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ABSTRACT OF THE DISSERTATION

Theory of Quantum Spin Liquids in Quasi–1D Systems

by

Amir Mohammadaghaei

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2020

Professor Kirill Shtengel, Chairperson

Ever since the introduction of resonating valence bond states by P. W. Anderson

in 1970s, the search for exotic many–body quantum behavior in peculiar states of matter

known as quantum spin liquids has been a central challenge in the field of condensed matter

physics. An important searching ground for such quantum–ness is the low energy physics

of frustrated magnets. In a quantum system, frustration—the inability of a physical sys-

tem to achieve a global state that consistently minimizes its energy locally—enables the

unavoidable quantum fluctuations to hybridize an extensive number of classical states into

highly entangled quantum states at low temperatures. It can be argued that this is the

most practical approach to achieve genuine many–body quantum behavior at large scales.

The fundamental source of frustration in many physical systems, is the existence

of local non–commuting terms. In the case of antiferromagnet spin theories the simplest

examples are triangles of nearest–neighboring sites. Consequently, lattices with triangles

as building blocks have long been studied in hopes of discovering spin liquids physics. In

particular the kagome lattice, which is composed of corner–sharing triangles, has been the
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center of at least four decades of spin liquid research. This is due to the underconstrained

nature of system made out of corner–sharing triangles.

After the first three chapters, introduction in chapter 1, preliminary physics in

chapter 2, and a brief introduction to spin–liquids in chapter 3, in chapter 4 I tackle a

simpler version of the long-standing problem of spin–1/2 Heisenberg antiferromagnets by

considering a quasi–1D lattice consisting entirely of corner–sharing triangles, kagome strip.

I illustrate that the standard Heisenberg antiferromagnet Hamiltonian over kagome strip

is an extended gapless quantum phase, that is well characterized by two fermionic/bosonic

gapless modes and power–law decaying spin and bond–energy correlations. I also demon-

strate that the correlation functions oscillate at tunably incommensurate wave vectors. It

turns out that this phase can be identified by a particular marginal instability of a two-

band spinon Fermi surface coupled to an emergent U(1) gauge field. This interpretation is

supported by analytic Abelian bosonization and with extensive numerical large–scale den-

sity matrix renormalization group study as well as variational Monte Carlo calculations on

Gutzwiller ansätz wave functions. This intriguing result is the first numerical demonstra-

tion of emergent fermionic spinons in a simple SU(2) invariant nearest-neighbor Heisenberg

model beyond the strictly 1D (Bethe chain) limit.

The unexpected success of the fermionic spinons in describing the low energy

physics of kagome antiferromagnet, reintroduces the questions about the validity of spinon

physics as an effective theory of quantum spin liquids. However, numerical methods are

still far behind the theoretical advances. And still even today, an accurate description of

the quantum spin liquid states using tensor network methods is notoriously challenging. It
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is known that for large quasi-1D systems, the density matrix renormalization group and

related methods usually require significant computational resources and sometimes fail to

converge to a satisfactory state. On the other hand, variational wavefunctions acquired

from the Gutzwiller projection of gaussian fermionic theories have long served as both a

theoretical starting point for the construction of such spin liquid states and as an inspiration

for numerical variational Monte Carlo (VMC) to calculate observables of interest. Noting

this observation I examine a different method by exploring the possibility of constructing a

matrix product state (MPS) representation for a Gutzwiller–projected state from two given

MPS representations of gaussian fermionic theories in the 5 chapter.

I investigate the complexity of different approaches to achieve Gutzwiller projec-

tion for MPSs and introduce the novel algorithm which we call the Guzwiller zipper method.

The performance of the algorithm is tested against two copies of a single half-filled band

of spin-1/2 fermionic spinons. In a successful attempt to describe the nature of spin liquid

states on quasi-1D strips of triangular and kagome-like lattices, I apply this method to two

MPS of multi-band fermionic spinon theories and compare with the complexity of the tra-

ditional VMC approach. In particular, we methodically disprove the conjecture of a spinon

fermi surface spin liquid for the triangular lattice.

Finally, I conclude this thesis by laying out a bird’s eye view of the current and

future of spin liquid physics in kagome and triangular lattices and pointing out numerous

possible applications of the novel Gutzwiller zipper method. In addition, I would also

discuss its possible extensions to more complicated tensor networks as well as versions for

higher spatial dimensions.
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Chapter 1

Introduction

The advent of quantum theory has proved incredibly successful in giving an ac-

curate description of the fundamental laws that govern nature. For example, quantum

electrodynamics predicts fundamental physical constants with an impressive accuracy to a

few parts per billion as confirmed by state–of–the–art research laboratories [107], and we are

yet to observe an experiment in contradiction with its basic principles. Nevertheless, despite

its undeniable contributions to the modern state of our society, its true power has yet to be

fully exploited. In particular, the dream of building a device that performs a radically new

form of computation solely based on the principles of quantum theory [38], i.e. the quantum

computer, despite significant progress, has not yet been fully realized [103, 79, 5, 72]. One

particularly challenging step is the development of a sufficiently descriptive theory for quan-

tum systems consisting of thermodynamically many interacting particles. This problem is

the main focus of condensed matter physics; where novel theoretical and numerical meth-

ods are used to explain experimental observations of systems that are assumed to function

1



according to the low–level description of quantum mechanics and therefore explore them

for new possibilities.

As one might suspect, however, not every quantum model has the capacity to uti-

lize the power of quantum mechanics in full. It turns out that one needs to search for the

so–called frustrated systems [133, 136]. When the low–energy state of a quantum system

is incapable of simultaneously satisfying a large number of enforced constraints, it remains

frustrated. This scenario, together with the unavoidable quantum fluctuations1, leaves an

extensive portion of the Hilbert space available to the frustrated quantum system to ex-

plore. Under these same circumstances, even down to very low temperatures, a classical

system manifestly violates the third law of thermodynamics approaching T = 0. However,

a quantum system exhibits a highly entangled many–body liquid–like behavior at low tem-

peratures [130, 90, 9]. That is why such states–quantum liquids–are good candidates for

observations of purely quantum mechanical effects at large scales. Examples of condensed

matter systems expected to have high degrees of frustration are those with kagome or tri-

angular lattices. The two–dimensional version of various theories on these lattices are still

debated despite 40 years of theoretical and computational effort.

A particularly interesting class of quantum liquids are the states of Hamiltoni-

ans made purely of spin degrees of freedom. These were originally studied in the field of

quantum magnetism. Quantum spin liquids (QSL) are elusive states of quantum matter

that defy usual ordering down to very low temperatures, may contain long–range quantum

correlations, and exhibit nontrivial quasiparticle excitations [117, 9, 152, 19]. This surpris-

ing behavior is often caused by the inability of the system to minimize its energy locally.

1The quantum fluctuations are guaranteed by the uncertainty principle.
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Such frustration thus makes the ground state (and its low–energy excitations) a system–

wide compromise between extensively many quantum degrees of freedom. The resonating

valence bond (RVB) state initially proposed by Anderson [4, 3] was the first example of a

gapped QSL—such gapped spin liquids have since been long studied for their fundamentally

interesting behavior as well as for their potential application to robustly store quantum

information and perform fault–tolerant quantum computation [74, 75]. Despite their long–

range entanglement, the gapped nature of these states make computational studies that are

based on tensor networks more tractable, at least in low dimensions D ≤ 3.

There are two main questions to answer when it comes to systems suspected of

exhibiting quantum liquid behavior:

1. Do such systems at low temperature harbor exotic quantum phases that can be ma-

nipulated to make useful devices such as a quantum computer? If yes, how robust are

these phases to external perturbations and the existence of impurities in experimen-

tally relevant circumstances?

2. Is it possible, or practical, to extend such descriptions to systems beyond quasi-one-

dimensions? For example, one can think of a relatively small one–dimensional periodic

strip as a few one–dimensional cuts in the Brillouin zone of a theory corresponding to

a two–dimensional system. This realization may reveal some hints toward the nature

of two–dimensional theory.

We live in a three–dimensional space and we expect the physics to describe a

three–dimensional world, however, it has been shown that many interesting physical phe-

nomena arise in lower dimensions. Experimental and theoretical work restricted to two
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spatial dimensions has uncovered revolutionary quantum physics, such as topological non-

trivial phases with anyonic excitations [52, 74]. Additionally, the simplicity of working

with only one spatial dimension often permits a complete theoretical investigation using

techniques available from conformal field theory [14], Bosonization [42, 43], and exactly

solvable models [15, 13]. Furthermore, the adaptation of efficient numerical techniques to

verify underlying physics being studied, such as the possibility of performing exact diago-

nalization for decent sized systems [116], matrix product state based algorithm such as the

density matrix renormalization group (DMRG) and the time–dependent variational prin-

ciple (TDVP) [144, 145, 139, 94, 49, 48]. As a result, low–dimensional systems serve as a

convenient playground for testing the ideas of theoretical physics in the realm of many–body

systems. However, this should not lead to the confusion that the one–dimensional models

are just fictitious objects in minds of theoretical physicists. But rather, materials can be

engineered to behave effectively as one-dimensional objects, i.e. they are confined in the

other two dimensions using potential barriers. These models also have critical importance

for companies such as Microsoft that are basing their quantum computer design on such a

quasi–one–dimensional system–the majorana qubit [72].

Due to the importance of quantum entanglement in identifying the phases of mat-

ter, it is now common to use theoretical and numerical techniques that are mainly derived

from the field of quantum information to study condensed matter systems. In the early days

of quantum theory, quantum information guilty of being too mathematical, was generally

dismissed by theoretical physicists. However, more recently methods based on quantum in-

formation have become indispensable in the studies addressing the foundations of physics.
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In addition to that, quantum information is the natural underlying language of a quantum

computer. Utilizing tools from quantum information theory facilitates calculation of certain

quantities related to quantum entanglement, such as von Neumann and Renyi entropies,

entanglement spectrum, and other related quantities, in a straightforward manner. It is

now well–established that the bipartite entanglement, i.e. the entanglement present in the

density matrix corresponding to one part of the bipartition of the system, inherits impor-

tant and revealing information about the nature of the state. In a set of works, Kitaev and

Preskill as well as Levin and Wen, have shown that topological states are characterized by

a non–trivial topological entanglement entropy which can be measured by simple formula

involving the six possible choices of bipartitions for a state of a system divided into three

parts [73, 86]. More recently it is been shown that at least in systems confined to one spatial

dimension, bipartite entanglement reflects the topological properties of the quantum state

under study [33, 135, 111].

Classical simulation of quantum many–body states with long–range massive entan-

glement remains an active field of research [116, 41, 134, 144, 145, 118]. This is due to the

fact that despite recent claims and advances in building a programmable and reliable quan-

tum computer [5, 25, 72], the classical methods are still the main gadget in a condensed

matter physicist’s toolbox. This is even more relevant in the case of QSLs due to their

long–range massive entanglement. In the case of gapped QSLs, despite their long–range

entanglement, the gapped nature of these states make studies based on tensor networks

more tractable, at least in two spatial dimensions. However, our general understanding of

the gapless QSLs is much more limited. This is in part because studies of gapless QSLs
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have long been hampered by the inability of numerical tools to catch up with the theory

and experiment. The main classical methods at our disposal all suffer from various short-

comings. In practice, typical simulations usually require a large number of spins to nail

down the nature of the state. As a result, the finite-size scaling analysis is almost impos-

sible using exact diagonalization methods and in practice they may only serve to rule out

possible ordering, even if that. Additionally, the massive entanglement that grows with sys-

tem size, prevents numerical approaches such as DMRG to converge entanglement–related

quantities such as the von Neumann entropy (as in Refs. [148, 54]). Quantum Monte–Carlo

methods usually involve a notorious sign problem leading to large errors in the calculations

of correlation functions. Variational methods, as usual, suffer from apriori assumptions

about the nature of states that may or may not reflect the true state, and finally, tensor

network methods suffer from entanglement blow–ups. All of these shortcomings lead to

the same issue, that is the conclusions are to some extent unreliable. Consequently, reach-

ing conclusive conclusions based on well grounded evidence about the nature of the states

presents an ongoing challenge, wherein some cases even the existence of the gap, have been

debated for decades [115, 87, 67, 44, 63, 62, 91, 55, 149]. Nevertheless, to this day, methods

based on tensor network states remain the main tools utilized for classical simulations of

QSLs [147, 20, 50, 108, 96, 29, 120, 118, 138, 146, 137].

The coupling of fermionic theories to strong gauge fields has been proposed as

a possible effective theory for spin liquid states [143], where the QSL is recovered by

the integration of the gauge field. It is expected that the fundamental properties of the

resulted QSLs are inherited from the fermionic theories. Examples are gapped states,
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three–dimensional QED, and projected Fermi surfaces states. The variational Monte–Carlo

method (VMC) has conventionally been used for numerical calculations of correlation func-

tions for the resulted spin state [47, 26]. However, the VMC methodology suffers from

various disadvantages. First, since the actual state is not known, only the calculation of the

pre–selected set of correlation functions are available. Second, certain entanglement prop-

erties of states, for example, the entanglement spectrum is not readily achievable through

VMC.

This motivates the continuous effort of exploiting the power of tensor networks

ansätze to study the exotic behaviors in these strongly correlated systems. This is because,

tensor network based tools when used with powerful computers give an almost faithful

representation of the original state. Researchers in the community constantly develop new

designs of tensor network tools and combine them with other classical methods to increase

their efficiency as well as their descriptive power to study quantum many–body states with

massive entanglement, such as QSLs, as well as topological states of interacting fermions

featuring non–trivial bulk excitations [56, 22, 21, 121, 119, 30, 111, 135]. Tensor network

state has also been employed in tracking the generic quantum states that arise from time

evolution of classical un–entangled states under the action of non–integrable Hamiltonians

with some promising results [34, 78, 109, 151, 147].
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Chapter 2

Preliminary physics

2.1 The setup of condensed matter physics

The main field of condensed matter physics, tries to describe the macroscopic

properties of matter, i.e. a large collection of individual particles packed together using

their corresponding electromagnetic forces, based on the microscopic fundamental physics

governing each particle. The field has historically emerged out of the solid state physics,

however today condensed matter physicist study the broad range from complicated inter-

actions in liquid–like materials to unconventional theories of quantum gravity. The current

questions of “hard” condensed matter generally revolve around the electronic physics of

solids as turned out to be more complicated to be simply described by the ordinary non–

interacting physical theories.

The usual starting point for the physics of solid state matter is to describe the

fundamental physics as the quantum mechanics of many particles interacting via the elec-

tromagnetic long–range interaction. The Hamiltonian is made out of the kinetic terms
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for the nuclei and electrons, the Coloumb interaction between electrons and atoms and

electron–electron Coloumb interaction.

H =
∑
a

Pa
2Ma

+
∑
i

pi
2mi

+
∑
a,b

Z2e2

|ra − rb|
−
∑
i,a

Ze2

|ri − ra|
+
∑
i,j

e2

|ri − rj |
(2.1)

This should not come as a surprise that the brute force approach to solving the

Schroedinger’s equation is a lost cause, because the space of possible solutions is uncontrol-

lably large.

2.2 Many–Body Quantum Systems

2.2.1 Spins Models

Let us start by the simplest exmaple of a spin model, that is a chain of N sites

where on each site i = 1, . . . , N resides a single two–dimensional Hilbert space hi i.e. the

spin-1/2 Hilbert space. We can choose a natural basis for each hi,

|e0
i 〉 ≡ e0

i :=

0

1

 , |e1
i 〉 ≡ e1

i :=

1

0

 . (2.2)

We also choose a basis for the vector space of linear operators, End(hi) = 〈1i, Szi , S+
i , S

−
i 〉

defined as

Szi =
1

2
σz, S+

i =
1

2
(σx + iσy), S−i =

1

2
(σx − iσy), (2.3)
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where the σ operators represent the usual Pauli matrices:

σz =

1 0

0 −1

 , σx =

0 1

1 0

 , σy =

0 −i

i 0

 . (2.4)

Note that this definition in terms of Pauli matrices also defines an algebra with the usual

matrix multiplication where the linear maps satisfy the following commutation relations

[Sz, S+] = S+, [Sz, S−] = −S−, [S+, S−] = 2Sz. (2.5)

The total Hilbert space of the chain is the direct product of local Hilbert spaces,

HS =
⊗

i hi, and has the dimension: dimHS = 2N . We represent the basis of the total

spin chain Hilbert space as the tensor product of the basis of local spins in ket notation,

|e1, . . . , ei, . . . , eN 〉 := e1 ⊗ · · · ⊗ ei ⊗ · · · ⊗ eN . (2.6)

The basis can also be constructed by defining a vacuum state for spins |vac〉 := e0
1⊗· · ·⊗e0

N

and generating all possible states by multiple application of S+ operators, for exmaple,

|e1
i , e

1
j , e

1
k, . . . 〉 ≡ S+

i S
+
j S

+
k · · · |vac〉, (2.7)

where we omit the e0 vectors in the ket notation for convenience.

We can create linear maps over the chain Hilbert space by tensor product of local

linear maps. We define the support of such linear map (operator) O : HS → HS as the set

of sites on which the operator acts in a non-trivial way (i.e. it is not the identity map). We

say an operator is local if its support is localized in space.

If the support of a linear map Si : HS → HS is only site i we say it is a hard-core

boson or spin operator. This justifies the sloppy notation of referring to the local operator
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(Si ∈ Endhi) and the global operator (Si ∈ EndHS) with the same name. The usual matrix

multiplication defines an algebra of spin operators and their product. Note that the spin

operators with support on different sites commute and operators with the same support site

obey the same algebra of local spin.

We say a linear Hermitian map, H : HS → HS , is a local spin Hamiltonian if it is

a sum of terms with local support. A famous example of a spin Hamiltonian is the XXZ

model with periodic boundary conditions

H = J
N∑
i=1

1

2
(S+
i S
−
i+1 + S+

i S
−
i+1) + ∆

N∑
i=1

Szi S
z
i+1. (2.8)

The point ∆ = J of this model is also called the Heisenberg model or Bethe chain. Another

famous example is the quantum Ising with transverse field model

H = J
N∑
i=1

Sxi S
x
i+1 +B

N∑
i=1

Szi . (2.9)

We can have multiple flavors of spins per site, but this is trivial as we just need to

tensor product the two spin models. For example if we have a spin state for one flavor where

the operators are shown by S and another spin state for another flavor where operators are

shown by R, defining the total vacuum state as |vac〉 := |vac〉S ⊗ |vac〉R, the total state for

the two flavors is just

S+
i S

+
j · · ·R+

k R
+
l · · · |vac〉 =

(
S+
i S

+
j · · · |vac〉S

)
⊗
(
R+
k R

+
l · · · |vac〉R

)
(2.10)

Where the order of flavors is not important because they commute.
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2.2.2 Fermion Models

Here we also have a chain (one–dimensional lattice) of N sites where each site has

two possible states, it can either be empty or occupied. This gives the dimension of the

chain Hilbert space, dimHF = 2N . A natural representation for the basis of the Hilbert

space is by using the occupation numbers of each site ni = 0, 1 as in the ket notation

|n1, . . . , ni, . . . , nN 〉, but this turns out to be ambiguous. To see how we need to define the

fermion operators.

|n1, . . . , ni, . . . , nN 〉, (2.11)

for convenience we can also omit all the zeros when there is no ambiguity.

The adjoint linear operators f †i , fi : HF → HF defined for each site i which increase

or decrease the occupation number and obey the following fermionic anticommutation re-

lations:

{fi, fj} = 0,

{f †i , f
†
j } = 0,

{fi, f †j } = δij .

(2.12)

are called the fermion creation and fermion annihilation operators respectively. Their

action on the vaccum state |0〉, i.e. the state where all sites are empty, is defined as

fi|0〉 = 0

f †i |0〉 = |ni = 1〉,
(2.13)

however, their action on other states are not as well–defined due to the non-local anticom-

mutation relations. The best way to address this issue is to define the Hilbert space basis
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based on an arbitrary predefined order for the fermionic operators, which we call the Fock

space convention. For the chain we pick the Fock space convention of listing all fermionic

creation operators from left to right by their order in the ket notation (or the order they

appear in the chain from left to right), this means the following definition for ket basis

|ni = 1, nj = 1, nk = 1, . . . 〉 := f †i f
†
j f
†
k · · · |0〉 (i < j < k < · · · ). (2.14)

This definition together with the anitcommutation relations unambiguously define the ac-

tion of fermion operators on all the states of the Hilbert space.

With this convention a linear fermion operator of site i acts on a state with a

minus if there is an odd number of occupied fermions on the left of site i and with a plus

sign otherwise. In other words the fermion operators measure the leftmost fermion parity.

So, fermions are aware of the occupation numbers of other sites and hence are

non–local by nature, i.e. cannot be written as linear combination of local linear maps (this

is why we didn’t define the local linear maps at all in case of fermions). Again note that

this particular choice of the sign convention is arbitrary but very convenient.

Since the definition of the Hilbert space is in terms of fermion creation operators,

we have an algebra for the fermion operators as linear maps EndHF .

An operator that is a multiplication of an even number of fermion operators that

are localized in space, is a fermion operator with local support. This is because an even

number of fermions with non–overlapping support commute with each other. We say that

a Hermitian linear map H : HF → HF is a local fermion Hamiltonian, if it is a sum of

terms with local support. A famous example is the spinless Hubbard model which consists

of the fermion hopping terms plus the density–density interaction term (periodic boundary
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condition) for on–site and neigherst neighbors

H = −t
N∑
i+1

(f †i+1fi + f †i fi+1) + µ
N∑
i=1

ni + V
N∑
i=1

nini+1, (2.15)

another example is the hopping plus the pairing term

H = −t
N∑
i+1

(f †i+1fi + f †i fi+1) + ∆

N∑
i=1

(f †i+1f
†
i − fi+1fi) (2.16)

We can also have more than one flavor of fermions where each site can now be

empty or occupied by fermions of several different flavors. The only nontrivial part is that

different flavors of fermions anticommute, so the Hilbert space is not simply the tensor

product space of different flavors, it has a sign to account for fermion anticommutations.

For example if we have a flavor of fermions labeled by f † and another flavor labeled by c†

and we pick the Fock space convention of f † left of c† for each site and sites left–to–right

same as before, the total vacuum is |0〉 = |0〉f ⊗ |0〉c and for an arbitrary state we need

a (−1)p where p is the number of swaps required to bring the multiplication of fermion

operators into the Fock space convention form, for example

(
f †i f

†
kf
†
m|0〉f

)
⊗
(
c†jc
†
l c
†
m|0〉c

)
= (−1)3f †i c

†
jf
†
kc
†
l f
†
mc
†
m|0〉 (2.17)

where we assumed i < j < k < l < m which required 3 fermion operator swaps to bring

this state to convention.

