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Differential dynamic microscopy (DDM) is an emerging technique to measure the ensemble dy-
namics of colloidal and complex fluid motion using optical microscopy in systems that would oth-
erwise be difficult to measure using other methods. To date, DDM has successfully been applied
to linear space invariant imaging modes including bright-field, fluorescence, confocal, polarised,
and phase-contrast microscopy to study diverse dynamic phenomena. In this work, we show
for the first time how DDM analysis can be extended to dark-field imaging, i.e. a linear space
variant (LSV) imaging mode. Specifically, we present a particle-based framework for describing
dynamic image correlations in DDM, and use it to derive a correction to the image structure func-
tion obtained by DDM that accounts for scatterers with non-homogeneous intensity distributions
as they move within the imaging plane. To validate the analysis, we study the Brownian motion
of gold nanoparticles, whose plasmonic structure allows for nanometer-scale particles to be im-
aged under dark-field illumination, in Newtonian liquids. We find that diffusion coefficients of the
nanoparticles can be reliably measured by dark-field DDM, even under optically dense concentra-
tions where analysis via multiple-particle tracking microrheology fails. These results demonstrate
the potential for DDM analysis to be applied to linear space variant forms of microscopy, providing
access to experimental systems unavailable to other imaging modes.

Introduction
Several techniques have been developed to measure passively and
actively-driven dynamics in soft matter. On optical length scales,
statistical analysis has been employed to infer particle dynamics
from temporal and spatial intensity fluctuations of light directed
at samples. Well-developed techniques include: multiple parti-
cle tracking microrheology (MPT),1–3 particle image velocime-
try (PIV),4–6 diffusing wave spectroscopy (DWS),7,8 fluorescence
correlation spectroscopy (FCS),9,10 and dynamic light scattering
(DLS, also known as photon correlation spectroscopy).11 Each of
these techniques has its own advantages and disadvantages, mak-
ing certain techniques better suited to measure specific material
systems and dynamics than others.

Multiple particle tracking microrheology,1–3 for example, is
well-suited to measure dynamics of individual colloids in both
heterogeneous and scarce materials. Particles between nanome-
ters and microns in size can be directly visualized using differ-
ent types of microscopy. From video micrographs, the position

Department of Chemical Engineering, University of California Santa Barbara, 3357
Engineering II, Santa Barbara, CA 93106, USA. Fax: +1-(805)-893-4731; Tel: +1-
(805)-893-3372; E-mail: helgeson@engineering.ucsb.edu
† Electronic Supplementary Information (ESI) available: Sucrose solution vis-
cosities, additonal simulations, details of image structure function fitting pro-
cedure, dark-field image structure function at high magnification. See DOI:
10.1039/b000000x/

of particles can be determined to sub-pixel resolution by fitting
different intensity masks over the micrograph and their dynamics
correlated by tracking the centers as a function of time. It is pos-
sible to characterize spatially heterogeneous samples using MPT
by examining particle movement at different locations within a
micrograph.

Dynamic light scattering, on the other hand, is well-suited
to measure average, ensemble dynamics across multiple length
scales. In DLS, light from a collimated source is directed onto a
sample and the light scattered at a particular angle θ (or wave
vector q) is recorded by a detector. Fluctuations in the scattered
light arise when scatterers in the sample move within (and pass
into and out of) the incident beam. Based on the time correla-
tions of these fluctuations at different values of θ , it is possible to
extract the dynamics of the scatterers at multiple length scales.

Unfortunately, neither MPT nor DLS are well-suited to mea-
sure the dynamics of dense samples. In MPT, particles have to be
optically isolated to be tracked, limiting the use of MPT to sam-
ples with dilute, easily identified scatterer centers such as high-
contrast tracer particles dispersed in a solvent. In DLS, multi-
ple scattering convolutes intensity fluctuation correlations. DWS
and fiber optic quasi-elastic light scattering can be used to over-
come this limitation by directly analysing the multiply scattered
light.8,12 However, these techniques require specialized equip-
ment that is not as common as that used for MPT or DLS.

Recently, differential dynamic microscopy (DDM), a type of dig-
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ital Fourier microscopy analysis13,14, was developed15 based on
the same principles of MPT and DLS. The technique measures
sample dynamics by reconstructing dynamic scattering patterns
from both temporal and spatial variations in micrograph image
intensities. As a hybrid, DDM combines many of the advantages
of MPT and DLS. Specifically, DDM (1) can characterize spatially
heterogeneous and concentrated samples; (2) can extract dynam-
ics from micrographs that bear little resemblance to the actual
sample (e.g. weak scatterers or optically dense samples); (3)
requires small sample volumes and (4) uses unmodified micro-
scopes already present in most academic and industrial labs. With
this unique combination of advantages, DDM has great potential
to complement existing techniques like DLS and MPT that are
widely used to characterize soft matter. As such, it is worthwhile
to further develop different aspects of DDM, and, in particular,
extend it to different forms of microscopy as we endeavour to do
here.

Before describing our contribution to the development of DDM,
we provide an overview of the mechanics of the technique and
the current state of the DDM field. Those interested in a more de-
tailed description can refer to a recent review article by Giavazzi
and Cerbino.13 DDM was first developed to measure the dynam-
ics of colloidal and complex fluid motion using intensity fluctu-
ations of simple video micrographs.15 From DDM, it is possible
to obtain the same dynamical correlation function measured in
dynamic light scattering as a function of wave vector (q) space in
systems that are not compatible with DLS, and using smaller sam-
ple volumes. Since its original development, DDM has been suc-
cessfully used to measure particle diffusivity,16 particle velocity,17

colloidal aggregation and gelation kinetics,18,19 bacterial motil-
ity,20–23 hydrodynamic factors in concentrated colloidal disper-
sions,21 viscoelasticity of liquid crystals,24 and anisotropic parti-
cle motion.25 It has also been adapted for use in texture analysis
microscopy.26

Much like in MPT, the first step of DDM is to collect a series
of images of material in motion using a microscope. The video
micrograph series is analysed by first computing the change in in-
tensity of each pixel I(x, t) between two micrographs separated by
time step ∆t. The 2D Fourier transform of the resulting difference
image ∆Î(q,∆t) is a convolution of the visual representation of
scattering centers and the displacement of scattering centers over
∆t. It is possible to decouple these two contributions by analyzing
the expectation value of the Fourier power spectrum of the dif-
ference images, defined as the dynamic image structure function,
D(q,∆t)

D(q,∆t)≡
〈∣∣∆Î(q,∆t)

∣∣2〉 (1)

In a seminal text, Giavazzi and coworkers showed that in lin-
ear space invariant forms of microscopy (which will be discussed
shortly), the dynamic image structure function decomposes ana-
lytically into three sub-functions:27

D(q,∆t) = A(q) [1−g(q,∆t)]+B(q) (2)

In Eqn 2, the function A(q) is a convolution of the particle scatter-
ing properties, the optical transfer function of the imaging optics,

and the material structure factor. B(q) is related to the imaging
noise and incoherent scattering. For uncorrelated image noise,
B(q) is a constant that is independent of q. In the analysis below,
we will show that g(q,∆t), is equivalent to the intensity autocor-
relation function measured by DLS.

