The sudden drops in perplexity values at every third epoch in Figure 2.3b

indicates that the model was well-trained based on current assignments before a new assignments

were obtained.

While our articles and conversations come from the same broadcasting source, the NPR

interview transcripts generally do not contain links or metadata connecting them with specific

grounding documents, and thus there are no ground truth labels available to us. To ascertain

that the grounding is relevant, we enlisted two native English speakers who regularly listened

to broadcast radio to perform a qualitative evaluation of 100 randomly sampled interview and

article pairs. We found that 87% of these pairings are highly relevant, 5% are somewhat relevant

and the rest are irrelevant. The inter-annotator agreement measured by Cohen’s Kappa was 0.79.

The lack of ground truth is something we would argue is not a limitation, rather our probabilistic

linking step avoids the dependency on data that is not likely to be available in practice.

2.5 Modeling Media Dialog

A model’s ability to learn underlying discourse dynamics is reflected in its performance

on downstream tasks. Here, we assess how well our model learns from dialog structure and

question-pattern metadata via utterance generation—a simple predictive task that relies on a
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Figure 2.4. Knowledge grounded generator model with two discourse-specific auxiliary tasks for
media dialog

holistic understanding of grounding knowledge and a dialog history. This serves as an initial

measure of understanding of discourse patterns and grounding even if dialog produced varies.

We treat knowledge-grounded response generation in the media dialog setting as a

language modeling task: given a dialog history 𝐻 and a grounding knowledge document 𝐾 , we

seek to predict the next utterance 𝑥 by maximizing the likelihood 𝑝(𝑥 |𝐻, 𝐾). The dialog history

is composed of turns spoken by both the interviewer and interviewee where each utterance is

provided with the role annotation. We only model interviewer (host) responses, which aim to

moderate the conversation via questions and follow-ups. To understand the effect of dialog

structure and question types in response modeling, we introduce two auxiliary losses to influence

generation—a multi-task setup that has seen success in goal-oriented dialog generation [130].

2.5.1 Knowledge Grounded Generator

We use a common decoder-only model for knowledge-grounded dialog generation [60]:

GPT2 [169], a pre-trained Transformer decoder. We concatenate grounding documents, dialog

history, and the target response as model input. To distinguish each section, we add jointly-learned

segment embeddings ({Grounding, Host, Guest}) to each input token. We demonstrate in

Table 2.4 that such segment embeddings are essential for this kind of dialog modeling. We only

consider target tokens for cross-entropy loss calculation via conditional likelihood 𝑝(𝑥 |𝐻, 𝐾).
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Table 2.3. Performance on auxiliary tasks: Dialog Pattern prediction and Question Type
prediction. Our auxiliary tasks are mutually helpful: using both losses improves both pattern
accuracy and question type F1 score.

Model Dialog Pattern Accuracy Question Type F1 Score

KGG + Probabilistic Grounding 38.5 68.8

+ Dialog Pattern 86.3 76.2
+ Question Types 87.9 90.5

2.5.2 Predicting Look-ahead Dialog Patterns

Following Section 2.4.1, we use a generative model to explore the role of response type

triplets in structuring media dialog (stemming from an interviewer utterance [73]). Following

response type triplets defined in Section 2.4.1, we predict the pattern of the dialog triplet

beginning with the generated host question as an auxiliary predictive task alongside host utterance

generation. We treat this as a sequence transduction task, employing an LSTM [75] decoder with

an initial hidden state computed by mean-pooling GPT2 final layer hidden states. Consider s𝑖 the

𝑖-th hidden state from the GPT2 decoder for a length 𝐿 sequence; now for each hidden state l𝑖 in

the LSTM decoder, we also calculate attention over the GPT2 hidden states, where {s𝑖} are the

keys and values, and l𝑖 is the query, resulting in an attended vector. We concatenate this attended

vector with the LSTM hidden state l𝑖 and then project it to predict the dialog triplet sequence,

maximizing the log-likelihood.

2.5.3 Predicting Question types

We further explore the impact of question types (dialog acts) via another auxiliary task:

multi-label classification for host utterance question types [145]. We surmise that accurately

predicting question types will help infer question framing and wording, improving generation

fidelity. Much like dialog pattern prediction, we use a pooled representation of GPT2 hidden

states. We produce a score for each of three question attributes—polarity, combativeness, and

subjectivity—via a linear projection and optimize via binary cross-entropy loss.
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2.6 Experiments

In our experiments, we seek to answering the following: 1) Does knowledge grounding

help generate more topical host responses? 2) Do our two auxiliary discourse losses improve

dialog generation performance? 3) Do human raters find responses generated by our model

coherent and fluent?

Network Architecture

For probabilistic linking, we use a 6-layer encoder-decoder Transformer model [210].

The input to the model consists of grounding document followed by dialog history. The output is

the next response in the dialog. To speed up the learning phase, we use ReZero initialization

[6] that do not require learning weight warm-up schedule. We also observe that performing

reassigning at every epoch results in noisy update in assignments and weaker local optima is

achieved at the end. When we switch the reassignment phase for every third epoch, the learning

stabilizes mirroring a line search [225] from coordinate descent optimization. For the media

dialog generation model, we use GPT2 [169] (Transformer with 12 layers, 768 hidden size, 12

heads, and 117M parameters— gpt2-small) as the base architecture. Our best model, KGG

with two discourse-specific auxiliary losses, has 124M parameters.

Hyperparameters

We use history size 5 and number of grounding documents as 5. We use the RAdam

optimizer [124] and the learning rate was set at 6.25𝑒 − 5 with a linear decay of step size 10−1

per epoch. The loss coefficients in the multi-task loss function for dialog modeling loss, dialog

pattern prediction loss and question type prediction loss were 2.0, 1.0, and 1.0 respectively. Each

model converged in 3 epochs on average with batch size 4 in a TITAN X (Pascal) GPU that took

6 hours in total. While training, we only observe perplexity on the validation set to employ an

early-stopping criteria.
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Table 2.4. Metrics on generated interviewer responses on test set. NPO/NEO = Noun-
phrase/Named entity overlap with context (C) and gold (G); QR = Question rate. NIDF is a
measure of specificity [184]. QR, NPO, NEO are measured in percentages.

Model PPL BLEU QR NPOG NPOC NEOG NEOC NIDF

No Grounding
Finetuned (FT) GPT2 28.6 15.4 34.2 0.67 0.57 0.92 0.98 0.105
FT GPT2 + Segment 27.5 17.5 49.9 1.70 1.67 1.56 1.55 0.117

Effect of grounding
MemNet [39] + TF-IDF 26.5 17.8 43.8 1.86 1.63 1.51 1.62 0.187
MemNet [39] + Prob. Ground. 25.1 17.7 46.9 1.98 2.31 2.89 3.02 0.197
KGG (TF-IDF) 23.5 18.1 48.5 2.73 3.91 3.01 5.58 0.245
KGG (Prob. Ground.) 19.6 19.2 53.6 3.24 4.67 3.44 6.78 0.267

Auxiliary Losses
+ Dialog Pattern 17.2 21.0 56.7 3.52 6.92 5.16 7.85 0.302
+ Question Types 15.8 20.3 58.9 3.67 6.79 5.89 7.79 0.359

Metrics

To measure the fidelity of generated responses, we compute BPE perplexity and BLEU

[156] between generated and gold utterances. To assess topical accuracy, we calculate the overlap

between noun-phrases and named entities in the generated and gold responses. We are also

interested in measuring coherence with respect to the context (i.e., grounding documents and

dialog history), calculated via the noun-phrase and named entity overlap between generated

responses and context. Furthermore, as news interviews are intended to inform audiences,

interviewers must ask questions using specific vocabulary and construction. To assess this, we

adopt the Normalized Inverse Document Frequency [184] to measure vocabulary specificity

via word rarity. As we focus on generating interrogative host responses, we also calculate the

percentage of questions asked in the generated responses as a measure of model inquisitiveness.

2.6.1 Effect of Knowledge Grounding

To assess the usefulness of explicit grounding documents, we first compare dialog models

that use and do not use such documents in Table 2.4. Using segment embeddings to mark

utterance bounds improves all measures of fidelity, signifying that this is a useful way to leverage
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Table 2.5. Sample generated response on NFL’s new rule. When we add discourse specific
losses, the models generate questions that bears more coherence to the context as well as ask
clarifying questions.

Grounding (PL) How The NFL’s New Rule On Protesting Is Being Perceived By Players

Context HOST: How are the players that you’re talking to reacting to the stand that the
NFL’s taken? GUEST: Well, I think they’ve taken the position that the NFL
has decided to fully engage with this culture war initiated by the president
[. . . ] I think this has really reignited some really bad blood between the
players and the owners.
HOST:

Gold And how is that manifesting itself? I mean, what conversations are the players
having, and what can they actually do?

KGG (TF-IDF) Can you tell me more about NFL’s new rules?

KGG (Probabilistic) This are some significant changes in NFL’s rules. I think the most effect will
be on the players.

+ Dialog Pattern Okay so let’s talk about NFL players. What is your gameplan?

+ Question Types So how are you responding to this ever-evolving scenario? What are the key
steps are you planning to take to gauge players’ sentiment?

speaker role information in dialog modeling. Models that use external grounding knowledge

outperform non-grounded models by 1-8 points on almost all metrics, suggesting that such

grounding is an important component of host response generation models. To assess the impact

of our knowledge grounded generator (KGG) architecture, we compare performance against a

strong Memory Network (MemNet) baseline for knowledge grounded dialog generation [39]. We

confirm our choice of a GPT2-based KGG, as it outperforms Memory Networks in all metrics.

Next, we compare the impact of document assignments made via TF-IDF and our

probabilistic linking (PL)method. We once again see improved fidelity, mirroring our observations

from Section 2.4.3. Models trained using PL document assignments generate utterances with

19-20% higher noun-phrase and named entity overlap with the gold utterance and context,

indicating that PL assignments allow the KGG to more strongly condition on the provided context.

27



2.6.2 Effect of Auxiliary Tasks

In this experiment, we investigate how predicting dialog patterns and question types

impacts the specificity and fidelity of generated host responses. Each auxiliary loss contributes a

significant improvement (1-2 points) in perplexity but affects fidelity and topicality in different

ways. With dialog pattern prediction, we observe that generated responses are more coherent with

respect to conversational context, seeing 8% and 48% improvements in noun phrase and named

entity overlap with dialog history, respectively. This supports the sociolinguistic observation

that the interviewer’s choice of utterance (i.e., whether to ask a question, and response content)

depends on the discourse structure toward which they aim to guide the conversation [73]. Our

results suggest that biasing a dialog model to predict future discourse structure can encourage it

to more effectively leverage the past dialog structure (from the conversation history). We confirm

in Table 2.3 that this model can predict look-ahead dialog patterns with 86.3% test-set accuracy.

In light of findings that vanilla dialog models may not condition well on conversation context

[181], our results suggest one possible direction toward improving contextual language modeling

for dialog with inherent structure, such as media dialog.

When we add question-type-prediction loss, we see a significant drop in perplexity and

improved fidelity. As expected, by inducing our model to predict the question attributes for the

target utterance, our model achieves the highest inquisitiveness (58% question rate). It can also

accurately predict question types, with 90.5% macro-averaged test set F1 score. Our results

suggest that as the model learns to categorize the interviewer response via specific attributes, it

simultaneously learns to generate responses with more specific wording. Table 2.5 and Table 2.6

contain representative generations from our best model as well as other baselines, showing

that when we add additional discourse specific losses, our model appropriately captures the

interviewer’s clarifying intent and conversation direction.
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Table 2.6. Sample generated response on nuclear threat. KGG with discourse specific losses
generate more specific and on-topic responses.

Grounding (PL) Trump’s Week Of ’Fire And Fury’

Context GUEST: Steve Bannon is quoted as saying [. . . ] the president has lost it.
Now, are you supporting a president who is incapable of being entrusted with
[. . . ] nuclear weapons? GUEST: Well - one thing I haven’t heard yet is Steve
Bannon interviewed [. . . ] so look, I think the president of the United States
has shown he’s very, very capable [. . . ].
HOST:

Gold Should he be taunting a dictator with nuclear weapons about the size of his
nuclear button?

KGG (TF-IDF) Well, that’s what you’ve been talking about, right?

KGG (Probabilistic) What do you see as a future?

+ Dialog Pattern I am worried about his political position now.

+ Question Types Do you think it’s a good idea to confront a nuclear war?

2.6.3 Human Evaluation

Automatic evaluation of dialog generation quality is still unreliable [122, 154], and thus

we provide evaluation by human users. We perform pairwise comparisons between responses

generated by our best system and those generated by four strong baselines: the best model with

no grounding, KGG with TF-IDF, KGG with PL, and KGG with dialog pattern prediction. We

also compare against the gold response. Our human evaluation study (details in Appendix §B)

measures three aspects of response quality on 100 test examples: 1) How relevant the response

is with respect to dialog history; 2) How relevant the response is with respect to grounding

documents; and 3) Whether the generated response is fluent English.

We observe in Table 2.7 that human judges prefer responses generated by our best model

(with both discourse analysis auxiliary tasks) to baselines by statistically significant margins in

almost every case. This indicates that dialog structure and question types are highly useful for

generative modeling in a media dialog setting—specifically news interviews. Human raters also

found that despite a significant drop in perplexity when adding the question-type prediction loss,
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Table 2.7. Pairwise comparison between responses generated by our best model (with both
discourse analysis auxiliary tasks) vs. responses generated by other baselines as well as the Gold
response. All numbers are in percentages (highest underlined). Ties are not shown. Bold entries
denote significance with 𝑝 < 0.05 from bootstrap tests on 1000 subsets of size 50.

Best Model vs. → No Ground TF-IDF Prob. Ground. + Dialog Pat. Gold

Metric ↓ W L W L W L W L W L

Relevance (Dialog) 85.1 9.2 86.5 3.3 69.1 27.6 61.0 22.4 36.7 47.4
Relevance (Grounding) 94.5 4.3 91.6 1.9 82.5 4.7 84.5 9.5 30.1 55.2
Fluency 97.2 0.8 87.1 7.8 62.1 10.1 58.7 11.2 20.8 24.6

the two versions of discourse-conditioned models had similar fluency, indicating similar language

modeling performance. We observe an inter-annotator agreement (Cohen’s kappa) of 0.79, 0.92,

and 0.73 for relevance to dialog history, grounding documents, and fluency, respectively.

2.7 Conclusion

In this chapter, we perform the first large-scale analysis of discourse patterns in media

dialog, using a new dataset of 23K annotated news interview transcripts: INTERVIEW. Our

results mirror findings from linguistic studies of news interviews [221, 73]. We demonstrate

that adding auxiliary tasks for discourse pattern and interrogative type prediction helps model

such media dialog. We observe that responses depend heavily on external knowledge, and

present a probabilistic framework for linking factual documents with a conversation. While we

focus on discourse pattern analysis, INTERVIEW also supports analysis of temporal patterns in

interviewing, argumentation, and knowledge grounding in long conversations.
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Chapter 3

Type-Aware Question-Answering for
Zero-shot Dialog State Tracking

3.1 Introduction

Dialog agents are gaining increasing prominence in daily life. These systems aim

to assist users via natural language conversations, taking the form of digital assistants who

help accomplish everyday tasks by interfacing with connected devices and services. A key

component to understanding and enabling these task-oriented dialogs is Dialog State Tracking

(DST): extracting user intent and goals from conversations via filling in belief slots [106, 219]

(Figure 3.1). Assistive and recommendation use-cases for dialog agents in production settings

are particularly challenging due to constantly changing services and applications with which they

interface. In this chapter, we aim to develop a natural-language, type-centric framework for

inferring user preferences and intents in new conversations and domains, as well as a pre-training

methodology to instill type awareness and knowledge in language models.

Traditional DST systems have achieved high accuracy when presented with a known

ontology of slot types and valid values [25]. In a real-world setting, however, a DST model must

generalize to new slot values (e.g. new entities that are not present at training time) and new slot

types (e.g. requirements regarding a new application). Recent work has sought to address these

issues by posing DST as a reading comprehension or question answering (QA) task [54]—such

models predict each slot value independently at any given turn and can theoretically be queried
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Figure 3.1. In Dialog State Tracking (DST), we aim to infer a user’s preferences about certain
slots in a conversation. Preferences expressed by the user are highlighted in the conversation
transcript on the left, while the corresponding cumulative belief state is on the right. In the
zero-shot setting, we aim to infer user preferences from conversations in new, unseen domains.

for new slots at inference time.

Some approaches toward DST as QA learn embedding vectors for each slot and/or domain

word [226], but this is not robust to unseen slots whose specific names (e.g. ‘Internet Access’)

may be totally unlike those in the training set. Gao et al. [55] attempt to remedy this by posing a

natural language question for each slot, but their hybrid span-extraction and classification-based

system nonetheless requires access to the full ontology for unknown domains. We present an

ontology-free model using natural language questions to represent slots that builds on conditional

language modeling techniques—taking advantage of the rise of powerful generative language

models [168]—to tackle DST as a generative QA task. Our model can generalize to unseen

domains, slot types, and values, and allows developers to query for arbitrary user requirements

via simple questions.

Our question-answering framework helps reveal the parallels between dialog state

tracking and entity typing tasks—identifying user’s preferences about slots bears close similarity

to identifying specific entities of a given type or category mentioned in a text (e.g. that the user

expressed interest in an “Indian” restaurant, where “Indian” is a type of “cuisine”). To better

understand user opinions in unseen domains, we leverage the fact that entities can be categorized
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Figure 3.2. Via the WikiWiki dataset, we train a model to answer questions about entities
mentioned in Wikipedia articles (top) and WIkidata types that such entities are an instance of
(P31) or subclass of (P279).

by their types—which indicate where they belong in a taxonomy of knowledge. Much like how

knowledge acquisition in cognitive development progresses from recognizing concrete objects

to gradually understanding their relations to one another [131], we aim to extend language

models’ existing rough understanding of entities [71] to the types that govern how entities are

related. Instilling type knowledge in multi-purpose models can improve performance in tasks

like entity linking [155], question-answering [49], and semantic parsing [201]. We demonstrate

in this chapter that type-aware language models also confer significant improvements in domain

generalization for DST.

While existing language models can memorize some facts [161], they frequently hal-

lucinate false information [127, 191]. Current attempts to learn to infer types for entities are

hampered by 1) the difficulty of collecting diverse, large-scale typing datasets; and 2) how

existing corpora assume independence between types [29], while in reality types sit at levels

of granularity that are useful in different settings: a pizza store may care whether a user likes

Cheese Pizza; a restaurant recommender might care if the user wants Pizza; finally, a general

dialog agent might only care if a user wants Food.

We address both issues by proposing a simple and effective approach for pre-training
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generative languagemodels to answer questions about entities, types, and surface forms (mentions)

in a large public knowledge graph (KG) consisting of Wikipedia articles and Wikidata nodes.

We leverage high quality type labels in a large corpus of knowledge-rich text and an ordered,

hierarchical type ontology.

To summarize our main contributions in this chapter:

• We propose an ontology-free conditional language modeling framework for dialog state

tracking via generative question answering, achieving state-of-the-art performance in

zero-shot domain adaptation settings for DST on MultiWOZ 2.1 [42] across all domains

with average per-domain gains of 5.9% joint accuracy over previous best methods;

• We show that our approach can be easily adapted to predict slot carry-over and transfer

knowledge from a larger, more diverse dataset [93], improving zero-shot DST performance

across all domains to 11% joint accuracy over the state-of-the-art;

• We create the newWikiWiki dataset comprising 10M Wikipedia articles linked to nodes

from Wikidata and propose a pre-training scheme for generative language models using

type-centric question-answering based on WikiWiki;

• We show that our models can precisely infer types for seen and unseen entities in new

articles from WikiWiki, and propose novel types that humans judge to be accurate and

appropriate; and

• We achieve state-of-the-art (SOTA) performance in zero-shot domain adaptation for dialog

state tracking using our type-instilled models, with average per-domain gains of 20.8%

joint accuracy.