2.2.3 The Jordan–Wigner Transformation

The similarities between the fermion operators and spin operators hint a possible

relation between the two. Indeed, in one spatial dimension we can define an isomorphism
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between fermion operator algebra and spin operator algebra, which serves as a translation

between local fermion theories and local spin theories.

The first step is to define an isomorphism between the Hilbert space of the spin

theory and the Hilbert space of the fermion theory by defining it on the basis as follows

|α1, . . . , αi, . . . , αN 〉 7→ |eα1
1 , . . . , eαii , . . . , e

αN
N 〉, (2.18)

where the αs are binary values. Note that some Fock space convenction is implicitely

assumed already in this isomorphism, because the basis of the fermion Hilbert space is

defined based on the choice of the convention.

This allows to establish an algebra isomorphism, the Jordan-Wigner transforma-

tion, between the spin operator algebra and fermion operator algebra as follows

f †i 7→ Ki S
+
i ,

fi 7→ Ki S
−
i ,

ni = f †i fi ≡ Szi + 1
2 ,

(2.19)

where Ki operator, which we call the string or tail operator, is a non–local spin operator

that recover the non–local anitcommutation relation between fermions of different sites,

because the spin operators at different sites are unable to do that as they simply commute

with each other. The tail operator is defined as

Ki :=
i−1∏
j=1

σzj . (2.20)

A better way to think about the tail operator is by remembering the choice of the Fock space

convention. In The chosen convention a fermionic operator of site i measure the fermion

parity left of site i to determine the sign of it action. This procedure is now carried by the
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tail operator, so, the particular form of the tail operator (left–to–right) is due to the choice

of Fock space convention (left–to–right).

It is fruitful to explicitly show how the fermionic anticommutation relations are

restored from the spin operator algebra due the introduction of the tail operator. For

simplicity, assume i ≤ j, and define Ki→j =
∏j−1
k=i σ

z
k. We have

{
fi, f

†
j

}
=
{
S−i ,Ki→jS

+
j

}

=


K(i+1)→j

{
S−i , σ

z
i

}
S+
j i < j

{
S−i , S

+
i

}
i = j

= δij (2.21)

and similarly,

{
f †i , f

†
j

}
=
{
S+
i ,Ki→jS

+
j

}

=


K(i+1)→j

{
S+
i , σ

z
i

}
S+
j i < j

{
S+
i , S

+
i

}
i = j

= 0, (2.22)

and an identical calculation for {fi, fj}.

This transformation is almost useless if it takes local Hamiltonian to non-local

counterparts. However a particulary nice feature of this transformation is that local Hamil-

tonian of spin system produce local fermionic Hamiltonian and vice versa. For example,

the Jordan Wigner transformation of the XXZ model is

HXXZ 7→
∑
i

1

2
(f †i fi+1 + f †i+1fi) + ∆

∑
i

(ni −
1

2
)(ni+1 −

1

2
) (2.23)
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which is the free fermion theory (the XY part) plus a nearest neighbor density–density

interaction (the Ising part).

The isomorphism allows to switch between a fermion theory and a spin theory

when convenient. For example, MPS-DMRG algorithm is designed to find the ground state

of a spin Hamiltonian but the result can also be interpreted as the ground state of the

corresponding fermion model. On the other hand, one way to reach to a field theoretic

description of a spin system is to start by translating it into a fermion model and then

study the fermionic field theory.

In the following section we answer the interesting question of whether the JW

transformation technique can be generalized to more flavors of fermions as in the case of

spinons for a spin-1/2 system, see section 3.5.

2.2.4 JW transformation for multiple flavors

To see how this works lets start with the simplest and most important example—

the spinful Jordan-wigner transformation—where there are two flavors per site.

For two flavors of spin-1/2 per site labeled by ↑, ↓ the local Hilbert space is hi =

hi↑ ⊗ hi↓ and it has the dimension d := dimhi = 4. We can also use the tensor product

basis

e0
i := e0

i↑ ⊗ e0
i↓

e1
i := e1

i↑ ⊗ e0
i↓

e2
i := e0

i↑ ⊗ e1
i↓

e3
i := e1

i↑ ⊗ e1
i↓

(2.24)

17



similarly the tensor product of spin operators works as spin operators for this basis. The

total Hilbert space is 4N–dimensional.

For the fermions, the Hilbert space is also 4N–dimensional which we label using

the occupation numbers. Same as before we also need to choose the Fock space convention

of order of fermions that represent a certain state. Two natural options come to mind:

(i) we can list all ↑ fermions left of all ↓ fermions and the same left–to–right convention

for sites, (ii) or to list ↑ left of ↓ fermions of the same site and then the fermions of the

next right site. It turn out that the second option is the one that gives a Jordan-Wigner

transformation which leaves Hamiltonians local. So we list fermion operator each site ↑s

left of ↓ and from lower site index to higher, which means

|(n1↑ = 1, n1↓ = 1), (ni↑ = 0, ni↓ = 1), . . . 〉 := f †1↑f
†
1↓f
†
i↑f
†
i↓ · · · |0〉. (2.25)

Exactly the same as for the case of one flavor, we define an isomorphism between

the Hilbert space of spin system and the Hilbert space of fermion system through their basis

vectors,

vF 7→ vS (2.26)

where vF and vS are generic basis vectors of the fermion system and spin system respectively,

vF := |(n1↑, n1↓), . . . , (ni↑, ni↓), . . . , (nN↑, nN↓)〉

vS := |en1
1↑ ⊗ en1

1↓ , . . . , e
ni
i↑ ⊗ e

ni
i↓ , . . . , e

nN
N↑ ⊗ e

nN
N↓〉,

(2.27)

For the Jordan-Wigner transformation it is obvious that both flavors have to carry

the tail operators K↑,K↓ at the same time, but since the covention puts the ↑ before down

the latter has to measure the former density on the same site as well. So we have the
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following isomorphism of algebras

f †i↑ 7→ Ki↑Ki↓ S
+
i↑,

fi↑ 7→ Ki↑Ki↓ S
−
i↑,

ni↑ = f †i↑fi↑ ≡ Szi↑ + 1
2 ,

(2.28)

f †i↓ 7→ K(i+1)↑Ki↓ S
+
i↓,

fi↓ 7→ K(i+1)↑Ki↓ S
−
i↓,

ni↓ = f †i↓fi↓ ≡ Szi↓ + 1
2 ,

(2.29)

Again we show explicitely how the fermionic anticommutation relations are re-

stored from the spin algebra and the tail operators. Obviously each flavor of fermions

obey the fermionic relations among themselves. For the anticommutation relations between

flavors, for i ≤ j we have,

{
fi↑, f

†
j↓

}
=
{
Ki↑Ki↓S

−
i↑ , Kj+1↑Kj↓S

+
j↓

}
=
{
S−i↑ , K(i→j+1)↑K(i→j)↓S

+
j↓

}

=


K(i+1→j+1)↑K(i→j)↓

{
S−i↑, σ

z
i↑
}
S+
j↓ i < j

{
S−i↑, σ

z
i↑
}
S+
i↓ i = j

= 0, (2.30)
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and if i > j we have,

{
fi↑, f

†
j↓

}
=
{
Ki↑Ki↓S

−
i↑ , Kj+1↑Kj↓S

+
j↓

}
=
{
K(j→i)↑K(j→i)↓S

−
i↑ , σ

z
j↑S

+
j↓

}
= K(j+1→i)↑K(j+1→i)↓S

−
i↑

{
σzj↓, S

+
j↓

}
= 0. (2.31)

Similarly, an almost identical calculation also shows {fi↑, fj↓} = 0 and {f †i↑, f
†
j↓} = 0. This

indicates that the map between fermion and spin algebras is indeed an algebra isomorphism.

It is now simple to generalize this approach to l number of flavors per site. We

need to choose a Fock space convention for different flavors. First we decided on some order

and then label the flavors from left to right by 1 through l. For the mth flavor at site i the

full tail operator is simply given by

K(i+1)1 · · ·K(i+1)m−1K(i)mK(i)m+1 · · ·K(i)l. (2.32)

Again the interpretation of the tail operator is quite clear. For the normal Jordan–

Wigner transformation a fermionic operator measure the parity of left fermions in order to

determine the sign. For multiple flavors version, other than the parity of left sites, the mth

flavor need to measure the (m− 1) previous flavors located on the same site as well. This is

so that different flavors anticommute on the same site. Note that initial choice of the order

of flavors is arbitrary but has to match the Fock space convention.
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2.3 Bosonization

2.3.1 A brief introduction to Abelian bosonization

A particularly important challenge in condensed matter physics is to describe the

behavior of fermions in the presence of interactions. Since we only know how to solve the

free theory, formal approaches are usually limited to perturbative approaches to quantum

field theories which are expected to fail for large interactions.

In one spatial dimension, there exist a powerful technique that reformulates a

Quantum field theory of fermions in terms of bosonic fields, which are derived from fermionic

current/density; this transformation is known as bosonization [42, 43, 71, 39]. It is possible

to write the fermionic creation/annihilation operators in terms of kinks in the bosonic fields

and rewrite any multi–fermion interaction in terms of the new bosons. The hope of the

bosonization transformation is that the resulting interacting bosonic theory is simpler to

study by the usual bosonic QFT.

The above description of fermions as kinks in a bosonic field and bosons as

fermionic current/density hints to an interesting duality between fermions and bosons in

one spatial dimension.

Below, I briefly illustrate the Abelian Bosonizaition in four steps:(i) linearize the

dispersion (ii) calculate the commutation relations for currents/densities (iii) establish a

duality between the fermionic theory and bosonic fields (iv) write the fermionic operators

in terms of bosons. For further detailed discussion see books by Giamarchi, Nagaosa and

Gogolin, as well as a short Boulder school lecture by Kane [42, 71, 43, 102].
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Let us start with free fermions hopping on a 1D lattice of size L and lattice spacing

a. We can think of the fermions as the starting theory, or possibly derivations from an

underlying theory of hard–core bosons (spins). The translationally invariant system can be

easily diagonalized in the momentum space where the fermionic states form a cosine band.

Additionally, we can take the a → ∞ limit to get a continuous space and infinitely large

Brillouin zone; in this limit the energy dispersion reduces to that of the free particles, a

parabola.

We can either enforce particle conservation at some fractional filling which deter-

mines the chemical potential µ or add a chemical potential term and fix that instead. In

the second case the momentum space Hamiltonian is

H =
∑
k∈BZ

(Ek + µ)f †kfk. (2.33)

The ground state is then described by the set of occupied momentum states which form a

line segment in the momentum space, i.e. the Fermi sea. Here, the boundary of the Fermi

sea—the Fermi surface—consists of two points at the Fermi momentum, kF (see Fig).

Linearization

The first step is to linearize the Hamiltonian at the Fermi surface points; that is

to replace the original dispersion relation with a linear dispersion. This new linear model is

known as Tomonaga–Luttinger (TL) model (see Fig. 2.1). As expected, the general behavior

of the TL model is quite different than the original model: (i) it has two bands (left–movers

and right–movers) of fermions while we started with one fermion species in the original
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k

Ek

µ

kF π/a−π/a

Figure 2.1: The ground state of the tight–binding model at fractional filling in the momen-
tum space and its linearization—the Tomonaga–Luttinger model.

model1, and (ii) each band has infinitely extended Fermi seas and therfore dramatically

different high–energy excitations. However, about the linearization point, the two models

exhibit the same low–energy behavior.

If we show the fermion operators living on the right(left) branch as fP , where

P = R/L = +/−, the momentum space Hamiltonian describing the TL model (up to a

constant) is

H =
∑
k∈BZ

vfk
(
f †R(k)fR(k)− f †L(k)fL(k)

)
. (2.34)

In case of nonzero µ, the coefficient are given by k−µ and −(k+µ) for right and left branch

respectively. By using the following Fourier transform convention

fP (k) = L−1/2

∫
L

dx e−ikxψP (x),

ψP (x) = L−1/2
∑
BZ

eikxfP (k), (2.35)

1This is because chiral fermions come in pairs in a lattice model, i.e. the fermion doubling problem.

23



and defining the Fermi velocity as vF ≡ ∂Ek/∂k, we can identify the continuous real space

Hamiltonian as the theory of 1+1D Dirac fermions:

H =

∫
L

dx − ivF

(
ψ†R(x)∂xψR(x)− ψ†L(x)∂xψL(x)

)
,

=

∫
L

dx − ivF ψ̄γ1∂xψ, (2.36)

where in the second representation we define the spinor operators as usual:

ψ ≡

ψR
ψL

 , ψ̄ ≡ ψ†γ0, (2.37)

and the 1+1D matrices, which obey the Clifford algebra, has the form γ0 ≡ σx, and γ1 ≡

−iσy.

Fermion density as bosons

For the second step we need to show that the right/left density operators ψ†P (x)ψP (x)

of the TL model behave like bosons. However, for the continuous TL model there exist in-

finite number of occupied states in the Fermi sea of each branch, which means divergence

for the density. In the field theory approach usually people work around this issue by in-

troducing the notion of normal ordering which hides the singularities into the ground state

expectation value and separate from the study of fluctuations. Since we would like to study

the low–energy fluctuations of the density/current operators about their TL ground state

expectation value (which coincide with the low–energy density/current fluctuations of our

original lattice model), we intorduce normal ordering of an operator O as

: O : ≡ O − 〈Ω|O|Ω〉 (2.38)
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where by Ω we represent the set of occupied states in the Fermi sea of the TL model. Since

all operators of interest are given in terms of fermion bilinears, it is intersting to note what

normal ordering does for femion bilinear operator

: f †kfk : =


f †kfk k /∈ Ω

−fkf †k k ∈ Ω

(2.39)

This should also make clear why the term “normal ordering” is used to refer to this opera-

tion, as the operation enforces a paritcular ordering depending on whether or not the state

is inside the Fermi sea.

We first try to calculate the commutation relation for the Fourier modes of the

density operator, defined as

ρP (q) ≡ L−1/2

∫
dx e−iqxρP (x) = L−1/2

∑
k

f †P (k + q)fP (k). (2.40)

An explicit calculation of the commutation relation results in

[
ρP (−q), ρP (q′)

]
=

1

L

∑
k,k′

[
f †P (k − q)fP (k), f †P (k′ + q′)fP (k′)

]

=
1

L

∑
k

(
f †P (k − q)fP (k − q′)− f †P (k − q + q′)fP (k)

)
. (2.41)

The above expression should not be naively evaluated as it is the difference of two infinity

terms; we should first replace each term by thier respetive normal ordering plus their expec-

tation value. The normal ordering terms (fluctuations) now simply cancel (because they are

finite terms and we can rename the dummy index) and the difference in the ground state

expectation values,
∑

k〈n(k − q)〉 − 〈n(k)〉, will be the number of states on a segment of

size q, and gives a P × q(L/2π) factor. Therefore, the density operators obey the following
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commutation relations [
ρP (−q), ρP (q′)

]
= P

q

2π
δpp′ , (2.42)

The fact that the Fourier modes of fermionic density obey bosonic commutation relations

naturally lead us to the definition of momentum space bosons with creation and annihilation

operators, b†q, bq define as

b†q =

√
2π

|q| ×


ρR(q) q > 0

ρL(q) q < 0

, (2.43)

bq =

√
2π

|q| ×


ρR(−q) q > 0

ρL(−q) q < 0

. (2.44)

The q = 0 is excluded as it doesn’t satisfy bosonic commutators and it corresponds to the

total number of fermions which is a conserved quantity due the chiral symmetry of the

original model. The dream is now realized since the density–density interactions can now

be written as boson bilinears. These bosons can now be used to define real space bosonic

field operators but here we take a more natural approach for derivation of the real space

fields.

The real space commutation relation can also be derived using the inverse Fourier

transform formula, [
ρP (x), ρP (x′)

]
= −P i

2π
∂xδ(x− x′). (2.45)

It is more natural to write the commutation relations for the fermionic chiral current op-

ertors, jµ = ψ̄γµψ. The chiral current components j0, j1 correspond to the total fermionic
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density and total fermionic right–moving current,

j0(x) = ρR(x) + ρL(x), j1(x) = ρR(x)− ρL(x), (2.46)

and the obey the commuation relation,

[
j0(x), j1(x′)

]
= − i

π
∂xδ(x− x′). (2.47)

Duality, the bosonic fields

We are now ready for the third step. The above commutation relation strongly

suggests a duality between the fermionic field theory and the theory of a bosonic field. Recall

that a bosonic field ϕ(x) with its conjugate field Π(x) ≡ ∂tϕ(x) obey the commutation

relation [ϕ(x),Π(x′)] = iδ(x− x′). This allows us to establish a precise connection between

the components of the fermionic chiral current and the bosonic field, say ϕ, using the

identifications:

j0 ≡ π−1/2 ∂xϕ(x), j1 ≡ −π−1/2 Π(x) = −π−1/2 ∂tϕ(x). (2.48)

An important implication of this identification is that a step-function-like kink in the boson

field corresponds to a delta-like peak (particle) in the fermionic density. This is why we

referred to fermions as a “kink” in bosonic field.

Alternatively, we could have identified j1 with the spatial derivative of a different

bosonic field, say ϑ, and j0 with its temporal derivative (conjugate field Ξ), that is

j0 ≡ −π−1/2 Ξ(x) = −π−1/2 ∂tϑ(x), j1 ≡ −π−1/2 ∂xϑ(x). (2.49)
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With this particular choice of identification and signs the two boson fields satisfy the

Cauchy–Riemann equations with ϕ as the first field, and ϑ as the second field

∂tϕ = ∂xϑ, ∂xϕ = −∂tϑ. (2.50)

so the field ϕ(x, t) + iϑ(x, t) is an analytic field of x+ it!

It is in this manner that the fields ϑ and ϕ are considered as conjugate fields, in

particular their commutator reads

[
ϕ(x), ϑ(x′)

]
= −iΘ(x− x′), (2.51)

where Θ is the normal Heaviside step function. We will see that it is generally simpler to

bosonize the fermionic theories using the ϕ and ϑ field instead of their conjugates.

Fermions as vertex operators

For the fourth and final step, we learned that fermions can be considered as kinks

in the bosonic filed ϕ, so we try for the operator exchange of the non–local soliton operators

defined as ψ(x) ≡ exp
(
iαϕ(x) + iβ

∫ x
−∞Π(x′) dx′

)
,

ψ(x)ψ(y) = ψ(y)ψ(x) exp

(
αβ

∫ y

−∞
dy′
[
ϕ(x),Π(y′)

]
+ αβ

∫ x

−∞
dx′

[
Π(x′), ϕ(y)

])

which means choosing β = ±π/α, they behave like fermions.

We can now express the right(left) moving Dirac operators,

ψ+(x) =
1√
2πa

: e+i
√
π(ϕ−ϑ) :

ψ−(x) =
1√
2πa

: e−i
√
π(ϕ+ϑ) :
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Different notations can be found throughout the literature which includes different

choice of letters for the bosonic fields, different choice of sign, different placement of the π

factors, and different definition for the Luttinger liquid parameter. It is thus useful to have

a conversion table.

j0 j1

Gogolin [43] 1√
π
∂xΦ − 1√

π
∂xΘ

Giamarchi [42] − 1
π∂xφ

1
π∂xθ

Kane, Fisher [71, 39] ∂xθ −∂xφ
Nagaosa [102] 1

2π∂xθ+
1

2π∂xθ−

For the rest of this thesis, we chose to use the conventions of Kane and Fisher and

replace φ with ϕ. This is mainly to remain consistent with other references [125] and the

problems we address in this thesis.

It is now easy to translate possible fermion interaction terms into the boson lan-

gauage and discuss their renormalization around the free theory fixed point. Let us start

with the interaction operator ψ†+ψ−,

ψ†+ψ− =
1

2πa
: e−4π[φ+,φ−] : : e−i2

√
πϕ :

So the mass term will be represented as a cosine

ψ†+ψ− + ψ†−ψ+ = − 1

πa
: cos (2

√
πϕ) : .

Another important four particle interaction term is the umklapp interaction of

left(right) scatter into two right(left) particles which is the result of half filling and the

Fermi momentum of π. The Umklapp interaction term can be represented in the bosonized

language as follows

(ψ†+ψ−)2 + (ψ†−ψ+)2 =
1

2π2a2
: cos (4

√
πϕ) : .
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2.4 Sine–Gordon theory

We would use the Eucleadian path integral formalism, where τ = it. The sine–

Gordon theory Lagrangian is

L ≡ 1

2πg

[
1

v
(∂τθ)

2 + v(∂xθ)
2

]
+ α cos(βθ) (2.52)

where v is the velocity of the field, g is the Luttinger liquid parameter, i.e. the ratio of the

kinetic term to potential term.

2.4.1 Correlation fucntions and scaling dimension of vertex operator

To check the SBM theory we need to treat the allowed interaction terms using

RG. We have seen that the Hermitian fermion interaction terms are expressed in terms

of cos, sin of boson fields. So we need to calculate the scaling dimension of the operator

V (x) ≡ exp (iαθ(x)) at the fixed point of the free theory given by the partition function

Z[0] =

∫
Dθ exp

(
−
∫
L0(τ, x) dτdx

)
, L0 ≡

1

2πg

[
1

v
(∂τθ)

2 + v(∂xθ)
2

]
(2.53)

For simplicity we can define r = (vτ, x). In this new variable the Lagrangian is simply

L0 = (∇r)2/2πg. To find the correlation function 〈θ(r)θ(r′)〉 we need to define the partition

function with a source field J(r),

Z[J ] ≡
∫
Dθ exp

(
−
∫

d2r
[
L0 − J(r)θ(r)

])
, (2.54)
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we will therefore have

Z[J ]

Z[0]
=

〈
exp

(∫
d2r J(r)θ(r)

)〉
= exp

(
1

2

∫
J(r)G(|r− r′|)J(r′) d2rd2r′

)
(2.55)

= exp

(
1

2

∫
J(k)G(k)J(−k) d2k

)
(2.56)

to see note that the interacting Lagrangian written in momentum space

L =

∫
d2k

(
k2

2πg
θ′(k)θ′(−k) +

1

2
J(k)

πg

k2
J(−k)

)
(2.57)

where we complete the square with the new field θ′(k) = θ(k)−πg/k2J(k). From symmetry

considerations as well as the above result we see that the Green’s function G(r, r′) only

depends on the distance |r − r′| and is the inverse of the operator ∇2/πg. Therefore, the

Green’s function is the solution to the differential equation

∇2G(|r− r′|) = πgδ(r− r′) (2.58)

which has the solution

G(|r− r′|) =
g

2
ln |r− r′| (2.59)

The correlation functions are also related to the derivatives of the source field partition

function and the Green’s function simply

〈θ(r)θ(r′)〉 =
∂

∂J(r)

∂

∂J(r′)
Z[J ]

Z[0]
= G(r, r′). (2.60)

We are now ready to discuss the scaling dimension of V (r) operator. Defining

f(r′′) ≡ iβ(δ(r′′ − r) + δ(r′′ − r′)), we can easily calculate the correlation

〈eiβθ(r) eiβθ(r′)〉 =
Z[f ]

Z[0]
= e−β

2(G(0)+G(|r−r′|)) ∝ 1

|r− r′|gβ2/2
, (2.61)
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and read the scaling dimension of operator V (r), that is

∆[eiβθ(r)] =
gβ2

4
. (2.62)

2.4.2 The Renormalization group study

In order to perform the renormalization group study we introduce the cut–off field

θΛ(r) that represents only the field in the modes slower than a cut–off Λ. That is

θΛ(r) =

∫
0<|k|<Λ

d2k

(2π)2
θ(k). (2.63)

We would then study the Lagrangian under the change of cut–off and rescaling of the fields.

