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Abstract

Background: Polygenic risk scores (PRS) are linear combinations of genetic markers weighted 

by effect size that are commonly used to predict disease risk. For complex heritable diseases such 

as late-onset Alzheimer’s disease (LOAD), PRS models fail to capture much of the heritability. 

Additionally, PRS models are highly dependent on the population structure of the data on which 

effect sizes are assessed and have poor generalizability to new data.

Objective: The goal of this study is to construct a paragenic risk score that, in addition to single 

genetic marker data used in PRS, incorporates epistatic interaction features and machine learning 

methods to predict risk for LOAD.

*Correspondence to: Ellen McRae Greytak, Parabon NanoLabs, Inc., Reston, VA, USA. ellen@parabon.com.
1Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
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Methods: We construct a new state-of-the-art genetic model for risk of Alzheimer’s disease. 

Our approach innovates over PRS models in two ways: First, by directly incorporating epistatic 

interactions between SNP loci using an evolutionary algorithm guided by shared pathway 

information; and second, by estimating risk via an ensemble of non-linear machine learning 

models rather than a single linear model. We compare the paragenic model to several PRS models 

from the literature trained on the same dataset.

Results: The paragenic model is significantly more accurate than the PRS models under 10-fold 

cross-validation, obtaining an AUC of 83% and near-clinically significant matched sensitivity/

specificity of 75%. It remains significantly more accurate when evaluated on an independent 

holdout dataset and maintains accuracy within APOE genotype strata.

Conclusions: Paragenic models show potential for improving disease risk prediction for 

complex heritable diseases such as LOAD over PRS models.

Keywords

Alzheimer’s disease; data mining; deep learning; epistasis; machine learning; predictive genetic 
testing

INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia, affects millions of 

Americans, and is the only disease among the leading causes of death in the US for which 

no effective prevention or cure exists [1]. The FDA recently drafted a set of industry 

guidelines for clinical trials of AD treatments targeting the earliest stages of disease [2], 

indicating increasing focus on and investment in presymptomatic intervention. However, 

trials aimed at averting the underlying causes of disease have proven difficult because 

pathological changes in AD happen well in advance of cognitive decline. While changes 

in levels of transient biomarkers, such as amyloid-β (Aβ) and tau in cerebrospinal fluid 

(CSF) [3] and even blood [4] can be seen prior to onset of symptoms, these changes 

indicate that pathogenic processes have already begun. Furthermore, a transient biomarker 

test administered too far in advance of symptom onset may not indicate future risk of 

developing AD. An accurate genetic test for AD, on the other hand, could be used at any 

point in life to identify individuals at high risk for developing the disease before changes in 

biomarkers can be detected.

Development of such a test is complicated by the complex genetic structure of the 

more common, late-onset form of AD (LOAD). The strongest risk factor for LOAD, the 

Apolipoprotein E (APOE) ε4 allele, increases risk of developing LOAD ~15 fold for those 

with 2 copies of the ε4 allele and ~3 fold for those with 1 copy [5]; however, it only 

accounts for ~9.3% of phenotypic variance [6]. Many additional genetic risk factors have 

since been identified, all having much smaller effect sizes.

Recent genetic risk prediction models for LOAD have attempted to capture this complexity 

using polygenic risk scores (PRS), in which an individual’s risk is assessed via an additive 

model of single nucleotide polymorphism (SNP) markers. The simplest form of PRS (p-

value based thresholding, or P + T for short), is calculated by summing the total number of 
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risk alleles across multiple markers, weighted by effect size determined from a genome wide 

association study (GWAS). PRS models for LOAD have reported area under the receiver 

operator characteristic curve (AUC) ranging from 0.62–0.78 for clinically diagnosed LOAD 

[7] and 0.82 in pathologically confirmed cases [8]. P + T models implicitly assume 

independence between SNP markers, and accordingly prune the set of candidate markers 

to minimize linkage disequilibrium (LD). Several methods have been proposed to correct 

for LD architecture without pruning potentially meaningful markers. PRS-SBayesR [9] and 

PRS-CS [10] both use a Bayesian framework to correct prior effect sizes from a GWAS 

by accommodating for LD architecture through an external reference panel; PRS-SBayesR 

employs Bayesian multiple regression whereas PRS-CS employs a continuous shrinkage 

method.