3.2 Related Work

Dialog State Tracking

Modern dialog state tracking seeks to capture evolving user intents in a structured belief

state [202]. Traditional systems rely on hand-crafted features [72] and classify slot values from a
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fixed ontology [149, 172]. Gao et al. [54] and Zhou and Small [250] fill some slots via spans

extracted from dialog history, although they treat non-numeric slots as categorical. Generative

methods [230, 226] can predict arbitrary unseen values, with Hosseini-Asl et al. [77] achieving

state-of-the-art supervised DST performance in MultiWOZ 2.1 although they cannot predict

unseen slots. By posing DST as generative QA, our framework can leverage language models

pre-trained on open-domain documents [168] to understand unfamiliar queries. Like Gao et al.

[55], we seek to answer natural language questions about each slot. We contrast our approach to

zero-shot DST—which never has access to slots or dialog from the target domain—and that of

Campagna et al. [20], who expose their ‘zero-shot’ models to synthetic in-domain conversations

that require access to the full ontology of the ‘held-out’ evaluation domain.

Question Answering

We take inspiration from previous work that frames a wide selection of natural language

understanding (NLU) tasks [215] as QA [144] and span extraction [90]. While question-answering

can be posed as a span extraction task [216], generative approaches have proven successful in

answering questions about complex passages [48]. We use a language modeling approach, taking

cues from Raffel et al. [170] who demonstrate that a large language model trained on next-token

prediction can learn to solve many different NLU tasks posed as text. Recent work has also

shown that large pre-trained language models can generalize to new NLU tasks with few or no

examples [16], and we leverage this alongside world knowledge acquired during the pre-training

process [161] to build a DST model that is robust to new domains and slot-value ontologies.

Knowledge Grounding in Language Models

Large pre-trained language models have been shown to memorize some facts [161]. One

recent line of work aims to explicitly condition generation on knowledge bases by combining a

retrieval module and a language model [138, 66, 109, 141]. Peters et al. [160] propose instead

to align token representations from pre-trained language models with entity embeddings to

reason over a limited set of entities. Yamada et al. [232] explicitly denote entity tokens with a
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learned input embedding. Specific entity embeddings have also been learned jointly by using

knowledge graphs as auxiliary inputs during language model pre-training [197, 49, 244]. Another

line of work aims to model specific factual statements from knowledge bases [218] for reading

comprehension [129] and trivia QA [1]. We propose text-to-text pre-training on knowledge

recovery tasks to instill type-awareness. Our models learn type knowledge that transfers to the

type-adjacent downstream task of dialog state tracking and can infer unseen types.

Entity Representation Learning

Many SOTA systems for knowledge retrieval and QA rely on learned dense embeddings

of individual entities or types to perform multi-class classification [53, 85, 228]. Several recent

frameworks aim to learn entity knowledge during language model pre-training via entity masking

[198] or contrastive learning [163]. Systems for entity typing [36] and disambiguation [231]

also learn dense vector encodings that are later matched via dot-product scoring. Cao et al. [21]

aim to address some downsides of the above approaches—the linearly increasing space required

to store learned representations and difficulties in negative sampling—by casting the task as

generative language modeling: predict the name of an entity to be linked. We generalize this

approach from entity names (which appear verbatim) to include types, which require a more

nuanced understanding of a context.

3.3 A Generative Question Answering Approach for DST

We follow Gao et al. [54] in treating Dialog State Tracking as a reading comprehension

problem: at each turn of dialog, our model reads the dialog history and answers a fixed set of

queries about user requirements and preferences (slots), with predictions aggregated to form

the belief state. In our framework (Figure 3.3), we query for a given slot (e.g. Hotel Price

Range) by asking a natural language question [55]—“What is the price range of the hotel the user

prefers?". As our model’s predictive ability is based on its general understanding of language

and task-oriented conversation, we support zero-shot inference without the need to re-train the
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Figure 3.3. Based on a dialog history, a natural language questions are provided to our model to
query a user’s requirements and preferences (dialog state). We construct questions to resemble
colloquial human speech, in contrast to approaches that use templated questions [120].

model or extend a formal ontology. For example, if a model has not been trained on data from

the hotel domain, when presented with a hotel booking conversation we may nonetheless ask it a

question like “In what area is the user looking for a hotel?" and received a prediction for that

unseen requirement (Hotel Area).

While we conduct our experiments on English-language DST datasets, our approach is

applicable to state tracking in any language, provided a conversation history is available.

3.3.1 Problem Statement

We consider a conversation with 𝑇 turns of user 𝑢𝑡 and system utterances 𝑦𝑡: 𝐶 =

{𝑦1, 𝑢1, . . . 𝑦𝑇 , 𝑢𝑇 }. The belief state 𝐵𝑡 at turn 𝑡 comprises many tuples of slots 𝑠 ∈ 𝑆 and their

associated values 𝑣𝑠,𝑡 ∈ 𝑉𝑠, extracted from the conversation history 𝐶𝑡 = {𝑦1, 𝑢1, . . . , 𝑦𝑡 , 𝑢𝑡}. The

set of possible values 𝑉𝑠 can be arbitrarily large (e.g. possible hotel names), so we represent these

values as sequences of vocabulary tokens 𝑣𝑠,𝑡 = {𝑤1, 𝑤2, . . . , 𝑤𝑘 }, 𝑤𝑖 ∈ W. At inference time

we pose a natural language question 𝑠 = {𝑤1, . . . , 𝑤𝑛} and our model predicts an answer (slot

value 𝑣𝑠,𝑡) based on its understanding of the dialog history 𝐶𝑡 . To predict the belief state 𝐵𝑡 , our
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model independently answers |𝑆 | different questions (Figure 3.3). In zero-shot DST, the system

must predict values for slots outside of the initial ontology—these slot queries correspond to

arbitrary natural language questions 𝑠′ about entities and relationships in the conversation 𝐶𝑡 .

3.3.2 Generalizing to New Domains and Slots

Dialog State Tracking systems in real-world settings must scale to new users and services,

accommodating new slot values (e.g. a new movie release) as well as new domains and slot types

(e.g. a service update, or a new connected API). Existing methods require the developer to either

write a complete ontology of slots and allowed values or modify their model architecture to

add slot-specific prediction heads [25]. Span-based approaches [241, 250] can correctly predict

values that appear verbatim in a conversation but fail when a user paraphrases or mis-phrases a

value. They also fall back to treating open-valued slots as classification problems [241, 55]. We

approach DST as an ontology-free generative question answering task, as generative methods

[226, 99] have shown promise in few-shot and supervised DST settings.

While some approaches toward DST as QA learn a set of embeddings for each slot and/or

domain [54, 226, 99], this is not robust to unseen slots. We encode slots as natural language

questions—manually formulating one question per slot—allowing us to share a pre-trained

encoder for both dialog context and slot to leverage shared linguistic knowledge [55]. Thus, our

model is also agnostic to ontologies and can answer arbitrary English questions about the dialog

history. We treat DST via QA as a conditional language modeling task, and train our model

to predict the conditional likelihood of question (slot 𝑠) and answer (value 𝑣𝑠,𝑡) tokens given a

dialog context 𝐶𝑡 at a given turn 𝑡:

𝑃(𝑣𝑠,𝑡 , 𝑠 |𝐶𝑡) = 𝑃(𝑣𝑠,𝑡 |𝑠, 𝐶𝑡) ∗ 𝑃(𝑠 |𝐶𝑡)

At inference time, the model is given the dialog context alongside a question—[𝐶𝑡; 𝑠]—and

asked to predict the value 𝑣𝑠,𝑡 for that slot.
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Figure 3.4. Model architecture of GPT2-DST. We model a single sequence with: the dialog
history, a natural language slot query, and the slot value. Natural language questions for dialog
slots allow our model to generalize to new slots via its understanding of general language.

3.4 GPT2-DST Model

For our conditional language model, we use an auto-regressive Transformer [210] decoder

language model. This allows us to leverage pre-trained language models like GPT2 [168] and

common-sense world knowledge accrued through pre-training [161].

We use a BPE [185] tokenizer to convert input text into a sequence of tokens. These are

embedded in Rℎ and added to an Rℎ sinusoidal positional embedding. This input embedding

is processed by 𝑙 Transformer layers with hidden dimensionality ℎ, each of which applies

multi-headed attention with 𝑘 heads followed by a feed-forward layer with a softmax nonlinearity.

The final output hidden states are then projected into our vocabulary space of 50,257 sub-word

tokens. We initialize our model weights with DistilGPT2 [180], GPT2 [168], or GPT2-medium

with ℎ = 768, 768, 1024, 𝑙 = 6, 12, 24, and 𝑘 = 12, 12, 16 respectively.

As seen in Figure 3.4, our input sequence consists of a concatenation of dialog context 𝐶𝑡 ,

slot query 𝑠, and slot value 𝑣𝑠,𝑡: [𝐶𝑡; 𝑠; 𝑣𝑠,𝑡]. We pre-pend each utterance with a speaker token

[usr] or [sys] for a user or system speaker to allow our model to identify additional context

about each utterance. We pre-pend the slot query and value with question: and answer:
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respectively to distinguish slot queries from user-posed questions in the conversation. At training

time, we calculate a cross-entropy loss similar to encoder-decoder models by maximizing the log

likelihood of the slot query and value conditioned on the dialog context:

𝑃(𝑠, 𝑣𝑠,𝑡 |𝐶𝑡) =
𝑛∏
𝑖

𝑃(𝑥𝑖 |𝑥<𝑖, 𝐶𝑡)

where 𝑛 = | [𝑠; 𝑣𝑠,𝑡] |. We find through ablation experiments on our architecture that this loss

computation method out-performs a naïve language-modeling approach that maximizes log

likelihood of the full concatenated sequence [𝐶𝑡; 𝑠; 𝑣𝑠,𝑡] via the factorized joint distribution

[159, 77]:

𝑃(𝑥) =
𝑛∏
𝑖

𝑃(𝑥𝑖 |𝑥<𝑖)

This allows for flexibility in learned representations for dialog context while regularizing slot

query hidden states.

3.5 Dialog Data

We perform our experiments onMultiWOZ [17], which contains over 10K single- and

multi-domain task-oriented dialogs written by crowd-workers. We use the 2.1 version, with

corrected and standardized annotations from Eric et al. [42]. We follow Wu et al. [226] in

lower-casing all dialogs and removing dialogs from training-only domains (Police and Hospital).

The final dataset contains 9,906 conversations from 5 domains (Restaurant, Hotel, Attraction,

Train, Taxi) covering 30 domain-slot pairs. Each dialog contains on average 7 user / system turns.

We also experiment with augmenting our training dataset in zero-shot settings with

observations drawn from the DSTC8 [93] dataset,1 which contains 16,152 dialogs from 45

domains. DSTC8 was created via template-based dialog models provided with service APIs, and

1https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
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Table 3.1. Dataset statistics for MultiWOZ 2.1 and DSTC8: number of dialogs in each split,
number of domains, and slots with slot category breakdowns.

Slots

Train Dev Test Domains Open Numeric Temporal Categorical Total

MultiWOZ 7.9 K 1 K 1 K 5 9 5 5 11 30
DSTC8 16.1 K 2.5 K 4.2 K 19 59 12 10 43 124

then edited by crowd-workers [186]. We normalize domains and slots corresponding to the same

domain (e.g. Bus_1, Bus_2) for a total of 19 domains and 124 slot types in DSTC8. We further

manually annotate each dataset with slot value types: open-valued (e.g. Hotel Name), numeric

(e.g. Restaurant Guests), temporal (e.g. Taxi LeaveAt), and categorical (e.g. Attraction Type).

Dataset statistics are shown in Table 3.1.

3.6 Experiments

We measure DST performance via Joint Goal Accuracy (JGA): the proportion of turns

with all belief slots predicted correctly, including those not present. In Section 3.6.1, we evaluate

our model on fully supervised DST, in which all domains and slots are known at training time. In

Section 3.6.2, we investigate zero-shot domain adaptation in which the model is evaluated on

conversations from an unseen domain with previously unseen slots. We then explore how our

framework seamlessly accommodates teaching a model to predict slot carry-over (Section 3.6.4)

and transfer learning with significantly more diverse domains and slot types (Section 3.6.5).

To measure zero-shot JGA, we follow Campagna et al. [20] and only consider slots specific to

the held-out domain. We focus our analysis on the zero-shot setting, as our goal is to build

DST systems that can easily and effectively generalize to new domains and services. We train

all models to convergence with a maximum of 10 epochs on Nvidia V100 GPUs, using the

Lamb optimizer [240] with a base learning rate of 2e-5. All predictions are made using greedy

decoding.
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Table 3.2. Supervised DST performance on MultiWOZ 2.1 of our model (underlined) compared
to (a) prior methods capable of zero-shot inference (*SUMBT and STARC require access to
slot-value ontologies at inference time), with models using natural language questions (NLQ)
annotated; and (b) SOTA models for supervised DST that are incapable of zero-shot inference.

(a)Methods capable of zero-shot DST

Model Type JGA NLQ

TRADE [226] G 45.60
SUMBT [103]* C 46.70
STARC [55]* C+S 49.48 Y
MA-DST [99] G 51.88
GPT2-DST G 52.58 Y

(b) SOTA methods for supervised DST

Model Type JGA Extra Supervision

DSTQA C+S 51.17 Knowledge Graph
DS-DST C+S 51.21
GPT2-DST G 52.58
SOM-DST G 53.68 Previous Dialog State
SST C 55.23 Schema
TripPy S 55.30 Previous Dialog Actions
SimpleToD G 55.72 Actions (Training)

Table 3.3. Ablation study of our framework, reporting supervised JGA on MultiWOZ 2.1.

Base Model Approach Supervised JGA (%) # Params

DistilGPT Language Modeling 36.35 82 M
Conditional Language Modeling (no Pre-training) 39.34
Conditional Language Modeling 49.55
Conditional Language Modeling + Question 50.83

GPT2 Conditional Language Modeling + Question 51.02 124 M

GPT2-medium Conditional Language Modeling + Question 52.58 355 M

3.6.1 Supervised DST

We first evaluate on the commonly benchmarked supervised DST task to demonstrate

performance competitive with state-of-the-art. In this setting we compare our approach against

prior methods capable of zero-shot inference in Table 3.2a—TRADE, STARC, SUMBT, and

MA-DST—and those incapable of doing so in Table 3.2b, including DSTQA [250], DS-DST

[241], SOM-DST [94], SST [25], TripPy [70], and SimpleToD [77]. Our model outperforms all

prior models that support zero-shot generalization and is competitive with methods that focus

solely on supervised DST—most of which require extra supervision at training and inference

time, including dialog actions and prior dialog states. We distinguish models by their prediction

type as (C)lassification-, (S)pan extraction-, and (G)eneration-based methods.
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As seen in Table 3.3, our formulation of DST as a generative QA task benefits significantly

from the usage of a conditional decoder-style model. A standard auto-regressive language

modeling formulation (Language Modeling) with loss computed over the entire input sequence

achieves 13% lower JGA compared to computing cross entropy loss only over slot value tokens

(Conditional Language Modeling). Pre-training is also crucial—we see a 10-point drop in

JGA when randomly initializing model weights (no Pre-training) compared to initializing

from pre-trained DistilGPT2 weights. We also compare two other sizes of our models: GPT2-

based—comparable in size to TRADE’s [226] ~100M parameters— and GPT2-medium-based—

comparable in size to STARC’s [55] 355M parameters. We find that scaling the size of our model

results in modest improvements in supervised JGA. We hypothesize that extending our loss to

cover both slot query and value tokens (+Question) helps regularize the hidden representations

of question tokens, and we achieve a 1.3% improvement in JGA.

3.6.2 Zero-Shot DST

Our primary focus lies in the zero-shot domain adaptation setting, where conversations

and target slots at inference time come from unseen domains. We use a leave-one-out setup,

training our models on four domains from MultiWOZ and evaluating on the held-out domain.

Our model must understand a wide variety of possible questions about unseen conversations

to generalize well. We compare our model against strong baseline models for zero-shot DST:

TRADE, SUMBT, and MA-DST; Table 3.4 contains results from our models alongside baseline

results reported by Kumar et al. [99] and Campagna et al. [20]. These models represent slots

as domain-slot tuples: TRADE learns a separate embedding for each domain and word in slot

names, while SUMBT and MA-DST encode domain-slot tuples via BERT [38] and an RNN

encoder, respectively.

Our GPT2-medium based model achieves state-of-the-art zero-shot performance on all

five domains, and by a significant (5-10%) margin on the Restaurant, Hotel, Attraction, and Train

domains. While increased model size modestly impacts supervised DST performance (Table 3.3),
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Table 3.4. Zero-shot domain adaptation JGA (%) on MultiWOZ 2.1 test set for recent works and
our models with question loss, on the Restaurant, Hotel, Attraction, Train, and Taxi domains.
Previous state-of-the-art results are underlined, with new best bolded.

Restaurant Hotel Attraction Train Taxi

TRADE 12.59 14.20 20.06 22.39 59.21
MA-DST 13.56 16.28 22.46 22.76 59.27
SUMBT 16.50 19.80 22.60 22.50 59.50

GPT2-DST (small) 21.05 18.54 23.67 24.34 59.10
GPT2-DST 26.17 24.41 31.31 29.07 59.61

larger models perform significantly better in a zero-shot setting with average absolute gains of

4.8% and relative gains of 22% in JGA across domains. Such improvements are consistent with

findings from Brown et al. [16] that up-sizing language models improves zero-shot performance

across various tasks and Petroni et al. [161], who observe that larger pre-trained models can

retain more common-sense and world knowledge from their pre-training corpus—which may

help our model understand queries for unseen domains and slots.

Effect of Natural Language Questions

Prior work that frames DST as QA typically represents the slot query as a concatenation

(tuple) of domain and slot name. Zhang et al. [241] explore the impact of three different slot

representations—domain-slot tuples, short slot descriptions, and full questions—on a hybrid

classification-extraction model for DST, and find little difference in performance. However, we

find that full questions work much better than domain-slot tuples for our generative framework,

especially in zero-shot DST. We hypothesize that natural language questions—structurally similar

to dialog utterances and pre-training sentences—allow our model to best leverage its linguistic

knowledge with minimal friction when jointly encoding the dialog history, slot query, and value.

Wu et al. [226] find that zero-shot generalization in models that represent slots as tuples

is primarily due to shared slot names between domains (e.g. Taxi and Train ‘leaveAt’). In a

real-world setting a newly added dialog service is unlikely to share slot names verbatim with

existing services. To fairly compare tuples and natural language questions under our framework,
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Table 3.5. Example of different classes of DST errors, and the proportion of errors they make up
across the four slot categories—Open, (Num)erical, (Temp)oral, and (Cat)egorical—for all five
domains in a zero-shot setting. Latest (target) turn is bolded.

USER My friend told me about Carolina Bed and Breakfast. Do you know about it?
SYS It’s a 4 star guesthouse. What would you like to know about it?
USER Can you give me the postcode? And, do they have internet?
SYS The postcode is cb13nx; they have internet.
USER Thanks. Any boat attractions in the west?
SYS Nothing in west. Closest boat is the Cambridge Punter in centre. Too far?
USER Yes, it is. How about a museum?

Error Modality Slot Gold Prediction Open Num. Temp. Cat.

Spurious (Attraction, Name) n/a cambridge punter 8.4 22.3 47.7 16.0
Ignored (Hotel, Internet) yes n/a 65.3 53.5 19.9 76.8
Wrong Value (Attraction, Type) museum boat 26.3 24.2 32.4 7.2

we perform zero-shot experiments using each representation. For tuple-based questions, our

model takes as slot query a synonym of the slot name (e.g. Taxi ‘leaveAt’→ ‘Pick Up Time’)

instead of a full question (e.g. ‘What time does the user want the taxi to pick them up¿). Full

question models achieved 6% higher per-domain JGA compared to slot-tuple models, supporting

the notion that slot-tuple models memorize slot names rather than understanding their meaning

and thus do not generalize well in real-world settings. Using full questions, our model (Table 3.4)

achieves state-of-the-art performance in zero-shot settings.