For a given b = 1 + ε with ε > 0 we will then split the field θbΛ to the slow and fast moving

parts

θbΛ(r) = θΛ(r) + hΛ(r), hΛ(r) =

∫
Λ<|k|<bΛ

d2k

(2π)2
θ(k). (2.64)

We would like to write down the parition function upon the rescaling of the field and

integration of the fast modes:

ZbΛ =

∫
DθbΛ e−S[θbΛ] =

∫
DθΛ e−S̃[θΛ]. (2.65)

Labling the interaction term as F (r) ≡ cos(β[θΛ(r) + hΛ(r)]), we have

S[θbΛ] = S0[θΛ] + S0[hΛ] + α

∫
dr F (r) (2.66)
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we now integrate out the fast fields hΛ we find the modified action as (up to a constant)

S̃[θΛ] = S0[θΛ]− ln
〈

e−α
∫

dr F (r)
〉
h

(2.67)

≈ S0[θΛ] + α

∫
dr 〈F (r)〉h

− α2

2

∫∫
drdr′

(
〈F (r)F (r′)〉h − 〈F (r)〉h〈F (r′)〉h

)
+ · · · (2.68)

which in the last step we used the first two terms of the cumulant expansion for small α.

Defining the Green’s function only in the narrow band of momenta Λ < k < bΛ as

Gh(r) =

∫
Λ<k<bΛ

d2k

(2π)2
eik·r πg

k2
, (2.69)

for small change of the cut–off that is for b = 1 + ` the narrow band Green’s function is

Gh(r) ≈ g`

2

1

2π

∫ 2π

0
eikr cosφ dφ =

g`

2
J0(Λr) (2.70)

where J0 is the 0th Bessel function.

We get for the expectation value, choosing J(r′) = iβδ(r′ − r), or in Fourier

J(k) = iβe−ik·r/2π we have

〈eiβh(r)〉h =
Zh[J ]

Zh[0]
= e−

β2

2
Gh(0) (2.71)

and similarly choosing J(r′′) = iβ[δ(r′′ − r) ± δ(r′′ − r′)], or in Fourier J(k) = iβ[e−ik·r ±

e−ik·r′ ]/2π we have

〈eiβh(r) e±iβh(r′)〉h =
Zh[J ]

Zh[0]
= e−β

2(Gh(0)±Gh(|r−r′|) (2.72)

We can now evaluate the first two order of the Eq. (2.68) using the above calcualtion of

expectation values.

S̃[θΛ] = S0[θΛ] + S(1)[θΛ] + S(2)[θΛ] + · · · (2.73)
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where the first order of expansion is

S(1)[θΛ] = αe−
β2

2
Gh(0)

∫
dr cos(βθΛ(r)) (2.74)

up to first order of expansion (one loop normalization group) considering small `, we can

write e−β
2Gh(0)/2 = 1− gβ2/4. So, we have the flow equation

dα

d`
= −gβ

2

4
(2.75)

note that this is consistant with the scaling dimension of the vertex operator!

And for the second order of expansion we have

S(2)[θΛ] = −α
2e−β

2Gh(0)

4

∫∫
drdr′

(
e−β

2Gh(|r−r′|) − 1
)

cos(θΛ(r) + θΛ(r′))

+
(

eβ
2Gh(|r−r′|) − 1

)
cos(θΛ(r)− θΛ(r′)) (2.76)

The Green’s function is generally strongly decaying, specifically since only a narrow region

of modes contribute to Gh. Therefore only |r − r′| < Λ−1 contribute to this integral. The

field θΛ is also varying slowly in that region, as it only has modes up to Λ, therefore the

cosine in second terms can be approaximated by 1− 1
2(|r− r′| · ∇θΛ)2. Redefining r as the

center of mass coordinates, r = (r + r′)/2, and the difference x = r− r′

S(2)[θΛ] ≈ α2β2e−β
2Gh(0)

8

∫∫
drdx

(
eβ

2Gh(x) − 1
)

(x · ∇θΛ(r))2 (2.77)

With these approximations we can see that the coefficient of (∇θ)2 has changed in the

Lagrangian, we can rescale the field to get back the original form of free Lagrangian

θ̃ =

(
1 +

A

8

π2g2

Λ4
α2β4`

)1/2

θ (2.78)
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where A represent
∫∞

0 x3J0(x) dx. If we now replace the interaction term with the rescaled

field as well, we will see that

β̃ = β

(
1 +

A

8

π2g2

Λ4
α2β4`

)−1/2

. (2.79)

So to second order we get the following flow equation

dβ

d`
= − A

16

π2g2

Λ4
α2β5 (2.80)

2.5 Conformal Field Theory

2.5.1 Motivation

Classical critical phenomena

It has been shown that second order phase transition corresponding to T 6= 0, is

characterized by blow–up of the correlation function, ξ → ∞, and is described by a field

theory that remains invariant under conformal transformation. This is because at least for

2D theories, if the theory that is invariant under the global scale transformation, it is also

invariant under the larger symmetry group–the conformal group.

Wilson Renormalization group

In the language of field theory we usually assume that all terms respecting the

symmetry in the action are possible for the field degrees of freedom of the system phi(x).

Each term will be added by a coupling gi. Upon renormalization the flow of the couplings

in the space of operators are governed by the flow equation,
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dgi
d logE

= βi(g) (2.81)

The flows are generally toward or away from a fixed sub–manifolds at which the β

function vanishes. Since Renormalization procedure can be thought of as an scale change,

the fixed sub–manifolds are by definition scale invariant.

Why not more?

The Coleman–Mandula theorem states that the largest possible symmetry group

for a non–trivial field theory is the conformal symmetry [31]. However, superconformal

symmetries could be thought of as a counterexample.

2.5.2 Classical Conformal Invariance

Conformal map

Consider a smooth manifold M equipped with metric g, a diffeomorphism ϕ : M →

M is called a conformal map if the pullback metric equals to the original metric up to scale,

which means the resulted metric from the transformation is a real–valued function times

the original metric,

g′ := ϕ∗g = Λ(x)g

For the flat space with the metric ηµν = diag(−1, · · · ,+1, · · · ), and its conformally

equivalent metrics we have

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)ηµν (2.82)
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To derive the condition for an infinitesimal transformation, xµ 7→ x′µ = xµ + εµ, to be

conformal we expand up to first order in ε

(
1 + λ(x)

)
ηµν = ηρσ

(
δρµ + ∂µε

ρ
)

(δσν + ∂νε
σ) = ηµν + (∂νεµ + ∂µεν)

multiplying the above equation with ηµν we reach the condition,

(∂νεµ + ∂µεν) =
2

D
(∂ · ε)ηµν (2.83)

Conformal Group and Conformal Algebra in D=2

In D = 2, using gµν = δµν the infinitesimal condition for conformal transformation

becomes the Cauchy–Riemann equations,

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1

As a result, it makes sense to define the usual complex coordinates here,

z = x1 + ix2, ∂z = 1
2(∂1 − i∂2), ε(z) = ε1 + iε2 (2.84)

z̄ = x1 − ix2, ∂z̄ = 1
2(∂1 + i∂2), ε̄(z̄) = ε1 − iε2, (2.85)

Note that here z, z̄ are treated as two independent variables which means that we are

working in C2 instead of the original R2 space. This is a standard trick which simplifies the

treatment in the sense that we can limit the discussion to the un–bared part and the bared

will follow, however, when necessary we have to make sure to work in the real contour,

which is defined as the 2D surface in C2 that z and z̄ are complex conjugates.

In the complex plane, the infinitesimal conformal transformation ε(z) and ε̄(z̄) are

only a function of z and z̄ respectively, since ∂z̄ε = ∂z ε̄ = 0.
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From the condition it follows that for the transformation to be conformal, we only

need ε(z) to be a holomorphic function and thus, any holomorphic function, f(z) = z+ε(z),

is an infinitesimal conformal transformation with scale factor of Λ = |∂f∂z |2. So we now can

perform the Laurent expansion of ε(z), ε̄(z̄),

z 7→ f(z) = z +
∑
n

εn(−zn+1), z̄ 7→ f̄(z̄) = z̄ +
∑
n

ε̄n(−z̄n+1)

and read the generators of infinitesimal transformation l, l̄ as,

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄

It is straightforward to check that the generators satisfy two independent algebras A and

Ā known as the Witt algebra,

[lm, ln] = (m− n)lm+n,
[
l̄m, l̄n

]
= (m− n)l̄m+n

[
lm, l̄n

]
= 0 (2.86)

Again note that the direct product of the two algebra, A ⊗ Ā, lives in C2. For

our original R2 space , when the algebra is concerned, we consider the subalgebra A ⊕ Ā

generated by ln + l̄n and i(ln − l̄n).

These generators are called the local conformal algebra in a sense that they have

been defined on the R2 space (or any open set of that). However, since inversions are

conformal, in a conformal field theory we do not want to consider the infinity as a special

point and we would like to work in S2 ∼ R2 ⊕ {∞}. So, considering the whole vector field

V(z) = −∑ zn+1∂z we can ask what subset of the local algebra is well defined globally?

Obviously there are only two points that V could have poles. At the limit z → 0

only n ≥ −1 are well defined and for the limit z →∞, we have to go to local coordinates,
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using the change of variable w = −1
z ,

ln = −
(
− 1

w

)n+1

× (−w2∂w) = −
(
− 1

w

)n−1

∂w

only n ≤ 1 are well defined. So, for the whole space of Riemann sphere only the set of

{l−1, l0, l1} together with their anti–holomorphic counterparts {l̄−1, l̄0, l̄1} are well define.

This subalgebra of local algebra is called the global conformal algebra.

• l−1 ⊕ l̄−1 are the generators of translations in 2D.

• l0 generates the transformation z 7→ (1 + ε)z, using the standard r, φ for complex

variable z = reiφ we have.

l0 = −z∂z = −1

2
(r∂r − i∂φ) , l̄0 = −z̄∂z̄ = −1

2
(r∂r + i∂φ)

So, together they are the generators of dilatation and 2D rotation.

(l0 + l̄0) = −r∂r, i(l0 − l̄0) = −∂φ

• l1⊕ l̄1 are the special conformal generators which can be thought of as the translations

for the inverse variable w = −1
z ,

l1 = −z2∂z = −
(
− 1

w

)2

(w2∂w)2 = −∂w

The global conformal group generated by exponentiation of this algebra is the

SL(2,C)/Z2

z 7→ az + b

cz + d
, z̄ 7→ az̄ + b

cz̄ + d

The Z2 is due to the fact that multiplying the a, b, c, d by −1 does not change the transfor-

mation. There are 4 interesting subgroups,
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• Translation: z 7→ z +B,

1 B

0 1



• Rotation: z 7→ eiθz,

eiθ 0

0 e−iθ



• Dilatation: z 7→ λz,

λ 0

0 λ−1



• Special conformal: z 7→ 1
Cz+1 ,

1 0

C 1


As expected the group SL(2,C) is isomorphic to SO(3, 1).

2.5.3 Conformal QFTs

For a general conformal invariant field theory we demand the following properties:

• A set of fields {Ai} which contains all the fields and their derivatives.

• A subset of fields {φj} ⊂ {Ai} called ”quasi–primary” which under global conformal

transformations, will transform like

φj(x) 7→
∣∣∣∣∂x′∂x

∣∣∣∣∆j/d

φj(x
′)

• All the fields can be represented in terms of linear combination of quasi primary fields

and their derivatives.

• There exist a vacuum |0〉 invariant under global conformal transformation.
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Radial Quantization

Lets start with flat Euclidean time σ0 and space σ1 coordinates and compactify the

space σ1 = σ1 + 2π to get rid of unavoidable IR divergences in 2D. Defining ζ, ζ̄ = σ0 ± σ1

they now live on a cylinder.

We can now consider the conformal map ζ 7→ z = eζ , to map the cylinder to a

plane of z. The radial direction of the plane is now the time direction and The equal time

circles on the cyclinder map to concentric circles on the plane. In particular,

• The infinite past and future σ0 = ±∞ will now correspond to z = 0,∞.

• The time–reversal operation σ0 7→ −σ0 is now z 7→ 1/z∗.

• Rotations on the plane z 7→ eiθz are just the space translations on cylinder σ1 7→ σ1+θ

• Dilatation on the plane z 7→ eaz are just the time translation on the cylinder σ0 7→

σ0 + a

So, the generator of dilatation on the plane can be considered as the Hamiltonian,

i.e. the generator of time translation in our cylinder spacetime, and the Hilbert space can

be built up on the surfaces of constant radius on the plane. This definition of quantum

theory on the plane is called the Radial Quantization.

Following the above discussion, it makes sense to define the physical states as the

eigenvectors of the Dilatation operator. if we denote the eigenvalues of l0, l̄0 by h, h̄, the

eigenvalues of Dilatation operator , also known as the scaling dimension ∆ ,will then be

h+ h̄ and the eigenvalues of Rotation operator will be h− h̄, also known as spin s.

∆ = h+ h̄, s = h− h̄
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The physical requirement for the h, h̄ is then to be real numbers.

Field Operators

Translating the notion of quasi–primary fields to 2D, we define a quasi–primary

field of dimension (h, h̄) to transform according to the following rule under global conformal

transformations,

Φ(z, z̄) 7→
∣∣∣∣∂f∂z

∣∣∣∣h ∣∣∣∣∂f̄∂z̄
∣∣∣∣h̄ Φ

(
f(z), f̄(z̄)

)
This is equivalent to the statement that the differential Φ(z, z̄) dzhdz̄h̄ is invariant. If the

field Φ transform with same rule under local conformal transformations we call it a primary

field of conformal weight (h, h̄). It is useful to calculate the variation of a primary field

under an infinitesimal conformal transformation, z 7→ z + ε(z)

δε,ε̄Φ(z, z̄) = (1 + ∂zε)
h(1 + ∂z̄ ε̄)

h̄
(

(1 + ε∂z + ε̄∂z̄)Φ(z, z̄)
)
− Φ(z, z̄)

=
(

(h∂zε+ ε∂z) + (h̄∂z̄ ε̄+ ε̄∂z̄)
)

Φ(z, z̄) (2.87)

Conformal invariance imposes important constraints on the form of the correlation

functions of quasi–primary fields. For the two point correlation function the invariance under

symmetry will for the result to be only a function of distances zij = zi − zj , z̄ij = z̄i − z̄j

and the invariance under scaling will lead to,

G(zi, z̄i, zj , z̄j) := 〈Φi(zi, z̄i)Φj(zj , z̄j)〉 =
dij

z
hi+hj
ij z̄

h̄i+h̄j
ij
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To examine the invariance under special conformal transformation, it suffices to only con-

sider the invariance under inversion,

G(zi, z̄i, zj , z̄j) =
1

z2hi
i

1

z
2hj
j

1

z̄2h̄i
i

1

z̄
2h̄j
j

G( 1
zi
, 1
z̄i
, 1
zj
, 1
z̄j

)

=
1

z2hi
i

1

z
2hj
j

1

z̄2h̄i
i

1

z̄
2h̄j
j

dij

(−1
zi

+ −1
zj

)hi+hj (−1
z̄i

+ −1
z̄j

)h̄i+h̄j

Which can only be satisfied when hi = hj and h̄i = h̄j , so the final form of the two point

functions of quasi primary fields is

G(zi, z̄i, zj , z̄j) =


dij

z
2hi
ij z̄

2h̄i
ij

hi = hj , h̄i = h̄j

0 otherwise

(2.88)

Global Symmetries of QFTs

A transformation of the fields that leaves the action, S, invariant (even when the

EOM is not satisfied) is called a global symmetry,

Φa(x) 7→ Φa(x) + iεN a(x), s.t. δS = iε

∫
dDx

δS
δΦa(x)

N a(x) = 0

The standard trick of Noether’s theorem is to enhance the ε to a smooth but arbitrary

function of coordinates. The variation of action is then, generally, nonzero but if we now

require the satisfaction of EOM, δS vanishes for arbitrary variations due to the stationary

condition of S. This leads to a conserved current,

0 = δS =

∫
dDx jµ

∂ε(x)

∂xµ
=⇒ ∂µj

µ = 0

43



We can make another set of conserved quantities out of the currents, known as the conserved

charge which serve as the Quantum generators of transformation,

Q =

∫
dD−1x︸ ︷︷ ︸
spatial

j0

If the symmetry is now the symmetry of Lagrangian density, it is straightforward

to show that for the current and charge we have,

jµ =
∂L

∂(∂µΦa)
N a =⇒ Q =

∫
dD−1x

∂L

∂(∂tΦa)
N a

remembering that ∂L /∂(∂tΦ) was defined as conjugate momentum, it is now easy to see

in what sense the conserved charge is the generator of transformation,

[
Q,Φa

]
=

∫
dD−1x

[
Πb,Φ

a
]
N b = −iN a

It is fruitful to define the current in terms of the energy–momentum stress tensor

jµ = Tµνε
ν which is in general a symmetric(Belifante stree tensor) divergence free ten-

sor (since for a constant εµ, we have 0 = ∂µjµ = ∂µTµν). In particular for a conformal

transformation Tµν is also traceless, because

0 = ∂µjµ = Tµν(∂µεν) =
1

d
Tµνη

µν(∂ · ε) =
1

d
(∂ · ε)Tµµ

To realize the consequence of traceless property we can write the stress tensor in

z, z̄ coordinates in terms of standard coordinates of the plane x0 = 1
2(z+ z̄), x1 = 1

2i(z− z̄)

with Euclidean metric δµν . The metric for z, z̄ coordinates is then,

gµν =


x0 x1

x0 1 0

x1 0 1

 =⇒ gµν =


z z̄

z 0 1
2

z̄ 1
2 1
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and for the components of stress tensor,

Tzz =
1

4
(T00 − 2i T01 − T11) =

1

2
(T00 − iT01)

Tz̄z̄ =
1

4
(T00 + 2i T01 − T11) =

1

2
(T00 + iT01)

Tzz̄ = Tz̄z =
1

4
(T00 + T11) = 0

using the divergence–free property,

∂z̄Tzz =
1

4
(∂0 + i∂1)(T00 − iT10)

=
1

4

(
(∂0T00 + ∂1T10︸ ︷︷ ︸

∂µTµ0

) + i(∂1T00 − ∂0T10︸ ︷︷ ︸
∂µTµ1

)
)

= 0

So the two non–vanishing components of stress tensor have only holomorphic and antiholo-

morphic dependence respectively, So for simplicity we can write,

T (z) := Tzz(z), T̄ (z̄) := Tz̄z̄(z̄)

So, we have a holomorphic jz = T (z)ε(z) and an antiholomorphic current, j̄z̄ =

T̄ (z̄)ε̄(z̄). The conserved charge (integral of orthogonal component of current to surface of

equal time) becomes
∫

dθ jr(θ), so we are only interesting in the i(jz + j̄z̄) component of

current. If we make the convention of integrating counterclockwise and normalize the size

of space 2π we can define the conserved charge as

Qε,ε̄ =
1

2πi

∮ (
dz T (z)ε(z) + dz̄ T̄ (z̄)ε̄(z̄)

)
(2.89)

Note that we can not calculate this integral until we mention what fields it is acting on (are

present inside of the contour) For the infinitesimal transformation of any field we then have

δε,ε̄φ(w, w̄) =
1

2πi

(∮
dz ε(z)

[
T (z), φ(w, w̄)

]
+

∮
dz̄ ε̄(z̄)

[
T̄ (z̄), φ(w, w̄)

])
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Operator Product Expansion

We now turn into the calculation of variation of a field under infinitesimal confor-

mal transformation. For Quantum fields we have to impose the regular time ordering which

on the plane will translate to the notion of Radial Ordering. We define the radial ordering

of operators,

R
(
A(z)B(w)

)
=


A(z)B(w) |z| > |w|

B(w)A(z) |w| > |z|

Using the radial ordering definition, we can decipher the meaning of equal time commutator.

Considering only holomorphic part

∮
E.T.

dz [A(z), B(w)] =

∮
|z|>|w|

dzA(z)B(w)−
∮
|w|>|z|

dzA(z)B(w)

=

∮
C(w)

R
(
A(z)B(w)

)
where C(w) is a circle of infinitesimal radius around w traversed counterclockwise.

Comparing the holomorphic part of primary field transformation with the trans-

formation from the conserved charge,

1

2πi

∮
dz ε(z)R

(
T (z)Φ(w, w̄)

)
= (h∂wε+ ε∂w)Φ(w, w̄)

using the following identities,

ε(w)∂wΦ(w, w̄) =
1

2πi

∮
C(w)

dz
ε(z)

z − w∂wΦ(w, w̄)

h∂wε(w)Φ(w, w̄) =
1

2πi

∮
C(w)

dz
hε(z)

(z − w)2
Φ(w, w̄)
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we find the Operator Product Expansion (OPE) of a primary field with the energy momen-

tum tensor (we drop the radial ordering and consider the products as the radially ordered

products from now on),

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w∂wΦ(w, w̄) + · · · (reg.) (2.90a)

T̄ (z̄)Φ(w, w̄) =
h̄

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄ ∂w̄Φ(w, w̄) + · · · (reg.) (2.90b)

This OPE can be taken for the definition of primary fields as well.

Quantum Correction to Conformal Algebra

A secondary (or descendant) field is a field that has higher poles in its OPE with

T or T̄ . As an example, by taking the derivative of a primary field one can see that the

derivatives of primary fields are not primary.

