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ABSTRACT OF THE DISSERTATION

Predicting Individual Cardiomyocyte Myofibril Organization In Spatially Constrained Cells

By

William Sherman

Doctor of Philosophy in Mathematical, Computational, and Systems Biology

University of California, Irvine, 2020

Associate Professor Anna Grosberg, Chair

Through a variety of mechanisms, a healthy heart is able to regulate its structure and

dynamics across multiple length scales. Disruption of these mechanisms can have a cascading

effect, resulting in severe structural and/or functional changes that permeate across different

length scales. Due to this hierarchical structure, there is interest in understanding how the

components at the various scales coordinate and influence each other. While there has

been much progress at the molecular scale, there is a growing need for theoretical models

to address interactions at the cellular and subcellular scales. In particular, understanding

the mechanisms guiding the formation and organization of the cytoskeleton in individual

cardiomyocytes can aid tissue engineers in developing functional cardiac tissue.

In this dissertation, we developed computational models which integrate interactions at

both the cellular and subcelluar scale to enhance our understanding of how cardiomyocytes

self-assemble at different length scales. Experimental data, which consisted of single cell

cardiomyocytes having fixed area but variable aspect ratio, was used to test and validate

our models. Cells were analyzed for structural consistency and contractility using estab-

lished metrics. The metrics where then applied to our model simulations for comparison.

We demonstrated that our model simulations are capable of reproducing the stochasticity

observed in experimental cells at different length scales while also mimicking structural con-

viii



sistency. In addition to recreating known patterns present in the experimental cells, our

models have provided insight towards possible mechanisms that can be explored by experi-

mentalists.
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Chapter 1

Exploring cardiac form and function:

A length-scale computational biology

approach

1

1.1 Introduction

The primary function of the heart is to pump blood in a stable and efficient manner. Native

heart tissue consists of aligned interlocking cardiac cells. These individual cardiomyocytes

contain myofibrils composed of patterns of repeating sarcomeres, which themselves incorpo-

rate a variety of organized interacting proteins [108, 3, 19] (Fig. 1.1). Each of these individual

components work in concert to induce a contraction [51, 94], from the laminar sheets that

make up the heart’s four chambers [99] to the individual proteins within the actin-mysoin

1W. F. Sherman and A. Grosberg, 2020 WIREs Syst Biol Med

1



10-1 m 10-3 m10-2 m 10-6 m10-5 m10-4 m 10-8 m10-7 m 10-10 m10-9 m

DNA
nucleotide

Sarcomere, 
mitochondria
~2 μm 

Nucleus
~10 μm 

Myofibril
10 - 100 μm 

Cardiomyocyte
20 - 200 μm 

2D Cardiac
Tissue
400 - 100 μm

Heart
Myocardium
1 - 100 mm

Actin-Myosin Motor
~ 5 nm

Figure 1.1. Length scale separation within the heart. Spatial scales can be broken
down into a hierarchical structure that spans several orders of magnitude. The various
functional components can be studied either independently or in relation to one another.

motors [24]. Recapitulating the cooperative nature of this multi-scale coordination is a

cornerstone of cardiac tissue engineering [146, 122]. To build tissue that is functional and

adaptable requires an understanding of how chemical and biomechanical signals are trans-

lated across hierarchical scales as well as the relation between form and function within

an individual scale. Through development of in vitro models that mimic the appearance

and pathology of native healthy tissue, researchers can explore the factors that influence

the various structural patterns present in vivo such as myofibril alignment and sarcomeric

registration [94, 31]. However, while these studies suggest correlations between structural pa-

rameters and cell morphology, they do not address how physical cues drive self-organization.

An ideal method to study the causal relation between proposed parameters is to use com-
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putational modeling. In this way, researchers can target specific variables and explore their

roles, providing insight into how the identified components cooperate to guide self-assembly.

Numerous computational models have been proposed and they can be broadly classified

based on the spatial scale of interest.

Models at the organ and tissue scale typically focus on functionality and explore the influence

of cell-cell interactions on tissue-level characteristics such as orientation, beating rate, and

contractile strength [23, 36, 57, 12]. In single cells, the ability to self-organize depends on

extracellular matrix (ECM) interactions. As such, models at this scale are often concerned

with the mechanical cues that influence these interactions [35, 86, 106]. At the sub-cellular

scale, however, the proper computational approach depends on the structure of interest

[40, 129, 47]. This results in a wide variety of modeling techniques and considerations. To

adequately contribute to the field using a modeling approach requires one to not only identify

areas which may benefit from computational modeling but also utilize methodologies that

are appropriate for the area of interest. Considering the breadth of approaches that have

been employed, new researchers with a desire to utilize computational modeling may find

the task daunting. We will provide the first step to tackling this problem by identifying

common model types that are used at certain spatial scales and summarizing their strengths

and weaknesses.

This review will explore the cardiac structure hierarchy through the lens of systems biology,

which can be described as an amalgamation of principles from fields such as biology, engi-

neering, and computer science. Beginning at the organ (centimeter to millimeter) scale and

continuing to the sub-cellular (nanometer) scale, we will provide an overview of common

modeling techniques found in the literature and some of the notable results that those tech-

niques have provided. We then give an overview of the advantages and drawbacks associated

with combining models from several scales into a singular multi-scale model. Emphasis

will be placed on the interplay between the experimental observations and the modeling ap-

3



proaches since the feedback between experimental techniques and theoretical testing is core

to the systems biology approach.

Since the heart is a highly complex, multi-scaled organ, we have chosen to focus our attention

towards specific areas of cardiovascular research related to mechanical function. As such,

there are numerous areas of active research that will not be covered in this review and are left

to the references. These include ionic channel kinetics and their association with contractile

function [141, 112], models focusing on cardiac electrophysiology [79], and application of

fluid mechanics to blood flow and circulation [101], to name a few.

1.2 Modeling approaches at the organ and tissue scale

Heart failure, due to some form of cardiovascular disease, is frequently cited as a leading cause

of death worldwide [15, 132, 93, 98] and once sever damage has occurred, a heart transplant

may be the only form of repair. Due to a limited supply of donor hearts [116, 75], efforts

have been made to develop protocols for exploring regenerative and preventative medicines.

This has led many to study how alterations to cardiac properties, processing, and structure

affect the heart’s performance, summarized by the materials science tetrahedron (Fig. 1.2).

Specifically, focus is often placed on two separate yet interconnected properties: construct

development and functionality. While it is useful to address the interplay between these two

fundamental characteristics, organ and tissue scale models tend to emphasize the impact

on functionality. An overarching goal of organ level modeling is to create a mathematical

representation of the heart with tunable parameters that are patient-specific. The hope is

that these whole-heart computational models will allow physicians to explore ventricular

remodeling, electrophysiology and blood flow in a non-invasive manner so that customizable

therapies can be developed. To adequately cover the progress that has been made at this

level, we feel an entire review is warranted. As such, we refer the reader to the work being

4
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Figure 1.2. The materials science tetrahedron. There are four interconnected
categories that can be used to study the behavior of a material: structure, processing,
properties, and performance. Changes in any one category will invariable influence the
other three categories. This same categorization may be used to study the heart. (Adapted
from [51])

done by McCulloch and colleagues [27, 130], Trayanova and associates [143, 124], as well as

Peskin and McQueen [60], among many others, for advancements at this scale.

Engineering a functional tissue in vitro entails guiding cell assembly through targeted changes

in the cellular environment. These changes can be achieved, for example, by using micro-

fabrication to control substrate architecture. Many studies have employed this technique to

demonstrate how topographical changes can induce cellular pattern formation [113, 33, 63].

To further our understanding of the materials science tetrahedron, computational models

5



have been employed to synthesize existing measurements at the micrometer scale and pro-

vide mechanistic explanations for the topology-induced organization that has been observed

experimentally. The desire to guide tissue assembly through manipulation of control variables

such as substrate topology has provided a platform for efficient model parameter exploration

and, more importantly, model validation.

A key feature of cardiovascular disease is cellular remodeling resulting in impaired contractile

strength [111]. Two-dimensional studies are often employed to study contractility of tissue

engineered structures since they are less computationally complex than three-dimensional

studies yet yield insight into the experimental conditions that can recapitulate properties

seen in native cardiac tissue. Biohybrid muscular thin films (MTFs) provide a route for

studying contractile function of cultured cardiomyocytes while also bridging the gap between

two- and three-dimensional systems [44, 4]. They incorporate various mechanical properties

observed in a healthy myocardium as tunable parameters. To properly identify the impact

of the various design parameters, free energy equations and finite-element modeling has been

employed to study the deformation behavior in constrained cardiac muscular thin films [12].

This simulation tool allowed for the identification of material parameters that could be used

to optimize fiber orientation in multi-layered patches for future implantation. This approach

was later extended as a 3D phenomenological model that was more simplistic than previously

proposed models yet captured both the active and passive behavior of unconstrained cardiac

cells [110]. These techniques allowed the researchers to decouple MTF properties and study

the nature of their interactions. By isolating specific parameters, they were able to predict

how MTFs respond when mechanical properties are perturbed. From a systems biology

point of view, these studies have helped researchers develop innovations to the heart-on-a-

chip platform. This platform has been utilized to assess contractile stresses in diseased tissue

as well as study the toxicity of nanomaterials [1, 2, 44, 54].

In native heart tissue, individual cells synchronize their beating rates so that the tissue

6



contracts in a rhythmic fashion. Synchronization occurs, in part, due to mechanical inter-

actions between neighboring cells through intracellular gap junctions [127]. While isolated

cardiomyocytes beat independently and spontaneously, synchronicity in beating rates may be

observed when as few as two cells are grouped together [66, 61]. However, while it is known

that the mechanosensitivity of cells plays a role in modulating beating rates, the mechanism

that leads to a group of cells beating with regularity is not entirely understood. Focusing

on the electrophysiological processes associated with contractions, beating frequency in a

population of cells can be modeled using a small number of ordinary differential equations.

Such models typically rely on equations describing electrical currents and action potentials

such as Hodgkin-Huxley and Van der Pol equations. One approach explored the temporal

behavior of synchronization by implementing a Markov chain process in conjunction with a

deterministic Hodgkin-Huxley type model that had been previously proposed [138, 56]. This

demonstrated that the time needed for synchronization depends on cell-cell conductance. In

particular, when cell junctions are formed, a community effect is engaged whereby individual

beating fluctuations decrease in favor of group stability. To explore the mechanism of syn-

chronization stability in a network of pulsatile cells, a system of one-dimensional, interacting

nonlinear oscillators was utilized [57]. It was shown that pairs of cardiomyocytes tend to

beat synchronously with the cell that has a stable beating rhythm rather than the cell with

the faster beating rate. This is an important consideration when dealing with a heteroge-

neous population of cardiomyocytes, as may be the case when performing pharmacological

studies. Analyzing the properties of a complex system by manipulating the known properties

of a smaller, simpler system is a common systems biology approach. This is emphasized by

these synchronicity studies whereby researchers hope to take advantage of the community

effect to control of a collection of cardiomyocytes with varying phenotypes, which may be

indispensable to the development of therapeutic drugs [5, 145].
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1.3 Modeling approaches at the cellular scale

Morphological changes resulting from heart disease have been shown to influence the ge-

ometry and resulting functionality of the individual cells that make up the cardiac tissue.

Patients with ischemic cardiomyopathy, for example, have individual myocytes with signif-

icantly longer lengths compared to myocytes in healthy tissue [50]. Alterations in cellular

geometry have been shown to influence the organization of internal structures such as the

actin filaments and sarcomeres as well as impact cell contractility [97, 67, 131]. The ability

of individual cells to self-assemble under different boundary conditions has been explored

by using micro-contact printing to create individual cardiomyocytes of particular sizes and

shapes. Some common shapes considered include square, rectangular, and circular geometries

of varying sizes [97, 89]. In addition to boundary cues, cell morphology may be influenced

by the physical properties of the substrate. Specifically, modification to substrate elastic

moduli have been found to affect cell contraction rates, contractile strength, and myofibril

organization [97, 58]. These changes may be linked to the cell’s inability to adequately con-

vert mechanical cues to chemical signals near the cell-substrate interface [10]. Such a process

is regulated by an assortment of proteins collectively known as focal adhesions, suggesting

the stability of these protein complexes are a key component in the contractile apparatus

[26]. While experimental data has demonstrated that self-organization in cardiomyocytes

can be induced through proper manipulation of boundary cues and substrate composition,

computational models have provided insight into the exact nature of these interactions. Self-

assembly can be enhanced or hindered by tunable parameters that may vary depending on

cell type or morphology. Computational models are ideally suited for identifying these regu-

latory parameters and determining regimes which alter cytoskeletal dynamics in a way that

optimizes self-assembly and contractility.

In a continuum model, several phenomena related to the cytoskeleton were coupled together

[32]. This biochemical approach demonstrated the influence of cell shape on fiber orienta-

8



tion while simultaneously showing contractile forces decreasing when substrate rigidity was

increased. A key outcome of the model is its ability to provide guidance for future exper-

iments that aim to explore the cytoskeletal response to mechanical perturbations. As a

simplification, this model did not consider focal adhesions, the anchoring sites for myofibrils

which transmit mechanical cues between the cytoskeleton and the substrate. However, their

dynamics were the central component to a phenomenological model that was developed to

explore why focal adhesion proteins can be seen accumulating in the corners of stationary

square cells [88]. Using deterministic integrin protein density equations linked to force gen-

erating stress fibers, the evolution of focal adhesion development was tracked. Allowing

feedback between integrin clustering and force production was enough to produce the focal

adhesion patterns observed experimentally. The model was validated using square fibrob-

lasts and gave a mechanistic explanation for focal adhesion clustering in the corners of cells.