3.6.3 Error Modalities

To analyze our model, we follow Gao et al. [55] and categorize DST errors in three

modalities: 1) the model predicts a spurious value for an irrelevant slot; 2) the model ignores a

relevant slot; and 3) the model correctly infers the presence of a slot but predicts a wrong value.

Table 3.5 shows examples of each type of error for a sample conversation, and what proportion

of errors they make up in each slot category for our GPT2-DST model in a zero-shot setting.

Temporal slots are least likely to be ignored by our model, as verbatim HH:MM values are easily

identifiable in a conversation. However, it is difficult to distinguish between closely related unseen

temporal slots like ‘leaveAt’ and ‘arriveBy’. Values for categorical, numeric, and open-valued
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slots on the other hand can comprise common (non-slot) phrases used in conversation, and thus it

is easy for our model to ignore such slot references.

We also examine the source of dialog slots: users explicitly express the majority (79.5%)

of slot values, while a minority are either derived via user reactions to system suggestions (9.7%)

or implicitly valued (10.8%)—not present verbatim in a conversation. However, our errors

are distributed evenly between user, system, and implicit sourced slots—suggesting that it is

challenging for our model to track dialog states that are updated reactively via user feedback. We

thus see a future opportunity to improve DST models by emphasizing multi-hop reasoning and

common-sense inference.

3.6.4 Predicting Carried Over Slots

Long-range dependencies and slot values carried over from early turns are particularly

important to model for accurate DST in long conversations [99]. We observe this in the zero-shot

setting: our model is able to predict all slots accurately for 61% of conversation first-turns,

dropping to 46% after one turn, and 5.7% after seven turns (the average conversation duration).

We implement an oracle module to discard predictions when a dialog state does not need

updating, obtaining an upper bound for DST improvements due to carry-over prediction. With

this oracle, we see an average 5-point improvement in JGA across domain, indicating that

carry-over prediction can greatly benefit our model. State-of-the-art models for fully supervised

DST often rely on explicitly processing previous dialog states—via slot-value graphs [250, 25]

or as a separate input to the model at each turn [70, 94]. In our framework we can target slot

carry-over by training a model to predict a carried over token in place of the true slot value

whenever a slot value does not need updating at the current turn (+ Carryover). At inference

time, we replace predicted carry-over tokens with the slot’s last predicted value.

Our carry-over implementation improved JGA for all domains (Table 3.6a) by an average

of 3.14%, and improved JGA across all context lengths—with the largest improvements (+7%)

at the second and third turn of a conversation (Figure 3.6b). The carried over token allows
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Table 3.6. Comparing previous state of the art, GPT2-DST, and the additive effect of carry-over
prediction and transfer learning on per-domain zero-shot DST JGA (a). These two modifications
to GPT2-DST both improve generalization in both small and medium models. In (b) we show
the per-turn JGA of GPT2-DST with and without carry-over prediction.

(a) Zero-shot DST JGA

R H A T X

Prior SOTA 16.5 19.8 22.6 22.8 59.5

GPT2-DST (s) 21.1 18.5 23.7 24.3 59.1
+ Carryover 24.0 19.9 28.5 30.8 59.3
+ DSTC8 24.7 22.9 34.3 38.6 59.7

GPT2-DST 26.2 24.4 31.3 29.1 59.7
+ CO, DSTC8 27.7 24.9 42.4 41.1 60.3

(b) Per-turn JGA

our model to hedge against low confidence slots, falling back to predictions from previous turns

where the target slot may be directly mentioned. This helps reduce the wrong value error rate by

an average of 31% across each domain. Our model can also propagate null values with carry-over,

reducing spurious predictions by an average of 36% across domains. However, we also observe

our carry-over model propagating 78% of its errors from previous turns, suggesting that further

improvements can result via accurately predicting slot updates.

3.6.5 Transfer Learning for Generalization

Our framework is ontology-agnostic and thus easily supports transfer learning without

modifying the architecture by simply writing natural language questions for additional slots.

Gao et al. [55] found that intermediate fine-tuning of RoBERTa-Large [126] on passage-based

QA tasks [50] improved zero-shot DST performance. In preliminary experiments, we found no

significant impact from intermediate fine-tuning on the SQuAD v2.0 [171] passage-based QA

dataset. However, we observe significant improvements when training with joint, non-curriculum

learning [144, 170]—augmenting our training data with an equal number of examples sampled

from DSTC8, taking care to remove data from the held-out domain in both MultiWOZ and

DSTC8.
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Our framework allows for easy joint optimization with carry-over and transfer learning:

by training new models on MultiWOZ 2.1 augmented with DSTC8 (+ DSTC8) we gain a further

average 3.5-point improvement in per-domain JGA (Table 3.6a). On average, our model makes

29% fewer spurious errors, and 6.9% fewer errors in open-valued slots, suggesting that our model

scales well with additional training data with semantically distinct slot types and values. Our

model also makes 9.7% fewer errors on categorical slots and 63% fewer mistakes where it assigns

the value of one categorical slot to another, despite being unable to observe the set of possible

categorical options—suggesting that exposure to more diverse categorical slots allows our model

to better understand and distinguish between such slots. While temporal slots comprise only 17%

of MultiWOZ and 10% of DSTC8 slots, these additional examples seem to help our model better

disambiguate temporal references and make 32% fewer errors in such slots.

By applying both carry-over and transfer learning to our largest model, we observe further

improvements in zero-shot JGA for all domains—averaging 5.1 points better than GPT2-DST,

for an average gain of 11% JGA over previous state-of-the-art across domains (Table 3.6a).

3.7 Qualitative Analysis

We manually reviewed 300 errors made by our GPT2-medium CLMQ model in the

zero-shot setting—annotating 20 errors from each modality (spurious, ignored, wrong value)

from each domain with the gold label quality and perceived cause of error totaling 300 annotated

examples. As widely observed in recent DST work [250, 99], a significant proportion of DST

errors on MultiWOZ are unavoidable—caused by annotation errors. While version 2.1 corrected

some of these, annotation errors and inconsistencies remain responsible for 30% of sampled

errors—in particular, in 10% of errors the original annotator did not record reactive preferences

while in 5% of errors the original annotator did. These inconsistencies can hurt our model’s

ability to infer reactive and implied requirements and preferences.

We are also particularly interested in slot transfers—when our model mistakenly predicts
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one slot’s value for a different slot, comprising 36% of our manually reviewed errors. In the Taxi

and Hotel domains, our model transfers slots from the same domain over 75% of the time, with

most swaps occurs between same-category slots (e.g. temporal slots like Taxi ‘LeaveAt’ and

‘ArriveBy’). Slots in these domains are closely semantically related, with values that can fit any

slot of that category (e.g. 13:10 vs. 15:15). While a human can easily infer that the earlier of

two times must be departure and the later arrival, our model has no inherent understanding of

temporal mechanics or numeracy [213]. In future work, we will explore learning such knowledge

directly via hierarchical softmax output distributions to distinguish between output modalities

[195], and fine-tuning our model with contrastive losses to learn to rank numerals and times [76].

For Restaurant, Attraction, and Train, our model tends to swap slot values with those from

other domains in the conversation. This is often due to semantically similar slots whose values, at

first glance, may not be obviously identifiable as such (e.g. ‘Bridge’ or ‘The Place’). Kumar et al.

[99] similarly observe a particularly high incidence of slot transfers between different-domain

‘Name’ slots. Other such slots include price ranges and numbers of guests. We have seen that

data augmentation with DSTC8 can improve our model’s ability to disambiguate such slots—this

suggests that we could further improve our model by exposing it to in-domain, conversational

reading comprehension data.

While no such dataset currently exists, in future work we aim to explore using question

generation [41] and paraphrasing [205] models to perform in-domain data augmentation, creating

reading comprehension questions for task-oriented dialogs that targeting entities and relations

not covered by an ontology. We also wish to explore methods for generating general reading

comprehension questions for out-of-domain conversations [187] to improve our model’s domain

adaptation ability.
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Table 3.7. Unique documents/entities/types and number of mentions in each split of WikiWiki.
Test (New Entities) comprises entities not seen in the training split.

Documents Uq. Entities Uq. Types # Mentions Type References

Training 10 M 2.2 M 40.6 K 38.7 M 43.8 M
Test 5.0 K 14.1 K 4.0 K 19.3 K 21.5 K
Test (New Entities) 5.0 K 6.0 K 1.2 K 6.4 K 6.5 K

3.8 Type-Centric Multitask Modeling

We observed in Section 3.6.1 that the knowledge accrued from language model pre-

training was crucial in enabling zero-shot generalization in DST. Inferring slot values for unseen

slots is an analogous task to identifying entities and their types or categorizations. In the second

part of this chapter, we will thus explore a method to instill type-centric knowledge in language

models, demonstrating that models trained under our pre-training framework can achieve even

greater gains in zero-shot DST performance.

3.8.1 WikiWiki Corpus

To train an entity- and type-aware language model, we build theWikiWiki dataset by

combining Wikipedia articles with the Wikidata KG [212]. Wikipedia articles have been used to

enrich corpora for dialog [39], coreference resolution [192], and QA [123]. KGs have been used

for entity typing and relation extraction [177]. Yao et al. [239] use Wikipedia pages as context

for relation triples mined from Wikidata.

We link articles, entities, and types as in Figure 3.2: like Wu et al. [228], we take

Wikipedia hyperlinks as links between entities (target page) and their mentions (link text); we

link pages to Wikidata nodes via ID; and for each node we extract types 𝑇 from Wikidata where

𝑡 ∈ 𝑇 is an instance / subclass of the node (discarding entities with no types).2 To address

sparsity of hyperlinks, we follow Yao et al. [239] and use spaCy to identify additional entities.

2All humans on Wikidata are an instance of ‘human’; we thus use the ‘occupation’ relation to determine their
types.
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We sample 10M articles for training, with two disjoint 5K-article splits for evaluation, containing

seen and unseen (New Ent) entities respectively (Table 3.7). The ontology of Wikidata types

forms a directed acyclic graph with 41K type nodes applying to 2.2M entities. Previous entity

typing datasets rely on annotations from small groups of crowd-workers and include a small

type ontology in the hundreds [121] and/or sacrifice label accuracy [29]. We instead rely on the

cumulative, cross-checked annotations from tens of thousands of active Wikidata users.

Entities inWikidata on average are assigned 1.28 types; for entities with multiple types, not

all types are necessarily relevant to a context. For example, take the following passage: “Obama

was elected to the Illinois Senate in 1996, succeeding Democratic State Senator Alice Palmer

from Illinois’s 13th District, which, at that time, spanned Chicago South Side neighborhoods

from Hyde Park–Kenwood south to South Shore and west to Chicago Lawn.”

WhileWikidata entities may have 5+ types, many are not directly relevant to a context. For

example, while Barack Obama has types including Politician, Jurist, Political Writer, Community

Organizer, and Podcaster, the latter is not relevant to the context. To teach our models to infer

types relevant to the context at hand, in pre-training data we take only types that are shared

between Barack Obama and other entities in the document (e.g. Alice Palmer—Politician). We

have made the WikiWiki dataset publicly available on Github.3

3.8.2 Pre-training Tasks

To instill type-centric knowledge fromWikiWiki, we train our models to answer four types

of knowledge-based questions conditioned on a passage from Wikipedia (examples in Table 3.8).

In entity/type discovery, the model is tasked to recover all surface forms (mentions) that reference

an entity, along with their types—this is analogous to simultaneous entity recognition and typing.

Entity typing consists of assigning types to an entity of interest. For entity recognition, we follow

Cao et al. [21] by training our model to respond with an entity’s full name and type when queried

with a surface form. In slot filling we ask our model to return all entities mentioned in the passage

3https://github.com/amazon-research/wikiwiki-dataset/
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Table 3.8. In pre-training, the model reads a Wikipedia article and answers questions from four
tasks involving entities and types. It must generate answers containing terms not found verbatim
in the text. Surface forms (mentions) in green, entities in red, and types in blue.

Context: These included carbon dioxide by burning diamond, and mercuric oxide by heating
mercury. This type of experiment contributed to the discovery of “dephlogisticated air” by
Priestley, which became better known as oxygen, following Lavoisier’s investigations.

Entity/Type Discovery (20%): List all concepts and types mentioned here.
Answer: Priestley (chemist), Lavoisier (chemist), mercuric oxide (chemical compound), mercury
(chemical element), and dephlogisticated air (superseded scientific theory)

Entity Typing (30%): What is dephlogisticated air an example of?
Answer: superseded scientific theory

Entity Recognition (20%): What does Priestley refer to?
Answer: Joseph Priestley (chemist)

Slot Filling (30%): Which chemists are mentioned here?
Answer: Joseph Priestley and Antoine Lavoisier

belonging to a certain type. For multi-type entities, we use a subset of relevant types given other

entities in the context. We treat QA as a universal format for diverse NLU tasks [144], and adopt

the framework of Raffel et al. [170] to treat each of our tasks as text-to-text generative modeling.

We create 50M questions for pre-training.

3.8.3 Type-Centric Model Architecture

We use an encoder-decoder [199] model initialized from BART—a Transformer [210]

language model pre-trained via de-noising autoencoding [108]. Our model generates an answer

𝑎 as a text sequence given a document 𝐷 of length 𝑡𝑑 and question 𝑞. The document is encoded

via the encoder—consisting of 𝑙 Transformer layers of hidden dimensionality ℎ, each applying

16-headed self-attention—to produce 𝑧 B Enc(𝐷) ∈ R𝑡𝑑×ℎ.

We train the model to perform QA via conditional language modeling. Instead of

concatenating the question with the context in encoder input [120], the decoder generates a

sequence consisting of the question and answer: 𝑥 = [𝑞; 𝑎]. We can thus cache the document

encoding at inference to answer multiple questions. At training time we perform next-token

prediction, calculating cross-entropy loss by maximizing the log likelihood of the question and
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answer conditioned on the document:

𝑃(𝑞, 𝑎 |𝐷) =
𝑇∏
𝑡

𝑃(𝑥𝑡 |𝑥<𝑡 , 𝐷)

We assess the impact of our pre-training on Base (𝑙=12, ℎ=768) and Large (𝑙=24, ℎ=1024)

models.

3.9 Type-Aware Model Experiments

We demonstrate the effectiveness of our pre-training on two tasks that require type

understanding: fine-grained entity typing, and zero-shot domain generalization in dialog state

tracking (DST).

3.9.1 Fine-Grained Entity Typing

Ultra-Fine Entity Typing

Our method improves generalization in type-adjacent tasks; we next aim to infer entity

types in unseen documents. In preliminary experiments on the UltraFine dataset with 11K types

[29], our models under-perform SOTA (24.0 vs. 49.1 F1). Manual inspection of gold labels

reveals two main causes for error: 1) inaccurate labels—e.g. “rare plants” as type “bird”; and 2)

inconsistent usage of gold labels: different spellings (organization / organisation) or synonyms

(car / automobile) are treated as distinct and often do not collocate. This suggests that label noise

in UltraFine may make it unsuitable for assessing granular, hierarchical type knowledge.

We examine these annotation errors via human evaluation, presenting crowd-workers

with 200 contexts from UltraFine (10% of the test set). Only 68% of gold type labels were

judged accurate, and 21% inaccurate. We compare gold labels against zero-shot predictions from

our model in a second trial with 200 pairs. Judges preferred our predictions 51% of the time

compared to 29% for gold. We observed moderate inter-annotator agreement of 𝜅=0.4044 [51].

This suggests that our models can accurately infer types, but current benchmarks do not suitably
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Table 3.9. P/R/F1 of pred. vs. gold types on WikiWiki Test (seen) and Test New Ent (unseen
entities) splits.

Evaluation Set Documents Entities Types Model Precision Recall F1 Score

Seen 5.0 K 14.1 K 4.0 K RoBERTa 62.35 59.38 60.82
Ours 78.13 72.39 75.15

Unseen 5.0 K 6.0 K 1.2 K RoBERTa 48.88 47.96 48.41
Ours 66.65 63.71 65.14

measure typing quality.

Entity Typing on WikiWiki

We turn to WikiWiki to evaluate fine-grained entity typing, leveraging type labels verified

by active users of Wikidata. To verify the accuracy of ground-truth type labels in the WikiWiki

test set, we asked human evaluators to judge the accuracy of 443 type labels from 200 randomly

sampled contexts. We confirm that WikiWiki is a high-quality benchmark for entity typing, with

85% type precision assessed by human judges (compared to 68% for UltraFine).

We found that multi-label classifiers built on RoBERTa [126] that perform well on

UltraFine require significant hyper-parameter tuning to output non-trivial predictions to classify

our large and sparse (41K) type ontology. To perform entity typing with our model, we generate

comma-delimited text sequences of types [235]. This allows our models to infer and generate

novel types while classifiers remain restricted to the training ontology. We confirm that our

pre-training helps models better infer types for both seen (+14.3 F1) and unseen entities (+16.7

F1) in new contexts compared to classifiers (Table 3.9).

To investigate if our model can discover novel types, we perform another human

evaluation over 557 such predictions from 300 contexts, with inter-annotator agreement of

𝜅=0.4086. Our model accurately extrapolates its type knowledge beyond the training ontology—

we observe 73.3% precision when inferring new types (compared to 74.5% precision for seen

types), demonstrating that our pre-training enables models to reason about types beyond simple

memorization. Our model discovers complex and specific scientific types, correctly proposing
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Table 3.10. Zero-shot domain adaptation JGA (%) on MultiWOZ 2.1 test set on the Restaurant,
Hotel, Attraction, Train, and Taxi domains. We achieve SOTA results on all domains by significant
margins, with an average absolute improvement of 9.7 points and relative improvement of 30.6%
across domains.

# Params Restaurant Hotel Attraction Train Taxi

TRADE 90M 12.6 14.2 20.1 22.4 59.2
MA-DST 90M 13.6 16.3 22.5 22.8 59.3
SUMBT 355M 16.5 19.8 22.6 22.5 59.5
GPT2-DST 355M 26.2 24.4 31.3 29.1 59.6

BART 139M 27.9 31.9 38.4 34.3 70.5
Ours (Base) 139M 40.4 36.5 39.8 36.1 70.9
Ours (Large) 406M 46.7 38.8 49.8 37.7 72.1

that anorthosite (an aluminum silicate rock) is a metallurgical rock4 and that speckled tortoises

are monotrophs.5 This reflects the robust taxonomy of types in scientific disciplines. Our model

also proposes granular categories of events, and is judged to correctly type the 2015 Tour of

Taiwan as an instance of the Tour de Taiwan cycling race. In the future, we seek methods to

automatically assess the factual accuracy of new types.

3.10 Zero-Shot DST

As discussed in Section 3.3, in many real-world settings, DST models must be able to

predict new slot values (i.e. new entities that are not present in the training corpus) and new slot

types (e.g. requirements for applications in new domains). We use the same question answering

setup for our type-aware model as for GPT2-DST. Our method is complementary to systems for

creating synthetic in-domain dialogs [95].

As seen in Table 3.10, our type-centric pre-training allows a model to answer questions

about unseen slots. BART-base itself achieves SOTA JGA across all domains, and our pre-training

significantly increases the gain to 10.6% absolute / 34.8% relative JGA—despite only using

one-third of the parameters. Our Large model achieves 14.9% absolute and 49.4% relative gain in

4rocks containing metallic compounds and properties
5has diet comprising one type of food [74]
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Figure 3.5. Relative gain (%) in JGA for models trained on WikiWiki vs standard BART
pre-training. Our method helps more in low-data regimes and for smaller models.

JGA compared to previous SOTA. The most significant gains come in the Hotel and Restaurant

domains, which contain the most categorical slots that resemble types (e.g. cuisine, hotel type).