An important secondary field is the stress tensor itself, to see that we have to look

at the conformal transformations of the stress tensor. From the OPE of primary fields it

is apparent that T has conformal weight (2,0). Given that stress tensor is bosonic, we can

write down the TT OPE upto a constant c,

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂wT (w) + · · · (reg.) (2.91)

Here c, the central charge, is a number that depends on the theory. Using the OPE we can

now derive the infinitesimal conformal transformation for the stress tensor,

δεT (z) = 2∂εT (z) + ε∂T (z) +
c

12
∂3ε
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Virasoro algebra

We now derive the algebra of the generators of conformal transformation of a

Quantum theory. The Laurent expansion of T (z) reads,

T (z) =
∑
n∈Z

z−n−2Ln =⇒ Ln =
1

2πi

∮
dz zn+1T (z)

The 2 in the exponent is chosen so that Ln operators have the scaling dimension of n. We

first show that the Laurent modes of stress tensor are indeed the generators of infinitesimal

conformal transformation. Choosing the specific transformation ε(z) = −εnzn+1 for the

conserved charge we have,

Qn =

∮
dz

2πi
T (z)εnz

n+1 = −εn
∑
m∈Z

∮
dz

2πi
Lmz

n−m−1 = −εnLn

So, to calculate the algebra,

[Lm, Ln] =

∮
dz

2πi

∮
dw

2πi
zm+1wn+1 [T (z), T (w)]

=

∮
C(0)

dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1T (z)T (w)

=

∮
C(0)

dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1

(
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w

)
=

∮
C(0)

dw

2πi
wn+1

( c
12
m(m2 − 1)wm−2 + 2(m+ 1)wmT (w) + wm+1∂wT (w)

)
=

c

12
m(m2 − 1)δm+n,0 + 2(m+ 1)Lm+n − (m+ n+ 2)Lm+n

= (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

Which is known as the Virasoro Algebra.

2.5.4 The free boson/fermion theory

The free massless boson action is conformally invariant in D = 2, the action for

a 2D massless bosonic field X(x0, x1) defined on the cylinder x1 = x1 + 2π with metric
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h = diag(+1,+1) would be,

S =
1

4πκ

∫
dx0dx1

√
|h| hαβ∂αX∂βX

Following the usual mapping to the complex plane, z = ex
0+ix1

, the metric of the complex

plane is,

g =

 0 1
2zz̄

1
2zz̄ 0

 , g−1 =

 0 2zz̄

2zz̄ 0


So for the X(z, z̄) filed the action will be,

S =
1

4πκ

∫
dzdz̄

√
|g|gab∂aX∂bX

=
1

2πκ

∫
dzdz̄ ∂X∂̄X

from the equation of motion ∂∂̄X(z, z̄) = 0 it is apparent that X(z, z̄) splits into holomor-

phic and antiholomorphic parts which correspond to massless left–movers and right–movers.

2.6 Exact solution of the XXZ model

2.6.1 Integrability

A particularly fruitful approach in theoretical physics is to introduce exactly solv-

able toy models to achieve a stronger understanding of the underlying physics of many–body

phenomena. These toy models generally posses an extensive set of local constants of motion,

or symmetries of the theory, which allow for a complete solution. It is in this sense that

we describe integrability as the ultimate form of symmetry. Note that the theory of nature

might not necessarily respect this symmetry, and probably doesn’t, therefore the conclusions

from toy models should not be naively extended to all possible theories. In this section we
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follow Hans Bethe’s solution to one dimensional interacting systems in the context of one

dimensional XXZ chain. This surprising solution is a consequence of existence of solitons

in the theory, despite complexity any non–linear system with solitons is integrable.

2.6.2 Bethe ansatz for spin chains

Spin chains

For a periodic chain of length L with a single spin-1
2 , which is a two dimensional

Hilbert space h
1
2 , at every site the total Hilbert space is

H =
L⊗
h

1
2 , dim H′ = 2L

If the Hamiltonian satisfies

• Translational invariance, that is [T,H] . The translation operator T is defined by its

action on the Ising configuration states,

T |m1, . . . ,mL−1,mL〉 = |mL,m1, . . . ,mL−1〉

it is therefore a non–local unitary operator with eigenvalues eik with the allowed values

of momentum, k = 2π
L × (−L

2 , . . . , 0, . . . ,
L
2 − 1), are prescribed by the periodicity.

• Short ranged, that is the Hamiltonian is a sum of short ranged operators that have

only local support.

• Conservation of the third component of total spin, which means [Sztot,H],

the total Hilbert space can be split into different sectors and hence be exactly solved.
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The first step is to make use of the conservation of total magnetization m =∑
Szi + 1

2 , which leads to division of Hilbert space (and hence the Hamiltonian) into different

magnetization sectors. Defining m as the count of the number of up spins in an Ising

configuration,

H =
⊕
Hm, dim Hm =

(
L

m

)
For the case of Heisenberg Hamiltonian the total spin operator, Stot is also con-

served (because each Heisenberg term commutes with the complete graph Heisenberg Hamil-

tonian) and as a result the Hilbert space can be divided into total spin blocks. Since for

total spin of s there are 2s+ 1 possible eigenvalues for the third component of spin, namely

Sztot = s, s − 1, . . . ,−s, the number of possible total spin–s that can be generated from a

chain of length L is easy to calculate

Ns =

(
L

L
2 + s

)
−
(

L
L
2 + s+ 1

)
so the total Hilbert space in terms of total spin blocks are

H =

L/2⊕
s=0

Hs where Hs =

Ns⊕
hs

Bethe basis

Going back to the magnetization blocks, the m = 0 sector has only one state, i.e.

the Ising configuration of all L spins down, known as the Bethe reference state, ψ0. Obvi-

ously, this state is also an eigenstate of the translation operator with the trivial momentum

of k = 0. This state is the lowest weight of the total spin–L2 sector.

For the sake of notation simplicity, from now on I only use the position of up spins

to represent any Ising configuration, for example the state |i, j, k〉 where 1 ≤ i < j < k ≤ L
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represents all spins in the down state except for the three sites at i, j, k. The action of the

translation operator in this new notation is

T |i, j, k〉 = |(i+ 1), (j + 1), (k + 1)〉 mod L

The m = 1 sector has L states which we can expand in terms of the Ising basis as,

ψ1,α =
L∑
x=1

cα(x) |x〉, α = 1, 2, . . . , L

If we now impose the translational invariance on the states,

Tψ1(k) = eikψ1(k) =⇒ ψ1(k) =
1√
L

L∑
x=1

e−ikx |x〉

So the spin wave states label with the good Quantum number, the total momentum k, are

all the L translational invariant states in this sector. It is worthy to talk about the total

spin of these states. The action of the S−tot on these states, shows that the k = 0 state

belongs to the total spin of L
2 and the rest are lowest weights of L− 1 distinct spin–(L2 − 1)

sectors.

S−tot ψ1(k) =
1√
L

L∑
x=1

e−ikx S−x |x〉 =
√
Lψ0 δk,0

For m = 2 sector we can again write the desired states in terms of the Ising

configuration basis

ψ2,α =
∑

1≤x1<x2≤L
cα(x1, x2) |x1, x2〉

As a first guess one might think that the product of single spin waves with quasi–momenta

e−i(k1x1+k2x2) is an eigenstate of translation operator with momentum k1 + k2, however

for the Ising configuration when one of the up spins wraps around the periodic boundary

condition due to the action of the translation operator we can see that

T e−i(k1x1+k2L) |x1, L〉 6= ei(k1+k2)ei(k1+k2(x1+1)) |1, x1 + 1〉
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and as a result the simple product of spin waves are not the desired states. However, the

following ansatz

cα(x1, x2) = A12 e−i(k1x1+k2x2) +A21 e−i(k2x1+k1x2)

is a translationally invariant state with the total momentum of k1 + k2 if the following two

conditions hold

A12 = A21e−ik1L, A21 = A12e−ik2L

defining the scattering amplitude as S12 ≡ A21/A12 we can rewrite the above ansatz

cα(x1, x2) = A12 (e−i(k1x1+k2x2) + S12 e−i(k2x1+k1x2)), S12 = e−ik2L (2.92)

To see if the number of ansatz states are equal to the dimension of Hilbert space

in this sector we need to explore the possible values for k1, k2. The periodicity implies

k ≡ k1 + k2 = 2πn. Assuming that the scattering amplitude is just a phase so defining

S12 ≡ eiφ we have

k1L = +φ+ 2πn1, k2L = −φ+ 2πn2

with all n1, n2, n can be of values 0, . . . , L− 1. Notice that since k1, k2 are interchangeable

not all L2 possible choices lead to different ansatz states and we are left with L(L + 1)/2

choices for n1 ≤ n2. This is still L states larger than the size of the Hilbert space, so one

would expect that depending on the value of S12, calculated for specific models, some of

these states either vanish or not be linearly independent.

We can now generalize the same concept for the higher value of m all the way up

to m = L/2 (we can use particle–hole symmetry for larger m) and introduce the ansatz

ψm,α =
∑

1≤x1<···<xm≤L
cα(x1, . . . , xm) |x1, . . . , xm〉
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with the coefficients defined as

c{k}(x1, . . . , xm) ≡
∑
P∈Sm

AP

m∏
n=1

e−ikP (n)xn

where P is a permutation of m elements, i.e. a member of the symmetric group Sm.

We want for this state to be an eigenstate of translation operator with total momentum

k =
∑m

i ki. As in the simpler case of m = 2 here too we need to consider the nontrivial

effect of translation operator on the Ising configurations that need to transfer the last spin

around the periodic boundary. So, we require

c{k}(x1, . . . , xm−1, L) = eikc{k}(1, x1 + 1, . . . , xm−1 + 1)

or equivalently for each term in the sum,

AP e−i(kP (1)x1+···+kP (m)L) = AP ′ e−i(kP ′(1)0+···+kP ′(m)xm−1).

to satisfy this equation we need to have P (1, 2, . . . ,m) = P ′(2, . . . ,m, 1). Now by defining

the shift permutation Ps, we can write down a simple version of general condition on the

coefficients of the ansatz.

APPs = AP e−ikP (m)L, Ps(1, 2, . . . ,m) ≡ (m, 1, . . . ,m− 1) (2.93)

To unwrap the underlying mathematics of these equations lets try to explore the

m = 3 case. Here, the translational invariant condition leads to six equations

A312

A123
=
A321

A213
= e−ik3L,

A231

A312
=
A213

A132
= e−ik2L,

A123

A231
=
A132

A321
= e−ik1L.
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The first important implication of these equations is that the exchange of two

particles, i.e. scattering, is independent of the position of other particles, for example from

the first equation we have A123/A213 = A312/A321 which indicates that the exchange of 1, 2

is independent of where 3 is. This is equivalent to factorization of an m–particle scattering

matrix into
(
m
2

)
two–particle scatterings in an integrable systems. Using this property it

now make sense to only talk about two–particles scattering amplitudes without talking

about the order of the rest of the particle. An interesting implication is the existence of a

Yang–Baxtor relation between the two–particle scatterings. To see this notice that we can

get from A123 to A321 by the application of each of the following three exchange operators

S23 S13 S12 = S12 S13 S23

The general form of the scattering matrices depends on the specifics of the system

under study. Generally given the Hamiltonian, we have to solve for the following eigenvalue

problem ∑
{x′}

c(x′1, . . . , x
′
m)〈x1, . . . , xm|H |x′1, . . . , x′m〉 = E c(x1, . . . , xm) (2.94)

XXZ model

To see this basis in action, lets start with the easy example of ferromagnetic XXZ

model with the anisotropy of ∆ = Jz/JXY and fixing JXY = 1 for convenience,

H =

L∑
i

[1

2
(S+
i S−i+1 + S−i S+

i+1) + ∆ Szi Szi+1

]
The m = 0 sector has just one state, which is the ground state for ∆ > 1,

Hψ0 = E0 ψ0, where E0 =
∆

4
L.
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For m = 1, the spin waves will have a cosine dispersion,

Hψ1(k) =
1√
L

∑
e−ikx

(∆

4
(L− 4)|x〉+

1

2
(|x− 1〉+ |x+ 1〉)

)
= (E0 −∆ + cos k)ψ1(k).

To solve the eigenvalue problem in the m = 2 sector, we start with a generic

Ising configuration |x1, x2〉 where x1 + 1 6= x2, there are five different way to generate this

configuration when we apply the XXZ Hamiltonian, namely (x1 − 1, x2), (x1, x2 − 1), (x1 +

1, x2), (x1, x2 + 1) from the XY part and (x1, x2) from the Ising part. If we demand the

anstaz to be the eigenstate,

E c(x1, x2) =
A12

2
×(

(eik1 + eik2 + e−ik1 + e−ik2 + 2E0 + 4∆) e−i(k1x1+k2x2) +

(eik2 + eik1 + e−ik2 + e−ik1 + 2E0 + 4∆) S12 e−i(k2x1+k1x2)
)

To make sure the ansatz is an eigenstate we also need to check the specific Ising configuration

|x1, x2〉 when x1 and x2 are nearest neighbors. In this case two of the above five terms won’t

contribute and we can solve for the scattering amplitude S12. Defining q ≡ k1 − k2

S12 = −1− 2∆e−ik2 + e−i(k1−k2)

1− 2∆e−ik1 + e+i(k1−k2)
= −cos k2 −∆e+i q

2

cos k2 −∆e−i q
2

so with this scattering amplitude the ansatz is now an eigenstate with the energy spectrum

for two spin waves of

E = E0 − 2∆ + cos k1 + cos k2 = E0 − 2(∆− cos
k

2
cos

q

2
)
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The scattering amplitude is just a phase S12 = eiφ, from the constraint we can

solve for the phase

cot
φ

2
=

∆ sin q
2

cos k2 −∆ cos q2

this equation has to be consistently solved for φ given different choice of k1, k2.

2.7 Quantum Information

The field of quantum information theory revolves around the fundamental proper-

ties of quantum state such as quantum entanglement [105]. The entanglement in a quantum

state of a quantum system is the property of quantum mechanics that makes is fundamen-

tally different than classcial physics. In very loose terms, it describes how much (and in

what sense) an operation on a part of a quantum system affect the rest of that system. It

is then necessary to define more clearly what we mean by operation and influence in the

previous sentence.

2.7.1 The setup of quantum information theory

The setup of quantum information consists of multiple parties, e.g. Alice(A),

Bob(B), Charlie(C), etc., that share a quantum system. This means a natural tensor prod-

uct structure is defined on the total Hilbert space of the system, namely H =
⊗

iHi where

i goes over all parties. The parties are assumed to reside on separate locations in real space

which mean each party only has access to their local Hilbert space, so they are only allowed

to apply local quantum operations and measurements on their local part of system. Fur-

thermore, there exist a classical communication line/channel between the parties such that
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they can inform each other of operations they perform and the outcome of their measure-

ments. This motivates the definition of a class of operations on the total Hilbert space of

the system known as local operations and classical communication or in short LOCC [28].

2.7.2 Bipartite entanglement

Here, the Hilbert space has the tensor product structure ofH = HA⊗HB = Ca⊗Cb

where the A,B are the labels for the two partitions of the quantum system and with their

respective Hilbert space dimensions a := dimHA and b := dimHB.

A pure state is described via a vector ψ ∈ H. A mixed state (an statistical ensemble

of several pure states) is described through a Hermitian matrix ρ with the properties ρ ≥ 0

and Tr ρ = 1.

2.7.3 Pure state bipartite entanglement

In this case we have two classes of states: product states and entangled states. We

say a pure state |ψ〉 ∈ H is a product state iff there exist |ψA〉 ∈ HA and |ψB〉 ∈ HB such

that |ψ〉 = |ψA〉⊗|ψB〉. If a state is not a product state, we say it is an entangled state. Note

that this classification is not particularly useful, because in practice we are not interested

in whethere or not a state is engtangled but instead we would like to know how much is the

entanglement content of a given state. So, we need to quantify the entanglement!

Thm (Schmidt decomposition): For any vector |ψ〉 ∈ H there exist orthonormal

sets {|ψiA〉} ⊂ HA and {|ψiB〉} ⊂ HB such that

|ψ〉 =

min(a,b)∑
i

√
λi |ψiA〉 ⊗ |ψiB〉 (2.95)
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here the
√
λi are called Schmidt values. They are real and non–negative and their square

sum up to 1 (normalization). Schmidt decomposition is closely realted to singular value

decomposition (SVD), because any vector on a tensor product can be reinterpreted as a

linear map ψ̃ : HA → HB.

From the definition it is obvious that a product state has a single nonzero Schmidt

value. This suggests that a functional of Schmidt values can be used to quantify bipartite

entanglement for pure states.

We can write a pure state as a density matrix ρ = |ψ〉〈ψ|, written in terms of the

Schmit decomposition and tracing over the B part (partial trace) we find the reduce density

matrix for subsystem A

ρA := TrB ρ =
∑
i

λi |ψiA〉〈ψiA| (2.96)

We use the entropy of λi to quantify entanglement. In paricular, for any density matrix we

can define the Tsallis(T), Renyi(R) entropies respeictively as follows

SαT (ρ) :=
1

1− α(Tr ρα − 1) (2.97)

SαR(ρ) :=
1

1− α log Tr ρα (2.98)

The Tsallis entropy is also called the linear entropy for α = 2 and both Renyi and Tsallis

entropies at the limit of α→ 1 approach the von Neumann entropy

S(ρ) := lim
α→1

SαT,R = −Tr(ρ log ρ) (2.99)

It is customary to use the von Neumann entropy to quantify pure state bipartite entangle-

ment, it is also called the entanglement entropy.
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An important note here is that the entanglement entropy (as a map from the state

space to the real numbers) naturally defines a preorder for the set of states, so every pair

of states are comparable and we have a notion of how one state is better (say, for quantum

information purposes) than an another state. We will see that defining a preorder is not

meaningful for mutli–partite entanglement [37].

2.7.4 Mixed state bipartite entanglement

A mixed state is describe by a density matrix, so we need to action of LOCC on a

density matrix. We can not describe LOCC mathematically but we can define a new class

of operations, separable operations or SEP. We say an operation Λ is SEP if its action on

a density matrix is given as follows

∑
k

(Ak ⊗Bk)ρ(Ak ⊗Bk)† (2.100)
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Chapter 3

Quantum Spin Liquids

The quantum spin liquids are a class of phases of matter that evade conventional

(symmetry breaking order) and embody many–body long range entanglement. The entan-

glement is mainfested throught topological properites, such as non–local excitations, and

fractionalization. There are various fantastic reviews on spin-liquids, for a few of them see

for example Refs. [9, 152, 117]

3.1 The QSL History

Quantum spin liquids have an intriguing history. They were originally suggested

by P. W. Anderson [3, 4] in the context of resonating valence bond (RVB) states. Soon

after it was realized that these classes of states carry a massive amount of entanglement.
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3.2 Materials and Experimental efforts

A particular class of organic compounds are the κ-(BEDT-TTF)2X with X rep-

resents some inorganic anion. The dimer of organic material has strong interaction and

could be considered as a single site where the effective Hamiltonian is Hubbard model on

square lattice or when the diagonal interaction is strong, anisotropic triangular lattice. A

famious example of almost isotropic triangular (t′/t ≈ 1.06) lattice is the organic com-

pound κ-(BEDT-TTF)2Cu2(CN)3 where despite large Heisenberg coupleing of J = 250 K

the system does not order down to T ≈ 30 mK [127]. It is therefore suggested that spin

liquid phase is realized in this material. Motrunich using the variational wavefunctions for

Heisenberg model augmented by ring exchange has suggested that the projected Fermi–sea

spin liquid is a candidate for the ground state of this material close to the metalic phase

[101].

3.3 Frustrated systems

A key property of most experimental system that are candidates of harboring QSL

ground states, is the existance of a frustrated Hamiltonian. Frustration, in rudimentary

terms, is the inability of a system to satify local constraints. In the case of Hamiltonians,

frustration is the inability of the Hamiltonian to minimize its energy locally.

It is a common practice to introduce frustration with classical frustration, or the

geometrical frustration. Imagine a triangle with classical Heisenberg spins (3D arrows of

size |S|) on the corner and an Hamiltonian of the form

H = J(S1 · S2 + S2 · S3 + S1 · S3) (3.1)
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The ferromagnetic case, negative J , the classical solution is all spin aligned (with a re-

maining global rotatoin redundancy). The This solution minimizes every single term in the

Hamiltonian and consequently minimizes the whole Hamiltonian as a whole.

The antiferromagnetic or the frustrated case is more interesting. Every single term

requires the spins to be opposite direction to each other, but that is obviously impossible

to satisfy for all three bonds. Let us reformulate the Hamiltonian (up to const), it can be

written as H ∝ (S1 + S2 + S3)2 which means the classical ground state is where the sum

of all three spin vectors has the lowest magnitude, that is S1 + S2 + S3 = 0 this is simply

satisfied if the three vectors form a 120◦ angle with each others (or equivalently, reside on

the sides of an equilateral triangle). Defining local unit vector n̂i where n̂i · n̂j = −1
2 for

i 6= j the classical anti–ferromagnetic ground state is

|Ψ0〉classical =
⊗
i

∣∣Si · n̂i = |S|
〉

(3.2)

with an energy of εbond = − |S|22 J per bond.

Let us consider the kagome lattice for spin–1/2. The ground state for just a single

bond of two spins is simply the singlet state

=
1√
2

(
| ↑↓〉 − | ↓↑〉

)
(3.3)

where the singlet is depicted as a thick line with an arrow representing the direction of the

minus sign (we drop the minus sign when it doesn’t matter). The singlet has a εbond = −3J
4

energy per bond. As for a trianglet a single singlet bond is the lowest possible energy. So,

if possible, a singlet bond for all triangles of the kagome lattice could be the ground state.

