Lawrence Berkeley National Laboratory
Recent Work

Title
Unravelling Solid-State Redox Chemistry in Li1.3Nb0.3Mn0.4O2 Single-Crystal Cathode Material

Permalink
https://escholarship.org/uc/item/0z61j6mv

Journal
Chemistry of Materials, 30(5)

ISSN
0897-4756

Authors
Kan, WH
Chen, D
Papp, JK
et al.

Publication Date
2018-03-13

DOI
10.1021/acs.chemmater.7b05036

Peer reviewed
Unravelling Solid-State Redox Chemistry in Li\textsubscript{1.3}Nb\textsubscript{0.3}Mn\textsubscript{0.4}O\textsubscript{2} Single-Crystal Cathode Material

Wang Hay Kan, Dongchang Chen, Joseph K. Papp, Alpesh Khushalchand Shukla, Ashfia Huq, Craig M. Brown, Bryan McCloskey, and Guoying Chen

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
Center for Neutron Research, National Institute of Standards and Technology 100 Bureau Drive Stop 6102, Building 235 Room 1116, Gaithersburg, Maryland 20899-6102, United States

ABSTRACT: Recent reports on high capacities delivered by Li-excess transition-metal oxide cathodes have triggered intense interest in utilizing reversible oxygen redox for high-energy battery applications. To control oxygen electrochemical activities, fundamental understanding of redox chemistry is essential yet has so far proven challenging. In the present study, micrometer-sized Li\textsubscript{1.3}Nb\textsubscript{0.3}Mn\textsubscript{0.4}O\textsubscript{2} single crystals were synthesized for the first time and used as a platform to understand the charge compensation mechanism during Li extraction and insertion. We explicitly demonstrate that the oxidation of O2− to O− (0 < n < 2) and O\textsubscript{2} loss from the lattice dominates at 4.5 and 4.7 V, respectively. While both processes occur in the first cycle, only the redox of O2−/O− participates in the following cycles. The lattice anion redox process triggers irreversible changes in Mn redox, which likely causes the voltage and capacity fade observed on this oxide. Two drastically different redox activity regions, a single-phase behavior involving only Mn3+/4+ and a two-phase behavior involving O2−/O− (0 ≤ n < 2), were found in Li\textsubscript{1.3}Nb\textsubscript{0.3}Mn\textsubscript{0.4}O\textsubscript{2} (0 < x < 1.3). Morphological damage with particle cracking and fracturing was broadly observed when O redox is active, revealing additional challenges in utilizing O redox for high-energy cathode development.

1. INTRODUCTION

Lithium-ion batteries (LIBs) have become increasingly important for energy storage in portable electronics, electric vehicles, and stationary application in power grids. Since the discovery of early generations of cathode materials (e.g., LiCoO\textsubscript{2} and LiMn\textsubscript{2}O\textsubscript{4}) in the 1980s, only a few compounds with other compositions or crystal structures have been reported in the last three decades. The conventional wisdom suggests that in O\textsubscript{3}-type layered oxides, the 3d orbitals of early transition metals (TMs), are partially overlapped with the 2p orbitals of oxygen. As such, only about half of the 3d electrons are available to participate in the redox reaction, which largely limits practical capacity (for example, ~160 mAh/g for LiCoO\textsubscript{2} despite their much higher theoretical capacities. To develop high-energy batteries, cathodes with higher specific capacity (>200 mAh/g) and operating voltage (>4.3 V vs Li+/ Li) are needed.

Recently, approaches to enable high-energy cathodes by utilizing redox reactions of both TM cations and oxygen anions have triggered intense interest. One of the most studied examples is the lithium and manganese-rich (LMR) layered oxides with a general formula of Li\textsubscript{1−x}Mn\textsubscript{1−y−z}Ni\textsubscript{y}Co\textsubscript{z}O\textsubscript{2−δ}. Our recent work showed that, contrary to the common notion of a nanocomposite structure, the oxide has a single monoclinic phase (C2/m) with a large number of domains corresponding to different variants. To involve the O 2p electrons in the following electrochemical reactions, the material typically undergoes an initial activation process signaled by a unique charging voltage profile that is much different from those of the subsequent cycles. Recent studies by Luo et al. suggested the formation of O− holes in the intermediates, as evidenced by the progressive growth of a new peak on the O K-edge X-ray absorption spectroscopy (XAS) along with the use of a number of other characterization techniques, including isofotonically labeled differential electrochemical mass spectroscopy (DEMS), X-ray absorption near edge structure (XANES), and resonant inelastic X-ray scattering (RIXS). However, this remains controversial as experimental evidence is difficult to

Received: December 1, 2017
Revised: February 9, 2018
Published: February 9, 2018
obtain, largely due to their high reactivity toward carbonate- based electrolyte and/or self-combining to release carbon dioxide and oxygen gases, respectively. These processes also produce a significant amount of oxide-ion vacancies in the unit cell, further destabilizing the crystal structure. The activation process also triggers unfavorable phase transformations, possibly involving layered → spinel → rock-salt, as the cycling proceeds, leading to continuous voltage and capacity fades in the cathode. Various optimization approaches such as doping, surface coating/engineering, and morphology control have been explored as means to mitigate the degradation, but all were met with limited success.