These models focus only on the additive effects of SNPs, leaving a significant amount of 

heritability unexplained. Of the ~63% estimated heritability of LOAD [11], only 28–39% 

is explained by additive genetic components [12]; PRS models capture only 11.4% of the 

estimated heritability [13].

One possible source of missing heritability is non-additive, or epistatic, interactions between 

SNPs. Epistatic interactions have been discovered involving genes that are independently 

associated with LOAD, as well as between genes that are not significantly associated with 

LOAD on their own [14].

This has led to an increased interest in incorporating epistatic interactions into PRS-like 

models. A recent study [15] constructed a LOAD genetic risk prediction model for AD 

combining epistatic risk with polygenic risk and achieved an AUC of 0.67. Although this 

was lower than other reported PRS models for AD, it was an improvement over their model 

using only PRS scores in the same dataset. Genome-wide epistasis studies are often limited 

to two-way interactions between SNPs; the large number of SNPs means that the number of 

possible genotype combinations for higher order interactions is practically infinite.

In [16], the authors develop a high-order interactions-aware PRS (hiPRS) by combining 

frequent itemsets mining with a mutual information-based interaction selection algorithm 

to construct an interpretable weighted PRS-like model. When used to predict mortality of 

stage II-III colon-rectal cancer patients treated with oxaliplatin, they were able to construct 

a model with an AUC of 0.72. In [17], SNPs occurring frequently in cases are partitioned 

into risk and protective sets and a portion from each is selected through an odds ratio 

criterion between cases and controls. The full model is then trained on the proportion of 

protective and risk SNP sets in each study participant’s genome. With this model, the 

authors obtained AUCs ranging from 0.63–0.78 for a variety of toxicity endpoints in prostate 

cancer radiotherapy patients.

Several authors have explored epistatic effects in AD through multifactor dimensionality 

reduction (MDR) [18] and variations thereof. In its most basic form, MDR designates a 

combination of alleles as “high risk” or “low risk”, depending on the proportion of cases to 

controls possessing that genotype. In [15] the authors develop an epistatic risk score (ERS) 

for AD inspired by MDR to capture interaction terms in an additive model. This ERS is 
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combined with a traditional (P + T) PRS as a weighted sum, with weighting factor chosen 

to maximize model AUC. A similar approach is pursued in [19], wherein an additive ERS 

model is constructed with effect sizes provided by Model-Based MDR. When [15] is applied 

to clinical AD diagnosis, this model obtains an AUC of 0.714.

In this paper, we use Crush-MDR [20], a machine learning algorithm that combines 

multifactor dimensionality reduction with an evolutionary search algorithm, to identify 

epistatic interactions in LOAD. Crush-MDR stochastically explores the interaction space, 

allowing for the discovery of rare interactions and significant interactions whose individual 

markers may have only nominal effect1. These interactions are included with single SNPs 

and PRS values to produce a non-linear, state-of-the-art LOAD risk prediction model. We 

term our model a paragenic risk model as it incorporates genetic markers beyond individual 

SNPs and is an ensemble of machine learning models together with a PRS model.

To validate our model, we compare its performance to P + T, PRS-CS, and hiPRS PRS 

models. The paragenic risk model shows significant improvement over PRS-based models 

or gradient boosting machines alone, obtaining a mean 10-fold cross-validated area under 

the receiver operator characteristic curve (AUC) of 0.83 (95% CI [0.82, 0.84]) in predicting 

LOAD in clinically diagnosed cases. Additionally, our paragenic model maintains high AUC 

within APOE genotype strata, unlike PRS models.

MATERIALS AND METHODS

Participants

The dataset used for modeling consisted of data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), the National Alzheimer’s Coordinating Center and the 

Alzheimer’s Disease Genetics Consortium (NACC/ADGC), the Framingham Heart Study 

(FHS), the Knight-ADRC at Washington University in St. Louis (Knight-ADRC), and 

Emory University. Phenotypes and covariates (case/control status, age, APOE genotypes, 

and education level) were not defined consistently across studies and were re-categorized to 

be as consistent as possible (Supplementary Methods). Individuals under the age of 55, the 

minimum age for inclusion in ADNI, were excluded from the dataset, resulting in an initial 

dataset consisting of 9,767 individuals, 3,879 (39.7%) of which were cases.