However a simple counting shows that this is not possible. If we show the the number of
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Figure 3.1: Schematic of the resonating valence bond state

site by N , then the number of singlet is Ns = N/2. In the kagome lattice each site has four

bonds (shared with other sites), so we have two bonds per site Nb = 2N and there are three

triangles per bond Nb = 3Nt therefore we see that

Ns =
1

2
N =

1

4
Nb =

3

4
Nt (3.4)

Therefore a complete dimer covering leaves a quarter of the trinagles unsatisfied. Since the

expectation value of the Heisenberg bond term for all non-singlet terms in a dimer covering

is zero, the total dimer covering energy is εsite = −3
8J compared to the classical energy of

εsite = −1
4J . Therefore the dimer covering has a better energy, however note that none

of them are even a ground state. The dimer covering is still not a very entangled state,

because as a many–body state it is basically a product state of singlet, if we show a paif of

sites (i, j) as a dimer in the set of all dimers D for a specific covering

|ΨD〉 =
⊗

(i,j)∈D

∣∣ 〉
i,j

(3.5)

It was Paul Anderson who came up with the idea of superposition of all dimer

coverings as a potential state[3, 4], the so–called RVB states.
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3.4 Exactly solvable QSLs

3.4.1 the toric code model

A famous example of a non–frustrated commuting quantum spin liquid is the

Alexei Kitaev original suggestion of the toric code as an error–correcting quantum code

for the purpose of fault–tolerant quantum computation [75, 46]. However, the physics of

emergent fractionalized excitations were studied even before that [113]. Here we briefly

introduce the model as an example of an exactly solvable quantum spin liquid. The system

is made of spin–1/2 site residing on the edges of a square lattice. The Hamiltonian reads

H = −Je
∑
v

Av − Jm
∑
p

Bp (3.6)

where Av is the star or vertex term defined for every four spin around a vertex of the lattice

and Bp is the plaquette term define for every four spin in each plaquette of the square

lattice.

Av =
∏
i∈v

σxi , (3.7)

Bp =
∏
i∈p

σzi . (3.8)

Since all vertex and plaquette terms share and even number of sites, they mani-

festly commute with each other and hence the theory is exactly solvable.

3.4.2 The Kitaev’s honeycomb model

We define the model on a lattice that is a three-colorable (Tait colorable) trivalent

1 graph, i.e. where every vertex has degree three, we label every color edge as either Z-link,

1also called cubic, note that not every cubic lattice is three-colorable
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X-link, or Y -link and define the follwoing Hamiltonian

H = −Jx
∑
X-link

σxi σ
x
j − Jy

∑
Y -link

σyi σ
y
j − Jz

∑
Z-link

σzi σ
z
j (3.9)

where σs are the usual Pauli operators, σiσj = 2iεijkσk.

The above Hamiltonian is a sum of bi-spin terms Kα
ij ≡ σαi σαj . While the Kα terms

are not themselves constants of motions (because links that share a site do not commute), it

is clear that the product of these operators on any loop commutes with any of these terms.

That is for a loop L of size N going throught sites 1, 2, . . . , N we have

[WL,Kα
ij ] = 0, WL ≡ Kα

12K
β
23 · · ·Kγ

(N−1)N (3.10)

therefore, there is a constant of motion WL associated with any loop L in the graph, because

they commute with each other and the Hamiltonian.

Brief introduction to Majoranas

Attempts at solving the above Hamiltonian mostly depend on the fermionization

of the spins. More precisly to write the spin in terms of Majoranas. We therefore spend

some time introducing the Majoranas and then talk abour the Majorana represenation of

spins.

For any fermion we can write it in terms of its real and imaginary part. The two

resulting real fermions are known as Majoranas. So we define

ai =
1

2
(ηi + iζi), a†i =

1

2
(ηi − iζi) (3.11)

We can also write the Majoranas in terms of fermions as follows

η = a† + a, ζ = i(a† − a) (3.12)
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it is then straightforward to check that the Majoranas are self-adjont η† = η and ζ† = ζ

and they satisfy the fermionic anticommutation relations as follows

{ηi, ζj} = 0, {ηi, ηj} = {ζi, ζj} = 2δij (3.13)

defining a new fermion by b† ≡ −ia and b ≡ ia† we see that η, ζ are switched in the new

fermion and b†b = −a†a. So for any pair of Majoranas we should pick which one is the

real part and which imaginary to define the fermion. The fermionic sign operator can be

written in terms of Majoranas

eiπa†a = 1− 2a†a = −iηζ (3.14)

Original Kitaev solution and extensions

Originally Kitaev has chosen four majornas per site (effectively doubling the

Hilbert space) to solve the problem on the Honeycomb lattice [74]. The idea that the σz

operator can be writen in terms of −iηζ suggests the definition of four Majorana operators

per spin ηx, ηy, ηz, ζ such that each spin operator can be written as

σαi = −iηαζ (3.15)

This definition automatically satisfies the anti-commutation relations between spin opera-

tors. However to satisfy also the commuitation relation we would need

[σα, σβ] = −2ηαηβ = 2iεαβγσγ = −2iεαβγηγζ (3.16)

Therefore we would need the operators Di = −iηαi η
β
i η

γ
i ζi to be +1 in order to satisfy the

commutation relations. We would therefore call Di = +1 the physical space and Di = −1
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the unphysical part of the doubled Hilbert space. The projection operator to the physical

space is then

P =
∏
i

1 +Di

2
(3.17)

Let note that the eq. (3.16) hints that when we restrict to the physical subspace

the spin operators can also be written as

σαi = −iηβηγ (3.18)

which automatically satisfies the commutation and anticommutation relations. This indeed

suggests that we did not need to define the extra zeta operator at all. This approach of using

SO(3) representation of spin is actually much older than the 4 Majorana representation.

In this representation the previous physical indicator operator turns into τi = −iηαi η
β
i η

γ
i is

no longer a two dimensional operator but a Majorana constant at each site that commutes

with spins

[τi, σ
α
i ] = 0 (3.19)

since only two Majoranas where required to make a two-dimensional space for the spin, the

τ Majorana can be thought of as the remaining extra Majorana degree of freedom. The

strategy then is to pick any pair of spins in the system (at will) and use the pairs of τ

Majorana of them to build a two dimensional space and set it to ±1 at will to get back the

physical Hilbert space. In this approach no projection to physical subspace is required as

opposed to the Kitaev four Majorana represenation.
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We can use the Kitaev four Majorana representation to rewrite the Hamiltonian

of eq. (3.9)

H = −Jx
∑
X-link

(−iηxi η
x
j ) iζiζj − Jy

∑
Y -link

(−iηyi η
y
j ) iζiζj − Jz

∑
Z-link

(−iηzi η
z
j ) iζiζj (3.20)

The remarkable property of using the kitaev four Majorana representation for lattice like this

is that the link operators uij = −iηαi η
α
j all commute with each other and the Hamiltonian,

so are all constants of motion. The only complication remained in the problem is that the

uij operators are not physical (they don’t commute with the gauge operator). Regardless of

the difficulty remained in the problem (as far as the actual state is concerned), the energy

spectrum can be deduced by diagonalizing the Hamiltonian for each sector of uij = ±1 since

the remaining Hamiltonian will simply turn into a mojarana free Hamiltonian of type

H =
∑
〈i,j〉

i
Aij
4

ζiζj (3.21)

Where A is a real anti–symmetric matrix which gives a positive and negative version of

Hermtian complex fermionic spectrum effectively. The factor of 4 is simply introduced for

simplicity.

The states, however, are not just the free Majoranas. Since the uij operators don’t

commute with Ds, therefore one has to project into the physical subspace. As usual, this is

the step that generates spin–liquid entanglement. The uij are not relevant themselves, but

the equivalnece classes of them that leave the product of uijs over loops constant.

For the case of the original Kitaev model, the honeycomb lattice, it turns out that

happens in the sector with no flux meaning that the product of all uij operators around

any loop (plaquette) is +1. One can therefore choose a positive uij and solve for the

translationally invariant free Majorana theory.
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Jordan–Wigner transformation of Kitaev model

If we now pick an ordering for the vertices, starting from the beggining of an X-link

and follow until the loops closes. It is possible to have open boundary or inifintly large sys-

tem as well. For the open boundary conition we loosen the requirement of degree of three for

vertices on the boundary. Based on this ordering we now define a Jordan-Wigner transfor-

mation from spins to fermions following the usual anti–commutation relation, {a†i , aj} = δij ,

as follows

σzi = 1− 2a†iai = eiπa†iai , σ± =
1

2
(σx ± iσy) = a±i

∏
j<i

eiπa†jaj (3.22)

Note that in order to combine two equations into one we have used the convention a+ ≡ a†

and a− ≡ a. Using this transformation for any loop of alternating X-links and Y -links the

X-link terms in the Hamiltonian simplify to

σxi σ
x
i+1 = (σ+

i + σ−i ) (σ+
i+1 + σ−i+1) (3.23)

= (a†i + ai) eiπa†iai (a†i+1 + ai+1) (3.24)

= (a†i − ai) (a†i+1 + ai+1) (3.25)

the same is true for the Y -link terms (execpt for the last term of the loop). They simplify

to

σyi σ
y
i+1 = −(σ+

i − σ−i ) (σ+
i+1 − σ−i+1) (3.26)

= −(a†i − ai) eiπa†iai (a†i+1 − ai+1) (3.27)

= −(a†i + ai) (a†i+1 − ai+1) (3.28)
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for the final Y -link of the loop of size 2m (for simplicity here starting at index 1) we have

σy2mσ
y
1 = −(σ+

2m − σ−2m) (σ+
1 − σ−1 ) (3.29)

= −(a†2m − a2m)
2m−1∏
j=1

eiπa†jaj (a†1 − a1) (3.30)

=

2m∏
j=1

eiπa†jaj (a†2m + a2m) (a†1 − a1) (3.31)

So the final Y -link also carries the information about the total number of fermions in the

loops. Note that this problem doesn’t exist in the infinite or open boundary condition.

Kitaev model in terms of Jordan–Wigner Majoranas

Since every alternating loops (or chain) of X and Y links has even number of sites

and we have chosen to start X-links on odd numbers and Y -links on even numbers. The

equations (3.23) and (3.26) suggest to define opposite labeled Majoranas for even and odd

sites. Therefore for the odd sites
ai = 1

2(ηi + iζi), a†i = 1
2(ηi − iζi) (i odd)

ai = 1
2(ζi + iηi), a†i = 1

2(ζi − iηi) (i even)

(3.32)

with this definitions the different part of Hamiltonian can be written as

σxi σ
x
i+1 = −iζiζi+1, (X-links) (3.33)

σyi σ
y
i+1 = +iζiζi+1, (Y -links) (3.34)

σy2mσ
y
1 =

(
m∏
i=1

(−iη2i−1ζ2i−1)(iη2iζ2i)

)
(−iζ2mζ1) (3.35)

σzi σ
z
j = (−1)i+j−1(−iηiηj)(−iζiζj) (Z-links) (3.36)
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If we now assume we have a lattice with open boundary conitions and no X−Y loops, then

the closing Y -link never shows up and the theory becomes a free theory of ζi Majoranas

with −iηiηj operators at every Z-link as constants of motion.

In the presence of X−Y loops product of −iηiηj operators of Z-links that touches

every envolved loops an even number of times are constants of motion. That means any

path or plaquette that start from a Z-link and ends at the same Z-link gives a constanct

of motions multiplying the −iηiηj operators at all the visited Z-links. This includes zeros

paths, Z-links that don’t start and end on any loops and also one Z-link paths for Z-links

that start and end on the same loop.

This now suggest to rewrite the theory in terms new fermions living on Z-links.

We define two fermions at each Z-link. The f †, f fermion which is made by ηi, ηj Majoranas

fα =
1

2
(ηα,1 + iηα,2), f †α =

1

2
(ηα,1 − iηα,2) (3.37)

and c†, c fermions which are made by ζi, ζj as follows

cα =
1

2
(ζα,1 + iζα,2), c†α =

1

2
(ζα,1 − iζα,2) (3.38)

3.5 Parton construction of QSLs

3.5.1 The spinon

A common method to construct QSLs is to assign a separate identity to each of the

Abrikosov fermions—spinons or more generally partons. The spin–1/2 operator in terms of

spinons is given by

Si =
1

2

∑
α,β=↑,↓

f †i,ασα,βfi,β. (3.39)
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Where the fermions obey the usual fermionic anti–commutation relations

{fiα, f †jβ} = δijδαβ, {fiα, fjβ} = 0. (3.40)

Assigning a separate identity for each flavor of fermion effectively doubles the

dimension of the local Hilbert space. This issue can be remedied by the introduction of a

local constraints at every site. That is to require one and only one fermion per site, i.e.

ni ≡
∑

α f
†
i,αfi,α = 1, and identifying |n↑ = 1〉 ← |↑〉 and |n↓ = 1〉 ← |↓〉.

If one considers the state as the low energy description of a fermionic theory, the

above argument translates to the introduction of local constants of motion, or gauge symme-

tries, into the free theory. Therefore, the Gaussian fermionic theories are coupled to a gauge

theory and strongly interact through that. Since the free fermion hopping theories respect

the U(1) symmetry, the fermionic theory is coupled to a U(1) gauge field. An important

question is whether or not this fermionic theory coupled to gauge field is the correct effective

theory for the spins. This questions ultimately translates to the confinement/deconfinement

problem of the gauge theory. For a thorough discussion see ref. [143].

The classical simulation of the gauge theories is still in its early stages [cite] and

a faithful numerical understanding remains out of reach. Instead, it is common to start

with ground states of fermionic theories, that live in corresponding Hilbert spaces H↑, H↓,

and then project them down into the spin theory H1/2. This procedure is known as the

Gutzwiller projection.

73



3.5.2 The Gutzwiller projection

Let us assume the fermionic states are ground states of Gaussian Hamiltonians H↑

and H↓ where each of them can be represented as Slater determinant states of the form

|ψ↑〉 =
∏
k

c†k,↑|0↑〉 (3.41)

|ψ↑〉 =
∏
k

c†k,↓|0↓〉 (3.42)

where k labels the filled orbitals of the free fermion theories. The spin theory state is know

constructed by projecting down the tensor product state

|ψs〉 = PG

∏
k,k′

c†k,↑c
†
k′,↓|0↑↓〉

 (3.43)

where PG denotes the Gutzwiller projection operator

PG =
∏
i

ni(2− ni), ni = ni↑ + ni↓. (3.44)

3.5.3 Mean–field treatment of Heisenberg spin–1/2

For a lattice with spin-1/2 residing on every site and the an exchange interaction

on every edge

H =
∑

(i,j)∈edges

Jij Si · Sj

While the size of the Hilbert space at each site is only two, this is not a fermionic

model because the spins at different sites commute with each other. However, we can use the

parton/spinon construction as before and rewrite the Hamiltonian in terms of the spinons

as

H =
∑

(i,j)∈edges

−1

2
Jij f

†
iαfjαf

†
jβfiβ +

∑
i,j∈edges

Jij(
1

2
ni −

1

4
ninj) (3.45)
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This new Hamiltonian has two (↑ and ↓) fermion species per site. As a result the size of

the Hilbert space at each site is now four instead of the original two. To retain the original

Hilbert space we can enforce one and only one fermion(spinon) on every site as a constraint,

ni = f †iαfiα = 1, by introducing Lagrange multipliers µi which can be thought of as on site

chemical potential. The second term in the Hamiltonian is also no longer relevant as it

reduces to just a constant.

At the mean–field level we can replace the hopping operator by its average 〈f †iαfjα〉 =

tij and add the fluctuations later. So we can try to solve the simple spinon hopping model

H =
∑

(i,j)∈edges

−1

2
Jij tjif

†
iαfjα +

∑
i∈sites

µi(f
†
iαfiα − 1) (3.46)

The above mean–field consideration justifies the spinon construction and Gutzwiller

projection procedure at least when Heisenberg–like Hamiltonians are involved. It is however

an important questions, whether or not the mean–field physics survives the constraint. We

can continue this treatment as a field theoretical approach and go beyond mean–field, for

further details and a thorough treatment of the theory consult Ref. [143].

3.6 The spin–Bose metal

3.6.1 Single band spinful theory, the Bethe chain

The single band bosonization is described in section 2.3. If we now consider spin,

the free theory is simply two separate theories for each species of fermions denoted by

the spin label α =↑, ↓. The bosonization procedure is the same for each species, except

the introduction of the Klein factors {ηα, ηβ} = 2δαβ in order to impose the fermionic
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anticommutation relations between different species. We may express the fermions in terms

of boson field as

ψPα = ηα ei(ϕα+Pθα) (3.47)

which leads to a free imaginary time Lagrangian that reads

L0 =
∑
aα

1

2π

[
1

vF
(∂τθ)

2 + vF (∂xθ)
2

]
.

Here we are ultimately interested to study the spin model. Following the spinon

approach, the corresponding constraint on the number of fermions per site enters the boson

theory in the form of a compact U(1) gauge field which couples to the density operator of

all species. So it makes sense to define the charge and spin fields by

θρ/σ ≡
1√
2

(θ↑ ± θ↓)

Now because of
∑

α θ
2
α = θ2

ρ + θ2
σ we can express the same free theory for the

newly defined charge and spin fields. In this language the gauge field couples to θρ. Here,

the trick is to introduce the kinetic term with a 1/m coupling constant, to control the

fluctuations of the gauge field. The original theory can be recovered as m→∞. The gauge

field Lagrangian takes the form

LA =
1

m
(∂xA/π)2 + iAρ, ρ =

√
2∂xθρ/π

The gauge field can now be integrated out and eliminated from the Lagrangian

leaving behind a mass term for field related to total density m(θρ − θ0
ρ)

2.

The low–energy physics can be achieved by integrating out the pinned charge

(θρ) sector. The remaining theory is a free theory of fermions in the spin sector that can
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be identified with the fermions derived from the spin theory by means of Jordan–Wigner

transformation. This theory of gapless excitations in the spin sector corresponds to the low

energy theory of the Heisenberg AF chain which is in the Bethe–chain phase.

3.6.2 Two–Band Spinful Theory

We now introduce the two–band spinful model, where there exist two Fermi seas

labeled by a with their corresponding Fermi momentum kFa. Examples are the two–leg

triangular ladder discussed in Ref. [125] and chapter. 5 as well as the kagome strip model

we introduce in chapter. 4. There are two possibilities for the half–filling constraint

kF1 + kF2 = π/2 or kF1 + kF2 = 3π/2.

Same as before, we linearize at the Fermi surface (point) which gives a Dirac

theory for each species of fermions determined by the band label a = 1, 2, and the spin

label α =↑, ↓. Introducing {ηaα, ηbβ} = 2δabδαβ, we may express fermion operators in terms

of boson fields as

ψPaα = ηaα ei(ϕaα+Pθaα) (3.48)

At this point for each species of fermions we have a free boson field. The Fermi velocities

are in general different for each band with the exception of two equally filled bands. So, the

free imaginary time Lagrangian density in terms of θ fields reads

L0 =
∑
aα

1

2π

[
1

va
(∂τθaα)2 + va(∂xθaα)2

]

Again to study the spin model, in the spinon approach, the compact U(1) gauge

field couples to the density operator of all species. Here other the previous charge/spin
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sectors it is convenient to also define even/odd combinations of bands for each sector as

follows

θρ(σ)± ≡
1√
2

(θ1ρ(σ) ± θ2ρ(σ)),

In this language the gauge field couples to the θρ+ field. Adding the kinetic term

to suppress the gauge fluctuation, the gauge field Lagrangian takes the form

LA =
1

m
(∂xA/π)2 + iA(ρ), ρ = 2∂xθρ+/π

Integrating the gauge adds a mass term, m(θρ+ − θ0
ρ+)2, and integrating the now massive

θρ+ results to the following low energy theory known as the Spin–Bose Metal (SBM) theory

L0 =
1

2πg

[
1

v
(∂τθρ−)2 + v(∂xθρ−)2

]
+ Lσ0

The Lσ0 is the original free theory for the spin sector, the new Fermi velocity for the odd

charge sector is v ≡ √v1v2, and the coupling constant is g ≡ 2v/(v1 + v2).

We refer to this theories as CαSβ denotes a state with α (β) gapless charge (spin)

modes [10, 89].
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Chapter 4

The Heisenberg antiferromagnet

on a strip of kagome

4.1 Introduction

Beginning with Anderson’s seminal proposal of the resonating valence bond state [3,

4], physicists have been actively searching for exotic ground states of spin-1/2 quantum an-

tiferromagnets for more than four decades [9, 117, 152]. While there have been numerous

theoretical and numerical sightings of such quantum spin liquid states over the years, the

most convincing demonstrations have typically required going beyond the simplest SU(2)–

invariant nearest–neighbor Heisenberg model—examples of success include quantum dimer

models [114, 100] or spin models with some combination of, for example, extended two-spin

interactions, spin-exchange anisotropy, special conservation laws, and/or multi-site ring-

exchange interactions [8, 131, 132, 74, 150, 66, 12, 45, 101, 17].
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The single unique example of a simplest possible nearest neighbor SU(2)–invariant

Heisenberg model that can possibly host spin liquid physics has always been suspected to be

the kagome. For the infamous two-dimensional (2D) kagome Heisenberg antiferromagnet,

spin liquid physics was theoretically predicted in the early 1990s [115] with unconfined

excitations as, spin–1/2 bosonic, spinons. Recent numerical calculations [149, 35] indicate

that even the simplest model with SU(2)–invariant nearest-neighbor two-spin interactions

exhibits spin liquid behavior. Consequently most recent studies on kagome systems has

been focused on approaching the 2D limit [149, 35, 67, 69, 56, 77, 44, 55, 70, 87, 64, 63, 62,

61, 65, 27].

In this chapter, we address a particular quasi-one-dimensional (quasi-1D) version

of kagome lattice that has remarkably evaded both complete numerical characterization and

theoretical understanding. An interesting approach is to think of the narrowest wrapping

of the kagome lattice on a cylinder that consists purely of corner-sharing triangles (see

Fig. 4.2), i.e., the kagome strip. It is important to point out that the term kagome strip

has been used for a different lattice in the past [6, 140]. This lattice has also been called

the three-spin ladder [140] or the bow-tie ladder [93]. The bulk of this chapter has been

published in Physical Reviews B [91].

The main purpose of this chapter is to argue that that for 0.8 . J . 1.3 this

model harbors an exotic phase with c = 2 gapless modes and power-law spin correlations

and bond-energy textures which oscillate at incommensurate wave vectors tunable by J .

We will argue that this phase—which respects all symmetries, including lattice transla-

tions and time reversal—can be understood as a marginal instability of a two-band U(1)
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spinon Fermi surface state, i.e., “spin Bose metal” (SBM) [125], on this kagome strip.

(Unlike in the U(1) Dirac spin liquid —which has been studied intensely in the context

of kagome antiferromagnets for many years [53, 58, 112, 57, 64, 63, 62, 61, 65, 55], the

spinons in our state see zero flux.) The physics of spinon Fermi surface state has been

considered before [112, 92] in the context of the 2D kagome antiferromagnet and its asso-

ciated prototypical experimental realization herbertsmithite (see Ref. [106] for a review);

however, it is most famous as a proposed theory for several triangular-lattice spin-liquid

materials [101, 85, 122, 99]—and more recently for the spin–orbit coupled triangular-lattice

spin–liquid candidate YbMgGaO4 [124].