An alternative approach to address the phase instability is to confine O redox process within a rock-salt structure. This strategy was rarely used as it is generally believed that compounds with rock-salt crystal structure lack lithium-ion conduction pathways and are therefore electrochemically inactive. In 2003, Shigemura et al. first reported that the Li/Ti/FeO2 system can deliver a capacity of ca. 200 mAh/g at a slow rate of 10 mAh/g.20,21 Investigation on lithium-ion conduction pathways in rock-salt Li1.21Mn0.46Ti0.33O2 was then performed by Lee et al. in 2014.22 Using density functional theory (DFT) calculation, they revealed the percolation of active diffusion channels in disordered Li-excess materials. In 2015, Yabuuchi et al. reported a new rock-salt Li1.3Nb0.3Mn0.4O2 (LNO) cathode with an impressive discharge capacity of ca. 300 mAh/g.23 With the use of soft/hard X-ray absorption spectroscopy, the authors proposed the involvement of both Mn3+/4+ and O2−/O− redox reactions during charge. However, the detailed charge compensation mechanism and role of O, particularly the contribution from oxidation of O2− to O2− (0 < n < 2) and O loss from the lattice (in the form of O2 gas, n = 0), remain unclear. In this study, well-formed Li1.3Nb0.3Mn0.4O2 single crystals were synthesized by a molten-salt method for advanced diagnostic studies. The use of single crystals allows us to perform additional single-particle-based studies for systematic comparison of the changes in crystal structure, chemical state, and microstructure as a function of lithium content in the sample. The results provide us important insights on O activities in the oxide sublattice and how to control/tune them through engineering strategies such as chemical composition and surface morphology control.

2. EXPERIMENTAL SECTION

2.1. Synthesis

In a typical crystal synthesis procedure, stoichiometric amounts of Li2CO3, Nb2O5, and Mn2O3 precursors (Sigma-Aldrich, >99%) were milled together with ethanol solvent at 200 rpm for 12 h in a planetary ball mill (RETSCH PM100) using a zirconia jar with zirconia balls. About 10–15% extra Li2CO3 was used to compensate Li loss that often occurs during high temperature heating. The dried powder was further mixed with KCl flux in a molar ratio of 2.5–5 between the flux and TM precursors (defined as R ratio hereafter). The obtained mixture was then heated at 950 °C for 12 h in an Ar atmosphere. A ramp rate of 4 °C/min was used for both heating and cooling. After the reaction, KCl was dissolved in deionized water, and the final product was obtained after filtration and thorough washing with water. Chemical delithiation of Li1.3Nb0.3Mn0.4O2 was achieved by reacting the pristine powder with various amounts of 0.1 M nitromonium tetrafluoroborate (NOBF4) in acetonitrile solution in an argon filled glovebox (O2 < 1 ppm and H2O < 1 ppm). The reaction was carried out at room temperature for 1–4 days. The resulting reaction mixtures were filtered, thoroughly washed with acetonitrile, and then dried overnight in a vacuum oven.

2.2. Characterization

Chemical composition of the samples was determined by an inductively coupled plasma optical emission spectrometer (ICP-OES 720 Series). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) images were collected on a JEOL JSM-7500F field emission microscope at a 10 kV accelerating voltage. Prior to the analysis, the powder samples were sputtered with a thin top layer of Au to reduce the charging effect. Samples for transmission electron microscopy (TEM) experiments were prepared by drop casting a sonicated solution of the crystals in anhydrous ethanol onto a carbon coated TEM grid or by sectioning using focused ion beam. Selected area electron diffraction (SAED) was performed in TEM mode at 300 kV on the sectioned sample, while high angle annular dark field (HAADF) imaging was performed on dispersed particles in scanning transmission electron microscopy (STEM) mode at 120 kV, both using an FEI Titan electron microscope.

Phase purity was first analyzed by using laboratory X-ray diffraction (XRD) collected on Bruker D2 powder X-ray diffractometer (Cu Kα, 40 kV, 30 mA). Synchrotron X-ray diffraction patterns were collected at ambient temperature at 11-BM at the Advanced Photon Source (APS) in Argonne National Laboratory, which operates with a monochromatic X-ray of λ = 0.414 Å. The scans were collected between 0.5° and 50° (2θ) at a step size of 0.0001°. The samples were first packed into Kapton capillary tubes before exposing to X-ray for 1 h. Time-of-flight (TOF) neutron diffraction data were collected at the P0WGEN diffractometer at the Spallation Neutron Source, Oak Ridge National Laboratory. Samples were measured inside the 153 vanadium sample cans, and a single bank wave with center wavelengths of 1.333 Å (2 h data collection) was used. Monochromatic (1.2 Å) neutron diffraction data were obtained using the high resolution powder diffractometer at BT1 at National Institute of Standards and Technology (NIST) Center for Neutron Research. The refinement of the diffraction data was carried out using GSAS/EXPGUI package.

