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Assessing stationary distributions
derived from chromatin contact maps
Mark R. Segal1* and Kipper Fletez-Brant2

Abstract

Background: The spatial configuration of chromosomes is essential to various cellular processes, notably gene
regulation, while architecture related alterations, such as translocations and gene fusions, are often cancer drivers.
Thus, eliciting chromatin conformation is important, yet challenging due to compaction, dynamics and scale.
However, a variety of recent assays, in particular Hi-C, have generated new details of chromatin structure, spawning a
number of novel biological findings. Many findings have resulted from analyses on the level of native contact data as
generated by the assays. Alternatively, reconstruction based approaches often proceed by first converting contact
frequencies into distances, then generating a three dimensional (3D) chromatin configuration that best recapitulates
these distances. Subsequent analyses can enrich contact level analyses via superposition of genomic attributes on the
reconstruction. But, such advantages depend on the accuracy of the reconstruction which, absent gold standards, is
inherently difficult to assess. Attempts at accuracy evaluation have relied on simulation and/or FISH imaging that
typically features a handful of low resolution probes. While newly advanced multiplexed FISH imaging offers
possibilities for refined 3D reconstruction accuracy evaluation, availability of such data is limited due to assay
complexity and the resolution thereof is appreciably lower than the reconstructions being assessed. Accordingly,
there is demand for new methods of reconstruction accuracy appraisal.

Results: Here we explore the potential of recently proposed stationary distributions, hereafter StatDns, derived from
Hi-C contact matrices, to serve as a basis for reconstruction accuracy assessment. Current usage of such StatDns has
focussed on the identification of highly interactive regions (HIRs): computationally defined regions of the genome
purportedly involved in numerous long-range intra-chromosomal contacts. Consistent identification of HIRs would be
informative with respect to inferred 3D architecture since the corresponding regions of the reconstruction would
have an elevated number of k nearest neighbors (kNNs). More generally, we anticipate a monotone decreasing
relationship between StatDn values and kNN distances. After initially evaluating the reproducibility of StatDns across
replicate Hi-C data sets, we use this implied StatDn - kNN relationship to gauge the utility of StatDns for reconstruction
validation, making recourse to both real and simulated examples.

Conclusions: Our analyses demonstrate that, as constructed, StatDns do not provide a suitable measure for assessing
the accuracy of 3D genome reconstructions. Whether this is attributable to specific choices surrounding
normalization in defining StatDns or to the logic underlying their very formulation remains to be determined.

Keywords: Chromatin conformation capture, Transition probability matrix, Nearest neighbors, 3D genome
reconstruction, Normalization
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Background
The spatial configuration of chromosomes is essen-
tial to various cellular processes, notably gene regula-
tion. Conversely, architecture related alterations, such as
translocations and gene fusions, are often cancer drivers.
Accordingly, eliciting chromatin conformation is impor-
tant. Such elicitation had been challenging due to chro-
matin compaction, dynamics and scale. However, the
emergence of the suite of chromatin conformation cap-
ture assays, in particular Hi-C, generated new details of
chromatin structure and spawned a number of subse-
quent biological findings [2, 9, 10, 18, 23]. Many of these
findings have directly resulted from analyses of inter-
action or contact level data generated by Hi-C assays.
Such data, usually obtained from bulk cell populations,
record the frequency with which pairs of genomic loci
(or bins thereof) are cross-linked, indicating spatial prox-
imity of those loci within the nucleus. A less common
Hi-C analysis paradigm proceeds by first converting these
contact frequencies into distances, this transformation
often invoking inverse power-laws [2, 13, 29, 35, 41]),
and then generating a putative three dimensional (3D)
reconstruction of the associated chromatin configuration
via variants of multi-dimensional scaling (MDS). Such
3D reconstruction has been shown to enrich analyses
based solely on the underlying contact map, these deriv-
ing, in part, from superposing genomic features. Exam-
ples include identifying co-localized genomic landmarks
such as early replication origins [6, 37], expression gradi-
ents and co-localization of virulence genes in the malaria
parasite Plasmodium falciparum [2], the impact of spa-
tial organization on double strand break repair [14], and
elucidation of ‘3D hotspots’ corresponding to overlaid
ChIP-Seq transcription factor maxima, revealing novel
regulatory interactions [7].
But, any potential added value in analyses based on