It is quite remarkable that a simple model such as this quasi–1D descendant of the

nearest-neighbor kagome antiferromagnet gives rise to the exotic physics of multiple bands

of fermionic spinons. While it is well–known that one such band can faithfully describe the

Bethe chain phase of the 1D Heisenberg model [51, 123], other numerically well-established

realizations of emergent gapless fermionic slave particles beyond strictly 1D have typically

required complicated interactions in the Hamiltonian [126, 125, 18, 17, 98, 68].

4.2 The Hamiltonian

We start by describing the Hamiltonian for kagome strip model. The kagome

strip lattice is seen in 4.2. As advertised, for the Hamiltonian, let us pick the simplest

SU(2)–invariant nearest-neighbor spin-1/2 Heisenberg antiferromagnet,

H =
∑
〈i,j〉

Jij Si · Sj , (4.1)
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on this lattice with antiferromagetic leg and cross couplings (the leg–cross model)

J` = 1 exchange for bonds on the top and bottom legs, and Jc ≡ J ≥ 0 for bonds between

middle spins and the ones on the two legs of the ladder. The respected exchange interactions

are also depicted in Fig. 4.2. The Hamiltonian, can therefore be written as

H =
∑
i∈{2}
j∈{1,3}

Jc Si · Sj +
∑

i,j∈{1}
i,j∈{3}

J` Si · Sj

For J = 0, the model consists of two decoupled Bethe chains (with free spins in

the middle chain), while for J → ∞ the model is bipartite and exhibits a conventional

ferrimagnetic phase [88, 140]. Our main interest is the region 0.8 . J . 2.0, where in

an early study Waldtmann et al. [140] provided numerical evidence for a gapless ground

state but were unable to fully clarify its nature (Similar conclusions were also reached more

recently by Lüscher, McCulloch, and Läuchli, which served as one of the motivations in

pursuing this path more rigorously.

4.2.1 The mean–field treatment

For a basic understanding of the possible spinon physics on kagome strip, we follow

the procedure described in section 3.5, introducing two fermions per site. The kagome strip

unit cell contains three sites. So we need three species of spinful fermions which we define

according to the labeling of top, bottom, and middle in 4.2. The most general hopping
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J`

Jc

x

top(T )

middle(M)

bottom(B)

J ≡ Jc/J`0 ? 0.8 1.3 2

Bethe → VBS-6 C1S1 spin liquid period-4 ferrimagnet

Figure 4.1: The kagome strip ladder. The numerically obtained phase diagram is also
shown on the bottom. It has three–site unit cell that is boxed by a dashed line. We identify
a phase with two 1D gapless modes resulting from gapless bands of fermionic spinons in the
regime 0.8 . J . 1.3.

Hamiltonian on kagome strip is

H = −
∑
x

(
t2 f

†
3(x)f3(x+ 1) + h.c.

)
(4.2)

+
(
t1 f

†
1(x)f1(x+ 1) + h.c.

)
(4.3)

+
(
t5 f

†
1(x)f2(x+ 1) + h.c.

)
(4.4)

+
(
t6 f

†
3(x)f2(x+ 1) + h.c.

)
(4.5)

+
(
t3 f

†
1(x)f2(x) + h.c.

)
(4.6)

+
(
t4 f

†
3(x)f2(x) + h.c.

)
(4.7)

+µ1 f
†
1(x)f1(x) + µ2 f

†
2(x)f2(x) + µ3 f

†
3(x)f3(x) (4.8)
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defining the Fourier transform of the spinon operators as f(k) = 1√
L

∑
x e−ikxf(x),

the Hamiltonian in k–space is

H = −
∑
k

(
f †1(k) f †2(k) f †3(k)

)
Hk


f1(k)

f2(k)

f3(k)



Hk ≡


Re(t1eik) + µ1 t3 + t5eik 0

t∗3 + t∗5e−ik µ2 t∗4 + t∗6e−ik

0 t4 + t6eik Re(t2eik) + µ3


For the specific case of what we call the leg–cross (LC) model, the up–down and

left–right reflection symmetry implies that t1 = t2 := tl = t∗l for orange bonds in Fig. 4.7

and Fig. 4.2, µ1 = µ3 = µ0 and t3 = t4 = t5 = t6 = tc for blue bond in Fig. 4.7 and

Fig. 4.2. Now defining µ = µ2 − µ0, the chemical potential µ0 is now just a constant in

the Hamiltonian and can be set to 0. This choice of chemical potential maintains the leg–

interchange symmetry between the top and bottom legs. Therefore, for the LC model we

have

HLC
k =


2tl cos k tc(1 + eik) 0

t∗c(1 + e−ik) µ t∗c(1 + e−ik)

0 tc(1 + eik) 2tl cos k


We take hopping the amplitude of t` = 1. The choice of real values for t` and

tc is justified by the lack of time–reversal symmetry breaking in the DMRG ground state

illustrated by Fig. 4.11. For a translationally invariant system, we have a three-site unit

cell and HMF can be diagonalized analytically resulting in the following band energies as
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functions of momentum k along the x direction:

εa(k) = −2t` cos(k), (4.9)

ε±s (k) = −1

2

(
µ− εa(k)∓

√
[µ+ εa(k)]2 + 16t2c [1 + cos(k)]

)
. (4.10)

These bands are shown in Fig. 4.3, where there we denote the lower band ε−s (k) ≡

εs(k). (We also show these dispersions again below in Fig. 4.13, where we discuss the precise

state VMC state used in Fig. 4.5.) The corresponding wave functions (with the basis states

ordered as “top”, “middle”, “bottom”) are given by

ψa(k) =
1√
2


1

0

−1

 , (4.11)

ψ±s (k) =
1√

2 + |α±(k)|2


1

α±(k)

1

 , (4.12)

where α±(k) ≡ [εa(k)− ε±s (k)]/[tc(1 + eik)].

With this diagonalization, we can define new fermion operators and write a simple

3–band (b ∈ {0,+,−}) free Hamiltonian.

HMF = −
∑
k

b∈{0,+,−}

εb(k)c†b(k)cb(k),
c0(k) ≡ A0(f1 − f3)

c±(k) ≡ A±(f1 + α∗±f2 + f3)

where A0 and A± are the appropriate normalization factors of the calculated eigenvectors.

To ensure the constraint, the first step is to find the half–filling for this 3–band

model. All possible scenarios for half–filling are shown in Fig. 4.2.1. For µ > 0, we have
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Figure 4.2: The possible scenarios for half–filling of the spinon hopping Hamiltonian. The
color plot shows the difference between kF values of the two Fermi seas (FS). The dark
dashed line separates the one single Fermi sea region from the double Fermi sea region.

mostly single Fermi sea regions except for a narrow space inside the parabola,

ε−(k = 0) = 0 =⇒ µ− 4t2c
tl

= 0

So for small enough tc we can get two Fermi seas, k−f and k0
f that satisfy k0

f ≥ k−f and

k−f + k0
f = π/2. For µ < 0 we have always two Fermi seas, k+

f and k0
f that satisfy k+

f ≥ k0
f

and k+
f + k0

f = 3π/2. For the same µ, smaller tc leads to smaller difference between the two

kF and the line of tc = 0 which means to decouple the top and bottom chains corresponds

to two equal size Fermi seas.

We will focus on the case µ < 0, which leads to partial filling of the lowest two

bands (see Fig. 4.3), hence producing a state with c = 4 (two spin & two charge) gapless
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modes at the mean-field level. As we will see, this regime provides a natural starting point

for explaining the phenomenology of the kagome strip Heisenberg model for 0.8 . J . 1.3.

To continue with the mean–field approach, it is possible to write the original f

fermions in terms of cb and require that f †i fi = 1. This will give two equations involving

N0, N+, N− that with the hopping average f †i fj = t will fix the filling of each band and

value of tc. However, we already know that the mean–field result is not capable of correctly

describing the original spin model so we need other approaches to deal with the spinon

theory.

Since the DMRG results suggest a possible gapping of the symmetric band, here

we try to add pairing for the symmetric band. If we add pairing for band b with amplitude

∆b we can translate that into real space

∆b

∑
k

c†b↑(k)c†b↓(−k) = ∆b

∑
k

α∗bif
†
i↑(k)α∗bjf

†
j↓(−k)

=
∑
x,x′

(
∆

Lx

∑
k

α∗biα
∗
bje

ik(x−x′)
)

︸ ︷︷ ︸
∆x,x′

f †i↑(x)f †j↑(x
′) (4.13)

where there is also a sum over i, j, which are the site index in the unit cell. If we now

add this term to the mean–field Hamiltonian, we can diagonlize it using the Bogoliubov

procedure and project to the space of N↑ = N↓ = N/2 and write the BCS wavefunction as

follows

|BCS〉 =

∑
x,x′

φ(x, x′)f †x↑f
†
x′↓

N/2

|0〉 (4.14)
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4.3 The spin liquid ground state

To go beyond mean field, we can couple the spinons for our two–band situation

depicted in Fig. 4.3 to a U(1) gauge field as described in 3.6. While the corresponding

2D theory of coupling a Fermi surface to a U(1) gauge field is notoriously challenging [82,

83, 84, 95], including U(1) gauge fluctuations at long wavelengths along a quasi–1D ladder

can be readily achieved via bosonization [126, 125, 42]. Specifically, integrating out the

gauge field produces a mass term for the particular linear combination of bosonized fields

corresponding to the overall (gauge) charge mode θρ+, thus implementing a coarse-grained

version of the on–site constraint mentioned above.

The resulting theory is a highly unconventional c = 3 Luttinger liquid with one

gapless relative charge mode θρ− and two gapless spin modes θsσ and θaσ, i.e., a C1S2

SBM state (here as in section 3.6, CαSβ denotes a state with α (β) gapless charge (spin)

modes [89, 10]). In what follows, we present evidence that the kagome strip Heisenberg

model realizes a particular instability of the SBM in which one of the two spin modes is

gapped while c = 2 gapless modes remain: a C1S1 state.

Note that the low–energy theory of fermionic spinons coupled to a U(1) gauge field

on the kagome strip for µ < 0 is basically identical to that described in Ref. [125] (on a 2–leg

triangular strip or the zig–zag ladder) using the translation 1↔ a and 2↔ s, where 1 and

2 denote the two band labels in Ref. [125] However, there is in general no reason to expect

a priori that such an exotic state would produce a faithful description of the low–energy

physics of a given microscopic model.
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Figure 4.3: Characteristic spinon band structure for states with µ < 0 (here tc = 1.0, µ =
−2.4). There are two partially filled 1D bands, one symmetric (s) and one antisymmetric
(a) under leg interchange. The DMRG ground state for 0.8 . J . 1.3 on the kagome strip
can be well-described as follows: (1) take this c = 4 mean-field state, (2) include gauge
fluctuations, and (3) gap out the spin mode θsσ for the symmetric band, thereby producing
a C1S1 spin liquid state with c = 2.

4.3.1 Evidence of C1S2 ground state for 0.8 . J . 1.3

In this section we rule out the evidence for the unconventional ground state of the

kagome strip at the parameter regime 0.8 . J . 1.3. We begin the argument with cal-

culations of bond–energy textures induced by open boundary conditions (OBC) [104, 80].

Specifically, we consider the Fourier transform of local nearest-neighbor spin-spin correla-

tions along the bottom leg: Bq ≡
∑

x e−iqx〈SBx · SBx+1〉, where here and in what follows Sλx

is the spin operator at horizontal position x and vertical position λ = T,M,B (for “top”,

“middle”, and “bottom”; see Fig. 4.2). Such quantities contain content similar to the dimer

structure factor [80, 125], yet are less formidable to compute on large systems. In Fig. 4.4,

we show DMRG measurements of Bq on an OBC system of length L = 60 as illustrated in

section 4.4. We see that Bq generically shows two prominent features centered symmetri-
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cally about wave vector π/2. These features are power-law singularities for 0.8 . J . 1.3;

we will later discuss the Bragg peaks observed at J = 0.78. Defining q< (q>) as the smaller

(larger) wave vector, notice that q< (q>) increases (decreases) with increasing J , but the

two wave vectors always satisfy q< + q> = π.

The presence of such power–law singularities at wave vectors tunable by a coupling

parameter, yet obeying particular sum rules, is suggestive of multiple bands of gapless

fermionic spinons [126, 125, 18, 17, 98, 68]. In Fig. 4.4, we also include VMC calculations

on wave functions obtained by Gutzwiller projecting the free fermion states of the form

shown in Fig. 4.3—these are model wave functions for the SBM [101, 125, 17] and section

4.6. Such wave functions exhibit power-law singularities in physical quantities at various

“2kF ” wave vectors, i.e., wave vectors obtained by connecting sets of Fermi points in Fig. 4.3.

Specifically, for the SBM states considered, we expect and observe features in Bq at wave

vectors q = 2kFs and 2kFa, where 2kFs+2kFa = π mod 2π due to the half-filling condition.

The overall qualitative agreement between VMC and DMRG measurements of Bq in Fig. 4.4

is notable; recall that the VMC states have only two free parameters. We can now make

the following identification with the wave vectors q< and q> discussed earlier: q< = 2kFs

and q> = 2kFa.

The next argument is based on the measurements of the spin structure factor.

Defining S
s/a
x ≡ 1√

2

(
STx ± SBx

)
, we consider 1D structure factors obtained by Fourier trans-

forming real-space spin-spin correlation functions composed from the spin operators Ssx,

SMx , and Sax, i.e., 〈Ssq · Ss−q〉, 〈SMq · SM−q〉, and 〈Saq · Sa−q〉. The former two spin operators

are symmetric under leg interchange (T ↔ B), while Sax is antisymmetric. To characterize
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correlations between the outer chains and the middle sites, we also consider the analogous

1D structure factor 〈SBq · SM−q〉 = 〈STq · SM−q〉. In Fig. 4.5, we show DMRG calculations

of these four quantities on a system of length L = 32 with periodic boundary conditions

(PBC) at coupling J = 0.9, which is characteristic of the observed behavior throughout

0.8 . J . 1.3. As calculated by DMRG, the three structure factors 〈Ssq · Ss−q〉, 〈SMq · SM−q〉,

and 〈SBq ·SM−q〉 all reveal clear power-law singularities at a particular incommensurate wave

vector q> = 10· 2π32 , while 〈Saq ·Sa−q〉 is completely smooth hence indicating exponential decay

in real space. Also shown in Fig. 4.5 are VMC calculations for an appropriate SBM state

satisfying 2kFa = q>. As expected, the VMC data shows singular features in 〈Ssq · Ss−q〉,

〈SMq · SM−q〉, and 〈SBq · SM−q〉 at wave vectors q< = 2kFs and q> = 2kFa and in 〈Saq · Sa−q〉 at

wave vector π/2. In this case, the qualitative agreement between VMC and DMRG remains

intact only near the wave vector q> = 2kFa: the DMRG data is completely lacking any

structure at both q< = 2kFs (symmetric cases) and at π/2 (antisymmetric case).

We perform large–scale density matrix renormalization group (DMRG) calcula-

tions on Eq. (4.1) using the DMRG-MPS routines from the ALPS package [11, 36], and

compare these results to variational Monte Carlo (VMC) calculations [47, 26] on Gutzwiller-

projected wave functions based on the above SBM theory. While the VMC calculations

oftentimes provide a semiquantitative description of the DMRG data, here VMC is mainly

used as a cross–check on the analytic theory and to demonstrate that simple—albeit exotic—

wave functions can qualitatively describe the intricate behavior observed in the DMRG. The

DMRG is performed on ladders of length L in the x direction and employ both open and

periodic boundary conditions detailed in 4.4.
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This discrepancy can be explained universally by postulating that the spin mode

θsσ is gapped in the DMRG state. Indeed, in the low-energy SBM theory, there is an allowed

four-fermion single-band 2kF backscattering interaction which, upon bosonization, contains

a nonlinear cosine potential [10, 76, 81, 125]:

V ⊥ss = λσss cos(2
√

2θsσ). (4.15)

If λσss < 0, this term is marginally relevant, and the field θsσ becomes pinned [10, 125].

Assuming all other allowed interactions are irrelevant or marginally irrelevant, the resulting

state is an unconventional C1S1 Luttinger liquid with two gapless modes, θρ− and θaσ,

and one nontrivial Luttinger parameter gρ− < 2/3 (see section 4.5 and Ref. [125]). Un-

fortunately, faithfully describing our proposed C1S1 state via projected variational wave

functions cannot be done in a straightforward way (see section 4.6). However, based on

our theoretical understanding, we can be certain that a C1S1 state would resolve all qual-

itative differences between the (C1S2 SBM) VMC data and the DMRG data in Figs. 4.4

and 4.5. Firstly, this state would have short-ranged correlations in the spin structure fac-

tor measurements at wave vectors q< = 2kFs and π/2, while retaining power-law behavior

at q> = 2kFa—completely consistent with the DMRG data in Fig. 4.5. Secondly, since

the long-wavelength component of the bond energy at wave vector 2kFs is proportional

to e−iθρ− cos(
√

2θsσ), the corresponding feature at q< = 2kFs in Bq would actually be en-

hanced relative to the SBM upon pinning of θsσ. This indeed occurs in the DMRG data

of Fig. 4.4, where the feature at q< = 2kFs in Bq is significantly more pronounced than

that at q> = 2kFa. Finally, as we show in section 4.5.2, the spin chirality structure factor

as obtained by DMRG is featureless at finite wave vectors. While the C1S2 state would
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exhibit power-law decaying chirality correlations at various finite wave vectors due to in-

terband 2kF processes [125], decay at these wavevectors become short-ranged in the C1S1

state with its gapped spin mode θsσ—this is fully consistent with the DMRG results of

section 4.5.2. Furthermore, we observe no Bragg peaks in the chirality structure factor

measurements thereby allowing us to clearly rule out spontaneous breaking of time–reversal

symmetry in this model . This rules at possible relations of the realized state to the gapless

chiral U(1) spin liquid states studied in Ref. [16].

We next describe instabilities of the putative C1S1 phase realized in the DMRG

for 0.8 . J . 1.3. On one side, in a narrow window 0.75 . J . 0.8, we find a state with

(dominant) period-6 long-range valence bond solid (VBS) order—see the Bragg peaks in

the DMRG measurements of Bq at J = 0.78 in Fig. 4.4. Remarkably, this VBS-6 phase

can be naturally understood by analyzing the C1S1 theory at the special commensurate

point corresponding to 2kFs = π/3 and 2kFa = 2π/3. Here, there exists an additional

symmetry-allowed six-fermion umklapp-type interaction which is necessarily relevant with

respect to the C1S1 fixed point, thereby providing a natural explanation for the observed

VBS state bordering the C1S1. On the other side, we observe a strong first-order phase

transition (and possibly intervening phase) in the region J ' 1.3 − 1.4 before entering a

phase at still larger J with period-4 bond-energy textures (likely) decaying as a power-law.

The last evidence is the measurements of the bipartite entanglement entropy, the

scaling of which gives access to perhaps the most important universal number characterizing

1D and quasi-1D systems: the central charge c, which in our case is equivalent to the number

of 1D gapless modes of the realized Luttinger liquid [23]. We perform DMRG calculations
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on large x ↔ −x reflection-symmetric OBC systems as illustrated in section 4.4, up to

length L = 160 (3L + 1 = 481 total sites), and as is clearly evident in Fig. 4.6, fits to the

usual scaling form [23] strongly suggest c = 2 for 0.8 . J . 1.3. This is precisely the

number of 1D gapless modes expected for the C1S1 state.

4.4 The DMRG calculation results

In this section we present resulting data from the DMRG calculations and ellabo-

rate on the details of the DMRG calculations, including lattice geometries, measurements,

and convergence properties of the wavefunctions.

The DMRG calculations are performed on the kagome strip Heisenberg model

[see Eq. (4.1)] for finite-size systems with either periodic (PBC) or open (OBC) boundary

conditions in the x direction. The precise lattice geometries we use are shown in Fig. 4.7.

For the PBC setup, a unit cell (of which there are L) is boxed by a dashed line. For OBC

systems, we consider two different setups, OBC(<<) and OBC(<>), where the direction

of the two angle brackets indicates the type of boundary termination at the left and right

ends of the ladder (see Fig. 4.7). Note that the OBC(<>) configuration exhibits x ↔ −x

reflection symmetry about the middle site, while OBC(<<) does not. In all cases, L refers

to the number of sites along the bottom (top) chain so that the total number of sites is

Nsites = 3L for both PBC and OBC(<<), while Nsites = 3L+ 1 for OBC(<>).

For our DMRG simulations, we generally retain a bond dimension of between

about m = 1,600 and 4,000 states and perform about 10 to 30 finite-size sweeps, resulting
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in a density matrix truncation error of 10−6 or smaller. All measurements are converged to

an accuracy of the order of the symbol size or smaller in the presented plots.

The operator measurements are focused on (1) bond-energy textures, (2) spin

structure factors, and (3) bipartite entanglement entropy. Throughout, we define Sλx as the

spin operator at horizontal position x and vertical position λ = T,M,B (for the “top”,

“middle”, and “bottom” rows of sites; see Fig. 4.2). For simplicity, we define symmetric

and antisymmetric combinations of STx and SBx :

Ss/ax ≡ 1√
2

(
STx ± SBx

)
. (4.16)

For the bond–energy texture calculations, we employ OBC and compute the

Fourier transform of the nearest–neighbor bond-energy expectation value along one of the

horizontal legs (say the bottom chain):

Bq ≡ Bleg
q ≡

L∑
x=1

e−iqx〈SBx · SBx+1〉. (4.17)

For both OBC configurations, a system of length L has L sites—and thus L − 1 bonds—

along the bottom chain. Thus, we define 〈SBL ·SBL+1〉 ≡ 0 when computing Bleg
q in Eq. (4.17)

so that 〈SBx · SBx+1〉 is effectively L-periodic [for OBC(<<) in practice we append the 0

to the beginning of the real-space vector, 〈SB0 · SB1 〉 ≡ 0, before performing the Fourier

transform]. Below in Figs. 4.10 and 4.12, we present additional data on the analogous

(parallel) cross-bond bond-energy textures:

Bcross
q ≡

L∑
x=1

e−iqx〈SBx · SMx− 1
2

〉. (4.18)

Since the real–space data used to generate Bleg/cross
q does not generally exhibit x ↔ −x

symmetry [e.g., due to use of OBC(<<)], our Fourier-space data is in general complex. For
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simplicity, we thus plot only the real part: < (Bleg/cross
q ). Finally, we have confirmed that

using OBC(<<) versus OBC(<>) does not make a qualitative difference in these bond-

energy texture calculations; for presentation in Fig. 4.4 and in Fig. 4.10 below, we use the

OBC(<<) setup. The DMRG result for the bond energy textures for a variety of parameters

are shown in Fig. 4.8.