Participants with non-European ancestry were excluded from this study, in keeping with 

the methodology followed by previously-published PRS models, in which the GWAS 

summary statistics [21] were computed only on individuals of European ancestry. Removing 

population structure is a nearly universally-followed best practice for genetics research, as 

not doing so can result in false positive and false negative association results. Moreover, 

the subsample of non-European participants was prohibitively small (n = 172) to perform 

a cross-ancestry assessment. Genetic ancestry was determined by genomic principal 

components analysis (PCA), computed with regards to an independent reference population 

taken from Phase 3 of the 1000 Genomes Project [22] (see the Supplementary Material for 

1The interaction space we consider consists of pairs and triples of SNPs taken from a large candidate pool (~100 K individual SNPs). 
In [15], the candidate pool of SNPs is filtered to ~36,860 and [19] uses simulated data with 10 individual markers. Both papers only 
consider pairwise interactions and individual markers.
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more details). After removing non-European individuals, we were left with a final dataset 

consisting of 9,595 individuals, 3,818 (39.8%) of whom were cases (Table 1).

The ADNI3 dataset was held out as an independent validation set. Diagnosis was made 

in the same way as the previous ADNI phases. After removing individuals related to or 

included in the main dataset, the ADNI3 data consisted of 316 individuals, assessed at 

multiple ages, for a total of 681 records. There were 28 unique cases and 238 unique 

controls. There were 50 unique instances of mild cognitive impairment (MCI), which were 

excluded from modeling.

Data collection

For data collected on the Emory University cohort, all research participants provided 

informed consent for blood and CSF collection and allowed clinical and biospecimen data 

to be repurposed under protocols approved by the Institutional Review Board of Emory 

University. A clinical diagnosis using standard clinical research criteria was assigned by a 

neurologist with subspecialty training in behavioral neurology. Genotyping was performed 

using the Affymetrix Precision Medicine Array using DNA extracted from the buffy coat by 

the Qiagen GenePure kit following the manufacturer’s recommended protocol.

Genotyping

Different genotyping chips were used across studies; therefore, genotypes from all studies 

were imputed to the Haplotype Reference Consortium (HRCr1.1) panel using the Michigan 

Imputation Server [23]. All files were prepared for imputation using the provided perl script 

(HRC-1000G-checkbim.pl). The imputed genotypes were filtered to biallelic SNPs with 

R-squared>0.8 in all cohorts. SNPs with large differences in minor allele frequency (MAF) 

across studies or with potential strand flips were also removed. KING [24] was used to 

identify duplicate participants that were then removed from the dataset. Variants were then 

filtered to include those with MAF>0.1 using PLINK (v. 1.90), resulting in a final dataset 

containing ~3.7M individual SNPs.

Model overview

Throughout this work, we will use the following terminology to refer to different models 

trained to predict AD status:

1. Baseline model: a gradient boosting machines (GBM) model trained on age, sex, 

and APOE genotype.

2. PRS model: a linear model in which a PRS is combined with the above 

covariates. We consider the P + T, PRS-CS, and hiPRS polygenic models.

3. Epistatic model: any model trained on mined epistatic features along with 

individual SNP markers and other covariates. We used two separate epistatic 

models trained on the same set of features—one using GBM and one using a 

neural network.

4. Ensemble model: any model trained on the predictions of other models.
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5. Paragenic model: any ensemble model containing a PRS model and at least one 

epistatic model.

The paragenic modeling pipeline consists of three main phases: 1) feature engineering 

and selection, in which impactful SNP variants and interaction terms are discovered; 2) 

component modeling, in which individual models are trained on (possibly subsets of) 

the engineered features to predict LOAD risk; and 3) ensemble modeling in which the 

predictions of the component models are used to train a final LOAD risk model (Fig. 1). 

We now provide an overview of each of these steps, leaving the details to the subsequent 

sections.