3D reconstruction is conditional on the accuracy of the
corresponding reconstruction and, appropriately, many
concerns have been expressed regarding such accuracy.
Firstly, the very notion of a single reconstruction being
representative of the large (∼ 106) cell populations charac-
terizing Hi-C assays is highly simplistic [19]. This issue has
prompted reconstruction approaches [13, 33] that pro-
duce an ensemble of solutions, intended to capture inter-
cell variation. However, whether these collections capture
biologic, as opposed to algorithmic, variation is unclear
[26, 35]. The recent development of high-throughput
single-cell Hi-C assays [22, 31] provides an opportunity
for systematic investigation of structural variation. Sec-
ondly, even at the single-cell level, genome conformation
is dynamic with, for instance, obvious changes over the
course of the cell cycle, as well as cell type specific.
Finally, the lack of 3D chromatin structure gold stan-
dards makes accuracy assessment inherently problematic.

To address this obstacle several authors have appealed
to simulation [16, 20, 34, 35, 41, 42]. In order to deploy
real data referents many of the same reconstruction algo-
rithm developers have made recourse to fluorescence in
situ hybridization (FISH) imaging as a means for gaug-
ing the accuracy of competing algorithms and/or tuning
parameter settings. This approach proceeds by comparing
measured distances between imaged probes with cor-
responding distances obtained from 3D reconstruction
algorithms. These standard FISH-based methods, how-
ever, are tenuous due to the limited number of imaged
probes (∼ 2 − 6, [18, 20, 29]) and the poor resolution
thereof, many straddling over 1 megabase.
To improve on these accuracy assessment shortcom-

ings we previously devised methods that centered on two
newly devised biotechnologies [28]: (i) multiplex FISH
[36] which provides an order of magnitude more probes,
each at higher resolution, and hence two orders of mag-
nitude more distances than conventional FISH, and (ii)
a proximity-based ligation-free method, genome archi-
tecture mapping [3], predicated on sequencing DNA
from a large collection of randomly-oriented, thin nuclear
cryosections which enables determination of an internal
measure of accuracy by evaluating how well the recon-
struction conforms to the underlying collection of pla-
nar nuclear cryosections. However, these approaches to
accuracy assessment have their own limitations. The pri-
mary drawback is that each biotechnology is experimen-
tally intensive and, accordingly, has had minimal uptake.
The resultant dearth of associated public data profoundly
restricts the extent to which these approaches can be
applied. Additionally, there is a resolution disparity, with
Hi-C data being available at higher resolutions, man-
dating a coarsening of reconstructions prior to accuracy
assessment.
In seeking to devise a more broadly applicable means

for reconstruction accuracy assessment we were drawn to
the recently proposed (Sobhy et al., [30], hereafter SKLLS)
stationary distribution (hereafter StatDn(s)) of a Hi-C
matrix and associated highly interactive regions (HIRs):
computationally defined regions of the genome purport-
edly involved in numerous long-range intra-chromosomal
contacts. Consistent identification of HIRs would be
informative with respect to inferred 3D architecture since
the corresponding regions of the reconstruction would
have an elevated number of k nearest neighbors (kNNs)
compared with non-highly interacting regions. More gen-
erally, we would anticipate a monotone decreasing rela-
tionship between StatDn values and kNN distances for
fixed values of k. This posited relationship provides one
means for evaluating the potential utility of StatDns,
ithe objective of this paper, which is organized as fol-
lows. Under Methods we first recapitulate how StatDns
are derived, highlighting normalization and interpretation
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issues, and then detail data sources to be used in the eval-
uation thereof. The “Results” section showcases StatDn
findings with respect to reproducibility across replicate
Hi-C data sets, effects of normalization scheme, and per-
formance for 3D reconstruction validation, via assessment
of the above monotonicity between StatDn values and
kNN distances, based on real and simulated examples.
The Discussion frames conclusions based on the forego-
ing findings.