In Figure 3.5 we compare our models against same-size BART models at different levels

of training data availability to demonstrate the additive utility of our method. Our method is

particularly helpful with less fine-tuning data (low-data regimes), with average gains of 39% for

small models and 4.8% for large models at 20% data availability. Gains are magnified for smaller

models, affirming that our method can effectively instill type knowledge in lightweight language

models.

3.11 Conclusion

This chapter proposes a conditional language modeling approach to multi-domain DST

posed as a generative question answering task. By leveraging natural language questions as state

queries, our model can generalize to unseen domains, slots, and values via its understanding of

language. Our model achieves state-of-the-art zero-shot results on the MultiWOZ 2.1 dataset with

average per-domain absolute improvements of 5.9% joint accuracy. We also demonstrate that our

framework is easily extensible to support transfer learning and learning slot carry-over. We next

1) propose a text-to-text pre-training scheme to instill type knowledge in language models via QA
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and 2) release theWikiWiki dataset built from Wikipedia articles and the Wikidata KG. We

show that WikiWiki is larger-scale and more accurate than existing fine-grained type recognition

datasets. We demonstrate that our type-centric pre-training framework allows us to train language

models that can better generalize to unseen domains, entities, and types—which in turn lead to

improved model performance on downstream tasks like dialog state tracking (achieving SOTA

results on zero-shot DST with average gains of 14.9% joint accuracy above our previous best

model). Our models can extrapolate type knowledge and infer novel types that humans judge

to be useful and precise. As the body of human knowledge grows, we see an opportunity to

use life-long learning [157] on news and publications to expand and model the taxonomy of

knowledge. This would permit even more effective generalization for preference elicitation and

personalization for open-domain assistive agents.
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Chapter 4

Transcript-Free Conversational
Recommendation with Rationales

4.1 Introduction

Traditional recommender systems often give static suggestions, affording users no way to

meaningfully express their preferences and feedback. Conversational recommendation allows

users to interact with agents and suggestions, increasing their willingness to trust and accept

recommendations [164]. Techniques for conversational recommendation are based on the iterative

paradigm of conversation: how an agent can explain their suggestions and how users can give

feedback. Existing approaches for conversational recommendation are either unable to explain

their suggestions, cannot handle multiple rounds of dialog, or rely on expensive conversational

transcripts to train. In this chapter, our goal is to build a simple yet effective transcript-free

framework that can train conversational recommendation agents that can 1) explain their rationales

for recommendations, 2) incorporate user feedback to adapt its behavior to users’ needs, and 3)

effectively improve recommendation quality over multiple rounds of conversation.

Recent work has explored conversational recommendation through dialog agents trained

to ask the user questions in free-form dialog [220]. Such models require large training corpora

comprising transcripts from crowd-sourced recommendation games [83]. To create high-quality

training data, crowd-workers must be knowledgeable about many items in the target domain—this

expertise requirement limits data collection to a few common domains like movies. It is thus
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Figure 4.1. In our conversational recommendation workflow, the system scores candidates and
generates a justification for the top item. If the user critiques a rationale, the system uses the
critique to update the latent user representation.

difficult to scale dialog-based recommenders to domains where users have specific preferences

about subjective rationales but no dialog transcripts exist (e.g. food and literature).

We address this challenge of data scarcity by proposing a framework for training

conversational recommender systems based on conversational critiquing and self-supervised

bot-play. Our approach reflects an realistic interactive paradigm where the agent suggests items

and explains their rationale, while the user specifies their preferences via specific feedback to

guide the next turn’s suggestions [249]. Our framework does not rely on supervised dialog

examples and can be applied to any setting where product reviews or opinionated text can be

harvested.

We propose a framework comprising two parts: First, we learn to jointly recommend items

and generate justifications based on subjective rationales, leveraging ideas from conversational

critiquing systems [227] trained via next-item recommendation. We then fine-tune our model for

multi-turn recommendation via multiple turns of bot-play in a recommendation game based on

natural-text product reviews and simulated critiques.

Our framework is model-agnostic—we apply our method to two different underlying

recommendation architectures [182, 175] of differing sizes and evaluate our models on three large

real-world recommendation datasets with user reviews but no dialog transcripts. Our method can

provide more useful explanations and better adapts to user feedback compared to state-of-the-art

(SOTA) conversational recommender systems—users interacting with our rationales reach their

goal items faster and with greater success. We conduct a study with real users, showing that our
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models can effectively help users find desired items in real time, even in a cold-start setting.

We summarize our main contributions as follows: 1) We present a framework for training

conversational recommender systems using bot-play on historical user reviews, without the need

for large collections of human dialogs; 2)We apply our framework to two popular recommendation

models (BPR-Bot and PLRec-Bot), with each showing superior or competitive performance

in comparison to SOTA recommendation and critiquing methods; 3) We demonstrate through

human evaluation and user studies that models trained with our bot-play framework are more

useful, informative, knowledgeable, and adaptive compared to SOTA baselines.

4.2 Related Work

4.2.1 Justifying Recommendations

Users prefer recommendations that they perceive to be transparent or justified [193]. Some

early recommender systems presented the same attributes of suggested items to all users [211].

Another line of work attempts to generate natural language explanations of recommendations.

McAuley et al. [142] mine key attributes from textual reviews via topic extraction. These

attributes can be expanded into explanatory sentences via template-filling [246] or recurrent

language models [152]. In this chapter, we allow the user to provide feedback about specific

rationales mentioned across natural language product reviews in large recommendation datasets.

4.2.2 Conversational Critiquing

Critiquing systems allow users to incrementally construct preferences, mimicking how

humans refine their preferences based on conversation context [206]. Early critiquing methods

treated user feedback as hard constraints to shrink the search space [18]. Wu et al. [227] introduced

a critiquing model with justifications comprising natural language attributes mined from user

reviews—with which users can then interact. Antognini et al. [4] provide a single-sentence

explanation alongside a set of rationales, requiring users to interact only with the rationale set. Luo
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Table 4.1. Critiquing systems (top) are not equipped for multi-turn interactions. Q & A
systems (middle) ask the user to build a list of search criteria but do not provide rationales for
recommended items. Dialog agents (bottom) learn multi-turn behavior via large corpora of
domain-specific transcripts. Our framework allows us to train conversational recommenders
without costly transcript data.

Paradigm Model Justifies Suggestions Multi-Turn Conversations Transcript-Free

Critiquing
LLC [132] % % "

CE-VAE [133] " % "

M&M VAE [3] " % "

Q & A
SAUR [247] % " "

EAR [104] % " "

SCPR [105] % " "

Dialog
Agents

Li et al. [113] % " %

Kang et al. [83] " " %

Zhou et al. [249] " " %

Ours " " "

et al. [133] use a variational auto-encoder (VAE) [97] for joint recommendation and justification,

learning a bi-directional mapping function between latent user and rationale representations.

Current critiquing techniques are either trained only for next-item recommendation, or to handle

a single turn of critiquing [3], and struggle to incorporate feedback in multi-turn settings. We

adopt techniques for encoding user feedback from critiquing systems [132], but we introduce

a multi-step, model-agnostic bot-play method to explicitly train our models for multi-turn

conversational recommendation.

4.2.3 Dialog Agents for Recommendation

We view recommenders as domain experts who can elicit preferences from human

customers and suggest appropriate items over the course of a session [19]. A recent line of work

formulates conversational recommendation as goal-oriented dialog: at each turn, the user is

either a) asked if they prefer a specified attribute; or b) recommended an item [30, 247]. Other

question-answering models use reinforcement learning to dialog policies for when to ask users
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(a)Model Architecture (b) Latent Critiquing Process

Figure 4.2. (a) Given a user, items, and rationale critique vector, our model encodes the critique
𝑀RE(𝑐𝑡𝑢) and fuses it with the user embedding 𝛾MF𝑢 via critiquing function 𝑓crit. The fused user
(𝛾𝑢) and item (𝛾𝑖) representations are then used to predict the justification and score items. An
example is shown in (b), where user feedback about the rationales slow (𝑐0) and fairy tale (𝑐1)
modify our prior latent user preference vector to bring it closer to the target item (“The One and
Future Witches”).

about attributes, updating a cumulative belief state of item attributes [104, 105]. These models

ask templated questions and surface recommendations from an open candidate pool without

explaining their reasoning to the user.

Another line of research treats conversational recommenders as free-text dialog agents

that interact with users via natural language utterances. Bot-play has been explored as a way

to train such dialog agents [113, 83], which requires models to be trained and fine-tuned using

existing dialog transcripts. Such agents are thus limited to domains where crowd-sourced workers

can accurately play the roles of expert and seeker to collect data via Wizard-of-Oz setups [35].

By allowing users to critique natural text rationales of a suggested item, our framework for

conversational recommendation allows for multi-turn recommenders that can be trained using

only product review texts—which are available in a wide range of domains. In Table 4.1 we

compare our approach to recent frameworks for critiquing and dialog agents for conversational

recommendation.

4.3 Model

Our model comprises (Figure 4.2):
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1. a recommender model 𝑀rec that ranks items based on their suitability for a user;

2. a justification module 𝑀just that predicts rationales for a given recommendation; and

3. an interactive critiquing function 𝑓crit that allows users to edit a rationale and modifies the

user representation to recommend a different item on the next turn.

We support multi-step critiquing (Figure 4.2): at each turn a user may indicate which

rationales they dislike about the current suggestions via a critique 𝑐𝑡 . The critiquing function

then modifies the latent user representation 𝛾𝑢 via the critique to bring it closer to the target item.

4.3.1 Recommender System

Our method can be applied to any recommender that learns user and item representations.

We show its effectiveness with two popular methods:

Bayesian Personalized Ranking (BPR) [175] is amatrix factorization recommender system

that aim to decompose the interaction matrix R ∈ R|𝑈 |×|𝐼 | into user and item representations [98].

BPR optimizes a ranked list of items given implicit feedback (binary interactions between users

and items). Scores are computed via inner product of ℎ-dimensional user and item embeddings:

𝑥𝑢,𝑖 = ⟨𝛾MF𝑢 , 𝛾MF
𝑖
⟩. At training time, the model is given a user 𝑢, observed item 𝑖 and unobserved

item 𝑗 . We maximize the likelihood that the user prefers the observed item:

L𝑅 = 𝑃(𝑖 >𝑢 𝑗 |Θ) = 𝜎(𝑥𝑢,𝑖 − 𝑥𝑢, 𝑗 )

where 𝜎 represents the sigmoid function 1
1+𝑒−𝑥 .

Projected Linear Recommendation (PLRec) is an SVD-based method to learn low-rank

user/item representations via linear regression [182]. The PLRec objective minimizes:

argmin
𝑊

∑︁
𝑢

∥ 𝑟𝑢 − 𝑟𝑢𝑉𝑊𝑇 ∥22 +Ω(𝑊)
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where 𝑉 is a fixed matrix obtained by taking a low-rank SVD approximation of R such that

R = 𝑈Σ𝑉𝑇 , and𝑊 is a learned embedding. We obtain an ℎ-dimensional embeddings for users

(𝛾MF𝑢 = 𝑟𝑢𝑉) and items (𝛾MF𝑖 = 𝑊𝑖).

4.3.2 Justification Module

Our justification model (rationale prediction head) consists of a fully connected network

with two ℎ-dimensional hidden layers predicting a score 𝑠𝑢,𝑖,𝑎 for each natural language rationale

𝑎. This model takes the sum of user and item embeddings as input. At training time, we

incorporate a rationale prediction loss L𝐴 by computing the binary cross entropy (BCE) for each

rationale given the likelihood the user cares about the rationale:

L𝐴 = − 1|𝐴|

|𝐴|∑︁
𝑎=0

k𝐼𝑖,𝑎 · log 𝑝𝑢,𝑖,𝑎 + (1 − k𝐼𝑖,𝑎) · log(1 − 𝑝𝑢,𝑖,𝑎)

At inference time, we again compute the likelihood for each rationale 𝑝𝑢,𝑖,𝑎 = 𝜎(𝑠𝑢,𝑖,𝑎) and

sample from the Bernoulli distribution with 𝑝𝑢,𝑖,𝑎 to determine which rationales 𝑎 appear in the

justification.

4.3.3 Critiquing Function

We posit that the user’s latent representation is partially explained by their written reviews.

We thus learn a rationale encoder 𝑀RE—a linear projection from the rationale space to the user

preference space: 𝑀RE(𝑐𝑡𝑢) = 𝑊𝑇𝑐𝑡𝑢 + 𝑏, where 𝑐𝑡𝑢 ∈ Z|𝐾 | is the critique vector representing the

strength of a user’s preference for each rationale. We fuse this rationale encoding with the latent

user embedding from 𝑀rec to form the final user preference vector: 𝛾𝑢 = 𝑓 (𝛾MF𝑢 , 𝑀RE(𝑐𝑡𝑢)). For

both models, we fuse via the element-wise mean of the two vectors: 𝑓 (𝑎, 𝑏) = 𝑎+𝑏
2 . In training,

the rationale encoder takes in the user’s rationale history: 𝑐𝑡𝑢 = k𝑈𝑢 .
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Algorithm 2: Bot play framework for fine-tuning conversational recommenders.
Recommender and Justifier 𝑀rec, 𝑀just;
Critique fusion function 𝑓crit;
Seeker model 𝑀seeker;
for each user 𝑢 do > Fine-tune across users in training set

for goal item 𝑔 ∈ 𝐼+𝑢 do > Sample goal item from reviewed items
initialize 𝛾1𝑢 from 𝑀rec, L = 0;
for turn 𝑡 ∈ 𝑟𝑎𝑛𝑔𝑒(1, 𝑇) do > Simulate up 𝑇 turns of feedback

𝑥𝑡
𝑢,𝑖

= 𝑀rec(𝛾𝑡𝑢, 𝑖) ∀ 𝑖 ∈ 𝐼;
L ← L + 𝛿𝑡 · LCE(𝑔, 𝑥𝑡𝑢,𝑖);
𝑖𝑡 = argmax𝑖 𝑥𝑡𝑢,𝑖;
if 𝑖𝑡 = 𝑔 then > Terminate if goal item recommended.
break with success

𝑘̂𝑢,𝑖𝑡 = 𝑀just(𝛾𝑡𝑢, 𝛾𝑖𝑡 ); > Generate rationales

simulate user critique using 𝑀seeker: 𝑐𝑡𝑢;
𝛾𝑡+1𝑢 ← 𝑓crit(𝛾𝑡𝑢, 𝑐𝑡𝑢); > Update user latent representation

return fine-tuned agent

Critiquing with Our Models

To perform conversational critiquing with a model trained using our framework, we adapt

the latent critiquing formulation from Luo et al. [132], as shown in Figure 4.1. At each turn 𝑡 of

a session for user 𝑢, the system assigns scores 𝑥𝑡
𝑢,𝑖
for all candidate items 𝑖, and presents the user

with the highest scoring item 𝑖. The system also justifies its prediction with a set of predicted

rationales 𝑘̂ 𝑡
𝑢,𝑖
. The user may either accept the recommended item (ending the session) or critique

a rationale from the justification: 𝑎 ∈ {𝑎 | 𝑘̂𝑢,𝑖,𝑎 = 1}.

Given a user critique, the system modifies the predicted scores for each item and presents

the user with a new item and justification:

𝑥𝑡+1𝑢,𝑖 = 𝑀rec(𝛾̂𝑡+1𝑢 , 𝑖)

𝑘̂ 𝑡+1𝑢,𝑖 = 𝑀just(𝛾̂𝑡+1𝑢 , 𝑖)

𝛾̂𝑡+1𝑢 ← 𝑓crit(𝛾̂𝑡𝑢, 𝑐𝑡𝑢)

Effectively, a user critique modifies our prior for the user’s preferences; we then re-rank the items

65



presented to the user.

At inference time, we initialize the cumulative critique vector 𝑐𝑡𝑢 with the user’s rationale

history (𝑐0𝑢 = k𝑈𝑢 ). It is then updated via:

𝑐𝑡𝑢 = 𝑐
𝑡−1
𝑢 −max(k𝑈𝑢 , 1) ⊙ 𝑚𝑡𝑢; 𝑐0𝑢 = k𝑈𝑢

where ⊙ is element-wise multiplication. Here the critique should match the strength of a user’s

previous opinion of the rationale k𝑈𝑢 . Even if a user has not mentioned a rationale in their previous

reviews, the max ensures a non-zero effect from each critique.

4.3.4 Training

To train our BPR-based model, we jointly optimize each component. Each training

example comprises a user and observed / unobserved items. We predict scores for each item:

𝑥𝑢,𝑖 = ⟨𝛾MF𝑢 + 𝑀RE(k𝑈𝑢 ), 𝛾𝑖⟩

We first compute the BPR loss (see Section 4.3.1) with the predicted observed / unobserved

scores. We add the rationale prediction loss, scaled by a constant 𝜆KP to the ranking loss for our

training objective: L = 𝜆KPL𝐴 − L𝑅. We find empirically that 𝜆KP ∈ {0.5, 1.0} works well.

To train our PLRec-based model, we follow Luo et al. [132] and separately optimize 𝑀rec,

𝑀just, and 𝑀RE. We optimize 𝑀RE via the linear regression:

argmin
𝑊,𝑏

∑︁
𝑢

∥ 𝛾MF𝑢 − 𝑀RE(k𝑈𝑢 ) ∥22 +Ω(𝑊)

Finally, we optimize the rationale prediction (justification) loss L𝐴 to train the justification head.
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4.3.5 Learning to Critique via Bot Play

We propose a framework for critiquing via bot play that simulates user sessions when

provided just a set of user reviews. We first pre-train our expert model (recommender, justifier,

and rationale encoder). A seeker model is pre-trained via a simple prior: provided a target item

and justification, it selects the most popular rationale present in the justification but not the target’s

historical rationales k𝐼𝑖 to critique. For each training example (user and a goal item they have

reviewed), we allow the expert and seeker models to converse with the goal of recommending the

goal item. We fine-tune the expert by maximizing its reward (minimizing loss) in the bot-play

game (Algorithm 2). We end the session after the goal item is recommended or a maximum

session length of 𝑇 = 10 turns is reached. We define the expert’s loss to target both surfacing the

correct recommendation and inferring the user’s ground truth preferences per turn:

Lexpert =
𝑇∑︁
𝑡

𝛿𝑡−1 · (LCE(𝑔, 𝑥𝑡𝑢,𝑖) +
1
2
L𝐴)

where 𝛿 is a discount factor to encourage successfully recommending the goal item at earlier

turns, LCE(𝑔, 𝑥𝑡𝑢,𝑖) is the cross-entropy loss between predicted scores and the goal item, and L𝐴

is the binary cross-entropy rationale loss defined in Section 4.3.2. We find that a discount factor

of 𝛿 = 0.9 is effective for both BPR- and PLRec-based conversational recommenders.

4.4 Experimental Setting

We select hyperparameters for our initial models via AUC, and for bot-play fine-tuning via

the success rate at 1 (SR@1) on the validation set. We train each model once, taking the median

of three evaluation runs per experimental setting. For baseline models, we re-used the authors’

code. All experiments were conducted on a machine with a 2.2GHz 40-core CPU, 132GB

memory and one RTX 2080Ti GPU. We use PyTorch version 1.4.0 and optimize our models

using the Rectified Adam [124] optimizer. Best hyperparameters for each base recommender
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Table 4.2. Best hyperparameter settings for each base recommendation model. Linear critiquing
methods (UAC, BAC, LLC-Score, LLC-Rank) use PLRec as a base model. BPR-Bot uses BPR
as a base model, and PLRec-Bot uses PLRec as a base model.

Dataset Model ℎ LR 𝜆L2 𝜆KP 𝜆𝑐 𝛽 Iterations Epoch

Books BPR [175] 20 0.001 0.01 0.5 – – – 200
PLRec [182] 50 – 80 – – – 10 –
CE-VAE [133] 100 0.0001 0.0001 0.01 0.01 0.001 – 300

Beer BPR 20 0.001 0.01 0.5 – – – 200
PLRec 50 – 80 – – – 10 –
CE-VAE 100 0.0001 0.0001 0.01 0.01 0.001 – 300

Music BPR 20 0.01 0.1 1.0 – – – 100
PLRec 400 – 1000 – – – 10 –
CE-VAE 200 0.0001 0.0001 0.001 0.001 0.001 – 600

Table 4.3. Dataset statistics, including number of unique rationales (R), sample subjective
rationales from user reviews, and average unique rationales per user, item, and review.