Mn K-edges hard X-ray absorption spectroscopy data were collected in transmission mode using a (220) monochromator at SSRL beamline 2-2 and 2-3. The crystals were sandwiched between two Kapton films for data collection. Higher harmonics in the X-ray beam were reduced by detuning the Si (220) monochromator by 50% at the Mn edge. Energy calibration was accomplished by using the first inflection point at 6539 eV in the spectra of Mn metal foil reference. X-ray absorption near edge structure spectra were analyzed by Sam’s Interface for XAS Package or SIXPACK software, with the photoelectron energy origin Er determined by the first inflection point of the absorption edge jump. Soft X-ray absorption spectroscopy measurements were carried out at beamlines 8-2 and 10-1 at SSRL. A thin layer of the crystals was spread onto a conductive carbon tape which was attached to an aluminum sample holder inside an Ar filled glovebox (O2 < 1 ppm, H2O < 1 ppm). Measurements were carried out on the 31-pole wiggler beamline 10-1 at SSRL with a ring current of 350 mA, a 1000 l/mm spherical grating monochromator with 20 mm entrance and exit slits, a 0.2 eV energy resolution, and a 1 mm2 beam spot. Data were collected at room temperature under ultrahigh vacuum (10−9 Torr) in a single load using the total electron yield and fluorescence yield mode detectors.

2.3. Electrochemistry

To prepare the composite electrodes, the active material was first ball-milled with acetylene carbon black (Denka, 20 wt %) to reduce the particle size and improve its electronic conductivity. The mixture was then mixed with acetylene carbon black and a polyvinylidene fluoride (PVdF) binder (Kynar 2801) in a 8:1:1 weight ratio in an NMP solvent. The slurry was spread onto aluminum foil and dried overnight at 120 °C under vacuum. Cathode disks with an area of 1.6 cm2 and a typical electrode loading of 2 mg/cm2 were cut from the electrode sheets and assembled into 2032-type coin cells in an argon-filled glovebox. Lithium foil (Alfa-Aesar) was used as counter and reference electrodes, Celgard 2400 polypropylene membrane as separators, and 1 M LiPF6 in 1:1 (v/v) ethylene carbonate (EC):diethyl carbonate (DEC) (Novolyte Technologies Inc.) as electrolyte. The cells were galvanostatically cycled between 1.5 and 4.8 V using a VMP3 multichannel potentiostat/galvanostat (STARE) controlled by EC-Lab v10.12 software (BioLogic Science Instruments). Cyclic voltammetry tests were carried out using the same coin cell configuration with Li foil as counter and reference electrodes. The cells were discharged by a molten-salt method for advanced diagnostic studies. The use of soft/hard X-ray absorption spectroscopy measurements were carried out at beamlines 8-2 and 10-1 at SSRL. A thin layer of the crystals was spread onto a conductive carbon tape which was attached to an aluminum sample holder inside an Ar filled glovebox (O2 < 1 ppm, H2O < 1 ppm). Measurements were carried out on the 31-pole wiggler beamline 10-1 at SSRL with a ring current of 350 mA, a 1000 l/mm spherical grating monochromator with 20 mm entrance and exit slits, a 0.2 eV energy resolution, and a 1 mm2 beam spot. Data were collected at room temperature under ultrahigh vacuum (10−9 Torr) in a single load using the total electron yield and fluorescence yield mode detectors.
3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization of \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) Single Crystals.

Synthesis of polycrystalline \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) cathode material was recently carried out by Yabuuchi et al.\(^{22}\) The process involved ball-milling stoichiometric amount of \(\text{Li}_2\text{CO}_3, \text{Mn}_2\text{O}_3, \) and \(\text{Nb}_2\text{O}_5 \), leading to the resulting mixture into a pellet, and then heating the pellet in an Ar atmosphere at 900 °C for 24 h. Synthesis of \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) single crystals, however, has not been reported in the literature. Here, we adopted a molten-salt method and systematically varied the synthesis conditions to obtain phase-pure and discrete \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) single crystals with uniform morphology and size distribution for the first time. The following parameters were carefully optimized in our synthesis: choice of transition-metal precursor salts and flux salt, the molar ratio between the flux and TM precursors (R ratio), choice and amount of lithium precursor, heating temperature and time, and reaction atmosphere. It was found that the best reaction time and temperature were 12 h and 950 °C, respectively. \(\text{Li}_3\text{NbO}_4 \) was often obtained as an impurity when the reaction time was too short or the heating temperature was below 950 °C. The loss of lithium at elevated temperature was effectively compensated by using additional 10−15% of the lithium precursor. Various molten salts, including \(\text{LiCl}, \text{NaCl}, \text{KCl}, \text{CsCl}, \text{KOH}, \) and \(\text{Li}_2\text{SO}_4 \) were used as the flux, but only \(\text{KCl} (\text{mp} = 770 \degree \text{C}) \) led to the formation of phase-pure samples. The optimized R ratio was between 2.5 and 5. In addition, the presence of trace \(\text{O}_2 \) in the synthesis atmosphere can lead to the formation of \(\text{Li}_2\text{MnO}_3 \) and \(\text{Li}_2\text{NbO}_4 \) impurities.

The nominal composition of the as-synthesized oxide was analyzed by an inductively coupled plasma optical emission spectrometer, which confirmed the chemical formula of \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \). As shown in the scanning electron microscopy image in Figure 1a and high angle annular dark field scanning transmission electron microscopy image in Figure 1b, the particles adopted a large spherical shape with an average size of ca. 5−8 μm and absence of any grain boundaries. This suggests that all the facets have similar thermodynamic stability and grow at a similar rate under current synthesis conditions. Contrast reversal toward the center of the particles observed on HAADF STEM images indicates that the pristine particles are too thick for detailed analytical electron microscopy. Focused ion beam (FIB) milling was then used to reduce the thickness and a SAED pattern in [110] zone axis was taken over an area covering almost entire single particle (Figure 1c). The pattern matches well with the one simulated using \(\text{Fm\overline{3}m} \) structure with a lattice parameter of \(a = 4.2 \) Å (Figure 1d), confirming the single crystal nature of the particle. It is worth noting that the SAED pattern from this particle also shows diffuse scattering effects that are characteristic of materials with short-range ordering. At this point, it is unclear whether this short-range order occurs broadly in the entire sample or if it has any effect on oxide properties and behavior. Both of them require further investigation with complementary analytical techniques, and the results will be reported in a future publication.