Methods
Stationary distributions from Hi-C contact matrices
Given a (possibly normalized – see below) symmetric,
non-negative n × n observed contact matrix O = [

oij
]

the associated StatDn is generated as follows. First, O
is standardized by dividing every entry by its row sum.
This enables the key step: treating the resultant matrix,
W, as a transition probability matrix (TPM), with entry
wij interpreted as the probability of ‘jumping’ from node
i to node j where ‘nodes’ denote a rebranding of the
underlying Hi-C bins or loci, thereby allowing an overlay
of graph / network concepts. The fact that, due to row
sum based standardization, W is not symmetric compli-
cates this interpretation since the original ‘proximities’ as
measured via Hi-C are symmetric: oij = oji. SKLLS pro-
ceed by prescribing a Markov model with TPM W. Let
pi(t) be the probability of occupying node i at time t and
p(t) = (p1(t), p2(t), . . . , pn(t)) be the corresponding prob-
ability distribution. Then, under the Markov assumption,
transitions occur according to

p(t + 1) = p(t)W (1)

The limiting (t → ∞) StatDn, designated p(∞), satisfies
p(∞) = p(∞)W , and is given by the (left) eigenvector
corresponding to the (largest) eigenvalue one, the non-
negative entries of p(∞) being normalized to sum to one.
We use the R package RSpectra [21] to perform the
requisite spectral decomposition.
SKLLS categorize StatDns, at 30th, 50th, 80th and 90th

percentiles, and deploy the resultant ordered categories
in downstream analyses, with an emphasis on HIRs cor-
responding to the latter upper decile. In contrast, we
utilize StatDns in their native, continuous form obviat-
ing the need for thresholding. As a check, we extracted
SKLLS-defined categories and reprised select analyses
with concordant findings.

Normalization and interpretation issues
There has been extensive discussion surrounding normal-
ization issues for Hi-C data and development of com-
panion corrective methods [8, 11, 12, 17, 38]. Much of
this effort pertains to mitigating systematic biases affect-
ing observed oij values deriving from factors such as
fragment length, GC content and mappability. A distinct

aspect of some normalization strategies concerns remov-
ing ‘expected’ contact counts from the observed values so
as to adjust for contiguity and thereby emphasize features
of interest such as loops. In this context expected val-
ues are often computed as a function of genomic distance
[2, 10]. This equates to applying a common correction
within each diagonal of O, elements thereof being equi-
spaced with respect to genomic distance, presuming equal
sized contact matrix bins as is standard. It is this approach
that is considered by SKLLS.
Specifically, for each of the n diagonals ofO, the median

of the corresponding entries is obtained. An n × n expec-
tation matrix E with constant diagonals is then created,
the constants being the respective medians. In addition
to obtaining StatDns (as detailed above) from (unnormal-
ized) O, they are also generated from O − E and O/E. To
satisfy the non-negativity requirement of a TPM any neg-
ative values arising post normalization are replaced with a
small positive constant. For O − E normalization, with E
based on diagonal medians, this means that approximately
half the entries will be replaced by this constant. The rami-
fications, both interpretive and performance-wise, of such
wholesale substitution are unclear.
In order to decide between the competing normaliza-

tion schemes SKLLS assert that O − E normalization
produces StatDns with a larger ‘dynamic range’ than O or
O/E approaches, and is accordingly preferred. Presuming
dynamic range is defined as the difference between max-
imum and minimum StatDn values, the rationale for its
selection as a normalization criterion is obscure. More-
over, it will be susceptible to the influence of outliers as
can arise from extreme (normalized) contact matrix row
sums. The supporting evidence presented for choosing
O − E consists of visually comparing StatDns from the
three schemes over a limited range of a single chromo-
some. Further, it is claimed that, in using O directly, the
inclusion of both short- and long-range contacts attenu-
ates dynamic range but the basis for this is unclear.
It is pertinent to consider StatDns, as operationalized