Users Items Rev. Uq. R Sample Subjective R R/User R/Item R/Rev.

Books 13.9 K 7.6 K 655 K 75 Realistic, Strong Female 25.0 27.0 1.77
Beer 6.4 K 4.0 K 935 K 75 Citrus, Nutty, Bitter 54.6 60.2 7.39
Music 5.6 K 4.4 K 119 K 80 Techno, Catchy, Upbeat 16.5 20.0 2.54

system model are shown in Table 4.2. We perform hyperparameter search over a coarse sweep

of: ℎ ∈ [2, 512], 𝐿𝑅 ∈ [1𝑒 − 5, 1𝑒 − 2], 𝜆 ∈ [1𝑒 − 5, 1𝑒 − 2]. Model parameter sizes are a

function of the hidden dimensionality ℎ and number of items |𝐼 | and users |𝑈 |, and is dominated

by ℎ · ( |𝐼 | + |𝑈 |).

4.4.1 Datasets

We evaluate our models on three public real-world recommendation datasets with 100K+

reviews each: Goodreads Fantasy (Books) [214], BeerAdvocate (Beer) [142], and Amazon CDs

& Vinyl (Music) [143]. We keep only reviews with positive ratings, setting thresholds of 𝑡 > 4.0

for Beer and Music and 𝑡 > 3.5 for Books. All reviews in these dataset are in English; we hope to

extend our work to identify related rationales in multi-lingual reviews in the future. We partition

each dataset into 50% training, 20% validation, and 30% test splits.
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Figure 4.3. Example of user behaviors after receiving a book recommendation with rationales.
A new reader may randomly select a rationale to critique. Readers with less specific preferences
may critique common / popular rationales. A knowledgeable reader with specific preferences
will critique a specific weakest (most different from their target) rationale.

We follow the pipeline of Wu et al. [227] to extract subjective rationales (Table 4.3) from

user reviews:

1. Extract high-frequency unigram and bigram noun- and adjective phrases;

2. Prune bigram keyphrases using a Pointwise Mutual Information (PMI) threshold, ensuring

rationales are statistically unlikely to have randomly co-occurred; and

3. Represent reviews as sparse binary vectors indicating whether each rationale was expressed

in the review.

These noun/adjective phrase rationales describe qualities ranging from taste for beers (e.g. citrus)

and emotions for music (e.g. soulful) to perceived character qualities in books (e.g. strong female).

Our framework is agnostic to the rationale format, and in future work we aim to extend our

models to encode full sentences and utterances as critiques.

4.4.2 Multi-Step Critiquing

Following prior work on critiquing [132, 110], we simulate multi-step recommendation

sessions to assess model performance. We simulate user sessions following Algorithm 2, with

two main differences: 1) We randomly sample user 𝑢 and their goal item 𝑔 from the test set, and

2) We do not compute loss or update our model during a session. We set a maximum session
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limit of 𝑇 = 10 turns. To evaluate how our models can help different types of users, we simulate

each observation with three different critique selection strategies [110] as seen in Figure 4.3:

1. Random: Users who are new to the domain (e.g. new readers) tend to critique rationales

at random;

2. Pop: Users with some domain knowledge and general preferences can correct more

common rationales; and

3. Diff: Knowledgeable users with specific preferences will try to correct theweakest rationale.

In all settings, a user may only see any single item once and critique each rationale once per

session.

4.4.3 Candidate Algorithms

Our method can apply to any base recommender system; here we train bot-play models

based on BPR and PLRec—BPR-Bot and PLRec-Bot respectively. BPR-Bot is lightweight and

much faster, while PLRec-Bot is similar in size to SOTA baseline models for conversational

critiquing. We demonstrate in Section 4.5.1 that our framework is indeed model agnostic, and

that BPR-Bot and PLRec-Bot both out-perform baselines.

Baseline methods

We assess linear critiquing baselines that co-embed critique and user representations

[132], where 𝑓crit is a weighted sum of the user preference vector 𝛾𝑢 and embeddings for each

critiqued rationale. UAC uniformly averages 𝛾𝑢 and all critiqued rationale embeddings. BAC

averages 𝛾𝑢 with the average of critiqued rationale embeddings. LLC-Score learns weights by

maximizing the rating margin between items containing critiqued rationales and those without.

Instead of directly optimizing the scoring margin, LLC-Rank [110] minimizes the number

of ranking violations. These models cannot generate justifications; we binarize the historical

rationale frequency vector for the item (k𝐼
𝑢,𝑖𝑡
) as a justification at each turn. We also compare
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against a SOTA interactive recommender,CE-VAE [133], which learns a VAEwith a bidirectional

mapping between critique vectors and the user latent preference space. While we were unable to

access to code for and replicate the results for the recent MM-VAE model [3], we note that for the

Beer and Music domains (which we have in common) both of our bot-play models significantly

out-perform MM-VAE’s reported success rates for all N when all items can be recommended

(Figure 4.4).

4.5 Experiments

4.5.1 RQ1: Can our framework enable multi-step critiquing?

Following standard practice [132, 110, 3], we measure multi-step critiquing performance

via average success rate (SR@N)—the percentage of sessions where the target item reaches rank

threshold N—and the average session length for the target to reach a rank threshold (Figure 4.4).

We find that both of our candidate models (BPR-Bot and PLRec-Bot) out-perform all baselines.

As our bot-play fine-tuning seeker model picks critiques by popularity, we expect our models

to perform best in the Pop setting. However, BPR-Bot and PLRec-Bot succeed faster and at a

higher rate than baselines in all user settings, including random critiquing with no prior on user

behavior.

Linear critiquing models (UAC, BAC, LLC-Score/Rank) perform poorly on multi-step

critiquing compared to models that can generate justifications, especially when trying to find

the goal item outright (𝑁=1). This suggests that personalized justifications help users choose

more effective rationales to critique. Despite out-performing linear critiquing models, CE-VAE

performs worse across all settings compared to models trained in our bot-play framework. This

suggests that our models generate personalized justifications that are more helpful for narrowing

down a user’s preferences compared to CE-VAE. In Section 4.5.3, we further investigate the

usefulness and accuracy of our rationales.

For PLRec-Bot, our base recommender system is initialized in the same way as the linear
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(a) Success Rate (%) @ N (b) Avg. # turns for target item to reach rank N

Figure 4.4. User simulation evaluation of our models—BPR-Bot (brown triangle) and PLRec-
Bot (pink circle)—compared to linear critiquing and variational baselines for conversational
recommendation (dashed lines). Models trained with our bot-play framework succeed at
significantly higher rates (a) and surface desired items significantly faster (b) than all baselines.

critiquing models (UAC, BAC, LLC-Score/Rank). However, we observe an order of magnitude

improvement in success rate across all rank thresholds N compared to linear models (and the

similarly complex CE-VAE model). This demonstrates that we do not need to solve a linear

programming problem for each critiquing step (like LLC-Score/Rank)—fine-tuning a model with

our bot-play framework is more effective at teaching conversational agents to incorporate user

feedback.

With BPR-Bot, we demonstrate that our bot-play framework can also be effectively

applied to extremely lightweight and simple base recommender systems. Our base BPR models

require an order of magnitude (5x-40x) fewer parameters than baseline models, representing

users and items with only 20 latent dimensions. Nonetheless, by fine-tuning this model with

our bot-play framework, we are able to again out-perform baselines by wide margins in all

settings. Success with both PLRec-Bot and BPR-Bot showcases the model-agnostic nature of

our framework, and in future work we hope to investigate its benefits with a wider range of base
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(a) Bot-play models (orange) vs. non-bot-play ablations (blue)

(b) CE-VAE (dashed) vs. BPR-Bot for ℎ ∈ [10, 20, 50] (solid)

Figure 4.5. Success Rate @ N (% sessions where target item rank ≤ N) for ablation settings: (a)
Bot-play improves target item ranking across datasets compared to the ablation for PLRec-Bot
(squares) and BPR-Bot (crosses). (b) As latent dimension grows (ℎ ↑), bot-play fine-tuning
confers greater benefits. All models, including extremely lightweight ℎ = 10 out-perform the
best baseline model (CE-VAE).

recommender systems.

Overall, our models can better assist users with varying levels of domain knowledge

and specific preferences compared to SOTA methods for conversational critiquing. We have

thus shown that our bot-play framework enables the training of multi-turn conversational

recommenders without the need for costly supervised dialog transcripts.

4.5.2 RQ2: Does bot-play help improve multi-step critiquing ability?

We next demonstrate that our bot-play fine-tuning is responsible for gains in multi-step

critiquing performance (Figure 4.5a) by comparing BPR-Bot (crosses) and PLRec-Bot (squares)

against ablated versions that were trained using the first step of our framework but not fine-tuned

via bot-play. For clarity, we display only results using the Pop user behavioral model, as we

observe the same trends with all three user models.

Bot-play confers a noticeable benefit for both BPR-Bot (100-300% improvement in
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success rate for various N) and PLRec-Bot (250-400% improvement) across domains, with the

largest improvements observed with the Beer domain. This may be due to relatively dense

occurrence of rationales in user reviews, with an average of 7.4 unique rationales expressed in each

review (Table 4.3). This demonstrates that we can effectively train conversational recommender

systems using our bot-play framework using domains with user reviews in lieu of crowd-sourced

dialog transcripts.

In domains with more sparse coverage of subjective rationales (i.e. Books with 1.8

rationales/review and Music with 2.5 rationales/review), we observe lower improvement when

using bot-play—ourmodelmay encounter insufficient cases of rare rationales being critiqued. This

seems to affect lightweight models (BPR-Bot) much more than more complex base recommender

systems (PLRec-Bot). In future work, we will explore adding noise to our user model to ensure

that the bot-play process encounters more rare rationales.

We next investigate whether our framework is model size-agnostic. We fine-tune BPR

models of varying sizes (varying user/item representation dimensionality ℎ between 10 and 50),

with success rates shown in 4.5b. We see that regardless of model size, simple recommender

systems fine-tuned under our framework out-perform state-of-the-art conversational critiquing

methods (CE-VAE). Models with higher latent dimensionality (ℎ = 10 → 20 → 50) benefit

more from bot-play, suggesting that our method learns to effectively navigate complex preference

spaces.

The marginal benefit of increasing latent dimensionality seems to slow for the Beer

domain (with the highest density of rationales per review, item, and user), while we continue to

observe large benefits from increasing model size in Books and Music. This suggests that our

bot-play framework allows large models to more effectively learn to encode user feedback in

domains with sparse user feedback.

Finally, we consider conversational recommendation with multiple simultaneous critiques.

As we observe in our user studies (Section 4.6), people tend to give multiple pieces of feedback

at a given turn, with an average of around 2 critiques. As our bot-play training (Algorithm 2)
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Figure 4.6. Success Rate @ N for PLRec-Bot with a maximum of 1 to 5 critiques at each
turn. Despite our bot-play training using only a single critique per turn, each additional piece of
feedback provides additional improvements in success rate, reaching 60%+ success rates at 1 for
2 pieces of feedback.

only simulates a single critique per turn, we investigate whether such a model can handle more

realistic behavior.

In Figure 4.6, we plot the success rate at N for N∈ [1, 5, 10, 20] for different numbers

of critiques per turn. Our bot-play successfully allows our model to appropriately react to user

behavior with varying degrees of feedback—the marginal value of each additional piece of

feedback per turn is fairly high for the second and third pieces of feedback. Indeed, while the

success rate at 1 (rate at which our agent returns the goal item exactly within the turn limit)

varies between 40-68% across datasets, adding an additional piece of feedback improves this to

65-77%. Our models can quickly narrow down the most appropriate candidate items, approaching

90-100% success rate for N=20.

We thus confirm that our method is model-agnostic, as it improves recommendation

success rates for both the matrix factorization-based (BPR) and linear (PLRec) recommender

systems. Similarly, we have shown that our bot-play method is size-agnostic, and is generally

applicable to base recommender systems with any latent dimensionality. Finally, we observe that

our bot-play fine-tuning allows our model to accommodate multiple simultaneous critiques per

turn—suggesting its usefulness in real-world scenarios.
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Figure 4.7. Mean Reciprocal Rank (MRR) vs. pieces of user feedback received, comparing the
best baseline (CE-VAE, blue circles) against BPR-Bot (orange crosses) and PLRec-Bot (green
squares). Users are able to give much more useful feedback when presented with rationales for
both of our models, improving MRR faster than CE-VAE.

4.5.3 RQ3: Can our models generate useful and accurate rationales?

We next explore whether our model is surfacing appropriate rationales to guide the user

and elicit feedback. We evaluate two main criteria with regards to rationales: 1) usefulness,

or whether the rationales can help the user give effective feedback to more easily find their

desired item; and 2) accuracy, or whether our model surfaces rationales related to the user’s true

preferences in that session.

We note that accuracy and usefulness of rationales must be balanced in a conversational

critiquing system. This is because a user’s reviews are necessarily incomplete: the user is unlikely

to take the time to express every single one of their opinions about a product—including subtle

preferences that may help them decide between very similar items. As a result, the system must

both predict the rationales a user would express in their review of the target item and the qualities

specific to a recommended item that help users distinguish between similar items.

To measure the usefulness of our rationales, we measure the mean reciprocal rank (MRR)

of the target item for each piece of feedback given by the user. This reflects the value of each

piece of feedback: we desire a model that can properly incorporate user feedback to more quickly

identify the user’s real preference (improve the goal item rank and MRR). In Figure 4.7, we

plot the MRR against pieces of user feedback for PLRec-Bot (squares) and BPR-Bot (crosses)
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Figure 4.8. F1 score of rationales surfaced by conversational recommender systems compared to
the user’s ground truth rationales of the target item. When comparing CE-VAE (blue circles) to
models trained with our bot-play framework—BPR-Bot (orange crosses) and PLRec-Bot (green
squares)—our models more accurately infer the user’s session preferences, and can improve their
accuracy with each piece of user feedback.

compared to the best baseline conversational critiquing system (CE-VAE). We see that as the

conversation progresses, models trained with our bot-play framework can more accurately rank

the user’s preferred items compared to CE-VAE.

More importantly, the “slope” of this graph represents the marginal value of each piece

of feedback. For both PLRect-Bot and BPR-Bot, we observe a significantly higher marginal

value of user feedback, suggesting that our rationales are more useful than those surfaced by

CE-VAE. We also find that the marginal value of user feedback stays roughly constant for each

piece of feedback, showing that our models can effectively refine user preferences even if a user

has already provided several pieces of feedback.

We next measure the accuracy of rationales surfaced by conversational recommender

systems. We assume that when writing a review, the user faithfully expresses their true preferences

via the rationales contained in the review. As such, for each session where a user 𝑢 tries to find

item 𝑖, we take as ground truth the rationales extracted from the user’s true review of the target

item k𝑢,𝑖. In Figure 4.8, we plot the average F1 score of the rationales presented to the user

(compared to the ground truth session preferences) at each turn of conversation for BPR-Bot,

PLRec-Bot, and the CE-VAE baseline.

Across all datasets, we find that bot-play models provide more accurate justifications

compared to CE-VAE. Furthermore, unlike CE-VAE, the accuracy of our justifications tends to
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increase as the session progresses. This suggests that when receiving feedback from the user, our

models can improve their understanding of the user’s preference in that particular session. This

may help reinforce the user’s trust of our system, as it provides the sense of an agent who “learns”

the user’s preferences during a conversation.

We note that models are able to better refine rationales in domains with more dense

expression of subjective rationales per user review (Table 4.3). In particular, the book domain

contains both the most users and the lowest density of rationales per review, and our models

see the least improvement in F1 score over a conversation. On the other hand, this may reflect

how our models suggest more rationales than users typically reveal, in order to help users better

evaluate suggested novels.

4.6 Human Study

4.6.1 Human Evaluation

Following Li et al. [112], we conduct a comparative evaluation of 100 simulated user

sessions on four criteria: which agent seems more useful, informative, knowledgeable and

adaptive. We compare each bot-play model (BPR-Bot and PLRec-Bot) against an ablative

version (with no bot-play) and the best baseline (CE-VAE).

Each sample is evaluated by three annotators, with all annotators recruited via the Amazon

Mechanical Turk (MTurk) platform. We used crowd-workers with a historical 99% acceptance

rate on their work to ensure quality, and crowd-workers were paid in excess of Federal minimum

wage in the United States given the average time taken to complete an evaluation. We observe

substantial [100] inter-annotator agreement, with Fleiss 𝜅 [51] of 0.67, 0.79, 0.73, and 0.60 for

the usefulness, informativeness, knowledgeable, and adaptiveness criteria, respectively. Scores

are shown in Table 4.4.

BPR-Bot and PLRec-Bot are judged to be significantly more informative and knowledge-

able than ablative models and CE-VAE, showing that our models can accurately and convincingly
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Table 4.4. Session-level human evaluation via ACUTE-EVAL. Users were asked which model
was more Useful, Informative, Knowledgeable, and Adaptive when comparing bot-play models
against CE-VAE and an ablative baseline with no bot-play fine-tuning. Results are shown for
BPR-Bot (top) and PLRec-Bot (bottom). W/L percentages are reported while ties are not. All
results statistically significant with 𝑝 < 0.05.

BPR-Bot Useful Informative Knowledgeable Adaptive
vs W L W L W L W L

Ablation (BPR) 78* 10 73* 11 68* 15 85* 5
CE-VAE 83* 9 74* 10 63* 16 81* 8

PLRec-Bot Useful Informative Knowledgeable Adaptive
vs W L W L W L W L

Ablation (PLRec) 86* 5 78* 7 74* 8 81* 9
CE-VAE 87* 7 79* 11 77* 12 83* 10

explain each suggestion. This supports our findings from user simulations in Section 4.5.3. In

particular, wins in informativeness and knowledgeability reflect how rationales surfaced by our

models accurately describe the subjective opinions of users regarding the suggested item. If users

believe a conversational agent can both accurately describe an item and reflect their personal

opinions, they are more likely to trust the system and continue to interact with the agent in a

meaningful way [204].

The usefulness and adaptiveness criteria capture how models help the user achieve their

end goal (i.e. finding the most relevant item in as few turns as possible). Bot-play models

are judged to be more useful than alternatives and follow critiques more consistently when

adapting recommendations. This again suggests that users 1) trust our models’ rationales for

recommendations and 2) can meaningfully interact with our model to achieve their end goal.

Our framework allows us to train conversational agents that are useful and engaging for

human users: evaluators overwhelmingly judged the models trained via bot-play to be more

useful, informative, knowledgeable, and adaptive compared to CE-VAE and ablated variants.
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Table 4.5. Cold-start user study results. On a per-turn basis, users found our bot-play model
to be significantly (𝑝 < 0.01) more useful, informative, and adaptive compared to the baseline.
On a session basis, significantly more users (𝑝 < 0.01) would use the bot-play model “often” or
“always” to receive book recommendations compared to the baseline.

Avg. Feedback Useful Informative Adaptive Use Again

Ablation (No Bot Play) 1.77 ± 0.08 0.67 ± 0.24 0.75 ± 0.21 0.64 ± 0.27 41%
Our Method 2.05 ± 0.13 0.79 ± 0.24* 0.88 ± 0.18 0.78 ± 0.23* 69%*

4.6.2 Cold-Start User Study

We conduct a user study using the Books dataset to evaluate if our model is a useful

real-time conversational recommender. In particular, we wish to see if models trained with

bot-play using user reviews could effectively make use of feedback from new users (cold-start).

We recruited 64 native English speakers from universities across the United States, randomly

assigning half to interact with BPR-Bot and half to interact with the ablation (no bot-play).