Bulk phase purity and crystal structure of the synthesized samples were evaluated by using both synchrotron X-ray and neutron diffraction studies. Figure 2 shows the Rietveld refinement of the diffraction patterns, while Table 1 lists the refined structural parameter. In both sets of diffraction patterns, the high peak symmetry observed in a wide angular range indicates a single phase with high crystallinity. Rietveld refinement confirms a rock-salt crystal structure with a lattice parameter of 4.1954(1) Å and cell volume of 73.685(1) Å\(^3\), which is in good agreement with the values reported by Yabuuchi et al. on polycrystalline samples.\(^{22}\) All cations (\(\text{Li}, \text{Nb}, \) and Mn) were randomly located in the 4a sites, and all M−O bonds had the same distance of 2.0965(1) Å, confirming the disordered nature of the oxide crystals. The refined occupancies agree well with the chemical formula of \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \).

3.2. Electrochemical Studies. The electrochemical performance of \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) crystals was evaluated at room temperature in a half-cell configuration. Due to high resistance and poor utilization of large particles, only limited capacities were obtained on composite electrodes made with the as-synthesized micrometer-sized crystals. In a modified procedure, the crystal size was reduced and electronic conductivity improved by ball-milling the oxide crystals together with a carbon black additive in a \(\text{Li}_3\text{Nb}_0\text{Mn}_0\text{O}_2 \) carbon weight ratio of 80:20. A SEM image of the mixture is shown in Figure S1. The mixture was then added into the standard carbon and PVdF slurry in an N-methyl-2-pyrrolidone (NMP) solvent and cast onto the Al...
Table 1. Structural Parameters of Pristine Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ Crystals Determined from Joint Rietveld Refinements of Synchrotron X-ray and TOF Neutron Dataa

<table>
<thead>
<tr>
<th>atom</th>
<th>position</th>
<th>Wyck. site</th>
<th>occp.</th>
<th>$d_{(\text{M-O})}$ (Å)</th>
<th>bond valence</th>
<th>$100(U_{iso})$ (Å2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>0,0,0</td>
<td>4a</td>
<td>0.65</td>
<td>2.0965(1)</td>
<td>1.092</td>
<td>1.13(1)</td>
</tr>
<tr>
<td>Mn</td>
<td>0,0,0</td>
<td>4a</td>
<td>0.2</td>
<td>2.0965(1)</td>
<td>2.43</td>
<td>1.13(1)</td>
</tr>
<tr>
<td>Nb</td>
<td>0,0,0</td>
<td>4a</td>
<td>0.15</td>
<td>2.0965(1)</td>
<td>3.66</td>
<td>1.13(1)</td>
</tr>
<tr>
<td>O</td>
<td>0,0,0.5</td>
<td>4b</td>
<td>1.0</td>
<td>2.9650(1)</td>
<td>1.72(1)</td>
<td></td>
</tr>
</tbody>
</table>

aFm$\overline{3}$m, a (Å) = 4.1954(1) V (Å3) = 73.845(1), wR$_p$ = 9.22%, δ = 0.0(0).

Figure 2. Rietveld refinement of (a) XRD and (b) neutron diffraction patterns collected on pristine Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ single crystals (PWEGEN). Values in parentheses indicate standard deviation.

Figure 3. (a and b) Voltage profiles of Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ half-cell cycling. (c) Specific capacity and average voltage as a function of cycle number. (d) Cyclic voltammogram of the first 9 scans at a scan rate of 5 mV/min. Solid symbols and open symbols in panel c represent capacity and voltage, respectively.
high voltage may be responsible for the irreversible conversion of the Mn$^{3+}$ redox species, which ultimately led to both capacity and voltage fade in this oxide cathode.

Operando differential electrochemical mass spectroscopy was used to further examine the oxidation process of O$^{2-}$ to O$^{n-}$ ($0 \leq n < 2$) occurring between 4.5 and 4.7 V. Figure 4 shows the results obtained during the first 2 cycles at a constant current density of 25 mA/g. The voltage profiles are similar to those obtained from the coin cell tests, validating the excellent quality of the in situ electrochemical cell. During the first cycle, both CO$_2$ and O$_2$ evolution were detected. CO$_2$ evolution began around 3.8 V during the charge (the first blue guideline in the figure) and completed around the mid-discharge cycle (the second blue guideline). There was an increase in intensity around the midplateau after the onset of O$_2$ evolution, and the peak CO$_2$ evolution was reached at the end of charge at 4.8 V. Oxygen gas was not detected until the midplateau region at about 4.5 V (the first red guideline in the figure), which also peaked at the upper cutoff voltage of 4.8 V. Oxygen evolution completes at the beginning of first discharge after the resting step (the second red guideline). The cumulative CO$_2$ and O$_2$ evolved from the first cycle were 1.53 and 0.11 mmol, respectively, from a cathode that contained 2.66 mg of active materials. Oxygen evolution, therefore, is much reduced compared to what was reported on the lithium and manganese-rich layered oxide system by Luo et al.9,10 In the second cycle, the amount of CO$_2$ was reduced from 1.53 to 0.46 mmol, while negligible O$_2$ evolution was detected.