For the spin structure factor calculations, we use PBC and compute the following

four momentum-space spin-spin correlation functions:

〈Ssq · Ss−q〉 ≡
1

L

∑
x,x′

e−iq(x−x
′)〈Ssx · Ssx′〉, (4.19)

〈SMq · SM−q〉 ≡
1

L

∑
x,x′

e−iq(x−x
′)〈SMx · SMx′ 〉, (4.20)

〈Saq · Sa−q〉 ≡
1

L

∑
x,x′

e−iq(x−x
′)〈Sax · Sax′〉, (4.21)

〈SBq · SM−q〉 ≡
1

L

∑
x,x′

e−iq(x−x
′)〈SBx · SMx′ 〉. (4.22)

When using PBC, we must necessarily work on smaller systems due to its well-

known convergence problems in the DMRG, for example, the largest PBC system discussed

here is for L = 32, that is Nsites = 96 total spins. Within the putative C1S1 state, for

1.0 . J . 1.3 a relatively small bond dimensions of m = 3,000 results in a converged and

almost translationally invariant system, while for 0.8 . J . 1.0 a perfectly translationally

invariant ground state is difficult to achieve even for m as large as 4,800. In principle, this

can be an artifact of finite-momentum in the ground-state wave function [125]. Another

culprit could be the near-ordering tendencies of the state at wave vector q< in the bond

energy (see Fig. 4.4).
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At the specific point J = 0.9, on smaller PBC systems of length L = 18, 20, 24,

we were able to eventually converge to a translationally invariant state by increasing m

and the number of sweeps. In all of these cases, when measured for a stable but not fully

translationally invariant system, we can confirm that measurement of the spin structure

factors in Eqs. (4.19)–(4.22) (which effectively average L one-dimensional Fourier transforms

over all “origins” of the system) are identical to those performed on the final translationally

invariant states. Hence, we are confident that the final spin structure factor measurements

such as those presented in Fig. 4.5 are fully converged, accurate representations of the spin

correlations in the ground-state wave function.

In section 4.5.2 additional DMRG data on spin chirality structure factor measure-

ments, also obtained with PBC, is also presented. Specifically, we calculate

〈χBq χB−q〉 ≡
1

L

∑
x,x′

e−iq(x−x
′)〈χBx χBx′〉, (4.23)

〈χBq χT−q〉 ≡
1

L

∑
x,x′

e−iq(x−x
′)〈χBx χTx′〉, (4.24)

where

χB/Tx ≡ SB/Tx · (SM
x+ 1

2

× S
B/T
x+1 ). (4.25)

For simplicity, we take the convention that the real-space two-point correlation functions

〈χBx χBx′〉, 〈χBx χTx′〉 are zero if the two chirality operators share any common sites.

Note that the same convergence considerations described above for the spin struc-

ture factors apply similarly to these measurements of the chirality structure factors.

For the entanglement entropy calculations, we present data on the x ↔ −x

reflection-symmetric OBC(<>) system. We use a progression of bipartitions as indicated by
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the site labels in the bottommost panel of Fig. 4.7. That is, the first subsystem considered

contains the site labeled 1, the second subsystem contains sites 1 and 2, and so on. Using

DMRG we compute the von Neumann entanglement entropy,

S1(ρA) = −Tr (ρA log ρA) , (4.26)

where ρA is the reduced density matrix for a subsystem A. Note that the chosen progression

of bipartitions produces data of S1 versus subsystem size ` = 1, 2, . . . , Nsites − 1 which is

symmetric about the middle of the ladder in the x direction. We then perform fits to the

calculated entanglement entropy data using the well-known Calabrese-Cardy formula [24,

23] to determine the central charge, c. Specifically, we fit to the scaling form

S1(`, L) =
c

6
log

(
3L+ 1

π
sin

π`

3L+ 1

)
+A, (4.27)

where 3L+1 = Nsites is the total number of sites for OBC(<>). In our fits, we omit O(10) of

the smallest/largest subsystems near the ends of the ladder. The mid-system entanglement

entropy data shown in the inset of Fig. 4.6 is simply the raw S1 data for subregions spanning

half the system according to the above labeling. For OBC(<>) systems with L even (Nsites

odd), as presented in Fig. 4.6, we must work in the sector with Sztot = 1
2 ; we have confirmed

that this detail makes no difference in the central charge determination. In addition, we

have performed analogous calculations for both PBC and OBC(<<) systems where pure

“unit-cell bipartitions” are natural, and we have indeed been able to confirm in those setups

as well the result c = 2 in the putative C1S1 state for 0.8 . J . 1.3 (data not shown).

We conclude this section by presenting additional data on the spin excitation gaps

in the putative C1S1 phase. In Fig. 4.9, we plot the triplet excitation gap, E0(S = 1)−E0, as
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well as the singlet excitation gap, E1(S = 0)−E0, versus inverse system length 1/L obtained

with OBC(<<) at the characteristic point J = 1.0. (In the entire interval 0.75 . J . 2.0,

we find that the ground state is a spin singlet with total spin S = 0; see also Ref. [140].) We

show fits to the simple scaling form ∆E = a/L (not considering log corrections [104, 140])

to show overall consistency with both gaps vanishing in the thermodynamic limit. This

conclusion is in agreement with previous work [140]. Note that the smallest system size

(L = 30) in Fig. 4.9 is comparable to the largest sizes considered in the early work of

Ref. [140] which also argued for a gapless phase; thus, eventual small spin triplet gaps seem

exceedingly unlikely on this kagome strip.

4.5 The C1S2 SBM theory and the C1S1 states

The long-wavelength description of two gapless 1D bands of spin-1/2 fermions

(spinons) coupled to a U(1) gauge field has been extensively studied [125, 81, 80, 76, 99].

For completeness and brevity, we here only summarize the construction of the theory and

highlight those aspects which are most relevant to our results on the kagome strip.

4.5.1 Bosonization description

The basics of bosonization procedure is described in section 2.3. Here we label

the two partially filled bands in Fig. 4.3 as b = a, s, where band a (s) has associated wave

functions which are antisymmetric (symmetric) under interchange of the top and bottom

legs of the kagome strip. To import results from Ref. [125], we use the band-mapping

dictionary 1 ↔ a and 2 ↔ s and follow the associated bosonization conventions. Taking
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the low-energy continuum limit, we expand the spinon operators in terms of slowly varying

continuum fields fPbα near the Fermi points [42]; P = R/L = +/− denotes right and left

moving fermion fields, b = a, s is a band index, and α = ↑, ↓ is the spin index. At the

mean-field level (before introducing gauge fluctuations), we thus have a state with c = 4

1D gapless (nonchiral) modes, which in terms of bosonized fields can be expressed as in

section 3.6

fPbα = ηbαe
i(ϕbα+Pθbα), (4.28)

where ϕbα and θbα are the canonically conjugate bosonic phase and phonon fields, re-

spectively, and ηbα are the Klein factors satisfying Majorana anticommutation relations,

{ηbα, ηb′β} = 2δbb′δαβ [43, 125]. It is natural in this context to take linear combinations of

the original four bosonic fields θbα which correspond to “charge” (ρ) and “spin” (σ) modes

for each band b:

θbρ/σ =
1√
2

(θb↑ ± θb↓), (4.29)

as well as “overall” and “relative” combinations with respect to the two bands:

θµ± =
1√
2

(θaµ ± θsµ), (4.30)

where µ = ρ, σ. Analogous definitions also hold for the ϕ fields.

As usual, inclusion of gauge fluctuations leads to a mass term for the overall

(gauge) charge mode θρ+, thus essentially implementing a coarse-grained version of the

microscopic on-site constraint
∑

α f
†
iαfiα = 1. From now on we will thus assume that,

up to massive quadratic fluctuations, the field θρ+ is pinned. The final resulting state

is a two-band analog of the U(1) spinon Fermi surface state (i.e., “spin Bose metal” or

SBM): It is a highly unconventional (insulating) C1S2 Luttinger liquid with one gapless
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“relative charge” mode, θρ−, and two gapless spin modes, θsσ and θaσ (c = 3 total 1D

gapless modes). The field θρ− has an associated nontrivial Luttinger parameter gρ−, while

SU(2) symmetry dictates trivial Luttinger parameters in the spin sector (gaσ = gsσ = 1).

The specific quadratic Lagrangian for the SBM fixed point, and the relevant bosonization

conventions are described in section 3.6 and a complete bible of two band theory can be

found in Ref. [125].

Considering the symmetries present in our kagome strip Heisenberg model—i.e.,

SU(2) spin rotation, time reversal, x↔ −x reflection (mirror), top-bottom leg interchange,

and spatial translations along x by one unit cell—the set of allowed (nonchiral) short-range

four-fermion interactions of the spinons at generic band-filling configuations (kFa and kFs)

are identical to those listed in Ref. [125] (see also Refs. [89, 10, 101, 81]). In terms of the

so-called chiral currents,

JPbb′ = f †PbαfPb′α , JPbb′ =
1

2
f †PbασαβfPb′β, (4.31)

these interactions can be written as follows:

Hρw =
∑
b,b′

wρbb′JRbb′JLbb′ , (4.32)

Hρλ =
∑
b,b′

λρbb′JRbbJLb′b′ , (4.33)

Hσw = −
∑
b,b′

wσbb′JRbb′ · JLbb′ , (4.34)

Hσλ = −
∑
b,b′

λσbb′JRbb · JLb′b′ , (4.35)

where w
ρ/σ
aa = w

ρ/σ
ss = 0 (convention / absorbed into λ terms), w

ρ/σ
as = w

ρ/σ
sa (from Hermitic-

ity), and λ
ρ/σ
as = λ

ρ/σ
sa (from R↔ L symmetry).
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A potentially harmful interaction is the so-called W term composed of Hρw +

Hσw [125, 81]:

W ≡ (wρasJRasJLas − wσasJRas · JLas) + H.c. (4.36)

= cos(2ϕρ−){4wρas[cos(2ϕσ−)− Γ̂ cos(2θσ−)]

−wσas[cos(2ϕσ−) + Γ̂ cos(2θσ−) + 2Γ̂ cos(2θσ+)]},

where

Γ̂ ≡ η1↑η1↓η2↑η2↓. (4.37)

The W term thus has a scaling dimension of ∆[W ] = 1 + ∆[cos(2ϕρ−)] = 1 + 1
gρ−

, and

if it is relevant (∆[W ] < 2), all three gapless modes present in the C1S2 become gapped

leading to some fully gapped C0S0 paramagnet. Hence, stability of the parent C1S2 state

at generic kFa, kFs necessarily requires the condition gρ− ≤ 1.

Based on the characteristics of the DMRG data in the regime 0.8 . J . 1.3, it

is natural to explore the situation in which the single-band 2kF backscattering interaction

λσss is marginally relevant, while the analogous terms λσaa and λσas are marginally irrelevant.

This occurs given that λσss < 0, while λσaa > 0 and λσas > 0 [10, 125]. We currently have little

microscopic intuition for why this might be the case in our model but proceed based on the

scenario’s appealing phenomenology. In terms of bosonized fields, the term λσss contains a

cosine potential,

V ⊥ss = λσss cos(2
√

2θsσ), (4.38)

so that relevance of λσss pins the field θsσ associated with the spin mode of band s. The

resulting state is a C1S1 Luttinger liquid with c = 2 1D gapless modes, θρ− and θaσ. We
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must still require that the W term is irrelevant for C1S1 to be a stable phase. Given that

θsσ is pinned (hence ϕsσ is fluctuating wildly), the important part of the W interaction in

terms of bosonized fields reads [125]

W = −(4wρas + 3wσas) cos(
√

2θaσ) cos(
√

2θsσ) cos(2ϕρ−), (4.39)

where now θsσ is pinned, while θaσ and ϕρ− are both fluctuating. The scaling dimension of

the W term with respect to the C1S1 fixed point is thus ∆[W ] = 1
2 + 1

gρ−
, so that stability

of the C1S1 state at generic kFa, kFs further requires gρ− < 2/3.

4.5.2 Observables

To connect to the DMRG measurements of bond-energy textures and spin-spin

correlations functions, we now turn to bosonized expressions of the bond-energy and spin

operators at finite wave vectors. We first consider fermion bilinears and focus on those

composed of a (spinon) particle and hole moving in opposite directions, i.e., Amperean-

enhanced contributions [82, 125]. For spin operators symmetric under leg interchange, e.g.,

Ssx and SMx , by symmetry we can write down the following contributions at wave vectors

2kFb:

S2kFb =
1

2
f †LbασαβfRbβ , (4.40)

Sx2kFb ∝ e
iθρ+e±iθρ− sin(

√
2ϕbσ), (4.41)

Sy2kFb ∝ e
iθρ+e±iθρ− cos(

√
2ϕbσ), (4.42)

Sz2kFb ∝ e
iθρ+e±iθρ− sin(

√
2θbσ), (4.43)

103



c ∆[B2kFs ] ∆[B2kFa ] ∆[S2kFs ] ∆[S2kFa ]

C1S2
(SBM)

3 1
2 +

gρ−
4

1
2 +

gρ−
4

1
2 +

gρ−
4

1
2 +

gρ−
4

C1S1
(realized)

2
gρ−

4
1
2 +

gρ−
4 ∞ 1

2 +
gρ−

4

C0S1
(BCS wf)

1 ∞ 1
2 ∞ 1

2

Table 4.1: Central charge, c, and scaling dimensions of the bond-energy and spin operators
at wave vectors q< = 2kFs and q> = 2kFa for the C1S2, C1S1, and C0S1 states. C1S2 is
the SBM theory whose wave functions we compare directly with the DMRG. C1S1 is the
phase which we argue is actually realized in the DMRG. Finally, C0S1 refers to the BCS
wave function described below in section 4.6 which would (relative to the DMRG) correctly
capture short-ranged (∆ = ∞) spin correlations at wave vector q< = 2kFs, but it would
also incorrectly (and tragically) give rise to short-ranged bond-energy correlations at wave
vector q< = 2kFs as well as central charge c = 1 < 2, both of which are qualitatively
inconsistent with C1S1 and the DMRG. The dominant feature in the C1S1 phase is in fact
that in the bond energy at q< = 2kFs; cf. the DMRG data in Fig. 4.4.

while for the bond energy at 2kFb, we have

ε2kFb =
1

2
f †LbαfRbα, (4.44)

B2kFb ∝ ε2kFb ∝ eiθρ+e±iθρ− cos(
√

2θbσ). (4.45)

(In these expressions, ± corresponds to band b = a/s.) Note that at the C1S2 and C1S1

fixed points, the overall charge mode is pinned in the above expressions, i.e., θρ+ = const.

On the other hand, for the spin operator Sax, which is antisymmetric under leg

interchange, we have analogous contributions at wave vector π/2. In addition, the bottom-

leg bond-energy texture Bq defined above, which has no simple transformation property

under leg interchange, would also have a contribution at π/2. (We refer the reader to

Ref. [125] for the detailed expressions in each case.)

From the above discussion, it is clear that in the C1S2 (SBM) state we should in

general expect power-law singularities in 〈Ssq ·Ss−q〉 and 〈SMq ·SM−q〉 at wave vectors q< = 2kFs
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and q> = 2kFa and similarly in 〈Saq ·Sa−q〉 at wave vector π/2. This is fully consistent with our

VMC calculations, as shown, for example, in Fig. 4.5. The structure factor 〈SBq ·SM−q〉 could

in principle have contributions at all three wave vectors 2kFs, 2kFa, and π/2 (although the

VMC measurements only show the first two). The same expectations arise for the Fourier

transform of the bond-energy textures Bleg
q and Bcross

q (see, for example, Eqs. (4.44)–(4.45)

and Ref. [80]). As displayed in Fig. 4.4, the VMC clearly shows features in Bq at q< = 2kFs

and q> = 2kFa.

If the term λσss is relevant—as is putatively realized in the DMRG state—then

subsequent pinning of θsσ will affect physical operators such as the spin and bond energy

in a qualitative way. By Eqs. (4.41)–(4.43), one obvious effect is to eliminate the power-law

feature in the structure factors 〈Ssq · Ss−q〉 and 〈SMq · SM−q〉 at wave vector q< = 2kFs. All

features at q = π/2 in both 〈Saq ·Sa−q〉 and Bq are similarly eliminated. In all these cases, the

operator in question contains the wildly fluctuating field ϕsσ, thus leading to exponential

decay in real space. On the other hand, as can be inferred from Eq. (4.45), the bond

energy at wave vector q< = 2kFs actually gets enhanced upon pinning of θsσ, i.e., slower

decay in real space with concomitant stronger feature in momentum space. We summarize

these points in Table 4.1 where we list the scaling dimensions of the 2kF contributions to

the bond-energy and spin operators with respect to both the C1S2 (SBM) and C1S1 fixed

points. All in all, a C1S1 state obtained by (marginal) relevance of λσss would qualitatively

agree with all features observed in the DMRG data in Figs. 4.4 and 4.5. Unfortunately, as we

discuss in section 4.6, faithfully representing such a C1S1 state with a Gutzwiller-projected

variational wave function cannot be accomplished in a straightforward way.
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In addition, we note that there are potential four-fermion contributions to the

spin operator at wave vector π and to the bond energy at wave vectors 4kFa = −4kFs and

π [125] (these basically arise from two 2kF processes). For the spin correlations at q = π

(see Fig. 4.5), there are no such features in either the DMRG data nor VMC data except for

the “bottom-middle” structure factor 〈SBq · SM−q〉, where both the DMRG and VMC show

a possible singularity. Turning to the bond-energy textures, we see in Fig. 4.4 that neither

the DMRG data nor the VMC data possess any obviously noticeable features at q = 4kFa

nor at q = π in Bleg
q (although the DMRG may indeed show a weaker feature at 4kFa).

By a scaling dimension analysis alone, singular structure at 4kFa may be expected to be

comparable to that at q> = 2kFa : the scaling dimensions of the bond energy at the two

wave vectors are gρ− and 1
2 +

gρ−
4 , respectively, with gρ− < 2/3 required for a stable C1S1.

However, nonuniversal amplitudes—which are impossible to predict with the bosonized

gauge theory—also strongly dictate the visibility of a state’s power-law singularities. Such

effects are likely to be at play here in describing, for example, why the VMC state itself

shows no singular structure at q = 4kFa in Bleg
q (and similarly for the DMRG).

In Fig. 4.10, we present data on cross-bond bond-energy textures Bcross
q [see Eq. (4.18)].

This data is analogous to the Bleg
q data of Fig. 4.4, and it was also obtained with OBC(<<).

In this case, the VMC data does exhibit features at q = 4kFa and q = π, while the DMRG

clearly shows a feature only at q = π. (Although, as in Bleg
q , the DMRG data may have

a weak feature at 4kFa if one looks closely—the fact that it is not stronger is plausibly

due to the amplitude effect described above). Note that the features at q> = 2kFa have

opposite signs in the DMRG and VMC data sets. However, the amplitudes and phases of
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these bond-energy textures are known to be nonuniversal and strongly dependent on the

details of the pinning conditions at the boundary [80]. For our VMC calculations with open

boundaries, we form a Gutzwiller-projected Fermi sea wave function obtained by simply

diagonalizing a free spinon hopping Hamiltonian with uniform hopping amplitudes along

the x direction (see section 4.6 below) but with hard-wall boundary conditions. We have

attempted tuning the details of this hopping Hamiltonian (e.g., magnitudes and signs of the

hopping amplitudes) near the boundary with the hope of flipping the sign of the q> = 2kFa

feature in Bcross
q . Although by doing so we were able to drastically alter the magnitudes of

the features, we were unsuccessful in flipping the sign of the q> = 2kFa feature. Still, this

should be possible in principle. As an explicit example of how the signs of such singular

features are nonuniversal, we would like to point out the following observation about the

behavior at q = π in Fig. 4.10: In the DMRG data itself, the feature at q = π actually

appears to flip sign as one tunes through the phase from J = 0.9 (where the feature has

“negative” sign) to J = 1.2 (where it has “positive” sign).

As a final characterization of the DMRG ground state in the regime 0.8 . J . 1.3,

we present in Fig. 4.11 measurements of the chirality structure factors defined in Eqs. (4.23)–

(4.24) at the representative point J = 0.9. We see that these Fourier-space measurements (1)

are featureless at finite wave vectors and (2) exhibit no Bragg peaks. Both of these properties

are predicted by the C1S1 theory: (1) Gapping of the spin mode θsσ will result in short-

ranged decay of the chirality-chirality correlations at all finite wave vectors (see discussion

in the main text and Appendix A of Ref. [125]), and (2) the theory respects time-reversal

symmetry. Note, however, that the ρ− part of the theory can still produce 1/x2 decay
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at zero momentum with nonuniversal prefactors [125]. There are noticeable corresponding

slope discontinuities at q = 0 in the data in Fig. 4.11—we believe the relatively small

slopes are merely a quantitative matter. In fact there are similarly weak q = 0 slope

discontinuities in the spin structure factor measurements (even in some of the VMC data),

while we know with absolute certainty that the spin sector is gapless; furthermore, weak

slope discontinuities in 〈χqχ−q〉 at q = 0 were likewise observed in the C1S2 SBM phase of

Ref. [125] (see e.g. their Fig. 5). All in all, the chirality structure factors exhibited by the

DMRG are fully consistent with the universal properties of the spin chirality sector of the

C1S1 phase.

4.5.3 Instabilities of C1S1

In this section, we describe the states bordering the region 0.8 . J . 1.3. Notably,

the instability for J . 0.8 can be very naturally described within the C1S1 theory, while

that for J & 1.3 occurs via a strong first-order phase transition—possibly even intervening

phase—and likely lies outside of our theoretical framework.

In the DMRG, we observe a state with long-range (dominant) period-6 VBS order

(VBS-6) for 0.75 . J . 0.8. Tracking the singular wave vectors in the DMRG, we expect

this state to correspond to q< = 2kFs = π/3, q> = 2kFa = 2π/3 (kFs = 5π/6, kFa = 2π/3).