We initialize each session with the mean of all learned user embeddings to provide the

same initial set of suggestions for each new user. At each turn, the user sees the three top-ranked

items with justifications (rationales) and can critique multiple rationales. On average, users

critiqued two rationales per turn—this suggests that when training interactive agents we can

assumemultiple critiques at each turn. In future work, we aim to study whether users in warm-start

and cold-start situations give differing amounts of feedback at each turn of conversation.

At each turn, we again follow Li et al. [112] to ask users if the generated explanations are

informative, useful in helping to make a decision, and whether our system correctly adapted its

suggestions in response to the user’s feedback. We provide four options for each question: no,

weak-no, weak-yes, and yes. We then map these values to a score between 0 and 1 [87], with

normalized scores for each question shown in Table 4.5. BPR-Bot significantly out-scores the

ablation in all three metrics (𝑝 < 0.01), showing that fine-tuning via our bot-play framework

instills a stronger ability to respond to critiques and provide meaningful explanations—even for

new users.
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At the end of a session, we additionally ask the user how frequently (if at all) they would

choose to engage with our interactive agent in their daily life. Users preferred BPR-Bot by

significant margins—69% indicated they would “often” or “always” use BPR-Bot to find books

compared to 41% for the ablation. We are encouraged that over two thirds of users would regularly

use our system, and it confirms that our critiquing approach to conversational recommendation

reflects a realistic and appealing human interaction paradigm.

4.7 Conclusion

In this chapter we develop conversational recommenders that can engage with users over

multiple turns, providing rationales for suggestions and incorporating user feedback. We present

a model-agnostic framework to train conversational agents in this modality via self-supervised

bot-play in any domain using only review data. We use two popular underlying recommender

systems to train the BPR-Bot and PLRec-Bot agents using our framework, showing quantitatively

on three datasets that our models 1) offer superior multi-turn recommendation performance

compared to current SOTA methods; 2) provide more useful and informative rationales for each

recommended item compared to current SOTA methods; and 3) can effectively refine suggestions

in real-time, as shown in user studies. We further show that our bot-play framework confers its

benefits for models with different underlying architectures and levels of complexity. In future

work, we aim to adapt our framework to free-form natural language critiques, allowing users to

more flexibly express feedback.
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Part II

Personalized Interactive Agents

for Instructional Texts
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Chapter 5

Personalized Cooking Recipe Generation
from Historical Interactions

5.1 Introduction

In the kitchen, we increasingly rely on instructions from cooking websites: recipes. A

cook with a predilection for Asian cuisine may wish to prepare chicken curry, but may not know

all necessary ingredients apart from a few basics. These users with limited knowledge cannot

rely on existing recipe generation approaches that focus on creating coherent recipes given all

ingredients and a recipe name [92]. Such models do not address issues of personal preference

(e.g. culinary tastes, garnish choices) and incomplete recipe details. In this chapter, we propose

to approach both problems via personalized generation of plausible, user-specific recipes using

user preferences extracted from previously consumed recipes.

Our work combines two important tasks from natural language processing and recom-

mender systems: data-to-text generation [56] and personalized recommendation [173]. Our

model takes as user input the name of a specific dish, a few key ingredients, and a calorie level.

We pass these loose input specifications to an encoder-decoder framework and attend on user

profiles—learned latent representations of recipes previously consumed by a user—to generate a

recipe personalized to the user’s tastes. We fuse these ‘user-aware’ representations with decoder

output in an attention fusion layer to jointly determine text generation. Quantitative (perplexity,

user-ranking) and qualitative analysis on user-aware model outputs confirm that personalization
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indeed assists in generating plausible recipes from incomplete ingredients.

While personalized text generation has seen success in conveying user writing styles in

the product review [150, 151] and dialogue [243] spaces, we are the first to consider it for the

problem of recipe generation, where output quality is heavily dependent on the content of the

instructions—such as ingredients and cooking techniques.

To summarize, our main contributions are as follows:

1. We explore a new task of generating plausible and personalized recipes from incomplete

input specifications by leveraging historical user preferences;

2. We release a new dataset of 180K+ recipes and 700K+ user reviews for this task;1

3. We introduce new evaluation strategies for generation quality in instructional texts, centering

on quantitative measures of coherence. We also show qualitatively and quantitatively that

personalized models generate high-quality and specific recipes that align with historical

user preferences.

5.2 Related Work

Large-scale transformer-based language models have shown surprising expressivity and

fluency in creative and conditional long-text generation [210, 169]. Recent works have proposed

hierarchical methods that condition on narrative frameworks to generate internally consistent

long texts [46, 229, 238]. Here, we generate procedurally structured recipes instead of free-form

narratives.

Recipe generation belongs to the field of data-to-text natural language generation [56],

which sees other applications in automated journalism [107], question-answering [2], and

abstractive summarization [158], among others. Kiddon et al. [91], Bosselut et al. [15] model

recipes as a structured collection of ingredient entities acted upon by cooking actions. Kiddon

et al. [92] imposes a ‘checklist’ attention constraint emphasizing hitherto unused ingredients

1https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-interactions
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during generation. Yang et al. [237] attend over explicit ingredient references in the prior recipe

step. Similar hierarchical approaches that infer a full ingredient list to constrain generation

will not help personalize recipes, and would be infeasible in our setting due to the potentially

unconstrained number of ingredients (from a space of 10K+) in a recipe. We instead learn

historical preferences to guide full recipe generation.

A recent line of work has explored user- and item-dependent aspect-aware review

generation [151, 150]. This work is related to ours in that it combines contextual language

generation with personalization. Here, we attend over historical user preferences from previously

consumed recipes to generate recipe content, rather than writing styles.

5.3 Approach

Our model’s input specification consists of: the recipe name as a sequence of tokens, a

partial list of ingredients, and a caloric level (high, medium, low). It outputs the recipe instructions

as a token sequence: W𝑟 = {𝑤𝑟,0, . . . , 𝑤𝑟,𝑇 } for a recipe 𝑟 of length 𝑇 . To personalize output,

we use historical recipe interactions of a user 𝑢 ∈ U.

5.3.1 Encoder

Our encoder has three embedding layers: vocabulary embeddingV, ingredient embedding

I, and caloric-level embedding C. Each token in the (length 𝐿𝑛) recipe name is embedded via

V; the embedded token sequence is passed to a two-layered bidirectional GRU (BiGRU) [28],

which outputs hidden states for names {nenc, 𝑗 ∈ R2𝑑ℎ}, with hidden size 𝑑ℎ. Similarly each of

the 𝐿𝑖 input ingredients is embedded via I, and the embedded ingredient sequence is passed to

another two-layered BiGRU to output ingredient hidden states as {ienc, 𝑗 ∈ R2𝑑ℎ}. The caloric

level is embedded via C and passed through a projection layer with weights𝑊𝑐 to generate calorie

hidden representation cenc ∈ R2𝑑ℎ .
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5.3.2 Ingredient Attention

We apply attention [7] over the encoded ingredients to use encoder outputs at each

decoding time step. We define an attention-score function 𝛼 with key 𝐾 and query 𝑄:

𝛼(𝐾,𝑄) = exp (tanh (𝑊𝛼 [𝐾 +𝑄] + b𝛼))
𝑍

,

with trainable weights𝑊𝛼, bias b𝛼, and normalization term 𝑍 . At decoding time 𝑡, we calculate

the ingredient context a𝑖𝑡 ∈ R𝑑ℎ as:

a𝑖𝑡 =
𝐿𝑖∑︁
𝑗=1
𝛼
(
ienc, 𝑗 , h𝑡

)
× ienc, 𝑗 .

5.3.3 Decoder

The decoder is a two-layer GRU with hidden state ℎ𝑡 conditioned on previous hidden

state ℎ𝑡−1 and input token 𝑤𝑟,𝑡 from the original recipe text. We project the concatenated encoder

outputs as the initial decoder hidden state:

h0
(
∈ R𝑑ℎ

)
= 𝑊ℎ0

[
nenc,𝐿𝑛 ; ienc,𝐿𝑖 ; cenc

]
+ bℎ0

h𝑡 , o𝑡 = GRU
( [
𝑤𝑟,𝑡 ; a𝑖𝑡

]
, h𝑡−1

)
.

To bias generation toward user preferences, we attend over a user’s previously reviewed

recipes to jointly determine the final output token distribution. We consider two different schemes

to model preferences from user histories: (1) recipe interactions, and (2) techniques seen therein

(defined in Section 5.4). Rendle et al. [175], Quadrana et al. [165], Ueda et al. [207] explore

similar schemes for personalized recommendation.

87



5.3.4 Prior Recipe Attention

We obtain the set of prior recipes for a user 𝑢: 𝑅+𝑢 , where each recipe can be represented

by an embedding from a recipe embedding layer R or an average of the name tokens embedded

byV. We attend over the 𝑘-most recent prior recipes, 𝑅𝑘+𝑢 , to account for temporal drift of user

preferences [147]. These embeddings are used in the ‘Prior Recipe/Name’ models, respectively.

Given a recipe representation r ∈ R𝑑𝑟 (where 𝑑𝑟 is recipe- or vocabulary-embedding size

depending on the recipe representation) the prior recipe attention context a𝑟𝑢𝑡 is calculated as

a𝑟𝑢𝑡 =
∑︁
𝑟∈𝑅𝑘+

𝑢

𝛼 (r, h𝑡) × r.

5.3.5 Prior Technique Attention

We calculate prior technique preference (used in the ‘Prior Tech‘ model) by normalizing

co-occurrence between users and techniques seen in 𝑅+𝑢 , to obtain a preference vector 𝝆𝑢. Each

technique 𝑥 is embedded via a technique embedding layerX to x ∈ R𝑑𝑥 . Prior technique attention

is calculated as

a𝑥𝑢𝑡 =
∑︁

𝑥 seen in 𝑅+𝑢

(
𝛼 (x, h𝑡) + 𝜌𝑢,𝑥

)
× x,

where, inspired by copy mechanisms [183, 64], we add 𝜌𝑢,𝑥 for technique 𝑥 to emphasize the

attention by the user’s prior technique preference.

5.3.6 Attention Fusion Layer

We fuse all contexts calculated at time 𝑡, concatenating them with decoder GRU output

and previous token embedding:

a 𝑓𝑡 =ReLU
(
𝑊 𝑓

[
𝑤𝑟,𝑡 ; o𝑡 ; a𝑖𝑡 ; (a

𝑟𝑢
𝑡 or a𝑥𝑢𝑡 )

]
+b 𝑓

)
.
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Table 5.1. Food.com data statistics for the (a) raw/processed corpus and (b) train/dev/test splits

(a) Raw and Processed Statistics

Recipes Users Reviews

Raw 231,637 226,570 1,132,367
Processed 178,265 25,076 749,053

(b) Data Splits

Split Users Recipes Actions Sparsity

Train 25,076 160,901 698,901 99.983%
Dev 7,023 6,621 7,023 –
Test 12,455 11,695 12,455 –

We then calculate the token probability:

𝑃(𝑆𝑟,𝑡) = softmax
(
𝑊𝑃 [a 𝑓𝑡 ] + b𝑃

)
,

and maximize the log-likelihood of the generated sequence conditioned on input specifications

and user preferences. Figure 5.1 shows a case where the Prior Name model attends strongly on

previously consumed savory recipes to suggest the usage of an additional ingredient (‘cilantro’).

5.4 Recipe Dataset: Food.com

We collect a novel dataset of 230K+ recipe texts and 1M+ user interactions (reviews)

over 18 years (2000-2018) from Food.com.2 Here, we restrict to recipes with at least 3 steps, and

at least 4 and no more than 20 ingredients. We discard users with fewer than 4 reviews, giving

180K+ recipes and 700K+ reviews, with splits as in Table 5.1.

Our model must learn to generate from a diverse recipe space: in our training data, the

average recipe length is 117 tokens with a maximum of 256. There are 13K unique ingredients

across all recipes. Rare words dominate the vocabulary: 95% of words appear <100 times,

accounting for only 1.65% of all word usage. As such, we perform Byte-Pair Encoding (BPE)

tokenization [185, 167], giving a training vocabulary of 15K tokens across 19M total mentions.

User profiles are similarly diverse: 50% of users have consumed ≤6 recipes, while 10% of users

have consumed >45 recipes.

2https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions
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Figure 5.1. Sample data flow through model architecture. User has bell peppers and olive oil,
and wants to make Chicken Bell Pepper Chili. The model attends over the user’s previously
reviewed recipes, focusing strongest (darkest color) on the Mexican and Asian recipes. As a
result, the model recommends to supplement the recipe with cilantro—a recipe used frequently
in both tacos and Asian cuisine.

We order reviews by timestamp, keeping the most recent review for each user as the test

set, the second most recent for validation, and the remainder for training (sequential leave-one-out

evaluation [84]). We evaluate only on recipes not in the training set.

We manually construct a list of 58 cooking techniques from 384 cooking actions collected

by Bosselut et al. [15]; the most common techniques (bake, combine, pour, boil) account for

36.5% of technique mentions. We approximate technique adherence via string match between

the recipe text and technique list.

5.5 Experiments and Results

For training and evaluation, we provide our model with the first 3-5 ingredients listed

in each recipe. We decode recipe text via top-𝑘 sampling [169], finding 𝑘 = 3 to produce

satisfactory results. We use a hidden size 𝑑ℎ = 256 for both the encoder and decoder. Embedding

dimensions for vocabulary, ingredient, recipe, techniques, and caloric level are 300, 10, 50, 50,

and 5 (respectively). For prior recipe attention, we set 𝑘 = 20, the 80th %-ile for the number of

user interactions. We use the Adam optimizer [96] with a learning rate of 10−3, annealed with a

decay rate of 0.9 [78]. We also use teacher-forcing [222] in all training epochs.

In this chapter, we investigate how leveraging historical user preferences can improve

generation quality over strong baselines in our setting. We compare our personalized models
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Table 5.2. Metrics on generated recipes from test set. D-1/2 = Distinct-1/2, UMA = User
Matching Accuracy, MRR = Mean Reciprocal Rank, PP = Pairwise preference over baseline
(evaluated for 310 recipe pairs per model).

Model PPL BLEU-1 BLEU-4 ROUGE-L D-1 D-2 UMA MRR PP (%)

NN – 20.279 0.465 16.871 0.931 9.394 0.100 0.293 –
Enc-Dec 9.611 28.391 3.385 25.001 0.220 1.928 0.100 0.293 –

Prior Tech 9.572 28.864 3.312 24.920 0.233 2.158 0.128 0.319 62.821
Prior Recipe 9.551 27.858 3.215 24.822 0.231 2.062 0.302 0.412 66.026
Prior Name 9.516 28.046 3.211 24.794 0.233 2.080 0.505 0.628 61.165

against two baselines. The first is a name-based Nearest-Neighbor model (NN). We initially

adapted the Neural Checklist Model of Kiddon et al. [92] as a baseline; however, we ultimately

use a simple Encoder-Decoder baseline with ingredient attention (Enc-Dec), which provides

comparable performance and lower complexity. All personalized models outperform baseline

in BPE perplexity (Table 5.2) with Prior Name performing the best. While our models exhibit

comparable performance to baseline in BLEU-1/4 and ROUGE-L, we generate more diverse

(Distinct-1/2: percentage of distinct unigrams and bigrams) and acceptable recipes. BLEU and

ROUGE are not the most appropriate metrics for generation quality. A ‘correct’ recipe can be

written in many ways with the same main entities (ingredients). As BLEU-1/4 capture structural

information via n-gram matching, they are not correlated with subjective recipe quality. This

mirrors observations from Baheti et al. [8], Fan et al. [46].

We observe that personalized models make more diverse recipes than baseline. They thus

perform better in BLEU-1 with more key entities (ingredient mentions) present, but worse in

BLEU-4, as these recipes are written in a personalized way and deviate from gold on the phrasal

level. Similarly, the ‘Prior Name’ model generates more unigram-diverse recipes than other

personalized models and obtains a correspondingly lower BLEU-1 score.
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Table 5.3. Sample generated recipe. Emphasis on personalization and explicit ingredient
mentions via highlights.

Input Name: Pomberrytini; Ingredients: pomegranate-blueberry juice, cranberry juice,
vodka ; Calorie: Low

Gold Place everything except the orange slices in a cocktail shaker. Shake until well mixed
and well chilled. Pour into martini glasses and float an orange slice in each glass.

Enc-Dec Combine all ingredients. Cover and refrigerate. Serve with whipped topping.

Prior Tech Combine all ingredients. Store in refrigerator. Serve over ice. Enjoy!

Prior Recipe Pour the ice into a cocktail shaker. Pour in the vodka and vodka. Add a little water
and shake to mix. Pour into the glass and garnish with a slice of orange slices. Enjoy!

Prior Name Combine all ingredients except for the ice in a blender or food processor. Process to
make a smooth paste and then add the remaining vodka and blend until smooth. Pour
into a chilled glass and garnish with a little lemon and fresh mint.

5.5.1 Qualitative Analysis

We present sample outputs for a cocktail recipe in Table 5.3. Generation quality

progressively improves from generic baseline output to a blended cocktail produced by our

best performing model. Models attending over prior recipes explicitly reference ingredients.

The Prior Name model further suggests the addition of lemon and mint, which are reasonably

associated with previously consumed recipes like coconut mousse and pork skewers. We present

another set of generated examples for waffles in Table 5.4.

5.5.2 Personalization

To measure personalization, we evaluate how closely the generated text corresponds to

a particular user profile. We compute the likelihood of generated recipes using identical input

specifications but conditioned on ten different user profiles—one ‘gold’ user who consumed the

original recipe, and nine randomly generated user profiles. Following Fan et al. [46], we expect

the highest likelihood for the recipe conditioned on the gold user. We measure user matching

accuracy (UMA)—the proportion where the gold user is ranked highest—and Mean Reciprocal

Rank (MRR) [166] of the gold user. All personalized models beat baselines in both metrics,
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Table 5.4. Sample generated waffle recipe for all models.

Input Name: Cinna Nilla Waffles
Ingredients: flour, egg, milk, vegetable oil, sugar
Calorie: Medium

Gold Heat waffle iron.
Beat eggs in large bowl with hand beater until fluffy.
Beat in remaining ingredients until smooth.
Pour batter into waffle iron and cook for approximately 5 minutes.
Serve immediately or cool to pack into freezer bags and freeze.

Enc-Dec Mix the flour, baking soda, and salt in a bowl.
In a separate bowl, whisk together the milk, oil, eggs and sugar.
Stir the flour mixture into the egg mixture, and continue to mix well.
Add the flour to the egg mixture.
Mix well and pour into a greased waffle iron.
Cook for 2 minutes, remove from heat and serve.

Prior Tech In a medium bowl mix flour, eggs, and milk until combined.
Add the dry ingredients and stir until just combined and do not mix.
Heat griddle over medium heat, add the oil, oil, and cook the pancakes until
golden brown and cooked through.
Serve with a little milk or cream. Enjoy

Prior Recipe In a mixing bowl, whisk together the eggs, milk, oil, sugar, vanilla, salt and
vanilla.
Cover and let the mixture stand in the fridge for about 1 hour.
Spoon batter into waffle iron and close the grill.

Prior Name Preheat waffle iron.
Beat together the eggs, milk and oil until well blended, add the vanilla and mix
well with a mixer.
Fold in flour, baking powder, and cinnamon.
Spread 1 / 2 the mixture in a greased waffle iron.
Bake until golden brown, about 15 minutes per side.
Sprinkle with powdered sugar and serve warm.

showing our models personalize generated recipes to the given user profiles. The Prior Name

model achieves the best UMA and MRR by a large margin, revealing that prior recipe names are

strong signals for personalization. Moreover, the addition of attention mechanisms to capture

these signals improves language modeling performance over a strong non-personalized baseline.
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Table 5.5. Coherence metrics on generated recipes from test set. Applying personalization via
attention over any form of the user’s interaction history improves recipe coherence, with recipe
names having the most impact.