In systems where scatterer motion is spatially isotropic (e.g.
Brownian motion), radially symmetric scattering patterns are pro-
duced if averaged over a sufficiently large time. In such cases, the
dynamic image structure function is radially averaged and subse-
quently analysed in terms of two independent variables, ∆t and q,
the magnitude of the wavevector q. The image structure function
D(q,∆t) can be fit to Eqn 2 for lines of constant q provided that
a suitable model for g(q,∆t) can be can be found for a particu-
lar material system. In addition to A(q) and B(q), this provides
wave vector dependent values of the parameters chosen in the
model for g(q,∆t). For instance, in the case where the intensity
autocorrelation function decays according to

g(q,∆t) = e−∆t/τ(q) (3)

q dependent values of τ are obtained.

To date, differential dynamic analysis has been successfully ap-
plied to bright-field,16–19,22,28 fluorescence,16 confocal,21, po-
larised,24 and phase-contrast20,23,25 forms of microscopy. One
widely used imaging mode that is not included in this list is dark-
field microscopy, the illumination system for which is depicted
in Fig. 1a. In dark-field microscopy, direct light is blocked such
that only the light scattered by the sample enters the objective
and is recorded by the camera. This form of illumination pro-
vides a better signal-to-noise ratio in many samples with strong
scattering but insufficient contrast to be observed in other imag-
ing modes. For example, dark-field microscopy is commonly used
to image unstained biological samples,29–31 crystal grain bound-
aries,32 and nanoparticles.33 Figure 1b shows the enhanced sig-
nal obtained using dark-field microscopy to image gold nanopar-
ticles compared to bright-field imaging, in this case due to the
strong surface plasmon resonance of the nanoparticles.34 Since
dark-field microscopy provides a better signal-to-noise ratio for
specific soft matter classes than other illumination systems, ap-
plying DDM to dark-field micrographs instead of poorer images
obtained in other illumination systems has the potential to yield
high quality dynamic statistics, as well as applicability to material
systems that are incompatible with other imaging modes. This is
illustrated in Fig. 1d where we measure the image structure func-
tion from dark-field and bright-field micrographs of dilute 100
nm Au nanoparticles undergoing Brownian motion in aqueous
sucrose solutions. The dark-field image structure function has
a strong exponential dependence, allowing for precise measure-
ment of τ(q), whereas the bright-field image structure function is
essentially just a measurement of the camera noise.

Differential dynamic analysis has not yet been applied to dark-
field micrographs because dark-field is a linear space variant
(LSV) imaging system. In linear space variant illumination sys-
tems, the intensity distribution projected by a scatterer onto a
micrograph varies as the scatterer traverses the x-y sample plane.
This effect is captured in Fig. 2.
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Fig. 1 Higher signal-to-noise ratio in dark-field imaging yields improved DDM statistics. a) In dark-field illumination, light that is normally incident
directly on the objective is blocked by an opaque stop. The remaining light is focused on the sample using a condenser lens. Light scattered by the
sample is captured by the objective, while the direct light is outside of the objective view. b) Dark-field and c) bright-field micrographs of 100 nm Au
nanoparticles dispersed in a Newtonain fluid (30 wt% sucrose solution) at φ = 5.4×10−8. Due to surface plasmon resonance, Au nanoparticles scatter
large amounts of light, which is recorded well using dark-field microscopy. Comparison of the dark-field and bright-field micrographs shows the higher
fidelity of dark-field imaging. Scale bars are 10 µm. d) Image structure function of the Au nanoparticle dispersion imaged under dark-field microscopy
(open symbols) and bright-field microscopy (closed symbols). Experimental dark-DDM image structure function fits well to the linear space invariant
decomposition, Eqn 6. Inset shows that the bright-DDM image structure function exhibits no exponential time dependence other than the increased
spread at long times, which reflects that fewer difference images contribute to the ensemble average at long times.

The sub-function decomposition derived by Giavazzi et al.27

(Eqn 2) and employed in nearly every subsequent application of
DDM begins by assuming that the illumination system is linear
space invariant. Specifically, the micrograph intensity at time t,
I(x, t) is described according to the Nemoto-Streibl model of imag-
ing optics35,36

I(x, t) = I0 +
∫∫∫

dx′dz′K(x−x′,−z′)c(x′,z′, t) (4)

In Eqn 4, I0 is the background intensity, and x′ and z′ are coor-
dinates within the three dimensional sample. K(x−x′,−z′) is the
optical transfer function, and c(x′,z′, t) is the concentration distri-
bution of the scatterers. Implicit in the kernel of Eqn 4 is that the
described illumination system is linear space invariant. That is, a
scatterer’s intensity profile remains the same when the scatterer
moves in x′.

We hypothesize that DDM can still provide valuable informa-
tion about fluid dynamics in dark-field imaging despite its linear
space variance (this is already suggested by the data presented in
Fig. 1d). In a recent review, Giavazzi and Cerbino13 suggested
this although it has not been verified experimentally or theoreti-
cally. In this work, we demonstrate the opportunities and limita-
tions of using DDM (and other linear space variant illuminations
systems) using theory, simulations and experiments. Specifically,
we revisit the original theoretical justification of DDM analysis27

developed from the point-spread function of a microscope. Since
it is difficult, if not impossible in many cases, to measure a linear
space variant microscope’s point-spread function, we recast the
theoretical development in terms of the displacements of scat-
terers that project arbitrary intensity profiles in the micrograph

Fig. 2 Linear space variance in dark-field microscopy. a) Dark-field
micrograph of 100 nm Au nanoparticles deposited on a glass slide. The
same glass slide is imaged under dark-field as it is translated
horizontally. b) Compilation of the translated images, i.e. the trajectories
of the particles, as they move in (x) but remain at a constant (y,z).
Intensity variation across the image is primarily due to linear space
variance.

plane. We simulate micrographs of particles undergoing 2D ran-
dom walks in LSV imaging systems. Finally, we verify this analysis
by measuring the dynamics of nanoparticle suspensions in differ-
ent Newtonian fluids.