Phase 1. Three types of features were used in the modeling: covariates (age, sex, APOE 
genotype, education level, and ancestral principal components), single SNP markers, and 

interaction features. Association testing was performed on the candidate SNPs to determine 

a significantly smaller set of individual SNP features. Interaction features were mined with 

the following pipeline: First, LD pruning was performed to reduce the set of candidate 

SNPs under consideration for interaction testing to ~100 K variants. This set of SNPs was 

further reduced using the MultiSURF algorithm to ~10 K variants. Finally, the Crush-MDR 

algorithm was used on this SNP candidate pool to mine for association with case/control 

status.

Phase 2. Three separate component models were then trained. A GBM model and a neural 

network (NN) model were trained on the above features. A logistic regression model was 

trained on the set of covariate features together with a P + T PRS.

Phase 3. Finally, the probabilities predicted by the component models were used to train a 

final logistic regression classifier.

All model assessment was performed using 10-fold nested cross-validation, and the same 

cross-validation fold partitions were used for each individual model.

Epistatic models

Feature engineering and association testing pipelines were run both to select individual 

SNPs as well as interactions between SNPs for inclusion in the individual epistatic models 

(details below). The selected features, along with covariates (age, sex, APOE, education 

level, and the first 20 genomic principal components) were used to independently train and 

validate GBM and neural network models predicting case/control status. We chose XGBoost 

[25] as the GBM due to its ability to handle missing features, and NODEnn [26] for the NN 

model.

Individual SNP selection

Individual SNPs were selected by linear mixed modeling (LMM) association with case/

control status using BOLT [27]. The participants were randomly partitioned into 10 cross-

validation folds. Related individuals were detected using KING [24] and assigned to the 

same fold for the LMM step, after which the maximum unrelated set for each family 

group was computed and retained. This procedure for handling relatedness resulted in slight 
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variability between folds of the sizes of the training/test sets. Training sets (each consisting 

of 9 folds) had a mean of 3374 (sd 18.9) cases and 4851 (sd 23.5) controls, and the test sets 

(1-fold) had a mean of 375 (sd 18.9) cases and 539 (sd 23.5) controls.

In preliminary studies, we found there to be diminishing returns in terms of model 

complexity and computational requirements with regards to the number of single SNP 

features included (see Supplementary Figure 1). Thus, the top 50 SNPs as ranked by log 

odds ratio were included as features in the modeling step, which empirically had a good 

tradeoff between model performance and complexity/computability.

Epistatic interaction feature engineering

Epistatic interaction terms were selected using Crush-MDR [20]. This algorithm uses an 

evolutionary algorithm guided by “expert knowledge” to mine the space of SNP interactions 

using MDR [18]. In the context of evolutionary algorithms, expert knowledge refers to an 

external source of data used to either encourage or discourage the stochastic evolution to 

include particular SNPs with the other SNPs in a candidate interaction. Candidate SNPs for 

interaction mining were selected within each training set of unrelated individuals.

To reduce the dataset to a size that could fit in memory, we performed LD pruning using 

PLINK to downsample to approximately 100K SNPs. Empirically, a downsampling r2 > 

0.11 resulted in the desired number of SNPs. Within each pair of SNPs in LD, the SNP 

with the higher IGAP effect size was retained. The dataset was further reduced using the 

MultiSURF algorithm [28] and the top 10,000 SNPs associated with disease status were 

retained. MultiSURF was run on an Amazon Web Services (AWS) Elastic Compute Cloud 

(EC2) cluster. Crush-MDR was constrained to mine for combinations of 2 or 3 SNPs, 

resulting in an interaction space consisting of ~167 billion possible interactions.

MultiSURF is a Relief-based algorithm, which uses a nearest neighbor approach to estimate 

the quality of each feature in the context of other features. In our context, this means 

that it can identify SNPs that are involved in interactions but may not have an individual 

association. Crush is an evolutionary algorithm that distributes calculations across a large 

number of compute nodes, providing an efficient way to search a space that is too large 

to exhaust. Each interaction is tested for its association with the phenotype using one or 

more objective functions, and Crush evolves the interactions in promising directions to 

intelligently search the massive space of possible interactions. For this work, two objectives 

were calculated for each interaction: MDR balanced accuracy and mean cartesian entropy 

between all pairs of SNPs in the interaction (see [20]). Crush then used multiobjective 

optimization to select optimal interactions using Pareto optimization. The evolution was 

guided using expert knowledge in the form of the number of shared pathways between each 

pair of SNPs as well as pairwise mutual information conditioned on case/control status. 