Enc-Dec Prior Tech Prior Recipe Prior Name

Recipe-Level Coherence 1.77 1.78 1.80 1.82
Recipe Step Entailment 0.72 0.73 0.76 0.78

5.5.3 Recipe Level Coherence

A plausible recipe should possess a coherent step order, and we evaluate this via a metric

for recipe-level coherence. We use the neural scoring model from Bosselut et al. [14] to measure

recipe-level coherence for each generated recipe. Each recipe step is encoded by BERT [38].

Our scoring model is a GRU network that learns the overall recipe step ordering structure by

minimizing the cosine similarity of recipe step hidden representations presented in the correct

and reverse orders. Once pretrained, our scorer calculates the similarity of a generated recipe to

the forward and backwards ordering of its corresponding gold label, giving a score equal to the

difference between the former and latter. A higher score indicates better step ordering (with a

maximum score of 2). Table 5.5 shows that our personalized models achieve average recipe-level

coherence scores of 1.78-1.82, surpassing the baseline at 1.77.

5.5.4 Recipe Step Entailment

Local coherence is also crucial to a user following a recipe: it is crucial that subsequent

steps are logically consistent with prior ones. We model local coherence as an entailment task:

predicting the likelihood that a recipe step follows the preceding. We sample several consecutive

(positive) and non-consecutive (negative) pairs of steps from each recipe. We train a BERT [38]

model to predict the entailment score of a pair of steps separated by a [SEP] token, using the

final representation of the [CLS] token. The step entailment score is computed as the average of

scores for each set of consecutive steps in each recipe, averaged over every generated recipe for a

model, as shown in Table 5.5.
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5.5.5 Human Evaluation

We presented 310 pairs of recipes for pairwise comparison [46] between baseline and each

personalized model, with results shown in Table 5.2. On average, human evaluators preferred

personalized model outputs to baseline 63% of the time, confirming that personalized attention

improves the semantic plausibility of generated recipes. We also performed a small-scale human

coherence survey over 90 recipes, in which 60% of users found recipes generated by personalized

models to be more coherent and preferable to those generated by baseline models.

5.6 Conclusion

In this chapter, we propose a novel task: to generate personalized recipes from incomplete

input specifications and user histories. On a large novel dataset of 180K recipes and 700K

reviews, we show that our personalized generative models can generate plausible, personalized,

and coherent recipes preferred by human evaluators for consumption. We also introduce a set of

automatic coherence measures for instructional texts as well as personalization metrics to support

our claims. Our future work includes generating structured representations of recipes to handle

ingredient properties and accounting for references to collections of ingredients (e.g. “dry mix").
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Chapter 6

Assistive Recipe Editing

6.1 Introduction

In the previous chapter, we presented a system to generate novel recipes tailored for a

user’s historical preferences. These users (or their prospective diners) may also have additional

dietary constraints governing what types of foods they can or want to eat. In this chapter, we

aim to build a system that can tailor recipes to fit users’ dietary preferences and restrictions.

Cooking has played an integral role in human civilization and evolution for over 1.8

million years [224]. A growing population follows some form of dietary restriction [59], with

motivations ranging from socioeconomic to medical [189, 37]. Home cooks browsing recipes on

online recipe aggregators may often encounter an interesting recipe that does not fit their dietary

needs (e.g. vegetarianism), and would benefit from a way to edit that recipe to fit their needs.

These restrictions are easy for users to specify, but existing recipe websites offer few options

for users with dietary constraints—even those with common restrictions like gluten intolerance

(Table 6.1). We see an opportunity to build a model that can adapt recipes into more appropriate

forms given users’ dietary constraints.

To help such users, we introduce the task of controllable recipe editing: editing a base

recipe so that it satisfies a user-specified dietary constraint (Figure 6.1). Controllable recipe

editing can help home cooks of any experience level find diverse ways to satisfy their dietary needs

and help develop interactive, personalized products like meal kits to accommodate individual
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Alfredo Sauce
Butter, Flour, Cream, Garlic, Parmesan, Parsley

1) Melt butter in saucepan and add flour.
2) Add garlic and saute.
3) Add cream, simmer. Add cheese and melt...

Dairy-Free “Alfredo Sauce”
Olive Oil, Cashews, Nutritional Yeast, Flour, Garlic, Parsley

1) Soak cashews overnight.
2) Heat olive oil in pan. Whisk in flour to make roux.
3) Add roux, cashews, garlic, and yeast to blender...

Butter, Flour, Cream, 
Garlic, Parmesan, Parsley
+Olive Oil
+Cashews
+Nutritional Yeast

User provides dietary constraint 
(Dairy-Free) and base recipe:

System makes 
ingredient substitutions System re-writes recipe directions

Figure 6.1. We investigate the task of controllable recipe editing: edit a base recipe to satisfy a
given dietary restriction.

needs and preferences. This is a challenging task: rule-based substitution methods and existing

recipe generators cannot adequately account for both the dietary and structural impacts of

ingredient substitutions.

To tackle this task, we propose a System for Hierarchical Assistive Recipe Editing

(SHARE). We first use a Transformer [210] encoder-decoder to perform multiple simultaneous

ingredient substitutions conditioned on a dietary restriction. We next employ a Transformer

language model to write new instructions conditioned on the edited ingredients, using a copy

mechanism [64] to increase ingredient-step coherence.

We conduct experiments on a novel dataset of 83K recipe pairs from user-reviewed

recipes on a popular recipe site. Each pair is associated with a dietary restriction and contains a

base recipe and a similar target recipe that satisfies the constraint. We evaluate edited recipes via

automatic metrics to demonstrate that SHARE produces diverse and high-fidelity recipes. We

survey 672 home cooks to assess the quality of our edited recipes compared to human-written

recipes, finding that SHARE consistently produced the highest quality edits—in the process

discovering several stylistic and structural aspects that cooks evaluate when searching for recipes.

We also recruit seven home cooks to cook 21 recipes generated from SHARE and evaluate both

the cooking process and final product, showing that such recipes are delicious, easy to make, and

satisfy dietary restrictions.

We summarize our main contributions in this chapter: 1) We propose the controllable

recipe editing task to assist an under-served population of home cooks by editing recipes to

satisfy their dietary constraints; 2) We create the novel RecipePairs dataset—containing 83K
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pairs of recipes and versions thereof satisfying a dietary constraint—to facilitate recipe editing;

3) We train a hierarchical model for controllable recipe editing (SHARE), finding via quantitative

trials, human studies, and real-world cooking trials that SHARE creates more coherent and

constraint-respecting recipes compared to strong baselines—and that home cooks find its dishes

appealing.

6.2 Related Work

We specifically aim to help a population under-served by existing resources: people

with dietary restrictions. Recent works in nutritional recipe recommendation [26, 61] aim to

recommend generally healthier food options. To our knowledge, while prior work has focused on

ingredient substitution or generating recipe directions, ours is the first to examine both to create a

complete recipe. We are motivated by work on single ingredient substitution [233, 200], but our

system accommodates multiple simultaneous substitutions when predicting a target ingredient

set. Recent work in recipe generation has focused on improving coherence [15] and ingredient

specificity [92]. We draw from these as well as sentence editing work that uses retrieved prototype

sequences to control generated text [65, 68], to improve conditioning on ingredients.

The editing of procedural texts like recipes resembles conditional text generation and

paraphrase generation. Transformer [210] language models have seen success in both fields

[89, 223], and Raffel et al. [170] demonstrated that such models can make use of a set of

control codes for simultaneous multi-task learning. Lee et al. [102] train a single model for two

tasks—ingredient extraction and recipe step generation conditioned on the recipe directions and

ingredients, respectively. A user must thus provide either the complete set of ingredients or a full

set of directions—neither of which may be known to home cooks looking for ways to adapt a

recipe to their individual needs. Majumder et al. [136] explore ways to use browsing histories

to personalize recipes for cooking website users. Their model uses these histories, a recipe

name, and ingredients as input to generate personalized instructions, but cannot be controlled to
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Table 6.1. For each soft (low-carb, low-calorie, low-fat, low-sugar) and hard (vegetarian, gluten-
free, dairy-free) dietary constraint: users searching for such recipes, number of recipes satisfying
constraint, pairs in RecipePairs, ingredient substitution rules, and prohibited ingredients.

Low-Carb Low-Cal. Low-Fat Low-Sug. Vegetarian Gluten-Free Dairy-Free

% Users 71.3 63.8 51.5 21.9 59.9 24.1 19.7
% Recipes 16.9 14.3 8.6 2.6 13.3 2.3 1.5
Pairs 19 K 17 K 13 K 6 K 18 K 6 K 4 K
Rules 10 78 55 11 83 18 14
Banned – – – – 252 137 112

generate constraint-satisfying (e.g. gluten-free) recipes.

6.3 RecipePairs Dataset

Several recipe corpora have been collected, including the 150K-recipe Now You’re

Cooking! dataset [92, 15], Recipe1M+ [140] for cross-modal retrieval tasks, and the Food.com

[136] dataset. We extend the Food.com dataset, aggregating user-provided category tags for each

of the 459K recipes—comprising soft constraints (low-sugar, low-fat, low-carb, low-calorie) and

strict/hard dietary restrictions (gluten-free, dairy-free, vegetarian). We compile a list of 501

ingredients that violate hard constraints following medical website guidance,1 further filtering

out any tagged recipes that contain banned ingredients to ensure each of our category tags is

accurate.

We pair recipes into a base recipe that does not satisfy any category (dietary constraint)

and a target version that satisfies the constraint. To ensure base and target recipes are similar,

we pair recipes by name, sampling target recipes whose name contains a base recipe name

(e.g. ‘healthy oat chocolate cookie’ as a gluten-free version of ‘chocolate cookie’), resulting in

83K total pairs in RecipePairs comprising 36K unique base recipes and 60K unique targets. We

split the data into 81K pairs for training and 1K disjoint pairs each for testing and validation.

The large ingredient space contributes to the difficulty of the task. We normalize ingredients by

1e.g. https://www.ncbi.nlm.nih.gov/books/NBK310258/
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stripping brand names and amounts (e.g. ‘Knoxville Farms’ or ‘1 tablespoon’) and remove rare

variants, resulting in 2,942 unique ingredients that appear across 10+ recipes in our dataset. In

Table 6.1, we show the number of recipe pairs targeting each dietary constraint and the number

of banned ingredients for each hard constraint.

6.3.1 Recipes Satisfying Dietary Restrictions

To better understand the audience that would benefit from a recipe editing application,

we first investigate how well users of Food.com are served when searching for recipes satisfying

dietary constraints. A long tail of dietary constraints are poorly supported by the site. While

93% of users look for recipes that satisfy some dietary constraint, only 43% of all recipes satisfy

a dietary restriction—the stark difference between the proportion of users looking to follow

a dietary constraint and the proportion of recipes accommodating each constraint is seen in

Table 6.1. In particular, low-sugar, dairy-free, and gluten-free recipes are lacking: collectively

they make up less than 10% of available recipes despite one fifth of users looking for such recipes.

Up to 7% of the American population suffers from a form of gluten allergy and up to 20% opt

for a gluten-free diet [82], but less than 2.5% of recipes on Food.com are labeled as gluten-free.

Users looking for recipes that fit their needs may thus be discouraged from using recipe sites.

6.4 Task

To help home cooks discover delicious and appropriate recipes, we desire a system for

controllable recipe editing. A user should be able to specify the base recipe they would like

to edit and the constraint to satisfy. Our model should output a similar but novel recipe that

satisfies the constraint. To perform editing on the RecipePairs corpus, we consider a base recipe

R𝑏 = {𝑁𝑏; 𝐼𝑏; 𝑆𝑏} comprising name 𝑁𝑏, ingredients 𝐼𝑏, and directions 𝑆𝑏. This recipe does

not satisfy a dietary constraint 𝑐 ∈ C (e.g. low-fat, dairy-free). The goal of our model is to

transform the base recipe into some target recipe R𝑡 = {𝑁𝑡 ; 𝐼𝑡 ; 𝑆𝑡} that satisfies 𝑐. In this chapter

we investigate editing recipes to satisfy a single specified dietary constraint; in future work we
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aim to extend our method to accommodate multiple restrictions. In our System for Hierarchical

Assistive Recipe Editing (SHARE), we break the task into two sequential parts: 1) predicting

target ingredients 𝐼𝑡 given the base name 𝑁𝑏 and ingredients 𝐼𝑏 alongside dietary constraint 𝑐,

and 2) generating recipe directions 𝑆𝑡 from the new ingredients 𝐼𝑡 .

6.4.1 Why isn’t substitution enough?

At first glance, it may seem acceptable to simply replace problematic ingredients with

fixed substitutes. To test this, we compiled 269 dietary substitution rules (Table 6.1) from

medical websites2 into the Rule baseline that replaces all constraint-violating ingredients in

a recipe (e.g. for dairy-free, butter to margarine). In the directions, we replace references to

removed ingredients with the substitutes (e.g. beat sugar and butter→ beat sugar and margarine).

For constraint-violating ingredients that do not have a documented substitution, this model

removes the ingredient and all references in the text. This method struggles to predict target

ingredients (Table 6.2), and cannot account for subtle changes (e.g. cooking techniques) necessary

to accommodate new ingredients. Indeed, while nutritional impacts of ingredient substitutions

are easily inferred, they have intricate effects on recipe structure and palatability. This suggests

that recipe editing is a challenging task that cannot be solved by simple rule-based systems.

6.5 SHARE: a Hierarchical Edit Model

We pose controllable recipe editing as a supervised learning task: predict a target recipe

conditioned on a base recipe and a provided constraint. Our SHARE model consists of two

independently trained components for ingredient editing (Section 6.5.1) and step prediction

(Section 6.5.2). As ingredient quantities in a recipe may vary based on serving size, we omit

exact amounts when editing ingredient lists. When asked to cook recipes edited by our system,

home cooks find it relatively easy to decide the amount of each ingredient to use (Section 6.8).

To ensure that recipes produced by our systems are 100% safe for cooks with dietary constraints,

2e.g. https://www.mayoclinic.org/
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we can further filter edited ingredient lists and blacklist inappropriate ingredient tokens from

being generated when using our system in the real world. We discuss the instrumentation and

impact of filtering and blacklisting modules in Section 6.7.3.

6.5.1 Ingredient Editing

We pose ingredient editing as a multi-label binary classification task: learn the likelihood

of an ingredient appearing in the target recipe, conditioned on the base recipe name and ingredients

as well as a dietary constraint. First, we embed the category ID and base recipe name via a

𝑑-dimensional learned embedding matrix and encode them with a 𝑑-dimensional Transformer

[210] encoder. We then pass the base recipe ingredient IDs into a 𝑑-dimensional Transformer

decoder—at each position, each layer of the decoder applies attention over previous positions

(self-attention) as well as the encoder outputs. The decoder outputs are projected into an

|I + 1|-dimensional vector representing logits for each ingredient in our vocabulary as well as

the eos token.

A typical transformer decoder predicts ingredients auto-regressively in an ordered list

until the eos token is encountered: 𝑃(𝐼𝑡,𝑘 |𝑅𝑏, 𝑐, 𝐼𝑡,<𝑘 ). This strategy penalizes for the order of

ingredients, but the ingredients used in a recipe are an un-ordered set—butter and flour is the

same as flour and butter. To remove this order dependence when editing ingredients, we adopt

the Set Transformer [179] strategy: we max-pool logits for each ingredient in our output sequence

across positions: 𝑃(𝑖 ∈ 𝐼𝑡 |𝑅𝑏, 𝑐) ∀ 𝑖 ∈ I returning the 𝐾 ingredients with the highest score

overall. We ignore the eos logit in the max-pooling; its position denotes the number of predicted

ingredients 𝐾 .

We train the model by maximizing binary cross-entropy (BCE) loss between the pooled

ingredient logits and ground truth. We also include a cardinality loss: the BCE loss between the

eos logit at all time steps compared to the ground truth (1 at position 𝐾 and 0 otherwise). At

inference time, we predict 𝐾 via Bernoulli sampling from the eos logit at each position.
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Figure 6.2. SHARE step generation module. The final hidden state at each position is used to
calculate 𝑝gen, weighing the probability of copying tokens directly from the input ingredients vs.
generating from the vocabulary distribution.

6.5.2 Step Generation

We next train a language model that takes our edited set of ingredients as input and

generates a new set of recipe steps as a single string (Figure 6.2). This model has no explicit

dependency on the base recipe, allowing us to train the model on all 459K recipes from

our dataset (excluding evaluation pairs). We follow a conditional language modeling setup:

𝑃(𝑆 |𝐼𝑡) =
∏𝐾
𝑘=0 𝑃(𝑠𝑘 |𝑠𝑘−1 . . . 𝑠0, 𝐼𝑡).

We represent the sequence of input ingredients 𝐼𝑡 via their names, joined by a comma

for a total of 𝐾ingr tokens. Each token 𝑤𝑖 is embedded in 𝑑 dimensions to form the sequence

𝑒0, . . . , 𝑒𝐾ingr , which is then encoded via a Transformer encoder. We obtain a 𝑑-dimensional

hidden state ℎ𝑘 for each position 𝑘 in our directions sequence via a Transformer decoder that

attends over previous positions as well as the encoder outputs. These hidden states are projected

into our vocabulary spaceW with a matrix tied to the input embeddings to produce a vocabulary

distribution 𝑃(𝑠𝑘 |𝐼𝑡 , 𝑠<𝑘 ) at each position. While this encoder-decoder setup allows us to perform

fluent language modeling, it can struggle to produce coherent recipes that properly make use

of input ingredients [92]. Thus, we propose to bias our model toward stronger ingredient

conditioning by applying copy attention over our input ingredient embeddings.
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Ingredient Copy Attention

Our model can directly copy tokens from the input ingredients sequence via a copy

attention mechanism [64, 183]. At each position 𝑘 of our directions, we calculate scaled

dot-product attention [210] weights 𝛼𝑖
𝑘
over input ingredient tokens 𝑖 using the final decoder

hidden state as query Q = ℎ𝑘 ∈ R1,𝑑 and a concatenation of our learned input token embeddings

as key K = [𝑒0; . . . ; 𝑒𝐾ingr] ∈ R𝐾ingr,𝑑: 𝛼𝑖𝑘 = softmax(QKT/
√︁
𝐾ingr). We thus learn a distribution

representing a chance of copying an ingredient token directly from the input sequence.

At each time-step, our model calculates a generation probability 𝑝gen ∈ [0, 1] via a

learned linear projection from the decoder output ℎ𝑘 : 𝑝gen = 𝜎(𝑊Tgenℎ𝑘 + 𝑏gen) where 𝜎 is the

sigmoid function. We use 𝑝gen as a soft gate to choose between generating the next token from

the vocabulary distribution or copying a token from the input ingredients, giving us the final

output distribution: 𝑃(𝑤) = 𝑝gen𝑃vocab(𝑤) + (1 − 𝑝gen)
∑
𝑖:𝑤𝑖=𝑤

𝛼𝑖
𝑘
.

At training time, we compute cross-entropy loss over the predicted recipe directions

against the target recipe steps, minimizing the log likelihood of the predicted sequence via the

factorized joint distribution: 𝑃(𝑆 |𝐼𝑡) =
∏𝑛

𝑗 𝑃(𝑠𝑘 |𝑠<𝑘 , 𝐼𝑡) using the final output distribution.