Specifically, it predicted that integrin concentrations in the corners of the cell are increased

because these high curvature regions allow stress fiber forces to be amplified. An extension of

this model to cardiomyocytes of various cell shapes was later employed [54]. This determin-

istic model differed from previous approaches by incorporating myofibril maturation through

pseudo-labeled integrin densities. The model demonstrated that myofibril length and par-

allel coupling work cooperatively to produce accurate focal adhesion localization and cell

polarization for both homogeneous and heterogeneous boundary conditions. This work ex-

emplifies the systems biology approach where the interplay between experiments and model

construction is utilized to fit parameters, validate the model, make testable predictions, and

generate new hypotheses for further studies.

The approaches described above either do not consider the elasticity of the substrate or

treat it as a fixed parameter. However, since cells actively respond to variations in substrate

composition [97], several computational models have been used to propose mechanisms that

drive cell contractility in response to altered substrate rigidity. An early model was proposed

to address how focal adhesion signaling events were linked to substrate elasticity [106]. In

9



this formulation, focal adhesions were treated as mechanosensors, represented as two har-

monic springs in series, and it was assumed that signaling events were triggered once a

sufficient amount of force had been built up in the focal adhesions. Doing so, researchers

were able to demonstrate how the mechanical properties of the environment could regulate

focal adhesion growth by varying the stiffness of the substrate. The two-spring model was

later extended to allow for cell migration and proliferation in response to matrix elastic-

ity changes [82]. In particular, the extended model predicts that cell migration is linked

to the deformability of the substrate, where cells are more likely to migrate to regions that

produce higher cellular stresses. These results have been built on and generalized by incorpo-

rated rate-dependent effects while simultaneously considering extracellular rigidity [14]. The

one-dimensional phenomenological model used a three-spring configuration to predict the

mechanosensing behavior of single cells. Specifically, the model allowed for time-dependent

cellular response so that researchers could observe how the cell responds to step changes

in substrate rigidity during migration. These studies have provided insight into how cell-

material interactions regulate cellular response and growth. Specifically, these results can

be used to develop scaffolds that may enhance tissue formation [6]. This demonstrates how

interactions at one spatial scale can be used to influence dynamics at a larger scale, a core

principle in understanding multi-scale problems via the systems biology approach.

1.4 Modeling approaches at the sub-cellular scale

A defining characteristic of the heart is that it undergoes consistent rhythmic contractions at

the cellular (and tissue) scale. Cardiac muscle cells contain acto-myosin bundles consisting

of myosin filaments crosslinked by α-actinin. These recurring clusters of proteins, referred

to as z-bodies or z-bands, appear in regularly spaced intervals and mark the endpoints of

the sarcomeres, the fundamental contractile units of myofibrils [28]. Optimal contractile

10



function occurs when sarcomere length is approximately 2 µm, but this can be disrupted

by morphological changes like cell elongation due to cardiac hypertophy [77, 100]. When

myofibrils are elongated, the initial increase in sarcomere length is followed by the addition

of filaments and creation of new sarcomeres [100]. Despite returning the sarcomere length

to its resting value, the elongated boundary leads to an increase in myofibril length and a

decrease in cell contractility [67]. While numerous scaffolding proteins have been identified

as potential instigators/regulators of the striation patterns [21, 45, 133], the mechanisms

controlling self-assembly at this scale, including sarcomere addition and filament insertion,

still remain elusive. Complicating matters is the challenge of visualizing pattern formation

in early development. Despite these limitations, models of various forms have been proposed

to address the formation of striations in myofibrils and the dynamics of actin filaments in

the cytoskeleton.

The sequence of events that lead to the assembly of mature myofibrils has been outlined [28].

Briefly, sporadic clusters of α-actinin are observed on premyofibrils near the cell periphery.

As maturation occurs, clusters on neighboring myofibrils align and striations are formed.

Utilizing this observed sequence, a mechanical model was developed to explain the appear-

ance of sarcomeric order in an initially unstriated bundle [47]. Investigators demonstrated

the formation and coalescence of actin clusters via crosslinking and treadmilling of actin

filaments. Assuming a collection of parallel actin and myosin filaments crosslink via physical

interactions, spontaneous pattern formation occurred within their simulated bundle. Their

approach suggested that cytoskeletal order may be obtained even without external scaffold-

ing. While this approach demonstrated pattern formation within a single filament bundle,

it did not consider how neighboring bundles might behave. Using a phase-order parameter,

the degree of pattern alignment (registry) across neighboring myofibrils was modeled and

quantified [31]. The researchers were also interested in the influence of this alignment on

the cell’s contractile function since changes in sarcomeric registry have been correlated with

changes in substrate rigidity [74]. A key result was the ability to link z-band registration data
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with contractile strain measurements in beating cells. This suggested that the beating of

cardiac cells may be related to the registration of the cell’s myofibrils. The study concluded

that contractility could be optimized by appropriately altering the elasticity of the substrate.

In this way, the beating of the cell, and hence the registration of z-bands in the cell, could

be affected. Consequently, an optimal substrate stiffness may drive self-organization and

registration within the cell. In the systems biology framework, these models primarily focus

on making testable predictions. Dasbiswas and colleagues, for instance, based their model

on experimental observations [74] and their conclusion was validated by the experimental

findings of other researchers [97].

The cytoskeleton consists of a network of crosslinked actin filaments and provides shape

and stability to cells. The mechanical properties of the cytoskeleton, and actin filaments in

particular, have been well documented [70, 72]. However, some properties may be difficult

to discover without hypotheses generated by computational models. For instance, a system

of differential equations was constructed to investigate the role of actin polymerization in

the distribution of filament lengths [40]. Using kinetic equations, the model provided insight

into why the relative levels of actin and gelsolin monomers may lead to actin fiber length

distributions that tend to be either exponential or reach a stable size distribution. Further-

more, the conditions under which interacting filaments would align, cluster or form filament

bundles was explored. It was demonstrated that longer filaments were more likely to align

into bundle-like structures while shorter filaments formed unaligned clusters, consistent with

previous observations of actin networks crosslinked with α-actinin. The identification of sev-

eral network behavior regimes provided a means through which actin polymerization could

be manipulated to generate various types of crosslinked networks. This influenced future

experiments related to fibrillization. The results for actin filament nucleation were lated

used, for instance, to explore molecular mechanisms associated with neurodegenerative dis-

eases [84]. This closes the experiment-model-experiment loop that is common in the systems

biology methodology.
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1.5 Multi-scale integrative modeling

An ongoing challenge in computational physiology is linking mathematical models across

several spatial scales. While many of the models discussed in previous sections consider

other physical scales implicitly, there is much to be gained by considering them explicitly.

For instance, cardiac arrhythmias may occur due to a problem associated with the heart’s

electrophysiology. The complication is linked to the mishandling of electrical interactions by

the individual cells that make up the contractile tissue. These electrical imbalances may be

related to genetic mutations that cause alterations in ionic channels on the cell membrane

[17]. In the systems biology sense, multi-scale modeling can be utilized to develop medical

therapies on a patient-specific basis to target genetic abnormalities or mutations.

Since the interconnectivity of the heart can be studied in numerous ways, there is little

restriction in how one might decide to couple scales together computationally. For instance,

while it is difficult to obtain data of electrical and mechanical activity simultaneously at

high resolution, it is possible to obtain insights into this link via multi-scale computational

models. One such model considered the human ventricle as an organ-sized geometry with

fiber-sheet architecture and employed an electromechanical approach that coupled membrane

kinetics with a continuum mechanics model of the ventricles [59]. This approach allowed the

researchers to study the influence of stretch-activated channel recruitment on fibrillation via

alterations in channel conductance.

A notable mutliscale model was developed to understand the functional cues that guide

tissue formation [140]. They combined a single cell model with a tissue level model and

used finite element techniques to quantify cell deformations when subjected to mechanical

load. This approach exemplifies a central component to multi-scale modeling techniques.

Namely, the utilization and combination of models at individual scales that capture known

phenomena while not exacerbating an already high computational cost. Several groups in the
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cardiac modeling community have attempted to address this obstacle by developing advanced

multi-scale simulators that combine, for instance, heart mechanics and electrophysiology

[135, 126, 85]. Additionally, other fields have provided computational insights that have led

to improved numerical schemes and reduced the computational expense that may be accrued

when employing such methodologies [29].

1.6 Open questions

We have demonstrated that there are many different types of models that can be used to

address questions that would be difficult to explore through experimentation alone. While

there has been much progress afforded to experimentalists, many open questions remain

from the genetics scale to the organ. Despite the abundance of information obtained from

scaled models, synthesizing the data across the many layers of the heart has proven difficult.

At the genetic level, an as-yet unresolved issue concerns how the failure of ionic channel

inactivation can influence cellular polarization and lead to arrhythmogenesis [22, 87]. There

is much interest in exploring how various ionic channels might have their function impeded

as the result of genetic mutations [22]. How are proteins transcriptionally regulated and

how do various genetic abnormalities influence protein structure? We know that there’s an

interdependence between various ionic channels [91] but how do these abnormalities influence

mechanical and electrophysical properties at the organ level? Can we target protein functions

at the subcellular scale to influence electrical activity at the organ scale? These question are

a key driving force behind the development of drug therapies and computational modeling

will be integral to guiding researchers towards effective intervention techniques.

In regards to the single cell level, it has been shown experimentally that native cardiomy-

ocytes tend to exhibit a 7:1 aspect ratio [50, 49] and we have discussed different modeling

approaches that explore why this aspect ratio may be ideal. Yet, how the optimal aspect
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ratio is obtained in native cardiac tissue remains elusive. We also provided models that

give insight into the events that influences myofibril alignment but it is still unclear how

the various components work in concert to create the detailed architecture that is found

in native cardiac cells. Currently, there is no consensus on whether the alignment within

individual cells results from a top-down cascade, a bottom-up cascade, or even a middle-out

cascade, all of which may be possible. This mystery is compounded when we compare my-

ofibril alignment in immature and mature cardiomyocytes. Specifically, we do not yet know

why immature and mature cardiomyocytes, subject to the same substrate and cell shape

conditions, may produce substantially different organization in the central region of the cell

[108]. This exemplifies the current gap in our understanding of stem cell differentiation and

maturation in vivo.

The bidirectional influence of larger and smaller spatial scales has also not been resolved at

the tissue level. Of particular interest at this scale is cellular and fiber orientation within

cardiac tissue and how it may influence contractility. This has led to studies which consider

not only the orientation of individual structures [119, 125] but also how multiple structures

might be correlated with one another [34]. These studies have yielded several questions yet

to be resolved: What are the dynamics of various correlated structures and how do they

influence each other? If multiple constructs are not oriented correctly, how does that affect

function? How can the observed correlations be used to enhance protocols for engineering

tissue? Some of the models outlined previously were set up so that they can be extended in

the future to address these questions.

While there are many open questions at the organ level, particular attention has been paid

to analyzing the left ventricular wall. The left ventricle is a highly-organized structure with a

smooth transition in fiber angle distribution, which has been used to identify different layers

within the ventricular wall [118, 53]. This complication in myocardial fiber organization has

limited our understanding of how the heart employs strain, torsion, and twisting to function
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efficiently. For instance, we have not been able to properly explore layer-specific strain

due in part to data acquisition constraints. This has also restricted our understanding of

strain distribution patterns within the various layers and how it might influence global strain

measurements. How these layers modulate their coordination and are able to distribute shear

stress during contractions is still being explored both computationally and experimentally.

In addition to the modeling techniques discussed, several models use an optimization ap-

proach when describing the dynamics at the spatial scale of interest [134, 105]. This is

often motivated by the observation that the heart structure appears to be organized in a

mechanically optimal way [117]. Accordingly, it is not uncommon to find theoretical opti-

mization approaches in computational models of the cardiac system. This invites its own

sets of computational questions such as the types of optimization constraints that are ap-

propriate for implementation as well as which energetic considerations accurately describe

the energy transfer involved. The answers to these types of questions vary depending on the

implementation procedure and problem of interest.

1.7 Conclusions

In order to understand the biological complexity of the heart, we must explore how the

heart is structured and the physical processes that occur within each spatial scale. To

accomplish this, structure-function relations are studied using in vitro models with the intent

of recapitulating in vivo characteristics. Since the stiffness of the substrate has been shown

to influence cellular development and contractility, a common approach to guiding assembly

across the various hierarchical length scales is to adjust the properties of the ECM. This

suggests that cardiac tissue structure and function can be altered by manipulating specific

biochemical and mechanical processes. However, controlling these mechanical cues requires

an understanding of the mechanism at play and how perturbations of that mechanism can
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cascade bidirectionally in the spatial length scale.

A variety of computational models have been implemented to address this mechanism con-

nectivity problem. In order for computational models to be effective, they must not only

mimic experimental observations but also provide insight into the mechanism of interest.

It is essential that they both mimic and predict experimental outcomes. This is especially

important as a means of hypothesis generation since models allow for exploration of bio-

logical parameters and trends that may be time consuming or difficult to discover through

experiments alone. While a powerful tool, due to the complexity of most biological systems,

modeling requires assumptions and simplifications which can impact its effectiveness at gen-

erating testable hypotheses. Hence, an understanding of the system being modeled and what

can meaningfully be reproduced and tested experimentally is critical.

The systems biology approach combines the strengths from both modeling and experimenta-

tion to provide a more complete view of the phenomena of interest. This is often exemplified

by an experiment-model-experiment loop in which an observation drives the construction

of a computational model which then generates a hypothesis that can be experimentally

tested. This creates a positive feedback loop in which theoretical considerations and prac-

tical applications work in tandem to heighten our understanding of the mechanisms driving

a biological system. This approach is especially useful when applied to the cardiac system

since the heart is a complex multi-layered organ that coordinates its actions across multi-

ple spatial and temporal scales. To tackle the problem requires a multi-pronged approach

in which computational modeling provides insight into how mechanisms coordinate their

efforts across length scales and experiments utilize those mechanistic links to develop func-

tional tissue. This review can serve as a foundation for new researchers interested in using

computational modeling to study the heart’s emergent properties. We have highlighted some

common modeling approaches within individual spatial scales and identified how each ap-

proach fits within the multi-scale dynamics of the heart. In this way, new computational
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models may be built, and experiments proposed, to provide mechanistic explanations of how

interactions within one of the hearts sub-systems affect the heart in its entirety.