above, arising from specific patterned matrices. For a
compound symmetric (exchangeable) matrix the StatDn
is constant (pi(∞) = 1/n ∀i) irrespective of the value
of the off-diagonal entries, with this same StatDn result-
ing from a tri-diagonal matrix, again independent of the
value of the off-diagonal entries [25]. While these patterns
don’t reflect O,O − E,O/E matrices arising in practice,
the lack of StatDn discrimination between such apprecia-
bly different matrices raises interpretative concerns about
the proposed approach, at least from the perspective of
evaluating 3D reconstructions, and potentially beyond.

Data sources and simulated 3D structures
Hi-C data [23] for GM12878 cells was obtained from
the Gene Expression Omnibus (GEO) with accession
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GSE63525. Contact matrices deriving from several series
of experiments were grouped (by the original authors) into
‘primary’ and ‘replicate’ datasets and we utilize these to
assess reproducibility, as has been done previously [28].
Hi-C data [9] for IMR90 cells was obtained from the Gene
Expression Omnibus (GEO) with accession GSE35156.
For both cell types analyses were restricted to reads with
alignment mapping quality scores ≥ 30 and conducted
with contact matrices at 25kb resolution since this corre-
sponds to the resolution of SKLLS defined HIRs.
Noised-up versions of simulated chain-like and topolog-

ically associated domain (TAD)-like structures and atten-
dant contact maps obtained under differing regimes have
been used to evaluate 3D reconstruction algorithms in
settings intended to recapitulate practice [34, 42]. Simi-
larly, simulated helical and random walk structures have
been used for this purpose [42]. Here we follow an anal-
ogous agenda by (i) computing StatDns from the con-
tact matrices provided using each of the normalization
schemes described above, and (ii) comparing these to the
corresponding structures using k nearest neighbors as
described subsequently.
As an illustration of how such synthetic data is obtained

we present a brief overview of the formulation used for
helical structures following Zou et al., [42]. Oij, the (i, j)th
entry of the observed contact matrix O, is generated as a
random Poisson variate with rate parameter λij. In turn,
this parameter is set using the abovementioned inverse
power-law transformation: λij = c/dα

ij . Here dij corre-
sponds to the distance between the ith and jth points on
the helix, α is fixed at 1.5, and c varies so as to govern
the signal coverage – the percentage of non-zero entries in
the contact matrix. For the results presented subsequently
we obtain 100 points on a helix defined by coordinate
functions

x(t) = 2 sin(t/3); y(t) = 2 cos(t/3);
z(t) = t/20; t = 1, . . . , 100.

and set c to yield 25% signal coverage, with similar findings
at 90% coverage.

Obtaining 3D genome reconstructions from Hi-C data
Use of simulated 3D architectures and associated contact
maps, as above, in evaluating StatDns as a validation tool
has the advantage of eliminating uncertainties inherent in
the reconstruction process. Nonetheless, it is purposeful
to assess StatDns using real data reconstructions, reflect-
ing use in practice.

Multi-dimensional scaling
As noted in the Background, there are numerous
approaches for generating 3D reconstructions from Hi-C
contact maps and, in turn, most of these feature several

tuning parameters. In order not to obscure our pur-
pose of appraising StatDns we showcase findings from
a simple, minimal-assumption approach to reconstruc-
tion: multi-dimensional scaling, fit using the R pack-
age smacof [15]. MDS is an established approach
to finding configurations that recapitulate dissimilar-
ity measures which, in turn, can be obtained from
Hi-C contacts, by power-law transformation for exam-
ple. Accordingly, MDS-based approaches have been
widely used in the context of genome reconstruction
[2, 4, 16, 24, 27, 29, 32, 35, 41].
Under MDS we seek a 3D configuration X =