Several sources may contribute to the evolution of CO$_2$ gas, Li$_2$CO$_3$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas. Recent studies confirmed that in LMR oxide cathodes,26,28 all CO$_2$ gas evolved during the first charge in the typical voltage region, results from residual Li$_2$CO$_3$ in the samples. Given the similar outgassing behavior of Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ cathode to LMR, we postulate that residual Li$_2$CO$_3$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas.

Figure 4. (a) Voltage profile and (b) O$_2$ and CO$_2$ gas evolution analyzed by DEMS of a cathode containing 2.66 mg Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ active material.

Further insights on the redox activities of Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ crystals were obtained from cyclic voltammetry performed between 1.5 and 4.8 V at a scan rate of 5 mV/min. Figure 3d shows the results obtained from the first nine cycles. A broad peak centered at 3.5 V and a split peak between 4.5 and 4.7 V were observed during the first oxidation, corresponding to the sloping and plateau regions on the charging voltage profile, respectively. In the following scans, the oxidation peak at 3.5 V gradually moves toward high voltage, and its intensity grew while that of the peak at 4.5 V decreased, along with the disappearance of the split peak at 4.7 V after the first cycle. As the peak around 4.5−4.7 V is often attributed to the oxidation of O$^{2-}$ to O$^{n-}$ ($0 \leq n < 2$), the disappearance of the split peak and the continuous decrease in peak intensity suggest the complex and irreversible nature of the processes. During the first reduction, only a single peak was observed around 3.2 V, which decreased its intensity along with the appearance and gradual growth of a new peak around 2.2 V in the following scans. The pair of peaks centered at 3.5 V during oxidation and 3.2 V during reduction is likely associated with the Mn$^{4+}$/Mn$^{3+}$ redox couple. The growth of the reduction peak at 2.2 V at the expense of the peak at 3.2 V suggests the gradual transformation of the Mn species and the increasing contribution from the lower voltage process along with cycling. This transformation was not observed when the upper cutoff voltage was limited to 4.0 V, before the onset of the oxygen oxidation peak. The results suggest that the oxidation of O$^{2-}$ to O$^{n-}$ at high voltage may be responsible for the irreversible conversion

The Coulombic efficiency for the first cycle is therefore ~88%. Two guidelines, one showing the theoretical capacity originated from the Mn$^{4+}$/Mn$^{3+}$ redox couple at 118 mAh/g and the other showing the theoretical capacity based on Li content at 383 mAh/g are also shown in Figure 3a. It is clear that both charge and discharge capacities (330 and 290 mAh/g, respectively) are significantly larger than the theoretical capacity of the Mn$^{3+}$/Mn$^{4+}$ redox (118 mAh/g). The charge capacity obtained in the sloping region is consistent with the capacity from the Mn$^{3+}$/Mn$^{4+}$ redox, suggesting that Mn$^{4+}$/Mn$^{3+}$ may be the sole redox process occurring in this region below 4.3 V.

In the second cycle, there is an overall decrease in the charging voltage of the sloping region, which led to an increased capacity of ~180 mAh/g upon reaching 4.3 V. The plateau region became somewhat sloping, but voltage increase remained slow. With cycling, the degree of sloping gradually increased, and the capacity obtained from this plateau region continued to decrease. The same trend was also observed on the discharge capacity, which was reduced to 160 mAh/g after 27 cycles, a loss of nearly 45% (Figures 3b and c). These results obtained from room-temperature cycling are comparable to what was obtained at 60 °C by Yabuuchi et al. Although more carbon was used in our electrode, which likely contributed to the improved performance, the results may also indicate that the crystal samples have a kinetic advantage compared to the polycrystalline samples synthesized using the solid-state method. Further analysis showed that the oxide experienced not only capacity fade but also voltage fade. As shown in Figure 3c, the average discharge voltage, obtained by dividing the total cell energy (E) by the cell capacity (Q) at 1.5 V, continues to decrease along with cycling. The extent of decay appears to be sensitive to the discharge cutoff voltage, and much faster decay was observed when the cutoff voltage was reduced from 1.5 to 1.0 V.

Li$_{1.3}$PO$_4$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas. Recent studies confirmed that in LMR oxide cathodes,26,28 all CO$_2$ gas evolved during the first charge in the typical voltage region, results from residual Li$_2$CO$_3$ in the samples. Given the similar outgassing behavior of Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ cathode to LMR, we postulate that residual Li$_2$CO$_3$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas. Recent studies confirmed that in LMR oxide cathodes,26,28 all CO$_2$ gas evolved during the first charge in the typical voltage region, results from residual Li$_2$CO$_3$ in the samples. Given the similar outgassing behavior of Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ cathode to LMR, we postulate that residual Li$_2$CO$_3$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas.

Several sources may contribute to the evolution of CO$_2$ gas, Li$_2$CO$_3$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas. Recent studies confirmed that in LMR oxide cathodes,26,28 all CO$_2$ gas evolved during the first charge in the typical voltage region, results from residual Li$_2$CO$_3$ in the samples. Given the similar outgassing behavior of Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ cathode to LMR, we postulate that residual Li$_2$CO$_3$, a precursor from synthesis or a byproduct formed during air exposure of Li-TM oxide samples, can decompose during charging and release CO$_2$ gas.