18



Chapter 2

An adapted particle swarm

optimization algorithm as a model for

exploring premyofibril formation

2

2.1 Introduction

Across species, molecular interactions cause myofibrils to transmit forces both within and

between neighboring myocytes with extreme precision, allowing for coordinated muscular

contractions. This force transmission comes about because of synchronizing interactions

across the highly ordered myofibril structure consisting of thick and thin filaments with

α-actinin forming the mechanical link between thin actin filaments [11, 103]. Myofibrils

form via a generalized process whereby each stage coincides with a specific collection of

2Reproduced from W. F. Sherman and A. Grosberg, 2020 AIP Advances 10:4 with permission from AIP
Publishing
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proteins, some of which can be used to track development from an immature to a mature

state. Early stage myofibrils, termed premyofibrils, can be identified by the clusters of α-

actinin distributed throughout their length [28, 103]. Following their formation, the spacing

between these punctate α-actinin aggregates, designated as z-bodies, increases leading to

α-actinin registration and lateral fusion amongst neighboring premyofibrils. This creates the

striated patterns found on mature myofibrils referred to as z-lines [28]. These patterns have

been observed in various cell types across multiple species including cardiac cells [76, 102],

skeletal muscle cells [52, 133], and flight muscle cells [95, 90]. This corresponds to a basic

organizational motif common to animals that use their muscles to produce force: the partition

of the myofibril into repeating sarcomeres.

Since sarcomeres are the central contractile units of myofibrils in myocytes, much attention

has been placed on tracking their formation, beginning with their myofibril precursors [11,

65]. However, despite sharing a similar overall pattern, different morphologies have been

observed depending on the species of interest. For instance, not only is there a difference in

initial z-body periodicity, there is also a difference in final sarcomere length. In mammalian

cardiomyocytes, the distance between α-actinin clusters elongates from approximately 1.2µm

for z-bodies to 2µm for mature z-lines [102, 74, 103] while in Drosophila flight muscle cells the

distance increases from around 1.7µm to 3.2µm [95]. This growth has also been observed in

the skeletal muscle of zebrafish though with different initial and final lengths [104]. However,

the way in which the final sarcomere lengths are achieved in each species and muscle type is

still unclear.

Sarcomerogenesis studies are typically framed with the assumption that there is a prede-

termined initial z-body pattern at the start of the maturation process [28, 103]. This is

often claimed without reference to how α-actinin clusters self-organize into these punctate

patterns. In fact, there is disagreement on whether proteins involved in maturation are also

involved in the formation of z-bodies [76, 73]. Unfortunately, experiments focusing on early
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protein coalescence in premyofibrils are scarce resulting in few proposals for exploring z-body

pattern formation. This scarcity is due to the vast number of potential protein interactions

that could be involved in early stage myofibrillogenesis, the exploration of which should

not be undertaken blindly. Since theoretical models are well-suited for studying phenomena

without emphasizing specific interactions, they may be key to addressing this unmet need

and helping to guide future experiments.

In this work, we investigated whether α-actinin dynamics alone are sufficient to drive the

self-organization of clusters into regularly spaced intervals simply through adjustments in

individual protein activity. Specifically, we examined if α-actinin accumulation can be ob-

tained in developing premyofibrils through an energy minimization mechanism without ex-

plicit reference to other proteins. Since the formation of premyofibrils has not been entirely

explored, our approach may aid experimentalists in developing a roadmap for prospective

studies of early stage myofibrillogenesis. By focusing on the recruitment and interactions be-

tween neighboring α-actinin clusters in different species and muscle cell types, our model can

guide experimentalists towards identifying pattern-inducing factors associated with forming

z-bodies. Once specific causal links are identified, exploration of the impact altered premy-

ofibrils have on final sarcomere formation can be undertaken.

2.2 Results

Many studies have attempted to decode the complexities associated with the striated patterns

found in mature muscle cells [11, 21, 90]. Often, emphasis is placed on the proteins involved

in the transformation from premyofibrils with identifiable z-bodies into mature myofibrils

with distinct z-lines [65, 103, 137]. However, this type of exploration does not address what

causes α-actinin to form a pattern along premyofibrils in the first place. In an effort to gain

insight into this phenomena, we viewed the cell as a mechanical operator which relies on an
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efficient use of free energy to function including forming the premyofibril architecture. Our

phenomenological approach focused on whether pattern formation could be induced without

specific reference to other proteins that may be involved. This was investigated by employing

a modified particle swarm optimization (PSO) algorithm that utilized the energetic profile

of a swarm of α-actinin to guide z-body pattern formation.

2.2.1 Convergence of the adapted PSO algorithm

The standard PSO algorithm is a stochastic evolutionary algorithm with the ability to con-

verge to a global optimum even when several local optima exist. To ensure proper conver-

gence, many of the suggestions that have been put forth regarding the convergence of the

standard PSO algorithm [139, 78, 42, 39] were integrated into the adapted PSO algorithm

in this work. These include the incorporation of a dynamically adjusting inertia weight

(Eq. (2.5)) into the velocity update rule [139], setting initial velocities to zero [42], and uti-

lizing a swarm population size that is sufficiently large [39]. The implementation details and

equations can be found in the Methods (Section 2.4).

The initial swarm resembled a collection of α-actinin randomly distributed throughout the

simulated curve trajectory. Individual configurations were updated according to equa-

tions (2.4)-(2.8) with the possibility of cluster recruitment whenever the inter-cluster dis-

tance of the optimal swarm configuration was sufficiently large. Within each simulation,

cluster accumulation can be viewed over the implemented time (Fig. 2.1A). Random initial

swarms each tended towards a final configuration, converging before the maximum itera-

tion counter Tmax was reached (Fig. 2.1B). The swarm can be observed converging to the

optimal swarm configuration with recruitment and movement mechanisms playing a key

role in guiding algorithmic convergence. In particular, the final swarm configuration yielded

an equilibrium inter-cluster distance near the ideal distance parameter, rm, found in equa-
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Figure 2.1. The adapted PSO algorithm converges to the optimal swarm
configuration. (A) 10 simulations were run on a horizontal premyofibril (green) with
S = 60 individual configurations in the swarm. Taken together, the swarm resembled a
random distribution of α-actinin point clusters (blue). The clusters reached an equilibrium
configuration as time increased from t = 1 to t = 200. (B) As the swarm evolved, new
point clusters were incorporated into the swarm throughout all simulations (colors vary)
until no new clusters could be added. (C) The inclusion of new clusters caused a decrease
in the average inter-cluster distance for each simulation until it converged to a singular
value, rm = 1.1 µm (dotted line). (D) The injection of new point clusters corresponded to a
decrease in the objective function value within each simulation.

tion (2.2) (Fig. 2.1B). The reduction in inter-cluster distance came about as a result of new

clusters being recruited to the developing myofibril (Fig. 2.1C). The incorporation of new

clusters into the swarm produced distinct reductions in the objective function value. Despite

sharing a similar trend throughout all simulations, the objective function did not decay to

a singular steady state value (Fig. 2.1D). Rather, the energy required to reach an optimal

swarm configuration was dependent on the level of randomness and stochasticity in the initial

swarm distribution. Many have speculated that cells function in ways which aim to optimize

available free energy [24]. The possibility of an energy state transition occurring as a result
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α-actinin recruitment invites speculation on the energetic nature of α-actinin modulation.

2.2.2 Pattern formation as determined by objective function pa-

rameters

A key observation of the convergence tests was the link between rm and the convergence of

the swarming algorithm, suggesting a correlation between the ideal distance value and the

effective change in α-actinin mobility. Indeed, there are conflicting reports regarding the

dynamic movement of α-actinin in the early stages of myofibril formation that coincide with

muscle cell type [133, 76]. To explore if it is possible to generate patterns by manipulating

α-actinin interactions and regulating binding affinity, the parameter pair governing the ob-

jective function were varied. Specifically, focus was placed on the ideal distance parameter

rm, which could coincide with muscle cell type, and the cluster searching distance dth, which

defined the necessary spatial distance for cluster recruitment to be considered.

In our simulations, the average inter-cluster distance is shown to be driven primarily by

the ideal distance, rm, and not by the recruitment searching distance, dth (Fig. 2.2A). This

is evident by the final inter-cluster distance converging to values near rm despite changes

to dth. However, alterations in searching distance impacted the average uniformity of the

resulting patterns (Fig. 2.2B). In particular, the appropriately chosen searching distance

could increase uniformity levels for ideal distances larger than approximately rm = 1.25 µm.

For ideal distances below this level, but larger than rm = 0.7 µm, the searching distance

dth would have little influence, as is evident from the consistent levels of uniformity that

were seen. However, pattern formation begins to reduce for ideal distances smaller than

rm = 0.7 µm with the lowest levels occurring for searching distances below dth = 0.5 µm.

To further explore the influence of the ideal distance term rm, the searching distance was

fixed at dth = 0.5 µm while rm was allowed to vary. In this scenario, the final average
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Figure 2.2. The ideal distance drives convergence behavior. (A) The average
inter-cluster distance of the 10 fiber simulations showed a correlation between the
convergence value and the ideal distance value rm in the (dth, rm) parameter space. (B)
The normalized uniformity measure viewed in the (dth, rm) plane revealed different pattern
uniformities based on the location within the parameter space. (C) Fixing dth = 0.5 µm,
the convergence values for each simulation (mean±SD) behaved linearly with varying rm
(red) with a convergence value always larger than rm (blue). (D) The increase in ideal
distance corresponded to a non-linear decrease in the number of clusters as well as a
non-linear increase in uniformity (inset).

distance correlated with the changes in ideal distance in a linear fashion with consistently

high levels of uniformity even at low rm (Fig. 2.2C). Interestingly, the average distances

consistently converged to values slightly larger than the specified ideal distance. Coinciding

with the distance convergence, a clear link between average distance and number of final

point clusters can be observed (Fig. 2.2D). However, while smaller distances yielded more

point clusters, the relationship is nonlinear despite a constant searching distance. This

appears to inversely mimic the nonlinear variation in the uniformity measure (Fig. 2.2D,

inset), suggesting that uniformity may be more closely linked with the number of clusters
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than with the final inter-cluster distance. This is a property that has been observed in mature

myofibrils where increased uniformity appears to coincide with an uptick in the number of

z-lines [21, 142]. Similarly, other properties of mature myofibrils such as sarcomeric length-

regulation via specified proteins may have analogs in the immature case.

2.2.3 Impacts of myofibril shape on pattern initiation

Even though cells exist in a three dimensional environment, two dimensional experimental

studies are often employed when studying myofibrillogensis [102, 96], leading to the discovery

that premyofibrils first appear near the cell edge [28]. Despite their potential shape being re-

stricted by the outline of the cell boundary, premyofibrils are often depicted as nearly straight

curves with little to no variation in curvature [103]. This has inspired many researchers to

model components of myofibrillogenesis using one dimensional reductions [47, 46]. One of the

advantages of our approach is its adaptability into two dimensional studies without requiring

large increases in complexity. This was used to investigate whether premyofibril shape was

a potential influencer of either final inter-cluster distance or pattern uniformity.

Experiments from the literature emphasize premyofibrils that appear as long, slightly curved

rods with distinct punctate patters. However, the patterns appear to degrade on curves closer

to the cell edge, where premyofibrils have a larger radius of curvature [28, 96]. To explore

this phenomenon, we applied our algorithm to two dimensional curves of varying lengths

and curvatures. The curvature radius Rc was fixed at low (20 µm), moderate (56 µm), or

high (110µm) values and arc segments were constructed using fourth-order parametric Bézier

curves with lengths Lc ranging from 20µm to 60µm (Fig. 2.3A). To perform our study, a linear

transformation was applied that aligned the constructed curve with the horizontal axes. This

allowed for lateral movement to be determined via equation (2.6) with the corresponding

vertical coordinate being determined such that the resulting point cluster remained on the
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Figure 2.3. Curve shape influences pattern development. (A) Fourth order Bézier
curves of various lengths (colorbar) were created for several types of curve radii including
low (20 µm), moderate (56 µm), and high (110 µm) values. (B)-(D) For low, moderate, and
high curve radii, the curve lengths were varied and the resulting pattern was quantified
according to uniformity (left plots) and average inter-cluster distance (right plots) as
mean±SD for the 10 simulations. Pairings which demonstrated statistically significant
differences (p < 0.05) were marked with a horizontal line. The simulations were performed
using ideal distances corresponding to muscle cell type: rm = 1.8 µm for flight muscle,
rm = 1.1 µm for cardiac muscle, and rm = 0.7 for skeletal muscle. (E) For each muscle cell
type, the ranking function (2.13) was employed and normalized in the Lc-Rc parameter
space. The region with ranking value larger than the mean plus one standard deviation for
the whole space is outlined (red).

transformed myofibril.

27



A common trend was seen in all three simulated muscle types (Fig. 2.3). High levels of

uniformity were observed in all cases with no statistical differences found. However, there

were differences observed in the final simulation distances at low curvature radius for the

flight and skeletal muscle cell types. In the case of the flight muscle cell, the preassigned

length of the myofibril appeared to play a role in the final pattern formation, with longer

curves leading to larger deviations from the ideal distance (Fig. 2.3B). Interestingly, no

significant differences were observed in cardiac cells, regardless of myofibril shape (Fig. 2.3C).

However, the increase can also be seen when the shortest curve length is compared to one of

the longer curve lengths in the skeletal muscle cell (Fig. 2.3D). As in the flight muscle, no

statistically significant differences were observed at moderate or high radii of curvature in

the skeletal muscle.