Theory
Our objective here is to provide a framework for determining the
mechanism by which the LSI DDM formalism fails in LSV forms
of microscopy. As an archetypal case study, we consider Brownian
motion of non-interacting scatterers in a Newtonian fluid. Read-
ers interested in system with more complicated dynamics (e.g.
non-Newtonian dispersions, concentrated dispersions, etc.) can
use the same theoretical approach to determine regimes where
standard LSI analysis holds.
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Brownian motion of generic scatterers in linear-space invari-
ant systems: a scatterer displacement approach

Consider a 2D micrograph taken of a sample containing scatter-
ers in motion. Let I(x, t) be the intensity of the micrograph at the
position x at a particular time t. After some time step ∆t, the scat-
terers in the sample move to a new position and the background
intensity iB(x, t) fluctuates due to noise in the detector and illumi-
nation source.

The change in intensity after ∆t is simply ∆I(x,∆t) = I(x, t +
∆t)− I(x, t). Statistical analysis of the time-dependent differences
in intensity gives information about the dynamics of the sample.
The expectation value of the Fourier power spectrum of ∆I(x,∆t)
is defined as the image structure function, D(q,∆t)15

D(q,∆t)≡
〈∣∣∆Î(q,∆t)

∣∣2〉 (5)

The image structure function contains information about move-
ment of the scatterers, their contribution to changing the micro-
graph intensity, and fluctuations in the background intensity. As
shown by Giavazzi and Cerbino et al.,27 it is possible to deconvo-
lute these contributions in LSI imaging systems. The image struc-
ture function can thus be broken into three independent func-
tions:

D(q,∆t) = A(q) [1−g(q,∆t)]+B(q) (6)

To explicitly relate these functions and the physical system, we
will consider the system in terms of a generic intensity profile pro-
jected by scatterers onto the micrograph. Let the total intensity
of each image be the sum of the signals produced by scatterers in
the sample plane, iS(x, t) and the background intensity, iB(x, t)

I(x, t) = iS(x, t)+ iB(x, t) (7)

Let us assume the intensity profile of a single scatterer is not in-
fluenced by other scatterers. As such, the analysis can be limited
to a single scatterer that, when centered at the origin, projects an
intensity profile iLSI(x) onto the plane of the micrograph. In this
case, the total micrograph intensity is I(x, t) = iLSI(x, t)+ iB(x, t).
Time manifests as a change in location of the scatterer center to a
position xi. In LSI imaging systems, the functional form of the in-
tensity profile does not change as the scatterer moves within the
sample plane. Consequently, the scatterer’s intensity profile can
be written in terms of the shift x−xi(t) and the total micrograph
intensity becomes

I(x, t) = iLSI(x−xi(t))+ iB(x, t) (8)

The Fourier transform of the micrograph intensity is

Î(q, t) = FT [iLSI(x−xi(t))+ iB(x, t)] = î(q)e− jxi(t)·q + îB(q, t) (9)

where î(q) is the Fourier transform of iLSI(x−xi(t)) when the scat-
terer is centered at the origin. Let the scatterer be centered at x0

at t. After a time ∆t, the scatterer moves to position x1, for a
displacement δx = x1−x0. The resulting change in micrograph
intensity is

∆Î(q,∆t) = î(q)
(

e− jq·x1 − e− jq·x0
)
+ îB(q, t +∆t)− îB(q, t) (10)

The image structure function is determined by finding the ex-
pectation value of the square modulus of the change in inten-
sity, ∆Î∗(q,∆t)∆Î(q,∆t). Analytically, the expectation value of the
quantity · · · is defined as

〈· · · 〉= 〈〈· · · 〉t〉V (11)

The symbol 〈· · · 〉t denotes the average over time

〈· · · 〉t =
∫

∞

−∞

d(δx) [p(δx,∆t) · · · ] (12)

where p(δx,∆t) is the probability that the scatterer will move by
an amount δx during the time ∆t. The functional form of p(δx,∆t)
varies depending on the dynamics of the scatterers. For the
archetypal case of 2D Brownian motion of dilute, non-interacting
scatterers, p(δx,∆t) is

p(δx,∆t) = (4πDSelf∆t)−1 e−δx2/4DSelf∆t (13)

where DSelf is the self-diffusivity of the scatterer.37 Study of more
complex systems (e.g. concentrated suspensions) requires re-
placement of p(δx,∆t) with an appropriate probability distribu-
tion. The symbol 〈· · · 〉V denotes the average over the sample vol-
ume

〈· · · 〉V =
∫ lx

−lx
d(x0)

∫ ly

−ly
d(y0) [p(x0,y0) · · · ] (14)

where lx and ly are the dimensions of the sample volume imaged.
For the case of a uniform initial distribution of scatterers, p(x0,y0)

is
p(x0,y0) =

1
4lxly

(15)

Combining Eqns 10 - 15 gives〈∣∣∆Î(q,∆t)
∣∣2〉= 2

〈∣∣î(q)∣∣2〉[1− e−∆t/τ(q)
]
+
〈∣∣∆îB(q,∆t)

∣∣2〉 (16)

The material relaxation time τ is equal to

τ(q) =
1

q2DSelf
(17)

Comparing Eqn 16 to Eqn 6, we see that the three independent
functions are

A(q) = 2
〈∣∣î(q)∣∣2〉 (18)

g(q,∆t) = e−∆t/τ(q) (19)

B(q) =
〈∣∣∆îB(q,∆t)

∣∣2〉 (20)

In Eqns 18-20 A(q) depends only on the intensity profile of the
scatterer, g(q,∆t) depends only on the dynamics of the scatterer,
and B(q) is solely related to the background fluctuations. Note
that B(q) is not an explicit function of ∆t since the fluctuations
in the background are assumed to be random on the time scale
of ∆t. We also note that if we consider a system of N scatterers
with additive intensity profiles as done by Reufer et al.25, A(q) =

2
〈∣∣î(q)∣∣2〉NS(q). S(q) is the static structure factor of the material,

which is equal to 1 for simple dilute dispersion of scatterers in a
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Newtonian fluid. Under the physically dilute conditions studied
here, we find that it is reasonable to assume intensity profiles are
additive (see Fig. S1 and S2†).

It is useful to analyse the empirically obtained D(q,∆t) signal
in terms of Eqn 6. In practice, the signal D(q,∆t) is first radially
averaged in q = (qx,qy) space such that it is a function of the
scalar q, where q = (q2

x + q2
y)

1/2. Then, each curve of constant
wavevector, q, in D(q,∆t) is fit as a function of time such that
there are three independent parameters, A, τ and B. Doing so
allows the structure relaxation time τ(q) to be extracted without
prior knowledge of the functional form of A(q). In the following
section, we demonstrate how the same analytical approach can
be used to analyse LSV micrographs within specified experimental
limits.