6.6 Experimental Setup

6.6.1 Baselines

While controllable recipe editing has not been attempted to our knowledge, we adapt

state-of-the-art recipe generation models as strong baselines alongside the substitution rule

method (Rule) described in Section 6.4. Lee et al. [102] fine-tuned a large language model (LM)

on Recipe1M+ to extract ingredients from recipe directions and write directions given ingredients:

RecipeGPT. We adapt RecipeGPT for multi-task editing (MT): 1) predict target ingredients from

the category, base recipe name, and base recipe steps by modeling the concatenated sequence

[𝑐; 𝑁𝑏; 𝑆𝑏; 𝐼𝑡]; and 2) generate target steps from the category, base recipe name, and target recipe

ingredients by modeling the concatenated sequence [𝑐; 𝑁𝑏; 𝐼𝑡 ; 𝑆𝑡].
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We next fine-tune RecipeGPT for end-to-end (E2E) recipe editing by priming the model

[89] with a dietary constraint and base recipe name [𝑐; 𝑁𝑏] (e.g. ‘low_fat cheesecake’) to

generate target ingredients and steps in a single sequence. E2E is twice as efficient as MT and

simultaneously predicts ingredients and steps. We also investigate a form of prototype editing in

our end-to-end model, by treating the full base recipe as a prototype which needs to be edited to

accommodate a constraint (E2E-P). While methods for sentence editing use a latent edit vector

in addition to a prototype sentence [65], we prime our model with the fully specified base recipe

([𝑐; 𝑁𝑏; 𝐼𝑏; 𝑆𝑏]) in addition to the category to predict ingredients and steps of an edited recipe.

6.6.2 Evaluation Metrics

We first compare SHARE to baseline models via quantitative experiments on RecipePairs.

To measure fidelity of edited ingredient lists against ground truth, we calculate Jaccard similarity

(IoU) and F1 scores [179], and precision and F1 for insertions and deletions. To measure

step fidelity, we compare the workflow of two recipes via Normalized Tree Edit distance

(NTED) between structured ingredient-cooking-action tree representations [23]. These trees have

ingredients as root nodes, with intermediate nodes drawn from a curated set of 259 lemmatised

cooking action verbs.

Wemeasure the fluency of generated directions via ROUGE-L [119], a metric that assesses

n-gram overlap between edited and gold recipe texts. We measure diversity via the percentage of

distinct bigrams (D-2) across edited recipes. To assess whether edited recipes are appropriate

given the target dietary constraint, we extract all ingredient mentions from recipe directions to

flag if ingredients in the edited ingredients list and directions violate the target constraint. We

also conduct a human study to critique generated recipes from each model and real-world cooking

trials where home cooks follow recipes generated by SHARE to produce dishes (Section 6.8).

105



Table 6.2. Fidelity of edited ingredient lists when compared to target recipe ingredients, in
terms of overall IoU/F1 and insertion/deletion F1 and precision. SHARE creates significantly
(𝑝 < 0.05) higher fidelity edits compared to baselines.

Insertion Deletion

Model IoU F1 Score F1 Score Precision F1 Score Precision

Rule 22.2 33.9 1.2 2.1 18.4 42.0
RecipeGPT (MT) 31.6 45.8 25.6 28.9 69.5 82.4
RecipeGPT (E2E) 29.5 43.2 21.1 26.8 69.5 79.9
RecipeGPT (E2E-P) 30.6 44.7 26.2 29.5 73.2 81.0
SHARE 33.0 47.5 26.7 35.2 66.1 83.2

6.7 Results

6.7.1 RQ 1: How accurately does SHARE edit ingredient lists?

In Table 6.2 we compare edited ingredient lists to ground truth. Ingredient substitution is

a challenging task—human-written substitution rules lack the coverage and flexibility required

to accurately edit recipes to satisfy dietary constraints. SHARE outperforms all baselines in

overall editing accuracy (IoU and F1). We find that correctly adding ingredients is significantly

more challenging than removing inappropriate ingredients, with our approach achieving the

highest precision in both cases. Baseline LM methods (MT, E2E, E2E-P) predict new ingredients

from the vocabulary of English language tokens. SHARE instead separates the ingredient- and

step-editing tasks in the hierarchical pipeline, predicting ingredient sets from a known ingredient

space. This approach allows us to learn how specific ingredients interact in context of a recipe

and dietary restrictions.

6.7.2 RQ 2: How reasonable are the recipe steps generated by SHARE?

We measure recipe direction quality in terms of fluency, diversity, and fidelity (Table 6.3).

Here again, the Rule baseline’s tendency to simply remove ingredient references not found in

human-written substitution rules hurts recipe coherence. Despite other baselines leveraging

large pre-trained LMs, no model reports statistically significantly better ROUGE scores than
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Table 6.3. Fluency (ROUGE), fidelity (NTED), and diversity (D-2 %) metrics for edited recipe
directions. SHARE creates significantly (𝑝 < 0.05) more structurally similar recipes to the target.

Fluency: ROUGE ↑ Fidelity: NTED ↓ Diversity: D-2 (%) ↑

Rule 20.3 ± 11.5 0.623 ± 0.072 24.48
RecipeGPT (MT) 23.3 ± 9.1 0.618 ± 0.073 7.28
RecipeGPT (E2E) 21.2 ± 8.9 0.621 ± 0.074 10.13
RecipeGPT (E2E-P) 23.0 ± 9.1 0.621 ± 0.068 7.67

SHARE 22.6 ± 7.4 0.611 ± 0.065 13.04
Paired Data 22.2 ± 7.2 0.614 ± 0.063 13.13
No Copy Attention 20.2 ± 7.5 0.622 ± 0.065 12.04

all alternatives. We confirm observations from Baheti et al. [8] and Majumder et al. [136]

that n-gram metrics like ROUGE correlate poorly with human judgment (Section 6.8). Our

hierarchical ingredient-to-step generation format explicitly decouples the base recipe and edited

instructions, allowing SHARE to create more diverse recipes than large LM baselines (+3-5%

bigram diversity). We do not require paired data and can train SHARE on all 400K+ recipes

from Food.com; we find that a variant trained only on the same paired corpus (Paired Data)

still out-performs baselines for diversity and fidelity. Thus, independent of corpus size, our

hierarchical approach allows our step generator to learn that many dishes can be cooked from

the same ingredients—reflecting the many satisfactory ways of editing a recipe to fit a dietary

constrain—and addresses a flaw we observe with existing recipe aggregators: a lack of diverse

recipes satisfying dietary constraints.

SHARE generates recipes that are not only diverse but also high-fidelity: when comparing

workflows between generated recipes and ground truth it significantly out-performs all baselines

(𝑝 < 0.05), producing recipes that are the most structurally similar to gold (lowest average NTED).

This reflects how our hierarchical step generator is trained to generate recipes conditioned solely

on input ingredients and suggests that it best learns how human cooks make use of a given set

of ingredients. We also confirm the importance of our ingredient copy attention module, as a

pure Transformer encoder-decoder (No Copy Attention) edits recipes with significantly worse

structural fidelity.
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Table 6.4. Percent of edited ingredients lists violating target hard dietary restrictions (before
filtering). SHARE is significantly better at creating appropriate ingredient edits compared to
baseline language modeling methods.

Model Dairy-Free Gluten-Free Vegetarian Overall (Hard Constraints)

Rule 0.00 0.00 0.00 0.00

RecipeGPT (MT) 20.55 32.89 10.24 17.23
RecipeGPT (E2E) 39.73 46.05 21.46 30.51
RecipeGPT (E2E-P) 10.96 34.21 4.88 12.43
SHARE 4.11 9.21 0.00 2.82

6.7.3 RQ 3: How well does SHARE satisfy dietary constraints?

Previous work in recipe generation has focused on writing recipe steps; we aim to instead

create complete recipes satisfying a user’s dietary constraints. As some human-written recipes

satisfying a soft constraint (e.g. low-sugar) nonetheless judiciously use unhealthy ingredients

(e.g. corn syrup), we analyze strict dietary constraints: dairy-free, gluten-free, and vegetarian

recipes. Violating such constraints can often result in health risks, so we track the percentage of

edited recipes that use prohibited ingredients (from Section 6.3).

SHARE makes significantly more appropriate edits to ingredient lists compared to

alternatives (Table 6.4), with less than 3% of edited recipes containing a prohibited ingredient in

its ingredients list. Recipe directions, however, are generated as unstructured text by SHARE and

LM baselines and can reference problematic ingredients not in the ingredients list. As such, we

identify ingredient references in generated steps, and find a 4.5-6.5% violation rate (Table 6.5).

Even if SHARE generates appropriate recipes >95% of the time, a 4.5% chance of

generating a potential dangerous recipe edit remains unacceptable for production use. Filtering

out prohibited ingredients from the ingredients list helps reduce the incidence of bad references

for SHARE, while it has no impact on other LM baselines. This further suggests our approach

conditions more strongly on input ingredients when writing steps compared to RecipeGPT-based

methods. We can further remove all problematic ingredient references by setting the likelihood

of prohibited ingredient sequences to zero during step generation.
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Table 6.5. Percent of edited recipe directions referencing ingredients that violate target hard
dietary restrictions. SHARE remains the most compliant with requested constraints—and when
we remove all inappropriate ingredients from edited lists (+Filter), SHARE is the only model that
improves compliance, showing its strong conditioning on input ingredients.

Model Dairy-Free Gluten-Free Vegetarian Overall (Hard Constraints)

Rule 0.00 0.00 0.00 0.00

RecipeGPT (MT) 6.85 22.37 0.49 6.50
+Filter 6.85 22.37 0.49 6.50

RecipeGPT (E2E) 13.70 10.53 0.00 5.08
+Filter 13.70 10.53 0.00 5.08

RecipeGPT (E2E-P) 6.85 14.47 0.98 5.08
+Filter 6.85 14.47 0.98 5.08

SHARE 6.85 14.47 0.00 4.52
+Filter 4.11 11.84 0.00 3.39

6.7.4 Performance vs. Efficiency

In addition to out-performing baseline models for recipe editing, SHARE is much smaller

than such models, with 12.5M learnable parameters compared with 124M (~10x larger) for

RecipeGPT-based models. Its smaller size confers additional benefits: it takes on average 3.9s

to generate a recipe from E2E-P and MT, while it takes on average only 0.9s (4.3x faster) for

SHARE. Thus, a hierarchical approach to controllable recipe editing accommodates the training

of lightweight models for each sub-task that can serve users with acceptable latency.

6.8 Human Studies and Discussion

Procedural texts like recipes indicate a precise series of actions that must be performed

with the ingredients at hand to construct a dish. While automatic metrics can help gauge recipe

appropriateness, we need human studies to accurately determine whether a recipe—a series of

actions performed on a set of ingredients—can be followed. We thus conduct a crowd-sourced

human review of recipes generated by each of our models. In addition, we conduct a cooking

study with seven cooks—attempting to follow edited instructions and ingredient lists exactly—to
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Table 6.6. Issues in edited recipes identified by human evaluators (%): constraint violation,
unlisted ingredients, inconsistent naming, lacking step details, lacking ingredient details.

Issue Gold Rule MT E2E E2E-P SHARE

Constraint Violation 10.7 15.2 14.3 24.1 8.9 8.0
Unlisted Ingredients 7.1 22.3 14.3 12.5 14.3 7.1
Inconsistent Naming 4.2 2.1 0.0 2.1 10.4 6.3
Lacking Step Details 4.2 14.6 6.3 8.3 8.3 6.3
Lacking Ingredient Details 2.1 0.0 4.2 4.2 6.3 2.1

assess real-world viability of our system.

6.8.1 Human Evaluation

We randomly sampled eight recipes for each constraint, with each crowd-sourced judge—

home cooks familiar with our dietary constraints—given the ground truth and versions edited by

each model (total 336 recipes); each recipe was reviewed by two different judges to determine if it

violated the target dietary constraint along with providing additional written feedback. We report

strong inter-annotator agreement for constraint violation, with a Kendall’s Tau [88] value of 0.762.

We find a significant difference in the constraint violation rate between models (𝑝 = 0.013) via a

𝜒2 test, with SHARE generating the most appropriate outputs across constraints. Some evaluators

noted violations of strict constraints, but further inspection revealed these to be safe (e.g. eggs do

not trigger dairy allergies). Soft constraint satisfaction remains subjective: a low-carb diet may

allow all types of carbs in moderation or disallow specific types (e.g. complex starches). Thus,

even some ground truth and Rule baseline recipes can violate a target soft constraint.

77 judges additionally provided written feedback. We identified common themes via

qualitative thematic coding [57], as shown in Table 6.6. In 13% of recipe directions, judges

noticed references to ingredients that not mentioned in the ingredients list (Unlisted ingredient).

In ground truth recipes, this typically consists of optional flavorings (e.g. salt) and garnishes

(e.g. fruits), while language-modeling baselines occasionally reference unlisted, substantive

ingredients (vegetables and starches). Judges consistently deemed recipes edited by SHARE the
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highest quality in terms of appropriateness and references to unlisted ingredients.

The remainder of feedback reflected how stylistic preferences affect perceptions of recipe

quality. Several judges felt it confusing when an ingredient was referred to by a synonym or more

general phrase (Inconsistent naming: e.g. cheddar referred to as cheese, or mentions of both

cilantro and coriander). In 5% of recipes (including ground truth), judges asked for more detail

in the instructions or ingredients list (Lacking detail). Some judges wondered whether listed

ingredients were pre-processed/cooked or raw, and others wanted to know specific utensils and

dimensions named for manipulating (e.g. folding) or cutting ingredients.

6.8.2 Cooking Study

Ultimately, one can best judge recipe quality by attempting to cook the dish. We recruited

seven home cooks with 3+ years of cooking experience, each tasked to cook 3 random recipes

edited by SHARE (total of 21 different recipes covering all seven dietary constraints). Cooks

were instructed to follow recipes exactly, recording 1) how complete the recipe was (i.e. missing

ingredients/steps); 2) how difficult it was to infer ingredient amounts; 3) overall difficulty of

execution; and 4) if the recipe was appropriate for its target category. Table 6.7 shows an example

recipe.

No cooks reported difficulties following any recipe. In 90% of the cases, cooks reported

using ‘common sense’ or ‘cooking experience’ to ‘easily’ infer ingredient amounts. All cooks

agreed that the recipes received were appropriate for their dietary constraint. The most common

(19%) complaint among cooks was that the final dish did not resemble the base recipe name. This

suggests that there is room for our models to better learn specific textures, shapes, and techniques

associated with different food types—while SHARE edits recipes in constraint-respecting and

diverse ways, they may surprise user in the process (e.g. editing curries into stews). Ultimately,

we demonstrate that SHARE can successfully create recipes that not only satisfy a specified

dietary constraint but are delicious and easily followed by home cooks.
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Table 6.7. Example generations from the E2E-P baseline alongside SHARE when asked to
make low-calorie versions of Chicken Dijon (original on left). Blue italics and red strike through
denote added and removed ingredients respectively. The baseline method substitutes olive oil for
butter in the ingredients list, but continues to use butter in the instructions.

Base (Chicken Dijon) Baseline (E2E-P) SHARE (Ours)

Butter, Chicken, Chicken broth,
Dijon mustard, Flour, Light
cream, Onion, Pepper, Salt,
Wine

Chicken, Dijon mustard,
Pepper, Salt, Dried thyme,
Garlic, Lemon juice, Olive oil
Butter, Chicken broth, Flour,
Light cream, Onion, Wine

Chicken, Dijon mustard, Flour,
Pepper, Salt, Carrot, Garlic,
Mushroom, Soy sauce
Butter, Chicken broth, Light
cream, Onion, Wine

1) Sprinkle the chicken breasts
with onion powder, lemon
pepper, and salt.
2) Saute the chicken in the
butter for 20 min, or cooked
through and tender.
3) Remove chicken to a
platter and keep warm.
4) Measure the pan juices and
enough chicken broth to make
1 cup liquid.
5) Return the stock mixture to
the pan and add the wine.
6) Stir together the light cream
and the flour till smooth.
7) Add to the broth, cook and
stir until smooth, thickened,
and bubbly.
8) Stir in the dijon mustard,
stir until smooth.
9) Return the chicken to pan,
or serve the sauce separately.

1) Combine lemon juice,
mustard, garlic, thyme, salt
and pepper in a small bowl.
2) Whisk in butter.
3) Place chicken in a shallow
dish.
4) Pour marinade over chicken.
5) Cover and refrigerate for at
least 1 hour.
6) Preheat grill to med-high.
7) Remove chicken from
marinade and discard marinade.
8) Grill chicken for 6 minutes
on each side or until done.

1) Preheat oven to 350 degrees.
2) Place chicken breasts, breast
side up, in a shallow roasting
pan.
3) Combine soy sauce, mustard,
garlic, and salt.
4) Brush over both sides of
chicken breast.
5) Bake for 40 minutes.
6) Meanwhile, heat a small
saucepan over medium heat.
7) Stir in carrots, mushrooms,
and pepper.
8) Cook and stir for 5 minutes.
9) Stir in flour.
10) Pour over chicken breasts,
and bake for an additional 10
minutes until chicken is cooked
through.
11) Serve chicken with carrots
and sauce.

6.8.3 Remaining Challenges

As our step predictor depends solely on input ingredients, it can mix cooking techniques

to change the form of the edited dish (e.g. casserole in place of pasta). To better serve cooks

who crave specific dishes, we hope to extend our work in the future by learning structured

representations of recipes [15] and generating recipe instructions as procedural directed graphs

[148] instead of raw text. Cooks from different cultural contexts often exhibit different patterns of
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preferences and requirements in their desired recipes [242], and in the future we hope to extend

our work to controllable recipe editing using more subtle traits such as cuisines (e.g. making a

Chinese version of meatloaf).

6.9 Conclusion

In this chapter, we propose the task of controllable recipe editing and present a System

for Hierarchical Assistive Recipe Editing (SHARE) to tackle this task in the context of dietary

constraints. On a novel dataset of 83K pairs of recipes and versions that satisfy dietary

constraints, we demonstrate that this is a challenging task that cannot be solved with rule-based

ingredient substitutions or straightforward application of existing recipe generators. We show

that SHARE can edit recipes to produce coherent, diverse versions that accommodate desired

dietary restrictions. Human evaluation and cooking trials also reveal that SHARE produces

feasible recipes that can be followed by home cooks to create appealing dishes. In the future, we

aim to leverage recipe workflows to generate flow graphs [148] and explore editing recipes to

accommodate more complex preferences like cuisines.
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Chapter 7

Conclusion and Future Work

In this dissertation, I have presented the primary thrusts of my research into building

trustworthy, personalized, and interactivemachine learning agents. We have explored probabilistic

methods for dialog models to generate informative replies that can be explained via relevant

external knowledge. I proposed 1) a question-answering framework for extracting personalized

preferences from user utterances and 2) type-centric language modeling algorithms to allow state

tracking models to generalize to unseen domains. I have then presented a bot-play framework to

enable interactive, conversational recommendation in the absence of dialog transcripts. In the

second half of this dissertation we have developed personalized interactive agents to help users

discover new cooking recipes that satisfy their dietary needs and restrictions.

We foresee several opportunities for future research to further the themes we have

explored in this dissertation. To better adapt to the increasing variety of references and

preferences expressed by users, we hope to explore enriching type-centric training corpora

with paraphrased facts that reveal relationships between entities, such as from Lu et al. [129].

Furthermore, we foresee that broader usefulness of our type-centric language models as assistive

agents—capable of recognizing entities and types in emerging news events and articles, for

example—require further study into factual verification and constraints [203] to ensure that we

are not surfacing misinformation to users. One possible way to combat misinformation from

spurious type associations (e.g. associating a public figure with the type “terrorist”) is to explore
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the use of intelligent negative sampling during the training process, hopefully improving typing

precision.

While we have separately explored extracting user preferences from free-text dialog

utterances [114, 117] and incorporating user feedback (regarding specific subjective aspects of

an item) in multi-turn conversations [116], in future work we aim to combine the two directions

to directly accommodate free-text user feedback for transcript-free conversational recommender

systems. We foresee such end-to-end systems as an important step toward building trust and ease

of use.

Finally, in the future we aim to combine concepts from our work in generating personalized

recipes given seed ingredients [136] with our work in assistive recipe editing [115] to allow

personalized recipe generators to iteratively refine recipes to fit the user’s specific preferences. I

also believe that techniques to enforce internal coherence (i.e. ensuring instructions are internally

consistent) are crucial to developing better assistive agents for generating instructional texts

(e.g. manuals, cooking recipes, and software APIs). I hope for my continuing research to inspire

the development of a wider range of assistive machine learning agents for various facets of daily

life.
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