{�x1, . . . , �xn}; �xj ∈ R3 that best fits the dissimilarity matrix
D according to:

min
{�x1,...,�xn|∑ �xi=0}

∑

{i,j|Dij<∞}
ωij · (‖�xi − �xj‖ − Dij)

2 (2)

Though confining our attention to MDS, we explored
a variety of schemes within this framework, using both
metric and non-metric scaling, and varying dissimilarity
weights ωij whereby downweighting of imprecise contact
counts can be accommodated, and power-law indices for
transforming O to D. We note that irrespective of MDS
reconstruction method examined results were largely
similar.

Hamiltonian simulated annealing
In order for findings not to be solely reliant on a sin-
gle (MDS) reconstruction strategy – although, as noted,
a range of MDS specifications were examined – we
additionally applied the Hamiltonian simulated annealing
(HSA, [42]) algorithm. HSA has a number of compelling
attributes: (i) it can simultaneously handle multiple data
tracks allowing for integration of Hi-C contact data from
differing restriction enzyme digests; (ii) it can adaptively
estimate the power-law index whereby contacts are trans-
formed to distances, the importance of which has been
previously emphasized [41]; and (iii) by using simulated
annealing combined with Hamiltonian dynamics it can
effectively optimize over for the high dimensional space
representing the genomic loci’s 3D coordinates.
Analogous to other 3D reconstruction algorithms

[20, 35], HSA models (normalized) contact counts, n, via
Poisson regression:

nikjk ∼ Poi(μik jk ), k = 1, . . . ,K (3)
ln(μik jk ) = βk0 + βk1 ln(dikjk ) (4)

dikjk = ||Xik − Xjk ||2 (5)

where in (3) k indexes track and nikjk is the count for
genomic loci ik , jk . The parameters βk1 are (track spe-
cific) power-law indices relating expected counts (μ) to
Euclidean distances (d). Covariates such as GC content
and fragment length can be included in (4) in order to
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facilitate in-line normalization. The Xik = (xik , yik , zik )
and Xjk = (xjk , yjk , zjk ) in (5) are the 3D coordinates for
loci ik , jk and constitute the unknown parameters provid-
ing the reconstruction. These are subject to constraints
designed to capture the local contiguity of chromatin, rep-
resented by induced dependencies of a hidden Gaussian
Markov chain. The full log-likelihood for β ,X is then

ln(L(β ,X|μ, ik , jk) ∝
∑

k

∑

ik ,jk

[− exp(ln(μik jk ) + nik jk (ln(μik jk )))
]

(6)

to which a penalty term controlling local smoothness is
added. Note that (constrained) X enters (6) through μ

and d from (4) and (5) respectively. The resulting penal-
ized likelihood is optimized by iterating between general-
ized linear model (GLM, cf Poisson regression) fitting to
obtain estimates β̂ and simulated annealing to obtain esti-
mates of the 3D coordinates X̂ = (x̂, ŷ, ẑ). Several tuning
parameters control the simulated annealing search and we
used default values, as established by the authors’ for their
custom R scripts.

Stationary distribution reproducibility
We assessed the reproducibility – between primary
and replicate data series – of StatDns obtained under
the differing normalization schemes – using scatter-
plot smoothing and associated correlations. We contrast
these correlations with stratum-adjusted correlation coef-
ficients (SCCs) of the corresponding Hi-C data. SCCs,
described below, are custom correlation measures devel-
oped for Hi-C contact matrices that reflects the same con-
stant diagonal expected counts described above which,
on average, decreases substantially as genomic distance
increases [39].
The SCC is based on the generalized Cochran-Mantel-