Figure 4. (a) Voltage profile and (b) O$_2$ and CO$_2$ gas evolution analyzed by DEMS of a cathode containing 2.66 mg Li$_{1.3}$Nb$_{0.3}$Mn$_{0.4}$O$_2$ active material.
423 for lattice oxygen loss in addition to oxygen gas evolution. In
424 the simplest case where we safely assume only O atoms in O2
425 gas originate from Li1.3Nb0.3Mn0.4O2 cathode material, the total
426 lattice O loss from a cathode containing 2.66 mg of active
427 materials was 0.11 μmol, which corresponds to 0.36 mol % of
428 oxygen ion vacancy in the delithiated cathode and a capacity of
429 4.48 mAh/g. Although some of the first charge capacity may
430 also come from Li2CO3 oxidizes to CO2 via a 2 e−/CO2 process
431 and side reactions from electrolyte decomposition, it is evident
432 that the redox process of O2− to O2 (0 < n < 2) species
433 accounts for the majority of the first charge capacity above 4.3
434 V (215 mAh/g) and the first discharge capacity (290 mAh/g)
435 in Li1.3Nb0.3Mn0.4O2 cathode.
436 The DEMS results also reveal that capacity contribution from O
437 extraction from the oxide lattice occurs above ~4.5 V. This
438 mechanism is active during the first charge which disappears in
439 the following cycles. This is consistent with the observation on
440 the CV studies, where the oxidation peak centered at 4.7 V was
441 observed only during the first scan. The combined results
442 suggest that the peak at 4.7 V is likely related to O2− oxidation
443 to O2 gas. The peak centering at 4.5 V, therefore, is attributed
444 to the oxidation O2− anion to O2 (0 < n < 2) species. While
445 both O2 gas evolution and lattice oxygen oxidation occur in the
446 first charge, the following cycles involve only the redox of O2−
447 to O2 (0 < n < 2) species, signaled by the single oxidation peak
448 at 4.5 V. The continuous decrease in peak intensity along with
449 scanning indicates that the lattice anion redox process is highly
450 irreversible. After merely nine cycles, the O redox process no
451 longer participates.
452 3.3. Structural, Chemical, and Morphological Evolution
453 during the First Delithiation. To gain further insights
454 on structural and chemical changes during the first charge, we
455 resorted to chemical delithiation, which allows for the
456 preparation of samples in the large quantity needed for a
457 number of analytical techniques. This approach also allows us
458 to monitor morphological evolution as large single crystals can
459 be used directly without the prior milling process, a necessary
460 step to electrochemically charge and discharge the sample.
461 Pristine Li1.3Nb0.3Mn0.4O2 crystals were mixed with various
462 amounts of nitronium tetrafluoroborate oxidant in acetonitrile to
463 prepare a series of Li0.92, Li0.87, Li0.81, Li0.76, Li0.64, Li0.56, Li0.49, Li0.40, Li0.32, Li0.22, Li0.13,
464 and Li0.06 is possible.
465 Figure 5. (a) Synchrotron X-ray diffraction and (b) monochromatic
466 neutron diffraction patterns collected on chemically delithiated
467 Li1.3Nb0.3Mn0.4O2 crystals. For neutron measurement, Li1.3 and Li0
468 samples were measured at SNS (POWGEN) using TOF, while Li1.1,
469 Li0.92, Li0.7, Li0.49, and Li0.22 samples were measured at NIST (BT-
470 1) using a single wavelength of λ = 1.19 Å. Note that the Li contents
471 were determined by ICP measurements where an error range of up to
472 ±0.06 is possible.
473 sample was examined by both techniques. Figure S2 and Table
474 2 show the results obtained from Rietveld refinement of these
475 XRD patterns. The structural transformation can be separated
476 into two regions: single phase (phase 1) behavior when x > 0.9 (region I) and a two-phase (phase 2 and 3) behavior when 0 < x < 0.9 (region II). The unit cell volume and phase fraction as a function of Li content were constructed from the refinement and shown in Figures 6a and b, respectively. The Vegard’s law is only followed in region I, where the total volume change is ca. 0.2%. This is consistent with the participation of simple cation redox from Mn3+ to Mn4+ along with the extraction of 0.4 Li’ from the Li1.3Nb0.3Mn0.4O2 structure. Complex mixed oxygen activities are likely involved in region II, where phases 2 and 3 with the same rock-salt crystal structure but different lattice dimension evolve along with the extraction of Li. Smaller sized phase 3 reaches the maximum fraction when x is ~0.5, whereas phase 2 becomes the main phase with further Li removal. Combining with the results from the electrochemical studies, we propose that lattice O2− oxidation to O2 (0 < n < 2) mainly occurs in phase 3, whereas loss of O from the lattice mainly occurs in phase 2. This was further supported by results from the joint X-ray and neutron refinements (Figure S3), which revealed that ~2 and 7.8 mol % of oxygen ion vacancies exist in the delithiated Li1.3Nb0.3Mn0.4O2−x with x = 0.2 and 0.0, respectively. Compared to the oxygen ion vacancies in the electrochemically charged samples, the much higher concentration is likely due to the fact that chemical delithiation was
The edge position, changes were observed in samples with the Li content below consistent with the oxidation of Mn $^{3+}$ to Mn$^{4+}$. Negligible observed as the lithium content was reduced from 1.3 to 0.9, reference. Substantial blue-shift of the edge energy was consistent with that of Mn $^{3+}$ collected on the standard electronic structures near the absorbing atoms and has the oxidation state of the absorbing atoms being analyzed in the absorption edge energy to the variations in the average complex nature of mixed anion activities at lower Li contents. signification changes in the absorbance of H$_2$O during brief air exposure. However, it is possible that the detected protons may originate from cation exchange between Li$^+$ and H$^+$. As previously reported on the classic layered oxides. Further analysis is needed to fully understand the source of protons in these samples. The kinetic properties of delithiation were evaluated by the relationship between the molar ratio of oxidant/oxygen used and the residual Li content in the sample (Figure 6c), as determined by ICP. While a linear relationship is apparent in region I, as determined from Rietveld refinement of X-ray and neutron diffraction studies, further confirming that Mn is only redox active in region I. Further changes were observed in the intensity of Mn pre-edge absorption peaks arising from the dipole forbidden 1s \rightarrow 3d electronic transitions, which are typically weak in the transition metals. In the presence of 3d and 4p orbital hybridization, often resulting from structural distortion in local symmetry or noncentrosymmetric environment between the metal and oxygen coordination, the transitions are made partially allowed, and the peaks become much stronger. As shown in Figure 7d, the intensity of the pre-edge absorption peaks is similar in region I, which becomes noticeably stronger in region II. This suggests that although Mn redox activities are not involved in region II, the nature of Mn\rightarrowO bond is altered in these samples, providing further evidence for oxygen redox activities in this region as the processes are likely behind those observed in local symmetry and environment of metal\rightarrowligand coordination. Similar to the edge shift observed in Figures 7a and b, the absorption energy of the pre-edge peaks also experienced blue shift in region I while maintaining nearly constant in region II, corroborating with the observation of Mn redox activity in region I only.