Brownian motion of generic scatterers in linear space variant
systems

Here, we use the same scatterer displacement approach to derive
a decomposed form of the image structure function in LSV imag-
ing systems. Specifically, we show that in LSV systems, the image
structure function can be approximated as

D(q,∆t)≈ A(q) [1−g(q,∆t)+V (q,∆t)]+B(q) (21)

Again, let the total intensity of each image be the sum of the signal
produced by scatterers in the sample plane, iS(x, t) and the back-
ground intensity, iB(x, t) as written in Eqn 7. Let us then assume
that a scatterer centered at the origin of the sample projects an
intensity profile, iLSV(x), onto the plane of the micrograph. In this
case, the micrograph’s intensity will be I(x, t) = iLSV(x, t)+ iB(x, t).
As in the LSI imaging system, time manifests as a change in po-
sition of the scatterer center, xi. However, in the LSV imaging
system, the scatterer’s intensity profile changes as it moves within
the sample plane. In many LSV imaging systems, it is the abso-
lute intensity of the intensity profile, but not the functional form,
that changes as the object shifts, as depicted in Fig. 3. In such a

Fig. 3 Mathematical approximation used for linear space variance. a)
Dark-field micrograph of Au nanoparticles traversing the (x,y) plane
illustrates the spatial dependence of the magnitude of the intensity
profile. b) Magnitude of Gaussian intensity profile changes as scatterers
move in x.

system, the intensity profile can be approximated by an absolute
intensity multiplicative factor, α(xi), altering the space invariant
functional form, iLSI(x−xi(t)):

iLSV(x, t) = α(xi)iLSI(x−xi(t)) (22)

As such, the total micrograph intensity is

I(x, t) = α(xi)iLSI(x−xi(t))+ iB(t) (23)

The Fourier transform of the micrograph intensity is

Î(q, t) = FT [iLSV(x−xi(t))+ iB(x, t)]

= α(xi)îLSI(q)e− jxi(t)·q + îB(q, t)
(24)

where îLSI(q) is the Fourier transform of the LSI portion when the
object is centered at the origin. Let the scatterer be centered at
x0 at t. After a time ∆t, the scatterer moves to position x1, for a
displacement δx = x1−x0. The resulting change in micrograph
intensity is

∆Î(q,∆t) =îLSI(q)
(

α(x1)e
− jq·x1 −α(x0)e

− jq·x0
)

+ îB(q, t +∆t)− îB(q, t)
(25)

Ensemble averaging of ∆Î(q,∆t) will eventually involve integra-
tion of α(xi). To do so without a priori knowledge of its functional
form, we employ a Taylor expansion to approximate changes in
α(xi)

α(x1)≈ α(x0)+(x1−x0) ·∇α|x0 +O((δx ·∇)2
α) (26)

α(x1)≈ α(x0)+(δx) ·∇α|x0 +O((δx ·∇)2
α) (27)

where O((δx ·∇)2α) denotes higher order terms. Substituting the
Taylor expansion into Eqn 25 gives

∆Î(q,∆t)≈ îLSI(q)
(

α(x0)(e
− jq·x1 − e− jq·x0)+(δx) ·∇(α)|x0 e− jq·x1

)
+ îB(q, t +∆t)− îB(q, t)+O((δx ·∇)2

α)

(28)

The image structure function is determined by finding the expec-
tation value of the square modulus of the change in intensity,
∆Î∗(q,∆t)∆Î(q,∆t) and employing Eqns 10 - 15. Doing so gives〈∣∣∆Î(q,∆t)

∣∣2〉≈ 2
〈

α(x0)
2
〉〈∣∣î(q)∣∣2〉[1− e−∆t/τ(q)

]
+2
〈

α(x0)
2
〉〈∣∣î(q)∣∣2〉 〈(∇α|x0)

2〉〈
α(x0)2

〉 DSelf∆t

+
〈∣∣∆îB(q,∆t)

∣∣2〉+O([(δx ·∇)2
α]2)

(29)

where
〈
α(x0)

2〉 is the average square magnitude of the intensity
amplitude, α, of scatterers over the micrograph and

〈
(∇α|x0)

2〉 is
the average square of the magnitude of the gradient of the inten-

sity over the micrograph. The term 〈(∇α|x0 )
2〉

〈α(x0)2〉 quantifies the first
effect of the degree of linear space variance in an illumination
system. We define a new variable, χ, as the linear field variance
factor:

χ ≡

(〈
(∇α|x0)

2〉〈
α(x0)2

〉 )1/2

(30)
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Comparing Eqn 29 to Eqn 21, we see that the four independent
functions in the LSV decomposition are

A(q) = 2
〈

α(x0)
2
〉〈∣∣î(q)∣∣2〉 (31)

g(q,∆t) = e−∆t/τ(q) (32)

B(q) =
〈∣∣∆îB(q,∆t)

∣∣2〉 (33)

V (q,∆t) = χ
2DSelf∆t (34)

Examining these equations, it is clear that A(q), g(q,∆t) and B(q)
have the same physical dependence as they did in the LSI imaging
system. The additive LSV correction, V (q,∆t) accounts for the
effects of linear space variance, and is shown here for the case of
Brownian motion of dilute scatterers. To determine V (q,∆t) for
more complex dynamics, one would need to employ a different
equation for p(δx,∆t) in the framework developed here.

For the case of Brownian motion, V (q,∆t) depends on two
parameters, χ and DSelf. Casting the image structure function
in terms of dimensionless quantities shows the relative effect of
V (q,∆t) on D(q,∆t) across all possible experimental parameters
(q, set by the magnification and ∆t set by the frame rate). Figure
4 plots the normalized LSV image structure function〈∣∣∆Î(q,∆t)

∣∣2〉
2
〈
α(x0)2

〉〈∣∣î(q)∣∣2〉 ≈ 1− e−∆tq2DSelf +

(
χ

q

)2
∆tq2DSelf (35)

as a function of dimensionless time ∆tq2DSelf. We see that the LSV
image structure can be physically understood in terms of two time
scales, the material relaxation time τ(q) and the so called LSV
time scale τLSV, which is the characteristic time required for the
scatterer to experience a significant change in intensity due to the
LSV field gradient. For the case of Brownian motion, these time
scales are (q2DSelf)

−1 and (χ2DSel f )
−1 respectively. The value of

the image structure function at any time step will be the sum
of intensity differences due to pure scatterer displacement and
due to intensity variation across the field. When ∆t � τ(q), the
normalized image structure function approaches〈∣∣∆Î(q,∆t)

∣∣2〉
2
〈
α(x0)2

〉〈∣∣î(q)∣∣2〉 ∼ ∆t
τ(q)

(
1+
(

χ

q

)2
)

(36)

When χ � q linear space variance does not contribute signifi-
cantly to the image structure function, and the LSI decomposi-
tion should fit the experimental LSV image structure function at
very short times. This implies that the shortest q (i.e. the longest
distance) that can be accurately fit to the LSI decomposition is
limited by gradient in α(xi).