To further examine the link between these two fundamental characteristics, a parameter

space exploration was employed (Fig. 2.3E). For each muscle cell type considered, myofibril

curvature was altered and the resulting length-curvature pair was ranked based on how

well the pattern balanced inter-cluster distances and uniformity (Eq. (2.13)). In general,

increasing the curve length had a detrimental impact on the ranking when curvature radius

was fixed. However, there was no consistency in the nature of this drop off. The highest

ranked length-curvature pairs were identified in a cell-specific manner whereby equation

(2.13) was employed throughout the parameter space and the region containing pairs with

ranking larger than the mean plus one standard deviation were outlined. These high ranking

regions differed in all muscle cell types yet none extended past the ∼33 µm length marker.

While flight cells contained two pronounced regions centered at low or moderately high

curvatures, cardiac cells contained three protruding regions with high curvature included

in the low and moderately high curvature radii. As the ideal distance reduced, two of

these three regions shrank, prioritizing ranking towards straighter curves. Despite these

distinct differences, the simulations did not produce any patterns containing an inter-cluster

distance outside the ranges reported experimentally. Further exploring the impact of curve
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shape on pattern initiation may yield insights into myofibrillogenesis. It is generally accepted

that premyofibrils form near the cell periphery, which contain regions of high curvature in

spreading cells, and move inwards during maturation [96, 28]. Prior to this spatial migration,

the lengths and curvatures of the premyofibrils attempting to form in these regions may be

subjected to shape constraints that play a vital role in guiding α-actinin recruitment and

clustering.

2.2.4 Self-organization may be guided by group behavior

As of yet, a unifying mechanism that guides self-organization across multiple species has not

been identified. There is speculation, however, that the variability found in the observed

patterns may point towards fundamental differences in protein behavior which are species-

specific. Indeed, there has been some evidence that α-actinin behavior may be altered

through interactions with various regulatory, signaling, and metabolic proteins [13, 114].

The methods by which these regulatory interactions are entrenched in some developing cells

are not entirely known but they may be linked to key differences present in different cell

types [81]. To explore these potential influencers in our model, cluster behavior profiles were

altered by manipulating two acceleration parameters: an individualized cognitive coefficient

c1 which biases behavior towards the best solution for the specific individual and a group

social coefficient c2 that biases behavior towards the best solution for the swarm. Typically,

these values lie in the range 0 ≤ c1, c2 ≤ 4 with large values indicating quick movement

towards the target goal [78]. The prescribed behavior profiles influence individual trajectories

with c1 > c2 indicating a preference towards optimizing individualized self-learning behavior

while c1 < c2 prioritizes optimization based on group behavior.

To examine the influence of biasing behavior on final pattern formation, the pair of accelera-

tion parameters were varied within the range suggested by the literature [78]. The simulated
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myofibril was given a curve length of approximately 35 µm and radius of curvature 40 µm,

a shape combination which previously fell outside of the highest ranked regions for each

muscle cell type (Fig. 2.3E). Using the ranking function, the regions with the highest ranked

parameter pairs were identified for each muscle cell type within the parameter phase space

(Fig. 2.4A). The behavior pairing with the largest overall ranking for each cell type were

identified and found to be clustered near each other. Often, each behavior type is assumed

to have an equal level of influence [78] but such pairings were not optimal for any of the

cell types simulated. Interestingly, all highly ranked pairs had a group coefficient c2 above

unity but this property was not observed with the self-learning coefficient c1. As might be

expected, there was no region common to all three muscle types but a transitory area could

be identified whereby the different muscle types could be simulated with minimal parame-

ter variation (Fig. 2.4A). Biologically, these observations imply that α-actinin may behave

differently depending on muscle cell type. In fact, there is evidence of genetic variability in

the different α-actinin isoforms in multiple species [81]. Whether this variability is linked to

alterations in α-actinin mobility or binding affinity has not been determined.

To further analyze the influence of variations in α-actinin behavior, we explored the conver-

gence behavior within the simulations. The regions with highest rank appeared to correlate

with the behavior pairings that produced patterns with minimal deviation from the idealized

distance value (Fig. 2.4B-2.4D). For skeletal muscle, all parameter pairs yielded average dis-

tance values that were within the range of values previously reported. However, that was not

the case for the other two muscle types. In the cardiac simulations, inaccurate patterns were

produced when self-learning was highly favored over socialization (Fig. 2.4C) while for flight

muscle, the lack of group interactions (c2 = 0) prevented the formation of valid patterns

(Fig. 2.4D). This suggests a possible correlation between the idealized distance value rm and

the size of the valid parameter pairings as increases in rm corresponded to a shrinkage of

the potential parameter space (Fig. 2.4E). This may support the hypothesis that the level

of influence different proteins have on α-actinin behavior, and the resulting pattern, may
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Figure 2.4. The choice of biasing parameters dictates the equilibrium pattern.
(A) The individual (c1) and group (c2) biasing behavior parameters were varied for each
muscle cell type simulated. The ranking function (2.13) was normalized and all regions
with values larger than 0.56 were outlined for flight (blue), cardiac (red), and skeletal
(green) muscle. (B)-(D) The average inter-cluster distance for each simulated cell type was
plotted in the (c1, c2) parameter space with blank regions indicating parameter pairs that
yielded average inter-cluster distance values outside the range observed experimentally. (E)
The area of the parameter space region that yielded biologically relevant patterns was
calculated and normalized relative to the area of the entire parameter space for each
simulated muscle cell type. (F) From a common initial α-actinin distribution, the choice of
biasing parameters can produce patterns for each muscle cell type. These are consistent
with experimental data such as neonatal rat ventricular cardiomyocytes with z-lines
identified by α-actinin staining. Curved myofibrils are identified by an asterisk with
arrowheads identifying the myofibril trajectory. A yellow dotted line is provided for visual
reference of a horizontal line. Scale bar: 10 µm.
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vary according to cell or species type [81]. In any case, in all three cell types considered, it

was possible to obtain a final distribution with average inter-cluster distance near the ideal

distance that utilized both self-learning and group biasing (c1, c2 ≥ 1). However, doing so

could result in distributions with impaired uniformity. While some high ranking regions

could be found for each cell type when individual behavior was prioritized (c1 > c2), more

high ranking regions were produced when emphasis was placed on group behavior (c2 > c1),

suggesting that the ability for α-actinin to interact with neighboring proteins is essential for

pattern formation.

Fig. 2.4A illustrates how α-actinin dynamics can be modulated in order to form various

punctate configurations. The experimentally observed patterns could be recreated through

the appropriate choice of biasing parameters. Specifically, within each high ranking region,

the parameter pairs that yielded the highest ranking values were chosen to demonstrate how

premyofibril assembly may differ in different cell types (Fig. 2.4F). Starting with an initially

random distribution, each pair of biasing parameters were implemented and the final α-

actinin distributions were obtained. These distributions produced patterns which had high

levels of uniformity and average inter-cluster distances that resembled the values found in

the literature. Movement towards different parameter space regimes may come about by

modulating protein interactions. This may be done in a species- or cell-specific manner,

prompting further analysis of the interactions that allow each cell type to uniquely regulate

protein behavior.

2.3 Discussion

There are many aspects regarding the dynamics governing myofibrillogensis that remain un-

resolved. In most studies, emphasis is placed on the proteins affiliated with the transition

from z-bodies to z-lines following the identification of fully formed premyofibrils. However,
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there is currently no consensus on how such a structure is formed. To aid experimentalists

in this endeavor, we constructed a modified PSO algorithm and demonstrated that it may

be possible to generate experimentally observed patterns through manipulation of the un-

derlying mobility, recruitment and binding dynamics of α-actinin. By utilizing energy-state

transitions and allowing for premyofibrils of various lengths and radii of curvature, we were

able to explore how relations such as curve shape and biasing behavior may influence the

formation of α-actinin patterns.

Since the sarcomere is the central contractile unit in a myofibril, many theoretical and

experimental models concerned with sarcomeric organization are built on the view that self-

organization comes about due to tension-mediated interactions between actin and myosin

filaments [47, 136, 30]. While these models accurately display tension as an important factor

in guiding maturation, they often ignore the central role α-actinin plays in z-body formation.

Our approach differs by emphasizing α-actinin dynamics which has been shown to display

differences in mobility depending on the muscle cell type [133, 76]. While other models

have not attempted to recreate this property, we were able to mimic this response by con-

sidering different behavior profiles. Additionally, previous models favored one dimensional

simplifications [46, 47] whereas our approach allows for two dimensional studies with mini-

mal additions. Experimental data obtained from 2D cultures are commonly used and have

demonstrated complex cytoskeletal networks consisting of myofibrils with varying curvatures

[28, 46]. Previous models have not been set up to address how this factor influences pre-

myofibril formation while our model allows for the inclusion of curve shape considerations.

Since muscle cells in vivo are cylindrical in shape [71], it is possible that the 3D structure of

developing myofibrils may influence pattern formation [7]. Several studies have attempted

to decode the complex 3D structure that appears in the later stages of myofibril matura-

tion, referred to as the z-disk [103, 102, 43]. However, given the increase in experimental

complexity associated with developing 3D cultures [7, 38], two dimensional computational

studies such as ours provide a basis for hypothesis testing with the possibility for extensions
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in the future. Future extensions of our approach would include three dimensional studies

whereby the given premyofibril can have planar curvature as the result of rotations into the

z-axis. This additional degree of spatial freedom may be included directly, allowing for three

dimensional visualization, or indirectly where a three dimensional curve can be projected

onto a two dimensional plane.

Our model proposes that premyofibrils can be influenced towards developing different punc-

tate patterns by altering the behavior of individual α-actinin molecules. In the same way

that a list of maturation-affiliated proteins has been assembled [103], our results highlight

how a catalog of α-actinin influencers in developing premyofibrils also needs to be compiled.

One such influencer that has already been discovered in eukaryotic cells is cofilin. This

protein has been shown to increase the cross-linking of actin filaments by increasing the

number of potential α-actinin binding sites [13]. Such an influence would correspond to a

change in the biasing parameters in our model (represented by c1 and c2). It is possible that

the dynamics governing this increase in binding sites is linked to the changes in mobility in

different muscle cell types but this has yet to be examined.

Based on our framework, our model suggests that experiments focusing on the sequence of

events leading to premyofibril formation prioritize the nature of initial α-actinin recruitment

and its relation to the scaffolding proteins that bind to actin filaments. There is already

evidence that proteins such as N-RAP interact with actin filaments prior to the recruitment

of α-actinin but do not appear to drive sarcomere formation [76, 73]. These types of pro-

teins may be linked to our cluster searching distance dth, influencing α-actinin recruitment

dynamics and eventual pattern formation. Additionally, the current model can be used as

a building block towards linking the formation of α-actinin z-bodies with the known interac-

tions that occur during maturation. Experimentalists can use our phenomenological findings

to inform their explorations of the dynamics that are at play during the early stages of my-

ofibrillogenesis. By emphasizing the dynamics of α-actinin, our model can be extended to
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include additional cell types not considered here such as vertebrate smooth muscle. Smooth

muscle cells contain α-actinin z-bodies but have a different contractile mechanism than stri-

ated muscle cells [18]. This exemplifies how exploring initial α-actinin pattern formation

phenomenologically may be advantageous from a modeling perspective as it allows for a

discussion of general characteristics that may be applicable to many different cell types.

2.4 Materials and Methods

The PSO algorithm is a population-based algorithm inspired by the social behavior observed

in bird flocks and fish colonies [78]. A key component of this algorithm is its ability to

use local interactions between neighboring bodies to influence global behavior in service of

optimizing a prescribed objective function. In our formulation, a swarm refers to a collection

of α-actinin cluster configurations, each of which may form as the result of an accumulation

of α-actinin proteins along the simulated myofibril. The α-actinin distribution for each

configuration was then updated iteratively by optimizing the objective function, as outlined

in Fig. 2.5.

2.4.1 Energy-based objective function

We constructed an objective function that utilized inter-cluster distance within a configu-

ration and accounted for the energetic cost-benefit of adding clusters to each configuration.

Newly added clusters allowed the swarm to consider different configurations where a new

state was adopted if it was energetically favorable. Assuming a collection of N clusters with

locations r1, . . . , rN within a given configuration, we wrote the objective function at iteration

35



t as

f(r1, . . . , rN) =
∑
i<j

V (rij) +

Kl∑
k=1

Ekδk, (2.1)

where the first sum denoted the energetic cost of maintaining the swarm in the current state

and the second sum denoted the energetic cost-benefit of adding new α-actinin clusters to

the current swarm.

The potential energy function V was chosen under the assumption that α-actinin clusters aim

to achieve an optimal distance from neighboring clusters, as has been reported experimentally

[74, 103]. This behavior is adequately captured by the Lennard-Jones potential energy

function

V (rij) = ε

[(
rm
rij

)12

− 2

(
rm
rij

)6
]
, (2.2)

where the strength of the cluster interactions is dependent on the inter-cluster distance

rij = |ri − rj|, ε denotes the depth of the potential energy well, and rm denotes the ideal

equilibrium inter-cluster distance. In the second summation, Kl denotes the number of

potential clusters that could be added to the swarm with Ek denoting the energetic cost-

benefit of incorporating a new cluster sk to the swarm configuration. The step function δk

indicates whether adding sk is energetically favorable.