Haenszel statistic, M2, which is used for testing whether
two variables are associated while being stratified by a
third variable [1]. Since the magnitude of M2 depends on
sample size it does not provide a direct measure of asso-
ciation strength. In the unstratified setting we have the
relationship ρ2 = M2/(n − 1) where ρ is the Pearson cor-
relation coefficient and n is the number of observations.
This relationship underscores the derivation of the SCC to
measure association in the presence of stratification. Let
(X,Y ) denote a pair of samples (here contact matrices)
with n observations stratified into K strata (here diagonal
bands corresponding to equal genomic distances), each
having nk observations so that

∑K
k=1 nk = n. Let the

observations in stratum k be (xik , yik ); i = 1, . . . ,K with
associated random variables (Xk ,Yk).
The Pearson correlation coefficient ρk for the kth stra-

tum is ρk = r1k/r2k , where

r1k = E(XkYk) − E(Xk)E(Yk)

=
∑nk

i=1 xik yik
nk

−
∑nk

i=1 xik
∑nk

j=1 yjk
n2k

r22k = Var(Xk)Var(Yk)

=
⎡

⎣
∑nk

i=1 x
2
ik

nk
−

(∑nk
i=1 xik
nk

)2
⎤

⎦

⎡

⎣
∑nk

i=1 y
2
ik

nk
−

(∑nk
i=1 yik
nk

)2
⎤

⎦

It is straightforward to represent M2 in terms of a
weighted sum of the ρk which gives rise to the SCC
defined as

ρs =
K∑

k=1

(
nkr2k

∑K
k=1 nkr2k

)

ρk . (7)

Further aspects of SCCs, including obtaining the vari-
ance of ρs, deploying variance stabilizing weights in com-
puting ρs, guidelines for determining the number of strata
K are detailed in Yang et al., [39], with fitting making
recourse to R package hicrep [40].

Comparing stationary distributions and 3D genome
reconstructions
For each locus of a 3D structure, either simulated or
obtained via reconstruction, we compute the distance to
its kth nearest neighbor (kNN) in the structure, for k ∈
� = {5, 15, 25}, using the R package FNN [5]. Since kNN
distances are monotone in k it suffices to consider a few
select values. We plot these kNN distances against StatDn
values obtained from the corresponding contact matrix.
We again use scatterplot smoothing (R function lowess)
to highlight relationships, with a monotone decreasing
association anticipated if StatDn identification of highly
(and remotely) interacting loci are supported by the struc-
ture. To appreciate the basis for this monotone decreasing
relationship consider the antithesis of a HIR, namely a
minimally interacting region, characterized by low StatDn
values. By virtue of its minimal interactions nearest neigh-
bor distances for given k ∈ � will be large. The converse
holds for HIRs and the underlying high StatDn values
leading to the monotone decreasing relationship between
StatDns and kNN distances.

Results
Our findings are presented largely by way of figures. These
are constructed so that comparisons between O,O −
E,O/E normalizations are highlighted. But, more impor-
tant than these internal contrasts are overall assessments
of StatDns for the stated objective of appraising 3D recon-
structions. In most of the settings considered the overall
performance is such that StatDns cannot be endorsed
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as a 3D reconstruction evaluation technique since the
abovementioned monotone decreasing relationship with
kNN distances fails to hold. Moreover, examples wherein
anomalous behavior of StatDns is exhibited are show-
cased.
We report results for GM12878 chromosome 9 since

this exhibits the highest density (per base) of HIRs as
defined by SKLLS. We also present results for GM12878
chromosome 4 which is relatively sparse with respect to
HIRs. However, similar trends were consistently observed

across all chromosomes examined (not shown). Addi-
tionally, findings from select IMR90 cells are illustrated,
revealing instances of StatDn breakdown.