There is still a significant stochastic component to Crush’s evolution, but using expert 

knowledge means that interactions with shared pathways and/or high mutual information are 

more likely to be evolved to and subsequently examined.

Shared pathways were computed using annotations from the Gene Ontology (GO) database 

[29, 30]. Each SNP was associated with the gene closest in distance to it, or containing 

Hermes et al. Page 7

J Alzheimers Dis. Author manuscript; available in PMC 2024 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



it if there was such a gene. The number of shared pathways between two SNPs was 

defined as the number of unique GO terms shared by both genes. GO terms from all three 

aspects (molecular function, cellular component, biological process) and at any point in the 

hierarchy were considered. The interactions on the Pareto front were selected as features for 

downstream modeling.

MDR’s association calculation is based on converting each interaction into a set of high-risk 

and low-risk genotype combinations, rather than the interactions themselves. Therefore, the 

interaction terms were represented for each individual as whether they had a low-risk or 

high-risk genotype combination, based on the relative proportion of cases and controls with 

that genotype combination in the training set. Genotype combinations that were not found in 

the training set were coded as missing.

Gradient boosting model

A GBM was trained on the variants, epistatic terms, and covariates selected above using 

R (version 3.6) and the XGBoost library (version 1.3.0) [25]. Within each cross-validation 

training fold, the hyperparameters were tuned in an inner cross-validation loop using Origin 

[31], a distributed implementation of the nondominated sorting genetic algorithm II (NSGA 

II) [32], run on a cluster of AWS spot instances. Hyperparameters were tuned using the 

following two step procedure. First, the learning rate was set to 0.1 and the number of trees 

to 1000 while the eta, max_depth, min_child_weight, subsample, and gamma parameters 

were tuned. The values for these parameters were then fixed, the learning rate set to 0.05, 

and the number of trees then tuned, bound between 500 and 10,000 trees.

Neural network model

The NODEnn architecture does not support missing feature values; therefore, only variants 

and epistatic terms were included in the modeling as there was no way to meaningfully 

impute the environmental covariates. Imputed genotype dosage values were used in place of 

allele counts for single SNPs to minimize missing values; any remaining missing values 

were imputed using k-nearest neighbors (k = 5) imputation on the training set. After 

imputation, the dosage and epistatic features were normalized to be between 0 and 1.

The NODEnn model was trained in Python 3.9 using the PyTorch implementation2 provided 

by the original authors [26] running on an NVIDIA Titan RTX GPU. Our network consisted 

of two blocks, each consisting of 1024 neural trees with depth = 6 and dimension = 3 and 

quasi-hyperbolic Adam [33] with the recommended hyperparameter settings of v0 = 0.7, 

v1 = 1.0, β0 = 0.95and β1 = 0.998astheoptimizer. The NODEnn model was regularized 

using early stopping. On each fold, 10% of the training set was held out as a validation set; 

training was stopped when the model failed to improve after 5 epochs.

Calculation of PRS model

We compare our model to several PRS and PRS-like models: a P + T model in which 

candidate SNPs are determined using p-value based clumping and thresholding [34], the 

2 https://github.com/Qwicen/node 

Hermes et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2024 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Qwicen/node


PRS-CS model [10], and the hiPRS model [16]. In brief, the participants were partitioned 

into a discovery set, on which SNPs were selected and other model fitting steps were 

performed (e.g., fitting the posterior effect sizes in PRS-CS), and a test set on which the PRS 

model was evaluated. The same cross-validation folds as the epistatic model were used: the 

training sets were used as discovery sets in the PRS models and the test sets were used for 

validation.