2.4.2 Energetic cost-benefit function

To incorporate a new α-actinin cluster sk into a configuration, both the current optimal

swarm configuration {r1, . . . , rN} and the newly incorporated clusters {s1, . . . , sm} where

m < k were considered. To this end, we wrote X = {(r̃0, r̃1), (r̃1, r̃2), . . . , (r̃N , r̃N+1)} where

r0 and rN+1 denoted the two endpoints of the myofibril and r̃i ∈ {Tr0, . . . , TrN+1} with
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r̃i,x < r̃i+1,x. The linear transformation T aligned the myofibril of interest with the x-axis so

that a pseudo-ordering of the clusters could be created. We then defined Ek as

Ek =
∑

(x1,x2)∈X

P (sk,x1,x2)

[
N∑
j=1

V (|sk − rj|) +
∑
m<k

V (|sk − sm|)δm

]
, (2.3)

with

P (sk,x1,x2) =


1 (T sk)x ∈ (x1,x,x2,x)

and (T sm)x 6∈ (x1,x,x2,x) for m < k

0 otherwise

.

The first summation within the brackets considers how a newly proposed cluster would

influence the current optimal configuration while the second summation incorporates the

influence of clusters which have already been proposed. The outer summation and the

function P restricts only one cluster to be added to a myofibril segment per iteration.

2.4.3 Algorithm overview

Full implementation was achieved by using a three step process. Following initialization, con-

figurations within the swarm were updated using position and velocity equations common to

standard PSO algorithms, as described below (Fig. 2.5, green box). Once new configurations

were proposed, the simulated myofibril was segmented into potential α-actinin recruitment

zones whereby an energy state transition could occur (Fig. 2.5, blue box). This process was

repeated until the maximum number of iterations Tmax was reached. The final configurations

were then analyzed for pattern formation and consistency (Fig. 2.5, pink box).
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Figure 2.5. Overview of the adapted PSO algorithm. Following initialization, the
algorithm can be broken down into two main components: the position- and
velocity-related update equations (green box, described in Section 2.4.3) and the integrated
energy state transition process (blue box, described in Section 2.4.3).

Initialization

The swarm was initialized by specifying a swarm size S and assuming there was initially

one cluster on either end of the myofibril curve and one cluster placed randomly within the

curve per configuration. The algorithmic variables were initialized by assuming each cluster

initially had zero velocity and was in its locally optimal configuration: vk = 0 and pk = rk

for all k = 1, . . . , S. The optimal configuration for the swarm was initially set to be the most

energetically favorable of all the individual configurations: g = rk such that f(rk) ≤ f(rj)

for all j = 1, . . . , S.
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Configuration updates

While t < Tmax, all algorithmic variables were updated according to the following rules:

1. For k = 1, . . . , S, vk was updated using

vk(t+ ∆t) = ω(t)vk(t) + R1c1(pk − rk(t)) + R2c2(g − rk(t)). (2.4)

The parameters R1 and R2 were random values chosen from a uniform distribution

while c1 and c2 denoted scalar weights that bias the attraction towards pk and g. The

inertial parameter ω dynamically adjusted at each iteration via the relation

ω(t) = ωmax − (ωmax − ωmin)
t

Tmax

, (2.5)

where ωmin was the final value of ω and ωmax was the initial value of ω, typically taken

near 1 [78].

2. For k = 1, . . . , S, rk was updated using

rk(t+ ∆t) = rk(t) + vk(t+ ∆t)∆t. (2.6)

3. For k = 1, . . . , S, pk and g were updated using

pk(t+ ∆t) =

 pk(t) f(rk(t+ ∆t)) ≥ f(pk(t))

rk(t+ ∆t) f(rk(t+ ∆t)) < f(pk(t))
(2.7)

and

g = rk(t+ ∆t) (2.8)
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such that f(rk(t+ ∆t)) ≤ f(rj(t+ ∆t)) for all j = 1, . . . , S.

Energy state transition

After new configurations were obtained, we determined if the swarm should undergo a state

transition by adding new clusters. If the distance between neighboring clusters in the optimal

swarm configuration was larger than the minimum required segment length dth, then new

clusters could be incorporated randomly onto the myofibril segment between them. A newly

suggested cluster sk was accepted into the swarm if its inclusion would result in a reduction of

the objective function value, ∆f < 0. Once a new cluster point within a myofibril segment

was accepted into the optimal swarm configuration, a corresponding local cluster r was

randomly placed within the same myofibril segment for each individual configuration. Each

of these new local clusters were initialized using the same requirements as before: p = r and

v = 0.

Within each simulation, we allowed for movement in one dimension of each cluster to be

determined by the algorithm and required the corresponding second dimension to be chosen

such that the cluster remained on the given myofibril curve. We also required rk to always

be confined within the designated boundaries by enforcing absorbing boundary conditions:

If rk was predicted to move a cluster beyond the boundary, then the cluster was reset to the

boundary and its velocity was reset to 0.

2.4.4 Distance, uniformity and ranking measurements

Average inter-cluster distance

For pseudo-ordered cluster points {x1, . . . ,xN} in the jth configuration (1 ≤ j ≤ S),

the inter-cluster distance between clusters xi and xi+1 was defined as d
(j)
i = |xi − xi+1|.

40



The average distance within simulation number sk was dsk = (1/S)
∑

j di
(j)

, where di
(j)

=

(1/N)
∑

i d
(j)
i was the average distance of the clusters located at {x1, . . . ,xN}. Given Nsim

simulations, the average inter-cluster distance of the swarming algorithm was

d =
1

Nsim

∑
sk

dsk . (2.9)

To aid in parameter space exploration whereby a pair of parameters (p1, p2) were varied, the

average inter-cluster distance of the swarming algorithm was rescaled relative to the ideal

distance rm,

dT (p1, p2) =
d(p1, p2)− rm

max(q1,q2) |d(q1, q2)− rm|
. (2.10)

Uniformity

To determine whether the point clusters were uniformly distributed, an adjusted coefficient

of variation (COV) measure was utilized. To this end, the minimum distance between point

xi and all other points was first determined: γi = minj 6=i |xi − xj|. The uniformity measure

was then defined as

u =
1

λrand

[λrand − λ] , (2.11)

where γ = (1/N)
∑

i γi and λ = (1/γ) [(1/N)
∑

i(γi − γ)2]
1/2

, a common COV measure of

uniformity. The parameter λrand denotes the maximum uniformity measure that may occur

from 60 simulations of N randomly distributed points along the simulated myofibril. By

including this parameter, the uniformity measure was expected to range from zero to unity

with u = 1 corresponding to a uniformly distributed collection of points. As with the inter-

cluster distance measurements, for each simulation sk the average uniformity was denoted usk

and the average uniformity of the swarming algorithm was defined as the average uniformity
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over all simulations:

u =
1

Nsim

∑
sk

usk . (2.12)

Ranking function

To determine the influence of a pair of parameters (p1, p2) on the behavior of the resulting

configuration, a ranking function was constructed which utilized the average inter-cluster

distance and uniformity measurements. For each parameter pairing, the distance measure-

ment (2.10) was normalized and rescaled to prioritize values closer to zero and penalize

values away from zero, regardless of whether they deviated towards the positive or negative

ends of the spectrum. Thus, the ranking function was defined as the product of the average

uniformity and the prioritized distance function:

R(p1, p2) = u(p1, p2) · exp

[
−d(p1, p2)2

2σ2

]
, (2.13)

where σ is the standard deviation of the collection of parameter-generated distances {dT}(p1,p2).

2.4.5 Statistical analysis

Simulation data, when applicable, was expressed using the mean with error bars represent-

ing the standard deviation. Statistical significance between data groups was determined

using one-way analysis of variance followed by the Tukey-Kramer post-hoc test for pairwise

comparisons. A p-value less than 0.05 was considered statistically significant.
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Chapter 3

A dynamic energy minimization

model for cytoskeletal organization

3

3.1 Introduction

A healthy heart is able to regulate its complex dynamics due to its organized, hierarchical

structure [108, 41]. In diseased hearts, this high degree of organization is inhibited with many

physiological and structural properties appearing compromised [69, 25, 51]. For instance,

cardiomyocytes from diseased hearts exhibit changes in cell size and shape [107]. In isolated

cardiomyocytes, cell shape changes have been associated with inhibited cell contractility and

reduced sarcomeric registration [50]. To study whether there is a link between the altered

cellular structure and the inhibited function of cardiomyocytes, engineered tissue capable

of recapitulating the phenomenological properties found in maladaptive cardiac tissue must

3W. F. Sherman, M. Asad and A. Grosberg, submitted 2020 PLOS Comput Biol
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be developed. One such property is the organization of the cytoskeleton at different length

scales. For example, cardiac tissue may be globally isotopic while being locally anisotropic

[36]. Controlling this balance in organization at the global and local scales is an ongoing

challenge. Spatial constraints further complicate matters as myofibrils are multidimensional

constructs and need to compete for space in a densely packed environment [9]. As a result,

individual cells may contain myofibrils with vastly different lengths, curvatures and locations,

in some cases even having their placement impacted by the presence of the nucleus [131].

Each of these factors contributes to the challenge of mimicking cytoskeletal organization

in engineered tissue. The development of computational models capable of recapitulating

these observed behaviors may serve as an invaluable tool. Modeling provides a means for

efficiently exploring these characteristics and may lead to better control of the cytoskeletal

architecture in vitro.

Numerous theoretical models have been employed to address how cytoskeletal organization

might be obtained, as has been recently reviewed [109]. Kassianidoua et al. explored how

the cytoskeletal architecture was related to stress fiber mechanics using a minimalistic active

cable network model [62]. They considered how stress fiber connections could influence

individual stress fiber mechanics. However, the model did not address the influence of cell

geometry on fiber shape and only considered a small, simplified portion of the cytoskeletal

network. Yuan et al. produced a model that allowed for the geometry of the cell to be

included and predicted the mechanical stress in the cytoskeleton [144]. By including the

dynamics of focal adhesions, the collection of proteins that anchor the cell to the substrate,

they were able to predict the myofibril-associated principle stress direction in both regular

and irregularly shaped cells. This model did not consider spatial constraints that would

cause a myofibril to interact with neighboring myofibrils or other internal organelles like the

nucleus. It also did not provide a prediction of where the myofibrils would be located within

the cell. Several other models have followed suite, considering the interaction between focal

adhesion dynamics and resulting traction stress measurements but not addressing myofibril
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placement [55, 89, 88]. Consequently, previous models have been unable to recapitulate the

internal architecture observed experimentally [67, 92].

In this work, we utilized the myofibril force-focal adhesion relation [8] to simulate the inter-

play between focal adhesion dynamics and cytoskeleton construction simultaneously, allowing

to the development of a dynamically changing cytoskeletal network. Our model considered

how a cell attached to a flat ECM island of a particular geometry might lead to alterations in

the cytoskeleton, allowing us to explore the impact of cellular boundary cues on intracellular

architecture. By controlling cell size and shape as well as nucleus size and location, we were

able to generate myofibril networks that could vary depending on several stochastic factors.

While these factors may influence the cell’s cytoskeletal architecture, our approach provides

useful information regarding the formation of any given cytoskeleton by linking myofibril

maturation, the number of myofibril bundles present in the network and the ability to adapt

to a changing focal adhesion distribution.

3.2 Results

3.2.1 Model overview

To explore the development and maturation of the myofibrils that comprise the cytoskele-

ton, our model consisted of two interacting components, which allowed for the visualization

of myofibril curves within a simulated 2D cell geometry (Fig. 3.1). Focal adhesions were

modeled using kinetic equations by considering the density of bound and unbound integrins,

ρb and ρ∗, respectively (Eq. (3.1)-(3.2)). At each point in the cell containing some density of

bound integrins, a net force F (Eq. (3.8)) was exerted, which accounted for adhesion rein-

forcement via integrin clustering and the influence of the forming or maturing cytoskeleton.

Once a minimum density of bound integrins were present and contributing a force magnitude
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Figure 3.1. Schematic overview of major modeling components. Basic model
implementation consists of an initialize stage where the cell geometry is predetermined and
required parameters are set. The initial distributions of bound and free integrins are
determined and the different model components are carried out as outlined in Materials
and Methods.

sufficient enough to sustain a cytoskeletal connection, a premyofibril could be created.

To assemble the cytoskeletal network, the collection of viable anchoring points were identified

and a template network was determined based on the net force vectors associated with each

point. This template network defined the order in which the individual curves would be

created. The probability of a constructed curve being at a particular stage of maturation

was assumed dependent on the amount of force generated at the endpoints of the curve,

with premyofibrils having smaller forces while larger forces indicated maturation into the

nascent myofibril stage (Eq. (3.15)-(3.16)). The densities of free and bound integrins at

each time step would respond to the cytoskeletal network that was constructed through

a force-induced integrin recruitment term. In this way, developing focal adhesions would
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be reinforced allowing for more myofibrils to be constructed. This would influence the net

force exerted on the focal adhesions resulting in more integrins being recruited to the focal

adhesion sites where the cycle would repeat.

Individual myofibrils were modeled as fourth order Bézier curves [20] with minimal bending

energy. This was accomplished by identifying the starting and ending points for each curve

according to the criteria described above. A net force vector F was associated with each point

and used to determine the tangent vector to the curve at the designated point. The remaining

control points defining the parametric curve were determined based on the endpoint tangent

vectors and how to most effectively minimize the bending energy equation (Eq. (3.11)). To

determine whether the constructed curve was viable, an energetic cost associated with placing

a proposed curve within a developing network was included (Eq. (3.13)). By taking into

account the energetic cost of constructing a myofibril coupled with the potential energetic

cost of placing the constructed myofibril in the cell, only curves that contributed to the

minimization of the system energy (Eq. (3.12)) were utilized to construct the cytoskeletal

network.