On the other hand, when ∆t � τ(q), the normalized image
structure function approaches〈∣∣∆Î(q,∆t)

∣∣2〉
2
〈
α(x0)2

〉〈∣∣î(q)∣∣2〉 ∼ 1+
(

χ

q

)2
∆t

τ(q)
∼ 1+χ

2DSelf∆t (37)

At long times, there are significant deviations from the LSI image
structure function when ∆t ∼ χ−2D−1

Self or larger. In our experi-
mental system, χ/q ≤ 0.01. Referring back to Fig. 4, the con-
tribution from LSV at this ratio is nearly imperceivable, particu-
larly when compared to noise in a real experimental system. Fur-
thermore, at this ratio the contribution from LSV should be less
than the contribution due to intensity changes when the particle
moves into and out of the focal plane. 3D motion can cause a
change not only in the magnitude of the scatterer intensity, but
also the spread or fringe spacing of the profile. In LSI systems,
the error associated with neglecting contributions due to 3D mo-
tion are frequently assumed to be negligible.27 Considering all
of these factors, fitting empirical image structure functions to the
LSI decomposition Eqn 6 and the LSV decomposition should give
identical measures of the diffusivity within acceptable margins of
error.

Fig. 4 The theoretical image structure function for scatterers
undergoing Brownian motion in linear space variant imaging systems.
Deviation from the linear space invariant case (solid black line)
increases with increasing magnitude of space variance, quantified by
the factor χ normalized by q.

This analysis indicates that it is practically reasonable to use
the LSI decomposition to analyse LSV micrographs when q� χ.
It is advantageous to use the LSI decomposition over the LSV de-
composition since the LSI decomposition does not require a mea-
surement of the value of χ a priori. We test this claim using sim-
ulations and experiments described in the next section.

Experimental

Simulated micrographs

2D random walk trajectories were computed in MATLAB, and sim-
ulated particle intensities were generated in both LSI and LSV
imaging systems. Random walk trajectories were simulated by
first initializing 49 point particles on a square lattice within a 490
x 490 pixel2 space. For each time step, a new particle coordinate
was determined by selecting the direction from a random num-
ber generator and selecting the length of the diffusion step by
sampling a Gaussian distribution of displacements. The Gaussian
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distribution was based on a self-diffusivity of 0.5 pixel2/frame.

To form each micrograph, the intensity over the 490 x 490
pixel2 space was calculated by centering a 2D Gaussian beam
at each of the particle centers. The magnitude of the Gaussian
beam, α, varies according to the location of the particle center xi
depending on the illumination system being simulated. Explicitly,
a particle centered at xi produces the intensity profile

iGauss(x|xi) = α(xi)exp
(
−(x−xi)

2

2σ2

)
(38)

where α(xi) is the magnitude of the Gaussian profile as a func-
tion of particle center, xi, and σ is the standard deviation of the
Gaussian. Noise was not added to the intensity distributions nor
to the background of the image. These simulated intensity distri-
butions were saved as images and analysed using the same DDM
algorithm described in the Image Processing section. To be consis-
tent with the experiments conducted, each simulated micrograph
series was 900 frames long. The physical duration of the simula-
tions were varied by changing the sampling interval. Simulations
that mimic the real experiments were sampled at ∆t = 1 frame;
simulations that are 10x as long as an experiment were sampled
at ∆t = 10 frames.

Gold nanoparticle dispersion sample preparation

Three Newtonian fluids comprised of aqueous sucrose solutions
were prepared at 29.92, 40.05 and 50.03 wt% sucrose (EMB Mil-
lipore) in deionized H2O. Hereafter we refer to these solutions
as 30 wt%, 40 wt%, and 50 wt% respectively. The viscosities of
the solutions (see Fig. S3†) were measured using an Anton Paar
vibrational density meter with an inline falling ball viscometer
(DMA 4100m). Citrate capped gold nanoparticles (TEM diame-
ter: 94.6 ± 12.5 nm) were purchased from NanoComposix, Inc.
and used without further modification. To prepare optically di-
lute samples, nanoparticles were dispersed in the three sucrose
solutions at 5.4×10−6 vol% gold. For the optically dense sample,
nanoparticles were dispersed in a different 50.00 wt% sucrose at
3.2×10−3 vol% gold. At these low volume fractions, it is reason-
able to assume that both the optically dilute and optically dense
dispersions are physically dilute and that hydrodynamic interac-
tions between particles can be neglected.

Sample chambers for microscopy studies were fabricated from
glass slides and UV-initiated thiolene resin (Norland Optical Ad-
hesive, No. 81). Two glass spacers were first cut from a cover
glass slide (Fisherbrand 24 x 50 mm - 1.5) to be ∼5 mm in width.
Thiolene resin was then applied on one side of two separate spac-
ers, and the spacers were set on a 25 x 75 x 1 mm microslide
(Gold Seal), which serves as the top of the chamber. The spac-
ers were positioned such that there was 25 mm between them.
The spacers and the glass slide were then exposed to ultravio-
let light (SpectrolineT M , Model XX15A, λ = 365 nm) for ∼30 s.
After the initial exposure, a line of resin was applied to each of
the top spacers and between the spacer columns on one side. A
coverslip (Fisher Scientific, 22 x 50 - 1) was positioned on top of
the spacers, and the entire chamber cured for 5 minutes. The Au
nanoparticle dispersions were introduced through the remaining

open side of the chamber and sealed with the UV resin, forming
an airtight glass chamber.

Dark-field and bright-field microscopy

A representative schematic of the dark field illumination system
is found in Fig. 1a. In the dark-field illumination system used
here, an inverted microscope (Olympus 1x71) was outfit with a
high-resolution dark-field condenser illumination adapter (Cyto-
Viva). The adapter contains an opaque stop that blocks direct
light from the illumination source and a condenser that focuses
the remaining light on the sample. Light scattered by the sample
was captured by 10x and 40x air objectives (NA 0.25 and 0.75
respectively). Videos (512 x 512 pixels2) of the motion of the Au
nanoparticles were recorded using an Andor Clara CCD camera at
10.001 frames/s and an exposure time of 1 ms. Videos were 900
frames in length and recorded as multipage TIF files. The ambi-
ent temperature was measured using a Fisher Scientific traceable
thermometer throughout the experiments.