Standard quality control procedures were applied: only SNPs having MAF≥0.01, Hardy–

Weinberg equilibrium χ2 test p-value>10−6 and genotyping call rate ≥ 0.9 were included 

in the discovery set [35]. Individuals with genotype missingness ≥ 0.1 were removed and 

related individuals as determined with a kinship coefficient cutoff of 0.125 were randomly 

pruned. The PRS scores were incorporated with APOE ε2, ε4 genotype, age, and sex into 

a predictive model under logistic regression using the StatsModels package (version 0.13.1) 

[36].

The P + T model was computed as a linear combination of the discovery set SNPs, weighted 

by the effect sizes from the IGAP study[21]3.We performed random LD pruning and 

intelligent pruning with the–clump option in PLINK using r2 > 0.2 and a physical distancing 

threshold of 1Mb to be consistent with [34]. In addition to doing SNP selection through 

discovery sets as above, we also experimented with selecting SNPs based directly off of the 

IGAP p-values. The resulting model obtained an AUC lower than those with SNP selection 

performed on the discovery sets above, and thus was excluded from further analysis.

Markers were selected using p-value thresholds ranging from 0.05 to 1.0; the model with 

significance threshold p = 0.6 resulted in the PRS model with the highest AUC and was used 

for comparative analysis.

The PRS-CS model [10] was run with the default parameter settings (gamma-gamma prior 

parameters a = 1, b = 0.5; ϕ automatically inferred from the data, and 1000 Markov chain 

Monte Carlo iterations with 500 burn-in iterations) and the provided LD reference panel of 

European samples from Phase 3 of the 1000 Genomes Project [22]. Prior effect sizes were 

taken from the IGAP study [21].

The hiPRS model [16] was computed with 10 interaction terms and default threshold 

parameter (δ = 0.1). For computational feasibility, we used a smaller set of validated SNPs 

from a different GWAS [37]. After QC, 30 SNPs remained for modeling.

Paragenic and ensemble models

To train the ensemble models, within-training-set predictions were computed on each fold 

for the GBM and NN epistatic models as well as the P + T PRS model. For each training 

fold, these predictions were provided as features to train an ensemble model by stacking [38] 

with logistic regression as a meta model using Scikit-Learn (version 1.1.1) [39]. Predictions 

for the stacked model were then computed on the test set for each fold and used for 

3We note that additional GWAS studies on AD of larger scale than the IGAP study have been published since the research presented 
here was performed.
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final ensemble model evaluation. We also trained and evaluated an ensemble model for 

each of the various combinations of individual GBM, NN, and PRS models. Figure 2 and 

Supplementary Table 1 summarize the selected features.

RESULTS

The paragenic ensemble models were compared to their individual component models and 

PRS models, as well as combinations of the individual components of the model ensemble. 

A baseline GBM model on age, sex, and number of APOE ε2 and ε4 alleles was included 

as well. Model efficacy was measured by area under the receiver operator characteristic 

curve (ROC AUC or just AUC), specificity, and sensitivity. Models were evaluated both 

by cross-validation performance and in the independent holdout set of ADNI3 participants. 

Multiple testing correction was performed with the Bonferroni method.

Model performance

Models were first assessed using the test set predictions from 10-fold cross-validation. 

Model AUC, sensitivity, and specificity was calculated for each test set (Table 2). Probability 

thresholds maximizing the sum of sensitivity and specificity were computed in the training 

sets for each fold and then applied to the test sets; confidence intervals of sensitivity and 

specificity statistics were computed using bootstrap sampling. (Model analysis including all 

participants, including those of non-European descent, can be found in Supplementary Table 

2.)

The paragenic model on PRS + GBM + NN significantly outperformed all individual models 

(DeLong test statistic Z = −3.2555, p-value=0.0006 between the paragenic model and the 

model with the next highest AUC). Across the board, the addition of GBM or PRS to a 

model resulted in significantly improved cross-validation performance.

Models were then trained on the entire dataset and predictions were made on the ADNI3 

holdout set. Again, the maximized sum of sensitivity and specificity probability threshold 

was computed on the training set, and sensitivity and specificity confidence intervals were 

computed via bootstrapping in the holdout set (Table 3). Comparison of ROC curves in the 

cross-validation and ADNI3 sets are shown in Fig. 3.