3.2.2 Impact of the nucleus on the cytoskeleton

Since our model allows for the nucleus to influence the development of the cytoskeleton, we

explored how the final network might be impacted by changes in the location and relative

influence of the nucleus. The level of influence of the nucleus was associated with the

energetic cost required to create a curve that crossed the nuclear boundary. A moderate level

of influence corresponded to a relatively low energetic cost while a major level of influence

corresponded to a higher energetic cost. For a baseline, the theoretical scenario where no

nucleus was present in the square cell was simulated (Fig. 3.2A,B(i)). The nucleus was then

placed in three different locations within the cell geometry and the resulting cytoskeletal
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networks were evaluated. This was done in the cases where the nucleus was allowed a

moderate level of influence on the cytoskeleton (Fig. 3.2A(ii)-(iv)) and when the nucleus was

allowed a major level of influence on the cytoskeleton (Fig. 3.2B(ii)-(iv)). From the results

of the simulations, it can be qualitatively observed that the presence of the nucleus impacts

the behavior of the network near the nucleus location. When no nucleus was present, there

was an increase in straight diagonal curves passing near the geometrical center of the cell.

However, when the nucleus was taken into account, it became more energetically favorable to

create curves that bended around the nucleus rather than go across it. As might be expected,

the level of nuclear influence impacted the total energetic cost of creating the network. This

could be seen qualitatively by the apparent decrease in the number of curves created for each

nucleus location.

The change in cytoskeletal structure for each level of nuclear influence was quantified using

the Co-Orientational Order Parameter (COOP) [34], where all cell pairs were considered

(Fig. 3.2A,B(v)). This metric ranges from zero to unity and quantifies the level of consistency

between pairs of structures. A COOP of one indicates the structures perfectly mimic each

other while a value of zero means there is no consistency between the two structures. The

metric can be calculated for different length scales, allowing for structural comparisons at a

local level when a small length scale is designated while more global comparisons could be

captured by using a large scale. Calculating the COOP at a large (∼15 µm) length scale

revealed high levels of global consistency regardless of nucleus placement. At a small (∼1

µm) length scale, structural differences became more apparent. This could suggest that the

mechanisms underlying the interaction between the cytoskeleton and the nucleus may be

central to producing local variations in cytoskeletal networks experimentally. However, this

may not hold true for elongated cells where there is less space for the myofibril bundles to

occupy, resulting in more locally consistent structures. This could indicate that the level of

influence of the nucleus might vary from cell to cell due to other intracellular factors.
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Figure 3.2. Influence of the nucleus on cytoskeletal properties. The nucleus was
provided a level of influence on the cytoskeleton corresponding to the energetic cost of
creating a curve that passes over the nucleus. This level of influence varies from moderate
(A) to major (B). The location of the nucleus was altered to mimic the cases where there
was no nucleus present (i), placed in the geometric center (ii), placed left of center (iii) or
placed above the center point (iv). The COOP was applied at two different length scales to
the networks obtained (v). After performing 6 simulations of each nucleus location in (A)
and (B), the average number of curves created over all simulations was recorded (C) as well
as the maximum traction stress (D), estimated using the magnitude of the net force at
every point in the cell divided by unit cell area. Scale bar: 10 µm.
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The impact associated with changing the amount of nuclear influence on the cytoskeleton

was further quantified by performing multiple simulations where the nucleus location was

changed. Due to the difference in resulting cytoskeletons for each scenario, the average num-

ber of curves created in each case was considered (Fig. 3.2C) as well as the average maximum

traction stress generated (Fig. 3.2D). Consistent with qualitative observations, there was a

general decrease in the average number of curves created when nucleus placement was fixed

and level of influence was increased. Similarly for the average maximum traction stress,

which consistently produced values within the typical range reported experimentally [67].

However, these differences were not statistically significant. Since there were no statistically

significant differences in these cases and the nucleus is expected to play a larger role in elon-

gated cells, a moderate level of nuclear influence was assumed for the remaining simulations.

This allowed cytoskeletal networks to be created in rectangular geometries with variable

aspect ratio.

3.2.3 Exploring force-length dependence

There has been evidence suggesting that the force exerted on developing focal adhesions

may be tied to the cell geometry via a force-length relationship [8, 89]. Previous modeling

has shown that in cells with geometries defined by several different lengths, a force-length

relationship is likely to produce cytoskeletal networks more consistent with experimental

findings compared to no force-length dependence [55]. However, identifying potential types

of dependence requires the inclusion of length scales. Since our model is dimensionalized,

it was used to explore two potential force-length relationships that may be applicable. The

force equation consists of terms that scale with fiber length, designated f̃ (Eq. (3.17)).

While this value is fixed for each geometry, the parameter α can be tuned to either 0 or

1, each representing a different type of force-length dependence. When α = 0 (OFF), the

force parameters maintain a consistent value for all shapes. This causes the force to be
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dependent on an absolute-length value. When α = 1 (ON), the force parameters are allowed

to vary based on the maximum end-to-end fiber length within a cell geometry. Under this

formulation, the force parameter values are scaled as a result of the changing cell geometry,

which was classified as a relative-length dependence.

Multiple simulations were run on cell geometries with fixed area but different aspect ratios.

In each simulation, the nucleus was randomly placed near the center of the geometry and

allowed to have a moderate level of influence. For each aspect ratio, the number of curves

and corresponding curve lengths were recorded along with the final maximum traction stress.

There was a decrease in the average number of curves present in the final network for both

force-length relationships explored (Fig. 3.3A). Increasing aspect ratio also resulted in longer

curves being generated on average, with more consistent curve lengths observed in the relative

length-dependence scenario (Fig. 3.3B). Overall, these results are consistent with what can

be qualitatively observed in experimental cells [97, 80, 67]. However, there is a behavioral

shift that occurs when considering the average maximum traction stress that is produced

(Fig. 3.3C). Simulations utilizing the relative-length dependence produced traction stress

values between ∼1-2 kPa, within the 1-3 kPa range reported for cells having these aspect

ratios [67]. In contrast, simulations with the absolute-length dependence produced traction

stress values that increased almost linearly with aspect ratio. This scenario almost universally

produced traction stress values that were outside the physiological range. When coupled with

the wide variability in curve lengths produced, a mechanism causing the force exerted on a

focal adhesion to vary in this type of length-dependent manner seems unlikely. Therefore,

for all other comparisons presented, a relative-length dependence (α = 1) is assumed.
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Figure 3.3. Testing length-dependence relationships. Model was implemented on
rectangular geometries with aspect ratios varying from 1:1 to 13:1. For each aspect ratio, 6
simulations were performed and α was set to α = 0 (OFF: absolute-length dependence) or
α = 1 (ON: relative-length dependence). The average number of curves created (A), the
average curve length (B), and the average maximum traction stress (C) were computed for
each aspect ratio. The shaded region identifies the range of average maximum traction
stress values reported from the literature.

3.2.4 Structural consistency in experimental and simulated net-

works

Previous studies have reported that increasing cell aspect ratio results in an increase in intra-

cellular alignment [97, 80]. The increase in alignment correlates with cytoskeletal networks

having similar internal architecture and has been previously quantified using the COOP met-

ric [36]. To test the viability of our model, this metric was applied to our model-generated

networks for different cell geometry aspect ratios. In experimental cells, the COOP was seen

to monotonically increase as the cell was elongated (Fig. 3.4A), demonstrating that aspect

ratio influences the structural consistency of the cytoskeleton at both the small and large

scales. When applied to model-generated networks, a similar trend was observed (Fig. 3.4B).

At both length scales, the simulations demonstrate an increase in structural consistency as

the cell geometry elongates.

Experimental cells were then grouped alongside the model-generated networks for each as-
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length scales (D, inset). The shaded areas designate the 95% confidence region for the
experiment only group. Scale bars: 10 µm.
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pect ratio. Computing the COOP using the grouped data revealed a similar trend as the

experimental data alone (Fig. 3.4C). This was further analyzed to determine whether the

simulated networks could be distinguished from the experimental data. Accordingly, the

group consisting of only experimental cells was used as a baseline. Previous results have

demonstrated that in individual cells, the COOP varies depending on the length scale cho-

sen with an inflection point around the 3-4 µm scale [36]. To test whether length scale might

influence the viability of the model results, a 3 µm scale was included in the analysis. The

fitted Hill functions for all data sets were plotted along with the 95% confidence band of

the baseline group (Fig. 3.4D). When viewed together, the fitted functions for most data

sets fell within the confidence region across the length scales analyzed. Notably, the grouped

model/experiment data set fell within the confidence region for nearly all aspect ratios. These

results demonstrate that the model-generated networks are structurally consistent with the

experimental data for a variety of aspect ratios at different length scales.

3.3 Discussion

The cytoskeleton interacts and coordinates with numerous intracellular structures across

several length scales [36, 131, 108]. As the cytoskeleton develops, the dense packing induces

a physical competition for space between neighboring myofibril bundles. This also causes the

cytoskeletal network to interact with other subcellular structures that occupy space within

the cell such as the nucleus [48]. Until now, no technique had been developed that took into

account spatial constraints to predict the exact placement of myofibril bundles within a cell.

We addressed this by developing a theoretical model that used basic structural components

to build a dynamically changing cytoskeletal network.

Our approach differs from previous attempts in several crucial aspects. Typically, cytoskele-

tal components are studied in isolation [40, 14, 86] and when multiple components are
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combined, the emphasis is often placed on how contractility might influence the normal-

ized traction stress magnitudes in different cellular regions [32, 144]. Our model links sev-

eral structural components allowing for a direct exploration of network properties includ-

ing the impact of nucleus location on a developing cytoskeleton (Fig. 3.2). Additionally,

since most models take a non-dimensional approach [144, 55], the nature of the myofibril

force-length dependence had not been fully explored. The force equation (Eq. (3.4)) was

developed with parameters that incorporated length scales, making it possible to investigate

whether dimension-dependent force-length relationships influenced cytoskeletal construction

(Fig. 3.3A,B). Previous studies have demonstrated that cell contractility varies within 1-

3 kPa [67, 89], which out model is able to capture using only the feedback between the

distribution of focal adhesions and the developing cytoskeleton (Fig. 3.3C).

Within this range, however, the model is currently unable to recreate the precise dependence

of traction stress on aspect ratio that has been observed in past experiments [67, 97]. This

is likely due to the absence in the model of sarcomeric influence on cytoskeletal formation.

Sarcomeres are the central contractile unit that make up the myofibrils [103, 108] and their

alignment and registration correlate with cell aspect ratio in the same way that traction

stress changes with cell aspect ratio [83, 31]. However, theoretical studies exploring force

modulation via the sarcomeres have been difficult to produce because the alignment of sar-

comeres depends on the location of the myofibril bundles. Future work in advancing this

model will include incorporating sarcomeric registration into the developing network since

it is now possible to visualize realistic cytoskeletal networks theoretically, allowing for the

increasing-decreasing traction stress behavior to be captured.

In experimental cells subjected to the same environmental conditions, the overall cytoskeletal

structure is largely consistent yet each cell exhibits variations in internal architecture [92].

While this phenomenon has been studied in individual cells using multi-scale quantitative

analysis [36], previous modeling attempts have been unable to reproduce networks that are
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structurally similar to experimental cells while also capturing cell-to-cell variability. Our

approach produced individual myofibril bundles within the cell geometry, allowing for direct

structural comparisons between model-generated networks and experiments. In all cases, a

diverse array of meshworks were produced, due to the stochasticity built into the model equa-

tions, but the process of minimizing the cost associated with the developing mesh resulted

in recurring structural properties. In addition to being qualitatively similar to experimental

cells, the simulations quantitatively recreated the multi-scale relationship between structural

consistency and cell aspect ratio (Fig. 3.4A,B). When the model-generated networks were

compared with the experimental cells, the results were consistently within the 95% confi-

dence region produced by comparing experimental cells to each other (Fig. 3.4C,D). Whereas

previous models consistently yielded the same steady state outcomes [144, 55], our approach

produced unique network with each simulation, as is seen in the experimental cells.

3.4 Conclusion

The modeling framework outlined in this work provides a platform for future studies con-

cerning the development of the cytoskeletal network and how it may be connected to cell

contractility. A key achievement of our approach is the ability to recreate networks that

demonstrate cell-to-cell variability using only basic cellular components. By modeling the

feedback between focal adhesion maturation and cytoskeletal formation, it is possible to

establish the exact placement of myofibril bundles for a specific cell. The ability to create

and visualize individual myofibril curves within a two-dimensional geometry is an essential

first step towards elucidating the influence of intracellular structures such as the nucleus on

cellular organization and contractility. Since only a few processes were emphasized, there

is potential for future model development by incorporating additional cellular components

into the modeling framework. For instance, now that the location of a myofibril bundle can
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be determined, the sarcomeres that make up the bundle can be modeled and the influence

of their registration can be analyzed. Thus, the model may be extended and used to explore

how subcellular components like sarcomeres regulate cellular phenomena such as contrac-

tility. Our approach demonstrates that the cytoskeleton may form based on the unique

subcellular interactions occurring within the specific cell. These interactions give rise to

physical constraints that dictate which connections need to be established in order to create

the most energetically beneficial and efficient cytoskeletal network.

3.5 Materials and Methods

3.5.1 Model formulation

Integrin based focal adhesion model

The model is based on a simplified classification of integrins proteins into either a bound

or unbound state, denoted ρb and ρ∗, respectively. Unbound integrins have a spontaneous

binding rate k0 and a force-induced binding rate that increases linearly with force, k1|F |.

A bound integrin becomes unbound due to the force exerted on it by the myofibril and

this unbinding rate is assumed to be of the form k−1 exp
(
|F|/F0

)
ρb. This gives the kinetic

equation for the density of bound integrins:

∂ρb
∂t

= (k0 + k1|F|)ρ∗ − k−1e
|F|/F0ρb. (3.1)

The density of free integrins is derived by assuming that unbound integrins can diffuse

throughout the 2D cell at a much faster rate than all other processes in the cell, resulting in
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ρ∗ =
1

|Ψ|

∫
Ψ

(ρ− ρb)d2x′, (3.2)

where ρ is the average integrin density in the cell defined by the geometry Ψ.