Table 2. Summary of Structural Parameters in Li$_x$Nb$_{0.3}$Mn$_{0.4}$O$_{2-\delta}$ ($0 \leq x \leq 1.3$) Determined from Rietveld Refinement of Synchrotron X-ray Diffraction and Neutron Data

<table>
<thead>
<tr>
<th>x</th>
<th>1.3</th>
<th>1.21</th>
<th>1.1</th>
<th>0.92</th>
<th>0.87</th>
<th>0.49</th>
<th>0.22</th>
<th>0.13</th>
<th>0.01</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1 (Å3)</td>
<td>73.84(1)</td>
<td>73.83(1)</td>
<td>73.69(1)</td>
<td>73.54(1)</td>
<td>73.84(1)</td>
<td>73.29(1)</td>
<td>70.83(1)</td>
<td>68.93(1)</td>
<td>68.89(1)</td>
<td>68.34(1)</td>
</tr>
<tr>
<td>V_2 (Å3)</td>
<td>72.87(2)</td>
<td>72.49(1)</td>
<td>68.80(2)</td>
<td>67.07(3)</td>
<td>66.69(1)</td>
<td>68.89(1)</td>
<td>68.89(1)</td>
<td>68.89(1)</td>
<td>68.89(1)</td>
<td>68.89(1)</td>
</tr>
<tr>
<td>n_i</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.57(1)</td>
<td>0.24(1)</td>
<td>0.93(1)</td>
<td>0.84(1)</td>
<td>0.93(1)</td>
<td>0.93(1)</td>
</tr>
<tr>
<td>d_1 (Å)</td>
<td>2.0965(1)</td>
<td>2.0976(1)</td>
<td>2.0962(1)</td>
<td>2.0948(1)</td>
<td>2.0976(5)</td>
<td>2.0736(7)</td>
<td>2.0690(2)</td>
<td>2.0500(4)</td>
<td>2.0495(3)</td>
<td>2.0444(1)</td>
</tr>
<tr>
<td>d_2 (Å)</td>
<td>2.0885(4)</td>
<td>2.0667(4)</td>
<td>2.0541(3)</td>
<td>2.0315(3)</td>
<td>2.0315(3)</td>
<td>2.0276(7)</td>
<td>2.0276(7)</td>
<td>2.0276(7)</td>
<td>2.0276(7)</td>
<td>2.0276(7)</td>
</tr>
<tr>
<td>R_p (%)</td>
<td>9.22</td>
<td>6.78</td>
<td>6.85</td>
<td>7.40</td>
<td>7.25</td>
<td>8.91</td>
<td>6.71</td>
<td>8.70</td>
<td>6.91</td>
<td>8.16</td>
</tr>
</tbody>
</table>

V_1, V_2, V_a, n_i, n_2, n_1, d_1, d_2 and R_p represent the unit cell volume, phase fraction, bond distance of Li/Mn/Nb and O in phase 1, 2, and 3, respectively. δ represents oxygen anion vacancy in each phase, while R_p represent the residual factor of the refinement.