The magnitude of the particle intensity profile as a function of
space was experimentally approximated by depositing 100 nm Au
nanoparticles on a glass slide. A dark-field micrograph video was
recorded as the glass slide was translated horizontally and ver-
tically. Projecting the maximum local intensity of each frame of
the micrograph video (i.e. the center of each intensity profile)
gave the field variance (see Fig. 2b). Smoothing this image us-
ing ImageJ software gave an approximate measurement of α(xi)

(see Fig. 3a). The measured value of χ in the smoothed mi-
crograph was 1.4 ×10−2µm−1, which is artificially high since the
particle trajectories produce streaking that is not representative of
the true value of α(xi). Nevertheless, the measurement provides
an extreme maximum bound on the value of χ.

Bright-field micrographs were recorded using identical expo-
sure, resolution, frame rate and magnification settings as used
for the dark-field micrographs.

Image processing

A DDM analysis algorithm was written and executed in MAT-
LAB.38 Each video was first separated into individual frames.
Frames separated by time step ∆t were subtracted from one an-
other, and the resulting difference image was fast Fourier trans-
formed. In q = (qx,qy) space, the transformed intensity was ra-
dially averaged with q = (q2

x +q2
y)

1/2. The ensemble average was
taken over all frames separated by ∆t, giving D(q,∆t). At mini-
mum, 100 image differences contributed to each average to en-
sure adequate statistics.

For each q value, D(q,∆t) is fit to match the form in Eqn 6 with
A(q), B(q) and τ(q) as fitting parameters using MATLAB’s trust-
region reflective fitting algorithm (see ESI for a more detailed de-
scription of the fitting procedure†). Thresholds and initialization
parameters were chosen to minimize fit rejection over the q range.
Fits with R2 correlation values less than 95% were excluded from
further analysis of τ(q) to eliminate cases where Eqn 6 did not fit
the empirical D(q,∆t). Fits that were rejected were nearly exclu-
sively in regions of low q (typically q < 0.2 µm−1) where the video
was too short for the image structure function to reach an ap-
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preciable plateau, and in regions of high q (typically q > 3 µm−1)
where the frame rate was too slow to measure dynamics.

In order to directly evaluate the accuracy of measuring the mo-
tion of dilute particles using d-DDM, multiple particle tracking mi-
crorheology was used to analyse the same videos used for DDM.
A more detailed description of the algorithms used for multiple
particle tracking, a widely employed technique, can be found else-
where.1–3 Briefly, MPT extracts particle dynamics by first isolating
the center of distinct particles to subpixel resolution in each frame
of a video. As the particles move from frame to frame, their cen-
ters displace. Linking centers of the same particle between frames
forms a particle trajectory, from which the displacement of each
particle can be calculated as a function of time step ∆t. For Brow-
nian motion of non-interacting particles, the ensemble-averaged
mean-squared displacement is related to ∆t by〈

r2
2D(∆t)

〉
=

(
4λ

2− 4
3

DSelftE

)
+4DSelf∆t (39)

where DSelf is the particle self-diffusivity, λ the static localization
error, and tE the exposure time.39,40 Particle isolation and trajec-
tory construction were performed in MATLAB using algorithms
made freely available by Kilfoil and coworkers.41 In these algo-
rithms, thresholds for distinct particles, including both the max-
imum diameter and minimum intensity of the particle are cho-
sen by the user to minimize effects of static and dynamic particle
tracking error. Diffusivities were extracted by fitting the mea-
sured mean squared displacement to Eqn 39 and calculating the
localization uncertainty according to the methods described by
Michalet.39,40

Results and discussion

Analyzing simulated micrographs using DDM

To test the accuracy of using the LSI decomposition analysis in a
controlled LSV imaging system, we simulated micrograph series
of particles undergoing 2D Brownian random walks in different
illumination systems. Figure 5 shows the simulated illumination
systems and micrograph series. Three illumination systems were
studied: (1) a LSI imaging system where α = 255 across the en-
tire image; (2) an LSV imaging system with a linear gradient in
α in one dimension; and (3) an LSV imaging system with radi-
ally symmetric α variation. These three systems closely resemble
what is observed experimentally in fluorescence microscopy, dark-
field microscopy at high magnification, and dark-field microscopy
at low magnification, respectively.

Figure 6 shows select q of D(q,∆t) for each of the simulated mi-
crograph series. Substituting Eqn 38 into Eqn 16 and 29 gives the
analytical equations of D(q,∆t) for a single particle undergoing
Brownian motion in LSI and LSV imaging systems respectively.

D(q,∆t)LSI = 2σ
4e−σ 2q2

〈
α

2(x0)
〉[

1− e−DSelfq2∆t
]

(40)

D(q,∆t)LSV = 2σ
4e−σ 2q2

〈
α

2(x0)
〉[

1− e−DSelfq2∆t +χ
2DSelf∆t

]
(41)

These functions are plotted (multiplied by the number of par-

Fig. 5 Brownian motion simulations in LSI and LSV imaging systems.
Rows correspond to three different illumination systems. Row a) control,
LSI where χ = 0. Row b) LSV imaging system where χ = 5×10−3 pix−1.
Row c) LSV imaging system with χ = 6×10−3 pix−1. Columns
correspond to aspects of the simulation. i) Spatial dependence of the
magnitude of the particle intensity, α; ii) Particles at t = 0. iii) Particle
trajectories.

ticles simulated but with no other adjustable parameters) along
with the measured D(q,∆t) in Fig. 6. As seen in Fig. 6, both the
LSI and LSV functions quantitatively match the simulated D(q,∆t)
for ∆t corresponding to those typically observed in experiments.
The effects of LSV are barely perceivable in the simulated sig-
nal, and are only noticeable in the analytic function after mul-
tiple orders of additional time magnitude. Since the functional
forms of α(xi) in the simulations were specifically chosen to ac-
curately represent the experimental system, these results suggest
that in analyzing the experimental micrographs and image struc-
ture functions, it is reasonable to use the LSI decomposition in
place of the LSV decomposition without any significant loss of ac-
curacy, e.g., for cases where χ cannot be directly measured. Sim-
ulations conducted for much longer time than required to extract
the diffusivity (Fig. S4†) indeed show an increase in D(q,∆t) (Fig.
S5†) at long times that is modeled by Eqn 41, illustrating that it
captures the first-order effects of LSV well.