Once integrins are converted from a free to bounded state, they anchor to the cell membrane

and produce an adhesion force,

Fadh(x) = kCS dAFA,p
ρb

ρb + ρ0

ê. (3.3)

Here, kCS denotes the equilibrium adhesion force and dAFA,p is the minimum focal adhesion

area required for a premyofibril to form. Any integrin within the cell island may connect to

any other integrin so long as both connectors have a sufficient adhesion force. The description

for the cytoskeletal force prior to the formation of myofibrils may be developed based on the

fraction of integrins contributing to force production at any appropriate point:

Fρ(x, t) = f̃ρR(x)H(R(x)−Rt)

∫
Ψ

R(x′)H(R(x′)−Rt)[x
′ − x]d2x′, (3.4)

where H(·) is the heaviside function, Rt represents the fraction of bound integrins that must

contribute to force in order to support a cytoskeletal connection, and R(x) is the fraction of

bound integrins that contribute to force production modeled using a Langmuir Isotherm,

R(x) =
ρb(x, t)

ρb(x, t) + ρ0

. (3.5)

Once the cytoskeletal force is sufficiently strong, a premyofibril may be built with its own

force contribution Fp. Fiber maturation is determined by the amount of force generated

so that a premyofibril may be reclassified as a nascent myofibril with force term Fn once a
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sufficient amount of force is generated:

Fp(x, t) = f̃p

∫
ΨFA

Πp(x,x
′)
NF (x,x′)

Ntot

Ltot(x,x
′)v̂(x,x′)d2x′ (3.6)

Fn(x, t) = f̃n

∫
ΨFA

Πn(x,x′)
NF (x,x′)

Ntot

Ltot(x,x
′)v̂(x,x′)d2x′, (3.7)

where NF (x,x′) denotes the number of fibers connecting x′ and x, NF/Ntot identifies the

fractional contribution of the connectors, Πi denotes the probability that at least one fiber

is of type i, and Ltot is the total length of the connections spanning x′ and x. The net force

associated with the focal adhesion at x is described by

F(x, t) = Fadh(x, t) + Fρ(x, t) + Fp(x, t) + Fn(x, t). (3.8)

Optimization driven myofibril model

Cytoskeletal network construction was performed at each time point in a discrete fashion

utilizing a finite collection of points within the cell geometry for which F(x) ≥ Fthresh. The

points were then sorted into distinct pairs and ranked to create a potential collection of

myofibrils having the assigned endpoints. Each myofibril was constructed as a fourth-order

parametric Bézier curve whose bending energy could be described by

EB =
EI

2

∫ Lc

0

|γ′′(t)|2dt =
lpkBT

2L3
c

∫ 1

0

|r′′(s)|ds,

where r(s) refers to the standard Bézier curve representation, Lc is the length of the curve,

lp denotes the persistence length of the curve, kB is the Boltzmann constant and T is the

absolute temperature in Kelvin [128, 37]. The standard curve r can be described by desig-
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nating control points P0, . . . , P4 where P0 and P4 denote the starting and ending points for

the curve. Writing the tangent vectors at P0 and P4 as v1 and v2, respectively, the control

points P1 and P3 satisfy

P1 = P0 +
|P4 − P0|
αP1|v1|

v1 (3.9)

P3 = P4 +
|P4 − P0|
αP3|v2|

v2 (3.10)

where αP1 and αP3 are stochastic constants which help define the control polygon through

which each curve can be constructed. For our purposes, requiring αP1 , αP3 ≥ 4 yielded curves

with bending motifs that we similar to those seen in experimental images. Using the control

points, the bending energy equation was rewritten as

EB =
EI

L3
c

(
72

[
5

6
|Q0|2 +

2

3
|Q1|2 +

1

6
|Q2|2

])
, (3.11)

where

Q0 = 1√
30

(
−
√

3P0 + 2
√

3P1 − 2
√

3P3 +
√

3P4

)
Q1 = 1√

30
(2P0 − 3P1 + 2P2 − 3P3 + 2P4)

Q2 = 1√
30

(√
5P0 − 2

√
5P2 +

√
5P4

)
.

This function was minimized by determining the control point P2 that optimized equa-

tion (3.11), depending on whether the constructed curve intersected the nucleus.

To build the myofibril network, the energetic cost of constructing a myofibril and the energetic

cost of placing the constructed myofibril in the cell were utilized to determine the total energy
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within the network:

E∗sys =
∑
fk

[(E∗B(fk)− Emax
B (fk)) + E∗def (fk)]. (3.12)

where fk denotes the kth myofibril constructed. A constructed curve was accepted into the

network if it’s inclusion contributed to reducing the total energy of the system. The first

summation term in (3.12) describes the energetic cost of constructing a myofibril and utilizes

the normalized form of the simplified bending energy equation (3.11), E∗B = EB/(kBT ). The

second summation term represents the total energetic change in the membrane, normalized

to the initial membrane area, due to the placement of myofibril fk:

E∗def (fk) =
1

A

∫
Ψ

[E∗mem(x|fk is placed)− E∗mem(x|fk is not placed)] . (3.13)

This deformation equation considers the total change in energy induced by the placement

of a myofibril within the network which is influenced by the cumulative height h of stacked

fibers within dA:

E∗mem(x|fk) =
κb
2

(
∇2h(x|fk)

)2
+
τ

2
(∇h(x|fk))2 . (3.14)

Once the cytoskeletal network was determined, each constructed fiber was classified as either

a premyofibril or nascent myofibril. The maturation process is assumed to be force-induced

since there are suggested correlations between myofibril type, focal adhesion size, and the

force generated by a myofibril [8, 120]. We required both endpoints generate a sufficient force

F∗ in order to be created and both endpoints must pass a secondary force threshold Fc in

order for maturation to begin. To this end, we set Fmin = min(|F(x)|, |F(x′)|) and modeled

maturation as a second-order phase transition [115] where the energetic cost of maintaining
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the constructed curve in the premyofibril or nascent myofibril stage was described as

E∗p =

 E∗B Fmin ≥ F∗

0 Fmin < F∗

E∗n =


E∗0 −

(a∗)2

4b∗

(
1

Fmin−F∗ − 1
Fc

)2

Fmin ≥ Fc

E∗0 F∗ ≤ Fmin ≤ Fc

0 Fmin < F∗

where E∗0 , a∗ and b∗ are tunable parameters designed to make it more energetically beneficial

to start as a premyofibril and mature to a nascent myofibril once the fiber can maintain a

desired amount of force. The maturation energies were then used to determine the probability

that a curve is in a given state of maturation:

Πp =
1

1 + e−∆E∗ (3.15)

Πn =
1

1 + e∆E∗ (3.16)

where ∆E∗ = E∗m − E∗p .

Incorporating fiber-length dependence

Since there are three force constants within the force equation (Eq. (3.8)), we expect them

to all have the same units since each integral term is meant to have a similar meaning.

This means that f̃ has units Pa/m which we interpret as the stress exerted on develop-

ing/maturing focal adhesion relative to an effective length. Previous studies have shown

that there is a constant stress exerted on focal adhesions of Test = 5.5± 2nN/µm2 [8]. This
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stress propagates along segments of the cytoskeleton but how effective the force is translated

from one cytoskeletal length segment to the next may depend on many different factors. Pre-

vious models have demonstrated that the organization of the myofibril network may be more

qualitatively similar to experimental results when the force term is fiber-length dependent

[55]. We incorporate this length-dependent behavior into our f̃ parameter by writing

f̃ =
{Stress exerted on a FA}
{Effective myofibril length}

,

where the effective myofibril length may be determined by the geometry of the cell. Specifi-

cally, we assume this length term, if applicable, is the maximum length of a straight myofibril

within the prescribed cell geometry, Lmax. With this inclusion, the force term may vary based

on the type of length dependence:

f̃ ∝ Test
Lαmax

(3.17)

where α = 0 would create an absolute-length dependence where f̃ is constant regardless

of cell geometry and α = 1 would create a relative-length dependence where f̃ varies. All

model implementation and analysis codes have been made available on Github: https:

//github.com/Cardiovascular-Modeling-Laboratory/singlecell.

3.5.2 Ethics statement

All animals were treated in agreement with the guidelines of the Institutional Animal Care

and Use Committee of UCI guidelines (IACUC Protocol No. 2013-3093). NIH Guide for the

Care and Use of Laboratory Animals recommendations were followed and procedures were in

accordance with existing federal (9 CFR Parts 1, 2, & 3), state, and city laws and regulations

governing the use of animals in research and teaching. CO2 inhalation followed by cervical

dislocation at a ULAR facility was used to euthanize the adult Sprague-Dawley rat. To
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minimize the stress the dams experience when their pups are taken, dam’s euthanasia was

done before pup sacrifice. In accordance with humane standards, the pups were subsequently

taken to the core lab where each neonatal rat pup was euthanized by decapitation. As stated

in the ”AVMA Guidelines for the Euthanasia of Animals: 2013 Edition” (published by the

American Veterinary Medical Association), this euthanasia method adheres to the most

current standards and maintains scientific validity of the cell cultures.

3.5.3 Fibronectin patterning

Large, rectangular cover glass (Brain Research Laboratories, Newton, MA) was sonicated,

then spin coated with 10:1 Polydimethylsiloxane (PDMS; Ellsworth Adhesives, Germantown,

WI). The coated glass was placed in a 60oC oven to cure overnight and then cut into,

approximately, 13 mm×15 mm rectangular coverslips to fit in a 12-well plate. Fibronectin

(FN; Fischer Scientific Company, Hanover Park, IL) was patterned onto the coverslips to have

islands of a variety of shapes with areas of 1250 µm2 or 2500 µm2 using microcontact printing,

as previously described [34, 36]. The FN-patterned coverslips were placed in a solution of 5

g Pluronics F-127 dissolved in 0.5 L sterile water for 5 min and rinsed three times with room

temperature phosphate-buffered saline 97 (PBS; Life Technologies, Carlsbad, CA) in order

to block the cells from attaching outside of FN lines.

3.5.4 Neonatal rat ventricular myocyte (NRVM) cell culture

As previously described [64, 36, 34], neonatal rat ventricular myocardium was extracted

from two-day old Sprague Dawley rats (Charles River Laboratories, Wilmington, MA). The

cardiomyocytes were then isolated from the ventricular myocardium as previously described

[64, 36, 34]. Cells were counted and seeded onto FN coated coverslips at a density of 1M cells

per well in a 6-well plate and 400K per well in a 12-well plate. After 24 hours, dead cells
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were washed away with PBS and remaining cells are fed with 10% FBS M199 culture media.

Another 24 hours later, the 10% M199 was replaced with warm 2% FBS M199 culture media.

3.5.5 Fixing, immunostaining and imaging

Cells were fixed with warm 4% paraformaldehyde (Fisher Scientific, Hanover Park, IL) sup-

plemented with 0.001% Triton X-100 (Sigma-Aldrich, Inc., St. Louis, MO) in PBS for

10 minutes, as previously described [64, 36, 34]. Cultures were then immunostained for

actin (Alex Fluor 488 Phalloidin; Life Technologies, Carlsbad, CA), sarcomeric α-actinin

(Monoclonal Anti-α-actinin; Sigma Aldrich, Inc., St. Louis, MO), nuclei (4’,6’-diaminodino-

2-phenlyinodol (DAPI; Life Technologies, Carlsbad, CA), and FN (polyclonal rabbit anti-

human fibronectin; Sigma Aldrich, Inc., St. Louis, MO), as previously described [64, 36, 34].

Secondary staining was applied using tetramethylrhodamine-conjugated goat anti-mouse IgG

antibodies (Alexa Fluor 633 Goat anti-mouse or Alexa Fluor 750 Goat anti-mouse; Life

Technologies, Carlsbad, CA) and goat anti-rabbit IgG antibodies (Alexa Fluor 750 goat

anti-rabbit or Alexa Fluor 633 Goat anti-rabbit; Life Technologies, Carlsbad, CA). The im-

ages were collected using an IX-83 inverted motorized microscope (Olympus America, Center

Valley, PA) with an UPLFLN 40x oil immersion objective (Olympus America, Center Valley,

PA) and a digital CCD camera ORCA-R2 C10600-10B (Hamamatsu Photonics, Shizuoka

Prefecture, Japan). Raw images as well as all other relevant data have been deposited in

the Dryad repository: https://doi.org/10.7280/D1CT1C.

3.5.6 Image analysis

Image analysis of experimental data and model simulations was performed using previously

created custom Matlab codes [34, 36]. Structural comparisons were made by computing

the co-orientational order parameter (COOP) for each cell pair. Images were segmented into
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grids and the length of each grid square could vary from 1 µm to approximately 50 µm. The

COOP ranges from 0 to 1 and is determined by computing the maximum eigenvalue of the

structural tensor, as previously described [34].

3.5.7 Statistical analysis

Results are expressed using the mean with error bars representing the standard deviation.

One-way analysis of variance (ANOVA) with the Tukey-Kramer test for pairwise compar-

isons was used to determine statistical significance. A p-value less than 0.05 was considered

statistically significant.
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Chapter 4

Exploring the impact of cytoskeletal

organization on nuclear eccentricity

4.1 Introduction

In Chapter 3 we modeled the developing cytoskeletal network by allowing the nucleus to

influence myofibril bundle placement. Under this formulation, the interaction between the

cytoskeleton and the nucleus was dependent on the location and shape of the nucleus, which

were assumed fixed at every time point. However, there is growing evidence linking cytoskele-

tal arrangement to changes in nuclear morphology [68, 131]. While this is particularly true

in spreading cells, several studies have used micropatterned fibronectin islands to link cell

geometry with nuclear shape. In particular, it has been demonstrated that there is a cor-

relation between nuclear eccentricity and cell aspect ratio with elongated cells containing

elongated nuclei [129, 131]. This is hypothesized to be caused by the interactions between

the cytoskeleton and the nucleus.