V_1, V_a, V_b, V_c, n_1, n_2, n_i, d_1, d_2, U_{iso1}, U_{iso2}, and U_{iso3} represent the unit cell volume, phase fraction, bond distance of Li/Mn/Nb and O in phase 1, 2, and 3, respectively. δ represents oxygen anion vacancy in each phase, while R_p represent the residual factor of the refinement.
To better understand the oxygen redox activities as a function of Li content, quantifications of peak features in both TEY and FY O K-edge XAS spectra were performed, and the results are shown in Figures 8c and d. The detailed peak fitting method is also shown in Figure S4. For both TEY and FY spectra, the ratio between the pre-edge peaks and postedge peaks continuously increase with lithium extraction, as shown in Figure 8c. This confirms electron extraction from O2p and TM 3d hybridization and agrees with the previous report by Yabuuchi et al. It is, however, unclear on the contribution from TM and O due to the hybridization nature between them. The quantification on the p-band intensity, on the other hand, provides an opportunity to directly probe oxygen redox activities. As shown in Figure 8d, the initial p-band intensity is fairly low in the pristine \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) and remains nearly constant below Li content of \(~0.9\), suggesting negligible interactions between oxygen anions or oxygen redox activities. As \(x \) decreases to below 0.9, there is an increase in the p-band intensity, and the trend continues to full delithiation (\(x = 0 \)). The results suggest a continuous increase in oxygen valence states in this region and the participation of oxygen redox for charge compensation. Combined with the results from the Mn K-edge XAS spectra which shows that Mn is active when \(x > 0.9 \) and inactive when \(x < 0.9 \), the quantification of O K-edge XAS spectra enables the understanding of complete charge compensation mechanism during delithiation of \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) crystals. Note that the p-band intensity in the \(x < 0.9 \) region is generally higher in the FY mode than that in the TEY mode, consistent with a difference in oxygen activities, likely enhanced lattice O loss on the surface.

The evolution of particle morphology during the first delithiation is revealed by the SEM images collected on the series of delithiated crystal samples (Figure 9). Some surface roughing was observed but the particles remain intact when \(x > 0.9 \). With further lithium extraction, large cracks begin to appear, which tend to propagate across the entire particle, leading to the eventual fracturing of the crystals. The number of cracks on each crystal increases along with the decrease in \(x \) but appears to reach the maximum at a Li content of 0.5—0.6. This coincides with the occurrence of maximum fraction of phase 3, as shown in Figure 6b. The change in morphology is also consistent with the fact that Mn is redox active when \(x > 0.9 \) while O is redox active when \(x < 0.9 \). The participation of oxygen redox appears to cause significant morphological damage. Our results also suggest that lattice oxidation of \(\text{O}^{2−} \) to \(\text{O}^{2+} \) (0 < \(n < 2 \)) is more damaging than \(\text{O}_2 \) gas evolution, although it is possible that particles become more stable when \(x \) is less than 0.5—0.6 as mechanical stress is released by certain cracks and fractures at that point. Further evaluation on oxygen oxidation and mechanical damage in Li-excess oxides is warranted, but we emphasize that particle cracking and fracturing create fresh surfaces which can contribute to increased O loss from the lattice and side reactions with the electrolyte. Successful surface stabilization strategies such as elemental segregation and coating treatment therefore need to take consideration in particle morphology evolution during cycling.

4. CONCLUSION

Disordered, Li-excess transition-metal oxide cathodes are capable of delivering high capacities and are promising next-generation LIB cathodes. In this study, uniform and phase-pure \(\text{Li}_{1.3}\text{Nb}_{0.3}\text{Mn}_{0.4}\text{O}_2 \) single crystals were synthesized by a molten-
salt method for the first time and used as a diagnostic tool to understand the charge compensation mechanism during Li extraction and insertion. Electrochemical evaluation suggests structural irreversibility after the first cycle, leading to capacity and voltage fade of the cathode. Both CO₂ and O₂ gas evolution was found during the first cycle, with the latter only accounting for \(\sim 1\% \) of the charge capacity, in addition to the contribution of \(\sim 35\% \) capacity from the Mn\(^{3+}/^{4+}\) redox couple. A large fraction of capacity therefore originates from the redox process of O\(^{2-}/\bar{O}^{n-}\) (0 \(\leq n < 2\)). Joint refinement on synchrotron X-ray and neutron diffraction patterns of Li\(_{x}\)Nb\(_{0.3}\)Mn\(_{0.4}\)O\(_{2}\) series showed that the oxide undergoes a single-phase reaction involving Mn\(^{3+/4+}\) redox reaction when 0.9 \(< x < 1.3 \) and a two-phase reaction involving mixed O\(^{2-}/\bar{O}^{n-}\) (0 \(\leq n < 2\)) reactions when 0 \(< x < 0.9 \). For the fully delithiated sample, \(\sim 7.8 \) mol % of oxide-ion vacancies were found, resulting from O loss from the lattice. Cracks and fractures initiated and intensified with deep lithium extraction, which serves as a means to release the mechanical stress.
engured by the large crystals during the oxygen redox processes.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b05036.

Figure 9. SEM images of chemically delithiated Li$_{x}$Nb$_{0.3}$Mn$_{0.4}$O$_{2}$ crystals: x = (a) 1.3, (b) 1.1, (c) 0.87, (d) 0.76, (e) 0.56, and (f) 0.13.

REFERENCES

2. Li, W.; Song, B.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006−3059.
8. Armstrong, A. R.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S.-H.; Thackeray, M. M.; Bruce, P. G. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li$_{x}$Ni$_{0.4}$Li$_{0.2}$Mn$_{0.4}$O$_{2}$. J. Am. Chem. Soc. 2006, 128, 8694−8698.