The GBM and GBM+NN models outperformed all other models in the holdout set in 

terms of AUC, although the difference is only significant relative to PRS and PRS-CS 

(Z = −2.0857 – −2.1220, p-value = 0.01692 – 0.01850). Interestingly, contrary to the 

cross-validation results, inclusion of PRS in an ensemble was generally detrimental to 

performance on the holdout set.

Model performance by APOE genotype

The full paragenic model (PRS + GBM + NN) showed strong AUC performance within 

all APOE genotypes in the cross-validation dataset, significantly outperforming PRS within 

all APOE genotypes except for ε4/ε4 (Fig. 4). The paragenic model performed consistently 

well within each stratum, staying within 4% points of the unstratified AUC for all genotypes 

except ε4/ε4. The PRS model largely performed much poorer within each stratum compared 
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to the unstratified AUC, generally 6–7% lower with the exception of the ε2/ε4 stratum. 

Both models had AUCs on the ε2/ε4 stratum on par with their respective unstratified AUCs. 

The ε2/ε2 genotype was not well-represented in our data and so was discarded from this 

analysis.

Risk prediction by age

To assess age-dependent risk, the Kaplan–Meier survival curve was estimated on the 

cross-validation dataset within each score quantile of the full paragenic model using the 

lifelines package (version 0.26.4) in Python 3.9 [42]. The resulting curve showed significant 

discrimination for LOAD risk at different ages (Fig. 5). The logrank p-values between Q1 

and Q2, Q2 and Q3, Q3 and Q4 were 0.0016,<10−14, and<10−17 respectively.

Clinical utility

To assess our model for clinical utility, we analyzed the positive and negative predictive 

values (PPV and NPV) in Python. Following [34], we computed adjusted PPV and NPV 

values assuming varying LOAD population prevalences of 17% (overall lifetime risk) and 

32% (risk for ages 85 + [43]). The results for cross-validation are presented in Table 4.

The full paragenic model and the paragenic GBM + PRS model had nearly identical 

predictive value, and both were significantly better than the next closest contender.

The predictive values on the holdout set are consistent with the analysis on the cross-

validation dataset. The full paragenic model had the strongest PPV at both prevalences 

analyzed, but poorer NPV than the purely epistatic models (GBM and NN) (Table 5).

DISCUSSION

In this study, we built a genetic risk prediction model for LOAD using machine learning 

techniques with the goal of improving upon existing PRS models. Though PRS models have 

successfully captured the additive genetic components of disease, they do not capture more 

complex genetic structure such as epistatic interactions. We constructed a PRS model on our 

dataset and additionally mined the data for epistatic features to include with single SNPs 

in machine learning models. The final paragenic risk model, an ensemble of a logistic PRS 

model, a NN epistatic model (NODEnn), and a GBM epistatic model (XGBoost), achieved 

an AUC of 0.829 in cross-fold validation. This performance is significantly higher than 

published PRS models (Figs. 3 and 4). While other machine learning models have reported 

comparable or higher AUCs [44], they performed feature engineering in-sample, which can 

lead to overestimation of expected performance on real-world (out-of-sample) data [45].

The GBM epistatic model and paragenic models outperformed all variants of PRS in terms 

of ROC AUC, sensitivity, and specificity both in cross-validation and in an independent 

holdout set. Ensembling PRS and epistatic models generally improved the modeling over 

the individual component models across all metrics. As expected, most types of models 

performed less well on the held-out dataset than in cross-validation. The exceptions were 

hiPRS, GBM, NN, and GBM + NN, which actually performed slightly better in the holdout 

set. Ensembling of epistatic models with P + T did not give the same improvement in 
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the holdout set as was observed in the cross-validation analysis, likely because the P + T 

model performed poorly on the holdout dataset in general. We suspect this is due to the 

well-known difficulties in applying PRS models trained on one dataset to another [46]. 

However, ensembling with a P + T model did improve positive predictive value on the 

holdout set. This issue was not apparent in the cross-validation study, likely because the 

folds were partitioned without stratification by data source, resulting in test/train splits 

comprising similar populations. Moreover, the holdout dataset had a significantly smaller 

proportion of cases, leading to poorer performance of the paragenic models in terms of 

specificity and NPV.