Stationary distribution reproducibility
In Fig. 1 we compare the StatDns of GM12878 cells chro-
mosome 9 primary and replicate series corresponding to
respective normalizations O,O − E,O/E. The respective
correlations are 0.962, 0.937 and 0.977 whereas the SCC
between the primary and replicate contact matrices is
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Fig. 1 StatDn reproducibility for GM12878 Chromosome 9. Agreement between Stationary Distributions obtained from primary and replicate series
Hi-C data at 25kb resolution [23]. StatDn normalization schemes are O (left panel), O − E (middle) and O/E (right). In each panel the identity line is in
red and the lowess smooth is in blue
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0.966. Thus, reproducibility for the O − E normalization
chosen by SKLLS is furthest removed from the correlation
between the underlying contact matrices.
More interesting findings emerge when we similarly

assess reproducibility for IMR90 cells. Figure 2 displays
the StatDns for IMR90 chromosome 21 primary and repli-
cate series, again corresponding to respective normaliza-
tions O,O − E,O/E. The corresponding correlations are
0.935, 0.936 and 0.966, whereas the SCC between the pri-
mary and replicate contact matrices is 0.808. Thus, the

StatDn correlations appreciably exceed the SCC between
the underlying contact matrices, indicative of possible
problems with StatDns in view of the careful and contact
map customized construction of SCCs [39].
Also apparent in Fig. 2 are StatDn outliers, for both O

and the chosen O − E normalizations, which result from
(relatively) extreme contact matrix row sums, indicating
possible normalization breakdown for such instances. An
even more dramatic example of anomalous StatDn values
is shown below with respect to reconstruction (Fig. 8).
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Fig. 2 StatDn reproducibility for IMR90 chromosome 21. Agreement between Stationary Distributions obtained from primary and replicate series
Hi-C data at 25kb resolution [9]. StatDn normalization schemes are O (left panel), O − E (middle) and O/E (right). In each panel the identity line is in
red and the lowess smooth is in blue
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Relating stationary distributions to 3D structures
The simulated helical and random walk structures previ-
ously used for 3D reconstruction evaluation [42] include
instances varying according to the extent of signal cover-
age, defined as the percentage of non-zero entries in the
contact matrix derived from the generated structure. Here
we illustrate results for the lowest levels of signal coverage:
25% and 10% for the helix and random walk respectively.
Findings at higher levels of signal coverage are similar
(not shown) although the helical structure with 90% sig-
nal coverage does not display a monotone decreasing

relationship between kNN distances and StatDns with
O/E normalization.
Results for the simulated helical structure, based on 100

loci, are presented in Fig. 3. The quantal nature of the kNN
distances (we display results for k = 5, 15) – for example,
there are only three distinct 5 nearest neighbor distances
– reflects the regularity of the helical configuration. The
left and right panels, corresponding toO andO/E normal-
ization, exhibit decreasing trends: the higher the StatDn
value, nominally corresponding to loci with greater num-
bers of interactions, the smaller the kNN distance in the
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Fig. 3 Helical structure: kNNs versus StatDns. Relationships between k nearest neighbors and StatDns for k = 5 (o, red lowess smooth) and k = 15
(x, blue lowess smooth) for the simulated helical structure generated to have 25% signal coverage (percentage of non-zero contact matrix entries)
per [42]. StatDn normalization schemes are O (left panel), O − E (middle) and O/E (right)
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structure, as would be expected. However, for the mid-
dle panel, corresponding to O − E normalization, no such
relationship is evident. Further, by virtue of the manner
whereby O − E normalization handles non-positive val-
ues, there is substantial duplication of StatDn values: 47
uniques versus 97 for O,O/E. Results for the random
walk structure are presented in Fig. 4. Here we see very
similar performance across normalization schemes with
the anticipated decreasing relationship exhibited for each.
A comprehensive effort to generate structures and

attendant contact matrices that more realistically reflect
chromatin architecture has been undertaken by Trussart

et al., [34]. Here we focus on two such structures, TAD-
like and chain-like, each generated with mid-level noise
and structural variability corresponding to Trussart et al.,
parameter settings of α = 100 and �t = 103 respec-
tively. Results for the TAD-like structure are presented in
Fig. 5 and for the chain-like structure in Fig. 6. For both
structures we observe StatDns displaying an increasing
relationship with kNN distances, this being strongest for
O − E normalization.
Results from StatDn evaluation of a reconstruction