Measuring the diffusivity of optically dilute Au nanoparticles

To test the accuracy of using the LSI decomposition analysis in a
real LSV experimental system, we imaged Au nanoparticles dif-
fusing in viscous sucrose solutions under dark-field microscopy.
We then compared the diffusivity measured via DDM analysis and
MPT analysis of the micrographs. Figure 7 shows the linear space
variance in the experimental system and the micrographs col-
lected. Au nanoparticles produce different intensity profiles un-
der different magnifications: Gaussian profiles are observed un-
der 10x magnification and profiles reminiscent of Bessel-Gaussian
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Fig. 6 Analyzing the image structure function of simulated micrographs. The calculated image structure functions in a), b), and c) correspond to
simulations a), b), and c) in Fig. 5. Dashed and solid lines correspond to the analytical LSV (Eqn 41) and LSI (Eqn 40) functions for Gaussian particles
respectively.

Fig. 7 Imaging the movement of Au nanoparticles dispersed in 40 wt% sucrose solutions using dark-field microscopy. Row a) corresponds to 10x
magnification; b) corresponds to 40x magnification. i) Spatial dependence of the magnitude of the particle intensity. ii) Individual micrograph. iii)
Projection of the maximum intensity of each frame of the micrograph video gives the particle trajectories. iv) Closer examination of the micrographs in
ii) show that nanoparticles produce Gaussian intensity profiles (inset) present under 10x magnification and Bessel-Gaussian beam-like intensity
profiles (inset) under 40x magnification. All scale bars are 10 µm.

beams are observed under 40x magnification. Notably, the me-
chanics of DDM is identical during analysis of the two magnifica-
tions since it conveniently requires no knowledge of the scatterer
intensity profiles a priori.

Figure 1d provides one example of the image structure function
calculated from the dark-field micrographs at 10x magnification.
As expected based on the theoretical and simulation analysis, the
LSI decomposition fits the measured values well over the course
of the micrograph series. Fitting D(q,∆t) to Eqn 6 gives the relax-

ation time, τ as a function of q. The same is seen for the image
structure functions calculated from micrographs at 40x magnifi-
cation (See Fig. S6a). †

Figures 8a and b give the material relaxation time obtained
from DDM and the mean squared displacement obtained from
MPT in each of the three sucrose solutions respectively. The ma-
terial relaxation time decreases as q−2 as predicted for Brownian
motion in all samples. The mean squared displacement is linearly
proportional to ∆t as expected for Brownian motion. The diffu-
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sivities of the particles are measured by fitting τ and
〈
r2

2D(∆t)
〉

to
Eqns 17 and 39 respectively. Table 1 gives the average diffusivity
extracted from the dark-field micrographs. We see good quanti-
tative agreement between the diffusivities calculated from DDM
and MPT for single movies, thus validating the use of LSI DDM
analysis in LSV imaging systems for sufficiently small χ.

It is interesting to note the differences in error of the diffusivity
calculated at the two different magnifications in Table 1. Specifi-
cally, the errors in DDM at 10x magnification are lower than the
errors at 40x magnification by factors of 2 to 10. This reflects the
fact that a larger population contributes to the ensemble at a low
magnification. In DDM, not only do more particles contribute to
the intensity fluctuations at higher magnification, but additionally
the analysis samples the statistically valid q range (0.2 - 3 µm−1)
at a higher frequency. This can easily seen by the larger number
of τ(q) data points present in Fig. 8a compared to those in Fig.
S6b.†

By contrast, in MPT analysis, low magnification contributes
both beneficially and detrimentally to the measurement error. On
one hand, more particles are tracked at the low magnification,
which improves the statistics of the mean squared displacements
at long times (which is observed when comparing Fig. 8b to Fig.
S6c†). On the other hand, there is greater error in the localiza-
tion accuracy of the particle tracking algorithm, thereby increas-
ing both the static and dynamic tracking error, which corrupts the
mean squared displacement at short times.39,40 From a computa-
tional standpoint, the computation time of MPT scales like ∼ eN ,
where N is the number of particles tracked, such that the compu-
tation time increases considerably at lower magnification in order
to achieve greater statistical precision. However, the computa-
tional time to conduct DDM is identical for all magnifications.
The absolute computational times of the two methods depends
on a multitude of factors (e.g. in DDM, algorithms used, whether
parallelization is employed21, the dimensions of the image; in
MPT, algorithm used, displacement of particles between frames,
number of particles tracked); as such, it is difficult to generalize
whether one method is faster than the other for all systems.

From this observation and discussion, we surmise that DDM
can be used to obtain potentially better statistics compared to
MPT, and moreover that improved statistical accuracy of DDM
can be obtained by switching to lower magnifications without in-
curring any additional computational time. What remains to be
seen, however, is whether the absolute error is smaller using MPT
or DDM. In this work, we used an ad hoc method to calculate er-
ror of the measured diffusivity (inversion of the multi-parameter
Jacobian fit matrix). In light of the extensive work that has been
done39,40 to understand static and localization uncertainty in cal-
culating the simple Brownian diffusivity of particles using MPT, it
is likely that calculation of the true diffusivity error using DDM
is as (if not more) complex as calculating the error from MPT.
Clearly, a more exhaustive error analysis needs to be completed
to elucidate relative accuracy of the two techniques in the opti-
cally dilute limit.

Regardless of whether DDM or MPT is used to analyse the mi-
crographs, dark-field micrograph videos provide a substantial im-
provement over bright-field micrograph videos. As illustrated in

Fig. 1, dark-field micrographs of optically dilute gold nanopar-
ticles dispersed in sucrose are substantially higher fidelity than
bright-field micrographs of the same sample. The bright-field mi-
crographs are of such low fidelity that distinct particle intensity
profiles are not observed. Consequently, the particle tracking al-
gorithms could not identify any particles within the micrograph
series, rendering MPT useless.

Generally, one of the advantages of DDM is that it can be used
to extract dynamic information from micrographs where distinct
particle profiles are unobservable. Cerbino et al.15 and He et al.16

have demonstrated that it is possible to measure the diffusivities
of 73 nm and 100 nm particles in Newtonian fluids by analyzing
bright-field speckle patterns with DDM. In these experiments, an
exponential increase in D(q,∆t) is observed if the volume frac-
tion of particles is large enough to make A(q) sufficiently greater
than B(q).16 Since our dispersions (φ ∼ 10−8) are more dilute
than those previously studied15,16 (φ ∼ 10−2 and φ ∼ 10−6 respec-
tively), the collective intensity fluctuations due to particle move-
ment are negligible compared to the background noise. D(q,∆t),
dominated by B(q), therefore has no time dependence as seen in
Figure 1d. This low concentration effect is ameliorated through
the use of dark-field imaging; |i(q)|2dark f ield � |i(q)|

2
bright f ield , mak-

ing A(q)/B(q) sufficiently high even at low particle concentra-
tions. Representative plots of A(q) and B(q) for the dark-field
experiments are given in Fig. S7.†

Measuring the diffusivity of optically dense Au nanoparticles

To further illustrate the utility of dark-field DDM, we measured
the diffusivity of Au nanoparticles that produce optically dense
micrographs. At a volume fraction of 3.2×10−3 vol%, the opti-
cally dense dispersion is still physically dilute in the sense that it
is still expected that the nanoparticles do not interact hydrody-
namically and therefore undergo independent Brownian motion.
However, at this concentration, they are optically dense in that it
is impossible to distinguish individual particles within a dark-field
micrograph. Fig. 9 shows a dark-field micrograph of this sample.
Examining the intensity profile (Fig. 9c) across one small portion
of the micrograph further illustrates that the intensity contribu-
tions from individual particles are indistinguishable. As such, it
is not possible to perform traditional MPT on this micrograph to
measure particle diffusivity. It is possible, however, to measure
the diffusivity using DDM.