Importantly, the paragenic model showed improved discriminative ability over the PRS 

models regardless of APOE genotype. Although the ε4/ε4 genotype is a strong single 

marker predictor of LOAD, only 9.6% of people with AD carry this genotype and the 

prevalence is heterogeneous among populations [47]. Thus, predicting AD risk even in the 

absence of ε4 alleles, and conversely predicting which ε4/ε4 carriers will not develop AD, 

is necessary. Interestingly, the genotype within which the paragenic model had the lowest 

ROC AUC was ε4/ε4. This may be due to the lower number of participants in this group 

and could possibly be improved through modeling within APOE genotypes, or synthetically 

increasing the prevalence of ε4/ε4 through oversampling.

There are a few limitations of this study. We specifically chose a P + T PRS methodology 

to be incorporated in our model ensemble as it was simple to implement and had previously 

been directly applied to LOAD prediction. Additionally, the PRS-CS and hiPRS models 

likely would have benefited from tuning their various parameters, instead of defaults being 

used. We had to exclude several SNPs from the GWAS study used in the hiPRS model, 

due to low quality in our data; this model may have improved with the inclusion of these 

SNPs. It should be noted that the goal of this study was high predictive accuracy rather 

than interpretability or to provide insights into the etiology of LOAD. As such, feature 

significance was not explored in depth. Markers included in the model may be informative 

in predicting disease without being the true causative factor. Further improvements can 

likely be made through inclusion of environmental and lifestyle covariates [48]. We found 

that the differences across studies in data collection methods and completeness for these 

factors resulted in informative missingness, and thus we were not able to use them in 

modeling. Inclusion of these factors in a personal risk prediction test would allow users 

to see how lifestyle changes can reduce their risk of developing disease. Additionally, as 

with the many published Alzheimer’s PRS models that have been developed in European 

subjects, this study was conducted on individuals of European ancestry only and thus the 

prediction accuracy applies only to individuals who fall within the ancestry thresholds used 

to filter the training and test sets. Accordingly, such models are not yet ready for clinical 

application, as they cannot currently be equitably applied. The paragenic model and the PRS 

models that preceded it are each a step along the research path toward a predictive model 

that is usable in the clinic. Modeling on diverse populations is required in order to extend 

risk prediction to individuals of all ancestries, and this will be a focus of future work.

To the best of our knowledge, the paragenic model has the highest out-of-sample AUC of 

any genetic risk prediction model for clinically diagnosed LOAD to date and can serve as 
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a baseline for future models able to identify individuals at high and low risk of developing 

disease for stratification in clinical trials as well as for personal use.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of mining and modeling procedure. Data is labeled in gray, mining steps in 

orange, and models in blue. Black arrows indicate which features go into which models. 

Association testing was performed using BOLT, and the top scoring SNPs were directly 

used as model features. Interaction features were mined by LD pruning to ~100K variants, 

further reduced to ~10K variants using MultiSURF, and 30 interaction features were found 

with Crush-MDR. An ensemble of neural network (NodeNN), Gradient boosting (GBM), 

and logistic regression PRS models (PRS) were trained on case/control status.
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Fig. 2. 
Feature selection results. Along each chromosome, a Manhattan plot shows the −log(p) 

for each SNP, with the 50 SNPs included in the model highlighted and colored according 

to their relative feature importance in the XGBoost model. Black triangles indicate the 

positions of GWAS hits associated with late-onset AD at a p-value ≤ 5 × 10−8 in the GWAS 

Catalog [40]. The gray line shows the genome-wide significance threshold of 5 × 10−8. 

In the center, the 30 epistatic interactions on the Pareto front are shown. Line thickness is 

proportional to the number of times each pair of SNPs appeared on the Pareto front, and they 

are also colored according to feature importance in the model. Names of closest genes are 

given for SNPs selected individually (magenta) or as part of important epistatic interactions 

(blue). Plot created using Circos [41].
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Fig. 3. 
Comparison of ROC curves between PRS and Paragenic models on cross-validation and 

hold out data (ADNI3).
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Fig. 4. 
Comparison of ROC curves between PRS and Paragenic models between APOE genotypes 

on cross-validation data.
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Fig. 5. 
Kaplan–Meier survival curves for paragenic model score quartiles.
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