for GM12878 chromosome 9 via unweighted met-
ric MDS are depicted in Fig. 7. While the left and
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Fig. 5 TAD-like structure: kNNs versus StatDns. As for Fig. 3 but for the simulated TAD-like structure generated to have mid-level noise and structural
variability (α = 100 and �t = 103) per [34] and with kNNs: k = 5 (o, red lowess smooth), k = 15 (x, green lowess smooth) and k = 25 (+, blue
lowess smooth)

right panels corresponding to O and O/E normaliza-
tion display decreasing relationships with kNN dis-
tances these are driven by elevated kNN values for
small StatDn probabilities. Results for O − E nor-
malization are effectively constant. Analogous findings
were obtained from other (weighted, non-metric) MDS
reconstruction approaches, as well as for HSA-based
reconstruction.
Similarly, results from StatDn evaluation of a recon-

struction for IMR90 chromosome 21 by HSA are depicted

in Fig. 8. Here the left and middle panels corresponding
to O and O − E normalization display decreasing rela-
tionships with kNN for the bulk of the data but exhibit
increasing trends in the upper tail: the region containing
the HIR. These same trends were evident in reconstruc-
tions obtained using MDS.

Discussion
Many potential difficulties surrounding use of StatDns
were delineated in Methods under Normalization and
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Fig. 6 Chain-like structure: kNNs versus StatDns. As for Fig. 5 but for the simulated chain-like structure

Interpretation Issues and these concerns have been borne
out by the empirical results. It is important to note that
these problems cannot be ascribed to deficiencies of
the reconstruction algorithms since they are also exhib-
ited with simulated structures that bypass the recon-
struction step. Moreover, for some of the explorations
based on chromatin configuration reconstruction, we
have deliberately opted to utilize a minimalist MDS
approach, thereby limiting the influence of assumptions
and parameter tuning. These findings, wherein StatDns
do not recapitulate inferred 3D MDS reconstructions,

also pertain to an alternate state-of-the-art reconstruc-
tion algorithm, HSA, and hold across all cell lines and
chromosomes examined. Thus, the overall weight of evi-
dence, both theoretic and empirical, is such that StatDns,
especially those based on the prescribed O − E normal-
ization, cannot be recommended as a means for evaluat-
ing 3D genome reconstruction. Indeed, these problematic
underpinnings of StatDns, including the logic surround-
ing their definition, call into question their usage for any
purpose, not just reconstruction assessment as examined
here.
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Fig. 7 GM12878 Chromosome 9: kNNs versus StatDns. As for Fig. 5 but for reconstructed GM12878 Chromosome 9 where the reconstruction
utilized unweighted metric MDS. While plotted points correspond to 500 randomly sampled loci (≈ 10% of the total), the depicted lowess smooths
are based on the entire sample

This conclusion begs the question as to whether
alternate, established structural units derived from Hi-
C contact matrices, such as TADs [9] and contact
domains [23], might serve as components for (non-
orthogonal) reconstruction assessment. However, these
constructs are by definition local and so do not pro-
vide a basis for effecting large-scale structure interro-
gation. It was the purported ability of StatDns to cap-
ture frequent, long-range interactions that motivated
this evaluation of their validation potential. Conversely,
TADs [24] and FISH distances [29] have been used to

improve the reconstruction process itself. Again, given
their uncertain foundation, we see no analogous role for
StatDns.

Conclusion
Our analyses demonstrate that, as constructed, StatDns
do not provide a suitable measure for assessing the accu-
racy of 3D genome reconstructions. Whether this is
attributable to specific choices surrounding their formu-
lation or to the logic underlying their very definition
remains to be determined.
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Fig. 8 IMR90 Chromosome 21: kNNs versus StatDns. As for Fig. 7 but for reconstructed IMR90 Chromosome 21 where the reconstruction utilized HSA.
While plotted points correspond to 500 randomly sampled loci (≈ 35% of the total), the depicted lowess smooths are based on the entire sample
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