Using the techniques developed here, DDM overcomes the lim-
itations of MPT in analyzing the optically dense samples. Fig-
ure 10a shows the image structure function of the optically dense
sample. As expected, it displays the expected exponential ap-
proach to a plateau characteristic of Brownian motion. Fitting
D(q,∆t) to Eqn 6 gives the relaxation time, τ as a function of q
which is plotted in Fig. 10b. The diffusivity measured from the
relaxation time is 0.3115 ± 0.0006 µm2/s. The Stokes-Einstein
diffusivity calculated from the diameter of the nanoparticles mea-
sured by TEM is DES = 0.32± 0.04µm2/s. The close agreement
suggests that (1) dark-DDM successfully measures the diffusiv-
ity for optically dense samples and (2) dark-DDM can be used to
measure the hydrodynamic radius of a nanoparticle in solution if
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Fig. 8 Measuring nanoparticle diffusivity via dark-field DDM and multiple particle tracking (10x magnification). a) Relaxation time τ(q) as a function of
wavevector q for 100 nm Au NPs sucrose dispersions. Error bars in τ are smaller than the markers. b) Mean squared displacements of tracked 100
nm Au Nps. Noise in < r2

2D(∆t)> at large ∆t is due to the smaller number of trajectories that contribute to the average.

Table 1 Diffusivities of optically dilute 100 nm Au nanoparticles in sucrose measured using d-DDM and MPT.

Diffusvity (µm2 s−1)
Magnification Method 30 wt% 40 wt% 50 wt%

10x d-DDM* 1.5809 ± 0.0006 0.8070 ± 0.0006 0.373 ± 0.001
MPT** 1.58 ± 0.01 0.811 ± 0.005 0.372 ± 0.002

Stokes- Einstein*** 1.50 ± 0.20 0.746 ± 0.099 0.307 ± 0.041

40x d-DDM* 1.56 ± 0.01 0.803 ± 0.005 0.3636 ± 0.0008
MPT** 1.56 ± 0.05 0.82 ± 0.02 0.368 ± 0.007

Stokes- Einstein*** 1.54 ± 0.20 0.757 ± 0.100 0.312 ± 0.041
*σDDM calculated from scatter in τ(q)
**σMPT calculated using methods developed by Michalet 39

***σStokes−Einstein calculated based on Au NP polydispersity (dia = 94.6±12.5 nm) and error in ambient temperature measurement (±0.2◦C)

Fig. 9 Optically dense dark-field micrographs. a) Dark-field micrograph
of 100 nm Au nanoparticles in 50 wt% sucrose solutions at a
hydrodynamically dilute volume fraction, φ = 3.2×10−5. b) Close-up of a
portion of the micrograph. Arrow designates a row of pixels whose
intensity is plotted in c). The close proximity of the intensity profiles
prevents accurate particle tracking required in multiple particle tracking
microrheology.

the suspending medium viscosity is known.

Conclusions
We have demonstrated that differential dynamic analysis can be
applied to dark-field micrographs to extract dynamic information
in a similar manner as other imaging modes, illustrated here for
nanoparticle dispersions. By re-casting the fundamental frame-
work of DDM in a particle-displacement approach, we showed
that in linear space variant illumination systems, the image struc-
ture function D(q,∆t) can be approximated by four sub-functions:
A(q), g(q,∆t), B(q) and V (q,∆t). V (q,∆t) accounts for the contri-
butions due to linear space variance, while the others are identical
to the linear space invariant analogues. We note that the theoret-
ical treatment developed here is equally valid for any imaging
system that produces a non-uniform optical illumination field. As
such, we anticipate that our results should be applicable to other
imaging modes not yet explored by DDM, such as total internal
reflectance microscopy42,43 or Brewster angle microscopy.44,45

Most importantly, our results show that DDM is quite robust to
the type and uniformity of illumination, provided that the length
scale for gradients in the illumination is small relative to the prob-
ing length scale of DDM. For the specific case of Brownian motion,
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Fig. 10 Dark-DDM of optically dense micrographs. a) The measured
image structure function displays the classic exponential plateau
expected for Brownian motion. Solid lines designate LSI fits. b)
Relaxation time τ(q) (�) as a function of wavevector q obtained from
linear space invariance fit. Solid line designates fit to q−2. Error bars in τ

are smaller than the markers for q > 0.16µm−1.

our theoretical analysis suggests that in the limit where the LSV
length scale χ � q, V (q,∆t) is significantly less than the autocor-
relation function g(q,∆t). In this case, traditional LSI decomposi-
tion analysis can be used to analyse dark-field micrographs. This
claim was verified by conducting simple simulations in different
idealized illumination systems and by experimentally measuring
the diffusivity of Au nanoparticles in sucrose solutions.

It is likely that different types of dynamics will result in differ-
ent forms of V (q,∆t) such that its dependence on the α(xi) field
has a significant effect on the image structure function, unlike in
the case of Brownian motion case discussed. However, using the
framework presented here, it is possible to derive V (q,∆t) for dif-
ferent types of dynamics by simply replacing the probability distri-
bution of displacements p(δx,∆t) with an appropriate model for

the dynamics and subsequently determine whether the measured
signal needs to be fit to different functions to obtain accurate fit-
ting and interpretation of D(q,∆t).

The utility of dark-field DDM was illustrated by measuring
the diffusivity of Au nanoparticles in an optically dense solution
where more traditional MPT analysis fails. Furthermore, it ap-
pears that DDM may provide reduced error compared to MPT
with regards to obtaining accurate diffusivity measurements, and
with greatly reduced computational cost. Additionally, compar-
ing DDM analysis of bright-field micrographs of the same sample
illustrates that dark-DDM has a better signal to noise ratio than
bright-DDM. Given these benefits, we anticipate that dark-field
DDM could become a preferred method for characterizing the dy-
namics of complex fluids whose features lie below the optical limit
in conventional projection imaging, but whose dynamical fluctu-
ations are still measurable in their scattering.
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