Several studies have proposed linking cell aspect ratio to nuclear deformations by viewing the
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nucleus as an elastic sphere surrounded symmetrically by parallel myofibrils which exhibit

a compressive load on the sphere [129, 131]. By assuming these myofibrils are anchored

at the cell periphery, the cell geometry can influence the compressive load and thereby be

linked to the amount of nuclear deformation. This framework is often utilized to estimate

physical properties of the nucleus since the final nuclear shape is known and the amount of

compressive force may be estimated using data obtained from experimental techniques [121,

131]. However, if the physical properties of the nucleus are known, then our model outputs

may be used to estimate the compressive load exerted on the nucleus via the cytoskeleton

and determine the resulting change in nuclear shape. With this in mind, in this chapter

we present a preliminary model designed to test whether we could effectively link these two

cellular constructs using results from Chapter 3.

4.2 Model

4.2.1 Estimating nuclear eccentricity via spherical compression

equations

We considered a cell at steady state consisting of an initially spherical nucleus surrounded

by stress fibers which interact with the nucleus. These interactions result in the nucleus

deforming due to the cytoskeleton exerting a compressive force. Assuming a constant 2D

area, the initial 2D shape of nucleus was described using a circle with radius R and the final

deformed shape was modeled as the ellipse (x/ae)
2 + (y/be)

2 = 1 where ae and be defined the

major and minor axes of the ellipse, respectively. Since the final nuclear height d satisfied

d = 2be, the amount of nuclear deformation α was computed as the difference between the

initial and final nuclear height, α = 2R − d. Once the amount of nuclear deformation was

determined, the major and minor axes for the final deformed nucleus were calculated using
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be = R−α/2 and ae = R2/be. Assuming ae > be, the eccentricity of the resulting ellipse was

computed using

ε =

√
1−

(
be
ae

)2

. (4.1)

To obtain the amount of deformation, the nucleus was modeled using the equations for an

elastically deforming sphere compressed between two parallel plates. For our preliminary

analysis, the load magnitude was determined using the force outputs at the final time point

of our cytoskeleton model. Given an initial nuclear radius R and compressive load F , the

Tatara et. al model [121] estimates the total amount of spherical deformation α as

α =
3(1− vN)2

2ENa
F − 2Ff(a)

πEN
(4.2)

where

a =

(
3(1− vN)2RF

4EN

)1/3

(4.3)

f(a) =
2(1 + vN)R2

(a2 + 4R2)3/2
+

1− v2
N

(a2 + 4R2)1/2
. (4.4)

In this formulation, vN denotes the Poisson’s ratio of the sphere, EN denotes the Young’s

modulus of the sphere, and a describes the contact radius between the compressive plate

and the sphere.
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4.2.2 Estimating nuclear compression load

To determine the amount of nuclear deformation resulting from interactions with the cy-

toskeletal network, we employed (4.2)-(4.4) where the compressive load F was obtained

using the outputs at the final time point of the cytoskeleton model presented in Chapter 3.

Specifically, we utilized our model’s predicted net focal adhesion developmental force F to

determine the normal forces acting on the nucleus. The load exerted by the parallel plates

was viewed as a pair of pseudo-curves anchored on either side of the nucleus, designated Fc1

and Fc2 (see Fig. 4.1). To develop the normal force associated with a curve, Fc, two anchoring

points x1 and x2 where chosen on the cell boundary to the left and right of the nucleus, each

of which had an associated force vector F(x1) and F(x2). The curve c formed angles θ1 and

θ2 with the horizontal as dictated by the associated force vector, tan θk = Fy(xk)/Fx(xk).

Additionally, since our net force F(xi) accounted for all myofibrils connected to xi, we made

the simplifying assumption that the magnitude of this force is distributed across all available

connections according to the average number of expected connections at any given point, N ,

defined as the ratio of the total number of connections in the network to the total number

of anchorage points. The expected compressive load by curve c on the nucleus was taken to

be the average of the normal forces obtained from each endpoint,

Fc =
1

2

[
Fx(x1)

N
tan θ1 +

Fx(x2)

N
tan θ2

]
. (4.5)

The total nuclear compressive load Ftot was defined as Ftot = |Fc1−Fc2|, where the minus sign

accounts for the difference in direction of the normal forces generated by curves c1 and c2.

Due to the built-in variation associated with our cytoskeletal model, the force data outputted

could vary depending on the network that was developed. To account for the influence of

this variation, 6 simulations of our cytoskeletal model were implemented. Each simulation

predicted its own unique compressive load value and the average total compressive load

70



across all simulations, 〈Ftot〉, was computed. The final nucleus shape was then determined

by setting F = 〈Ftot〉 in equations (4.2)-(4.4) and computing the resulting eccentricity using

(4.1).

4.3 Results

Individual square and rectangular cardiomyocytes having approximate aspect ratios 3:1, 5:1,

7:1 and 9:1 with fixed areas of 1250 µm2 were used to demonstrate our ability to recreate

nuclear compression data (Fig. 4.1A-F). The Young’s modulus and Poisson’s ratio for the

nucleus have been estimated in the literature to be in the range of 1-10 kPa and 0.1-0.5,

respectively [16, 48, 68]. After fixing these parameters, we used our cytoskeleton model

presented in Chapter 3 to generate 6 potential myofibril networks per aspect ratio. For each

of these simulations, the total compressive load being exerted on an elastically deforming

nucleus was estimated by computing equation (4.5) for two curves with specified endpoints,

representing the cumulative influence of the network on the nucleus. The average total

compressive load F̄tot across all simulations was then computed and utilized in equations

(4.2)-(4.4) to determine the corresponding eccentricity of the deformed nucleus.

4.3.1 Recapitulating changes in nuclear eccentricity

Previous studies have demonstrated that there is a nonlinear relationship between the aspect

ratio of a spread cell and the amount of nuclear elongation [129]. Utilizing the Tatara et al.

spherical compression model in conjunction with our cytoskeletal model, we are able to mimic

this general trend (Fig. 4.1I). Not only does our model capture how the nucleus tends to

become narrower as the cell becomes narrower, our model produced eccentricity values that

were generally consistent with those obtained from the experimental data. The exception
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is the predicted nuclear eccentricity for the moderate (7:1) aspect ratio, which is slightly

below the experimentally observed values. This result might be expected given the nature

of the traction stress values predicted by our cytoskeletal model. Namely, our cytoskeletal

model is currently unable to recreate the increase in traction stress that is observed at the

7:1 aspect ratio, resulting in lower force values in our simulated cell. As these force value

directly influence the compressive load exerted on the nucleus, it may be reasonable for our

formulation to output a lower compressive load, hence a lower eccentricity, at this aspect

ratio.

4.3.2 Potential ability to study changes in nucleus location

Preliminary explorations regarding the location of the nucleus demonstrated that the nucleus

does not always settle in the geometrical center of the cell. Rather, it often appears to be

slightly off center (see Fig. 4.1B,D) with more variability observed in the square cell compared

to the rectangular cells. Since our cytoskeleton model allows us to generate and visualize

cytoskeletal networks, we may use our model outputs to not only explore nuclear morphology

but also how the cytoskeletal network may cause changes in the location of the nucleus. As

an initial exploration into this possibility, we used our simulated networks to determine

the change in the density of the network on either side of the nucleus. In particular, we

identified symmetric points on the top and bottom of the nucleus and recorded the number

of curves from the network that fell within a small region of each point. The density of the

network near the point of interest was then computed as the ratio of the number of curves

within the region to the total number of curves within the network. The average difference

in the network density on either side of the nucleus is summarized in Fig. 4.1I. A positive

value corresponds to more fibers near the top of the nucleus compared to the bottom while

a negative value suggests the opposite. The nonzero values seen in Fig. 4.1I may suggest

that the network is not symmetric around the nucleus and so if either side has a designated
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Figure 4.1. Model predicts how nuclear eccentricity will vary with cell aspect
ratio. First column: A sample of the 1250 µm2 experimental cells used including a square
(A), 3:1 rectangle (C) and 10:1 rectangle (E). The nuclei were isolated for each cell (B, D,
and F) to determine experimental nuclear eccentricity (mean ± SD). Second column: A
schematic representation of the nuclear compression model (G) was used to the
compressive load exerted on the deformable nucleus. (H) Model predicted compressive
loads allowed for an estimation of the amount of nuclear deformation. The predicted
nuclear eccentricity (−�−) was compared to the eccentricity data (�), showing a similar
trend. (I) The density of the simulated cytoskeleton network on either side of the nucleus
can be estimated to determine whether the nucleus would be expected to move from its
original location. Scale bars: 10 µm.

number of network curves exerting a force on the nucleus, one might expect the nucleus to

move in accordance with the change in network density. This may be applicable to exploring

whether or not the cytoskeleton plays a role in the final location of the nucleus.
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4.4 Conclusions

We have demonstrated that it is possible to use a spherical deformation model [121] in con-

junction with our cytoskeletal model to explore how the cytoskeleton may influence nuclear

morphology. In the future, our cytoskeletal model may even be able to provide insight into

why the final location of the nucleus seems to vary in experimental data. As a first step to-

wards further linking two distinct cellular structure, our initial results are promising though

more development is needed.
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Chapter 5

Summary and future directions

The models developed have recreated and elucidated information concerning several intra-

cellular properties across various spatial scales. Notably, we have allowed for the interplay of

several cellular components that had previously been studied in isolation [121, 89, 40]. This

provides several potential areas to pursue for future work which can be broadly grouped into

two categories. Firstly, the interplay that has been explored thus far can be further extended

by providing additional coupling between the various components. Alternatively, the current

modeling approaches can be refined by addressing some of the simplifications that were made

initially. Both categories provide a platform to expand on the working components of each

model while also addressing some of the current limitations.

The model proposed in Chapter 2 allowed for the exploration of early stage premyofibril

formation. By focusing on the distribution of α-actinin, we reproduced the clustering be-

havior and eventual pattern formation found in premyofibrils of different species and muscle

cell types [76, 52, 95]. By utilizing an adapted particle swarm optimization algorithm, we

were able to modulate the relative influence of neighboring α-actinin clusters and showed

that different interaction dynamics may influence the eventual pattern formed. Although
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the current model is only applicable to isolated premyofibrils, an extended phenomenological

model can be created which allows our premyofibril α-actinin distribution to align and fuse

with neighboring α-actinin while still being constrained to their designated myofibril curve.

This alignment and fusion mechanism may have energetic underpinnings where it becomes

more energetically favorable in some sense when neighboring z-lines align and lock together.

Whether an energetically driven align-lock approach is sufficient to produce the sarcomeric

registration found in mature cardiomyocytes has yet to be explored.

In Chapter 3 we successfully simulated a developing myofibril network that dynamically

changed over time. The model in its presented form was able to reproduce the variability

found in cytoskeletal networks while capturing structural properties that were consistent with

previous experimental observations [92, 36]. One such property was the ability to produce

cytoskeletal networks in cells of different aspect ratios with maximum traction stresses on the

order of 1 kPa [67, 89]. We demonstrated that allowing the force associated with a developing

myofibril to vary based on a relative length measure produced more accurate stress values

when compared to an absolute length dependence. We were also able to capture qualitatively

observed behavior such as the average length of the myofibril bundles within the cytoskeleton

increasing with cell aspect ratio in an almost linear manner. At the same time, the number

of myofibril bundles created in low aspect ratio cells was found to be larger than the number

of bundles in high aspect ratio cells, a quality that can be visually observed but had not

been quantitatively described. We believe that one of the components driving the resulting

traction stress values is the interplay between the number of myofibrils within the network,

the length of the proposed myofibrils, and the relative length dependence as dictated by

the cell geometry. Further explorations of this relative length dependence may resolve the

discrepancy between our traction stress values and the experimentally observed values for

the moderate aspect ratios.

Lastly, Chapter 4 demonstrated how the cytoskeletal model from Chapter 3 could be used
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to explore shape changes in the nucleus. Although this is in an early stage of development,

the preliminary results demonstrate how modeling the nucleus as an elastically deforming

sphere can be combined with our current cytoskeletal model to study the physical interactions

between the nucleus and cytoskeleton. This interplay can be captured more accurately in the

future by allowing nuclear deformations to change dynamically due to the influence of the

changing cytoskeleton. Additionally, there is evidence that genetic mutations may influence

the nature of nuclear deformations [25, 123]. Further advancements could include exploring

whether alterations in the material properties of the nucleus combined with cytoskeletal

interactions are sufficient to produce irregular (non-elliptical) shaped nuclei.

We foresee several additional generalizations that can be made from our modeling approach,

two of which will be addressed here. The modeling components proposed have been restricted

to individual cells but may be applicable to multiple interacting cells. For instance, while

integrins are present in the focal adhesions that anchor myofibril bundles of a single cell, they

are also present in intercellular junctions. Within these junctions, integrins serve to anchor

individual cells to the extracellular matrix while cadherins anchor cells to one another. These

adhesion junctions also contain actin filaments associated with them that provide anchoring

and bending in cell sheets. Moreover, sarcomeric registration is present not only in individual

cells but also in cell sheets. Given our modeling approach for a single cell, a generalization

to interacting cells should be feasible. This would allow us to study self-organization at the

tissue scale.

A second application of our model requires us to alter a central modeling assumption.

Namely, we considered individual cells that were grown on a flat surface. This allowed

us to model the development of myofibril bundles at an approximately planar level, con-

sistent with what has been observed experimentally [11]. However, a flat surface it is not

applicable to cells seen in microenvironments. For instance, using a curved surface provides

a better experimental setup of cells found in microvessels as opposed to a flat surface. Under
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this scenario, myofibril bundles may have an additional degree of freedom and the nucleus

becomes a spherical obstruction rather than a circular obstruction. Modeling cells on a

curved surface would allow us to explore how this additional degree of freedom influences

the cytoskeleton and resulting sarcomeres.
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