Note that all such equalities involving wave vectors are implied to mean so, up to signs and

mod 2π. Indeed, when the theory is at the special commensurate point corresponding to

kFs = 5π/6 and kFa = 2π/3, there is an additional symmetry-allowed six-fermion umklapp-
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type interaction which needs to be considered:

V6 = u6(f †Rs↑f
†
Rs↓f

†
LaαfLs↑fLs↓fRaα + H.c.) (4.46)

= −4u6 cos(
√

2θaσ) sin(3θρ− − θρ+). (4.47)

This term has scaling dimension of ∆[V6] = 1
2 + 9

4gρ− with respect to the C1S1 (and C1S2)

fixed point and is thus relevant given gρ− < 2/3. Since this is precisely the condition

required for the W term to be irrelevant and thus C1S1 to be a stable phase at generic kFs

and kFa, a C1S1 state tuned to the point kFs = 5π/6 and kFa = 2π/3 must necessarily be

unstable to this interaction. The relevance of V6 thus pins both of the remaining gapless

modes, θaσ and θρ−, in the C1S1 phase. Inspection of Eq. (4.45) reveals that the resulting

fully gapped C0S0 state would have coexisting period-6 and period-3 VBS order (with the

former being dominant).

As remarked above, we would anticipate this state to be realized in the kagome

strip Heisenberg model for values of J just below 0.8. Remarkably, we indeed find evidence

for a state with long-range period-6 and period-3 VBS order in the narrow region 0.75 .

J . 0.8. In Fig. 4.12, we show bond-energy texture data (Bleg/cross
q ) taken with DMRG at

a characteristic point J = 0.78 within this narrow window for a sequence of system sizes

on the OBC(<<) geometry. We see clear development of Bragg peaks at wave vectors

q = 2π/6 and q = 2π/3 in both Bleg
q and Bcross

q as advertised. We also see a potential

Bragg peak at wave vector q = π in Bcross
q —as discussed above, such period-2 activity also

naturally arises from the theory [125]. Convergence of the DMRG in this region of the phase

diagram is challenging, and we have thus not been able to conclusively determine that the

system is fully gapped (e.g., through explicit spin gap calculations, spin-spin correlation
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functions, or entanglement entropy measurements), although indications are that it likely is

(also consistent with the unpublished work of Lauchli). Near J ' 0.75, a first-order phase

transition occurs, and for J . 0.75, it appears our theory based on two bands of fermionic

spinons no longer applies. We experience strange convergence difficulties in the DMRG for

0.5 . J . 0.75, and we have not thoroughly examined the situation for J . 0.5. In fact,

it is even an interesting open question whether or not the decoupled Bethe chain phase at

J = 0 persists to any finite J .

Next we discuss the behavior for J & 1.3. For 1.3 . J . 1.4, the system exhibits

strange behavior (and DMRG convergence difficulties) consistent with a strong-first order

phase transition, while for 1.4 . J . 2.0 the DMRG state displays (likely) power-law

decaying bond-energy textures with period-4. There does exist an additional four-fermion

momentum-conserving interaction at the special point of the theory when kFs = kFa =

3π/4. [This term is closely resembling the W term in Eq. (4.36)—the two have equivalent

operator forms upon taking a ↔ s in the band indices for JLbb′ and JLbb′ .] One can show

that this interaction has scaling dimensions with respect to the C1S2 and C1S1 fixed points

of 1 + gρ− and 1
2 + gρ−, respectively, and is thus always relevant if the generic states are

stable (i.e., if W is irrelevant). The resulting state is a fully gapped C0S0 paramagnet

with long-range period-4 VBS order. This is not consistent with the DMRG data for

1.4 . J . 2.0 which is (likely) gapless Ref. [140] with power-law decaying bond-energy

correlations, however, the unpublished work by Lauchli does find a finite VBS-4 order

parameter, and we cannot rule out eventual small gaps. In Fig. 4.12, we show bond-energy

texture data for J = 1.6, which is representative of the behavior in this period-4 phase.
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Again, since this state is entered through a strong first-order phase transition near J ' 1.3

(the DMRG exhibits convergence difficulties for J ' 1.3 − 14), it is thus not surprising

that the realized period-4 phase is not naturally accessible starting from the C1S1 theory.

Finally, for J & 2.0, the ground state is a conventional quasi-1D ferrimagnet continuously

connected to that realized for J →∞ [140].

We conclude by remarking that the bond-energy textures in the putative C1S1

phase itself (0.8 . J . 1.3) definitively exhibit power-law decay; this can be gleaned from

the Fourier-space data in Figs. 4.4 and 4.10, and we have also performed a complementary

real-space analysis. Within this phase, there is no VBS ordering tendency: For example,

the L = 60 system would be able to accommodate potential VBS states with periods 4, 5,

or 6, but for 0.8 . J . 1.3 the singular wave vectors are incommensurate and fully tunable.

4.5.4 Comparison to other c = 2 states

Reference [7, 6] described a c = 2 fixed point in a frustrated three-leg spin ladder,

and it is natural to explore the relationship between this fixed point and our C1S1 phase.

Ultimately, however, our C1S1 state cannot be accessed in any meaningful way from the

ladder model discussed in Ref. [7, 6]. Firstly, the fixed point at the focus of Ref. [7, 6] is ac-

cessed perturbatively via weakly coupling three Heisenberg (Bethe) chains. This is in sharp

contrast to our results in which the underlying lattice does not consist of three decoupled

chains in any limit; more generally, our C1S1 theory clearly cannot be accessed via weakly

coupled chains—one needs to start with incommensurate filling of multiple fermionic spinon

bands. The fixed point of Ref. [7, 6], in contrast to the C1S1 phase, exhibits only commen-

surate correlations. While it is in principle possible to reach a phase with incommensurate
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wavevectors starting from decoupled Heisenberg chains, in general such approaches require

terms that manifestly break the SU(2) symmetry of the Hamiltonian [7]. The intriguing

point about our results is the observation that a simple nearest-neighbor Heisenberg Hamil-

tonian that retains SU(2) symmetry harbors a phase at low energies with incommensurate

wavevectors obeying “Fermi-like” sum rules. Furthermore, our C1S1 state is observed over

an extended region of parameter space and is thus a stable quantum phase. This means that

all short-range interactions that are allowed by symmetry are either irrelevant or marginally

irrelevant. This is markedly different from an unstable fixed point such as the one discussed

in Ref. [6], where gapless behavior requires relevant perturbations be fine-tuned to zero.

V4 ≡ (vρasJRasJLsa − vσasJRas · JLsa) + H.c. (4.48)

= cos(2θρ−){4vρas[ Γ̂ cos(2ϕσ−)− cos(2θσ−)]

+ vσas[ Γ̂ cos(2ϕσ−) + cos(2θσ−) + 2 cos(2θσ+)]}.

At the C1S1 fixed point, the important part of V4 reads [cf. Eq. (4.39)]

V4 = −(4vρas − 3vσas) cos(
√

2θaσ) cos(
√

2θsσ) cos(2θρ−). (4.49)

4.6 The VMC calculations

We have also perfromed variational Monte Carlo calculations by constructing a

given trial wave function in the standard way by projecting out doubly-occupied sites, i.e.

Gutzwiller projection, from the ground state of a free-fermion Hamiltonian. In the case

of the SBM, this procedure is particularly simple as the mean-field Hamiltonian is a pure
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hopping model that was discussed in section 4.2.1

HMF = −
∑
i,j

tijf
†
iαfjα. (4.50)

Again, the sum over spin indices α = ↑, ↓ is implied, hermiticity leads to tij = t∗ji,

and the on–site “chemical potential” terms are given by the diagonal elements: tii ≡ µi. We

then diagonalize HMF, construct a spin-singlet free-fermion Slater determinant, |Ψ0({tij})〉,

at half filling from the N↑ = N↓ = Nsites/2 lowest-energy single-particle eigenstates of HMF,

and finally apply the Gutzwiller projection as (see section 3.5.2)

|ΨSBM({tij})〉 = PG|Ψ0({tij})〉. (4.51)

The set of hopping amplitudes {tij} defining HMF thus constitute the variational

parameters of SBM trial states. These are what we refer to as the “bare” Gutwiller states,

and are sampled efficiently using the standard VMC techniques [47, 26]. See also section 4.6

for a brief review of the VMC methodology.

Note that since we are manually filling up the Fermi sea, the overall chemical

potential in HMF is arbitrary. The ansatz thus contains two (real) variational parameters:

tc and µ. From the diagonlaization of the mean–field Hamiltonian, band “a” in Eq. 4.11

is antisymmetric under leg interchange, while both bands “s” in Eq. 4.12 are symmetric.

At µ = 0, the bottommost (symmetric) band is completely filled, while the middle (anti-

symmetric) band is exactly half filled; this state does not give rise to the incommensurate

structure observed in the DMRG. Hence, we focus on the regime µ < 0 which produces two

partially filled 1D bands (see Fig. 4.3 and Fig. 4.13 below). This is the VMC setup with

open boundary conditions, discussed in section 4.5.2.
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The above SBM states are model wavefunctions for the C1S2 phase, however the

suspected ground state of the kagome strip heisenberg model is the argued C1S1 state. A

natural question thus concerns how to faithfully described the C1S1 phase via variational

wave functions.

Unfortunately, this appears to be nontrivial within the standard paradigm of con-

structing trial states by applying Gutzwiller projection to noninteracting mean-field states,

but here we describe our unsuccessful attempts at doing so. In our case, again referring to

the two active bands as simply s and a, we want to gap out the spin mode only for only the

symmetric band s. A natural, potentially fruitful way to generalize the simple SBM is to

add BCS pairing to the mean-field hopping Hamiltonian in Eq. (4.51), HMF → HMF + ∆̂,

and project the mean-field ground state to Nparticles = N↑ + N↓ = Nsites total particles

before Gutzwiller projection. Working in momentum space, we could consider the following

form for the pairing term:

∆̂ =
∑
k

[
∆sf

†
s,↑(k)f †s,↓(−k) + ∆af

†
a,↑(k)f †a,↓(−k) + H.c.

]
, (4.52)

where f †b,α(k) creates single-particle states given by the wave functions in Eqs. (4.11)–(4.12).

Then by taking ∆s 6= 0 and ∆a = 0 we can selectively gap out band s at the mean-field

level. However, doing so not only gaps out the corresponding spin mode (by pinning θsσ),

but it also disturbingly gaps out the corresponding charge mode (by pinning ϕsρ).

To understand the latter, it is instructive to consider what happens when one

adds BCS spin-singlet pairing to a single 1D band of spin-1/2 fermions and projects the

ground-state wave function to N total particles (at some generic density). In this case, one

will arrive at a BCS wave function with finite superconducting order parameter (see, e.g.,
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Ref. [47]), regardless of the fact that the Mermin-Wagner theorem prohibits such a ground

state for a Hamiltonian that preserves particle number. What is the fate of the system in

terms of the bosonized fields? The (singlet) superconducting pair operator reads

f †R↑f
†
L↓ + f †L↑f

†
R↓ ∝ e−i

√
2ϕρ cos(

√
2θσ). (4.53)

This operator would take on a finite expectation value in the proposed wave function (in

the sense of having finite two-point Cooper pair correlation functions at long distances).

Hence, both θσ and ϕρ would be pinned. That is, we have constructed some pathological

C0S0 state where the spin sector is indeed gapped, but the charge sector is “soft” (gρ →∞

in fact), as opposed to a bona fide C1S0 Luttinger liquid with finite gρ (i.e., a Luther-Emery

liquid).

For the two-band situation on the kagome strip, at the mean field level upon

taking ∆s 6= 0 and ∆a = 0, we would therefore have pinned θsσ and ϕsρ fields. Gutzwiller

projecting the BCS wave function would then naturally simply pin the remaining charge

mode θaρ, thereby leaving a C0S1 state with c = 1. The scaling dimensions of the bond-

energy and spin operators with respect to this fixed point are listed in the last row of

Table 4.1 shown above. Insofar as representing C1S1, this C0S1 BCS wave function is thus

arguably qualitatively worse than the C1S2 SBM wave function itself. Most importantly, the

bond-energy at wave vector q< = 2kFs is short-ranged even at the mean-field level (scaling

dimension ∆ = ∞), whereas this is actually the most prominent feature of the true C1S1

phase with its very slow power-law decay (∆ = gρ−/4). Given this catastrophic qualitative

discrepancy, we have not pursued numerical calculations of such BCS wave functions, and

thus must leave robust wave-function modeling of C1S1 for future work.
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Returning to the SBM wave functions, we show in Fig. 4.13 the exact VMC state

used for the spin structure factor calculations in Fig. 4.5 (L = 32 PBC system with DMRG

data taken at at J = 0.9). Specifically, we choose tc = 1.0, µ = −2.4, and antiperiodic

boundary conditions for the spinons in the x direction. This produces a state whose 2kF

wave vectors match the singular features in the DMRG data. Aside from having the extra

feature in the spin structure factors at wave vectors q< = 2kFs (symmetric cases) and π/2

(antisymmetric case) as well as exhibiting a quantitatively weak feature (in momentum

space) in the bond-energy at wave vector q< = 2kFs, such VMC states capture the long-

distance properties of the putative C1S1 phase reasonably well. (The relatively prominent

feature shown by the VMC state at wave vector q< = 2kFs in the “middle-middle” structure

factor 〈SMq ·SM−q〉 is likely some nonuniversal property of the given projected wave function;

recall this feature will be eliminated entirely in a true C1S1 state.)

Finally, we discuss the energetics of our simple SBM trial states in the kagome

strip Heisenberg model; for concreteness, we continue to focus on the point J = 0.9 as in

Fig. 4.5. Within this class of SBM states, the state at tc = 1.0, µ = −2.4 shown in Fig. 4.13

is not quite the energy-optimized VMC state. However, the lowest-energy variational state

is not far off at tc = 0.9, µ = −0.5 [see Fig. 4.14 for the energy landscape at J = 0.9 of our

SBM trial states in the variational space (tc, µ)]. This latter state has incorrect values of

kFs and kFa however (error ∼ 2π/L). As for the energies themselves, on the length L = 32

PBC system at J = 0.9, the DMRG ground state has energy −39.8 (in units of the leg

coupling J`). On the other hand, the energy-optimized VMC state (tc = 0.9, µ = −0.5)

has energy −38.3, while the state chosen for presentation (tc = 1.0, µ = −2.4) has energy
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−30.6 (this can be improved somewhat by tuning tc and µ at fixed values of kFs and kFa,

e.g., tc = 0.9, µ = −1.5 gives energy −32.0). However, the latter is likely due to the state

having inaccuracies in its (nonuniversal) amplitudes and short-range properties. It should

be possible to remedy this deficiency by, for example, using the “improved Gutzwiller” wave

functions of Ref. [125]; these are essentially Gutzwiller-projected fully gapless superconduct-

ing wave functions, although empirically even they only have tunable amplitudes with fixed

Luttinger parameter gρ− = 1. Even more importantly, recall that such SBM trial states

are not even in the correct quantum phase (C1S2 instead of putative C1S1), so extremely

accurate energetics should not be anticipated. Again note that the VMC wave functions are

mainly meant to serve as a numerical representation/cross-check of the analytic parent C1S2

theory, as opposed to being quantitatively accurate trial states to describe all (including

short-distance) properties of the DMRG data. Still, our simple VMC states do reasonably

well qualitatively, even semi–quantitatively, with regards to those universal features shared

between C1S2 and C1S1.

117



0 π/3 2π/3 π
q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

<
(B

q
)

J = 0.78

0 2kFs 2kFa π
q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

<
(B

q
)

J = 0.9

DMRG

VMC

0 2kFs 2kFa π
q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

<
(B

q
)

J = 1.0

0 2kFs 2kFa π
q

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

<
(B

q
)

J = 1.2

Figure 4.4: Fourier transform of (leg-bond) bond-energy textures induced by OBC on a
length L = 60 kagome strip at J = 0.78, 0.9, 1.0, and 1.2. We show both DMRG data
and VMC data for bare Gutzwiller SBM states. A wave function for the proposed C1S1
state would appear similar to the SBM except it would have a more prominent feature at
q< = 2kFs due to lowering of the scaling dimension of the associated operator upon pinning
of θsσ. At J = 0.78, the DMRG ground state is a fully gapped period-6 VBS phase. For
analogous data of bond-energy textures involving the cross bonds, please see Fig. 4.10 in
section 4.5.2.
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vectors q< = 2kFs and π/2 would be absent in a wave function for the proposed C1S1
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respectively] versus 1/L calculated with DMRG on the OBC(<<) system at J = 1.0. For
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the simple linear scaling form ∆E = a/L.
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Figure 4.10: Data analogous to Fig. 4.4, but now taking the Fourier transform of the cross-
bond bond-energy textures [see Eq. (4.18)]. The parameters chosen for the VMC states in

these calculations (and in the analogous calculations of Bq ≡ Bleg
q in Fig. 4.4) are tc = 1.0 and

µ = −1.8,−2.4,−3.1,−4.8 for J = 0.78, 0.9, 1.0, 1.2, respectively. (For details of our VMC
calculations, please see section 4.6.) Recall that the DMRG ground state at J = 0.78 is a
period-6 VBS (C0S0), but we still show a corresponding VMC state (C1S2) for comparison.
The discrepancies in signs of the features at, for example, q> = 2kFa between the DMRG
and VMC results can plausibly be explained by nonuniversal amplitudes/phases of the bond
texture’s oscillatory components.
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Chapter 5

The MPS representation of the

Gutzwiller variational

wavefunctions

In this chapter, we investigate a new approach to the Gutzwiller projection for-

malism for QSLs. We introduce a new tensor network method, in which we combine the

illustrative nature of the fermionic variational methods with the strength of tensor net-

works to capture the properties of the exact state. This is achieved by generating an

efficient matrix product state (MPS) representation of the variational wavefunction. The

MPS representation could then be used in any MPS–based tensor network algorithm such

as the usual DMRG. In addition to its theoretical appeal, the remarkable efficiency of this

method makes it a powerful tool to attack both gapped and gapless QSLs.
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5.1 MPS for Gutzwiller projected states

In this section we discuss possible approaches to generate MPS representations for

Gutzwiller projected variational wavefunctions. We introduce an efficient method which

we call Gutzwiller zipper and comment on the complexity, scaling and shortcomings of the

methods.

Let us start by describing the setup in more detail. The system has L sites labeled

by i = 1, . . . , L, where each site hosts a spin–1/2 local Hilbert space h1/2 = {|↑〉, |↓〉}. We

would like to describe a particular variational spin state defined through the Gutzwiller

projection over the Hilbert space of the system H1/2 =
⊗

i hi,1/2. That is to define two

distinct two dimensional local Hilbert spaces, parton Hilbert space hi,↑, hi,↓ on each site

with the corresponding global Hilbert spaces H↑ =
⊗

i hi,↑ and H↓ =
⊗

i hi,↓.

The starting point is two MPS representaion of spin-less fermionic theories over the

two parton Hilbert spaces, which here we refer to as parton MPS s. The process of Gutzwiller

projection works regardless of the nature of parton MPSs. The parton MPSs can be copies

of the same guassian fermionic theories as were used traditionally to construct spin liquid

states or different states as long as the entanglement is relatively contained (area law or

similar). Indeed, in our work and for the purpose of illustrations we only consider copies

of ground states of Gaussian fermionic theories. These parton MPSs have been derived

using a unitary circuit applied to some initial tensor product configuration, for example

in the z-component basis of the spin-1/2. The simple unitary quantum circuits relation

between given Gaussian states and trivial tensor product states have been studied in state

preparation quantum information community [40, 141] and tensor network community [60].

129



The detail of the process in the context of MPS is outlined in ref. [142], where the NN unitary

operators found from approximate diagonalization of the correlation matrix Λij = 〈c†icj〉

are called Gaussian MPS or GMPS. For our purposes we consider this representation to be

almost exact. This is because with little computational effort the error at this stage can be

chosen to be orders of magnitude smaller than the truncation errors occur at later stages of

the method. The truncation becomes necessary during the application of unitary operators

on the initial configuration MPS that unavoidably increase the bond dimension of MPS.

The parton MPSs are given as

H↑ 3 |ψ↑〉 =
∑
{α}

Aα1
1 · · ·AαLL |α1 . . . αL〉 (5.1)

H↓ 3 |ψ↓〉 =
∑
{β}

Bβ1
1 · · ·BβL

L |β1 . . . βL〉 (5.2)

The parameter that controls the truncation here is the bond dimension of the

parton MPSs, which we denote by m. The final entanglement of the Gutzwiller projected

MPS is inherited from the original entanglement in the MPS representation for Slater de-

terminants, as a result the parton MPSs should be reasonably converged. The measure of

convergence should be the entanglement in the state and not convergence of some small sup-

port correlation function. This is because small support correlation functions are expected

to converge much faster (even more so if some averaging is performed, as in when one is

looking at them in the Fourier space) than total entanglement. However, the entanglement

convergence guarantees the convergence of all correlation functions. In practice, a bond

dimension of a few hundreds appears to be sufficient for the QSLs that we use here for the

illustrations on cylindrical boundary conditions (open boundary condition in x–direction,

and periodic in y–direction). Particularly, for the 4–leg triangular ladder of size L = 4×50 a
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Figure 5.1: The entanglement entropy for two species of the ground state of isotropic
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400, 800, 1600 and the Gutzwiller projected MPS with M = 6000 for m = 400, 800. Note
that the entanglement of the Guzwiller projected state is inherited. Hence choosing parton
MPSs with converged high entanglement is important to achieve a highly entanglement
Gutzwiller projected states.

mere bond dimension of m . 400 seems to keep the truncation error ε . 10−6. For systems

of roughly the same size the 6–leg ladder requires m ≈ 1000 to achieve reasonable results

(see Fig. 5.1).

The generic process is as follows. We have to first calculate the tensor product MPS

while respecting the fermionic anti–comutation relations. The anti–commutation relations

are implemented by a fermionic swap gate. The swap inserts a minus sign at sectors where

the MPS corresponding to both flavors of fermions have odd parity on the remaining tail of
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the tensor [32]. It is therefore necessary for the MPS matrices to at least be aware of the Z2

symmetry sectors corresponding to the fermionic parity. If the theory respects (is expected

to respect) a larger symmetry group and efficient tensor network algorithms exist, it is also

beneficial to make use of the larger symmetry group. For example, making use of symmetries

in tensor networks, specifically MPS/DMRG is now quite standard [144, 145, 34, 128, 129]

and free fermion theories without pairing respect a global U(1) symmetry, fi → eiφfi,

that labels different sectors of the Hilbert space corresponding to a constant number of

fermions. From Jordan–Wigner transformation the global symmetry corresponds to the

total magnetization Sztot =
∑

i S
z
i sectors of the spin theories. We therefore employ U(1)

symmetric tensors to construct such states.

The Gutzwiller projection tensor is then applied on each site reducing the local

physical dimension from 4 to 2. The Gutzwiller projection combined with the identification

of two single occupancy local states with spin states, PG tensor is given by

PG = |↑〉〈n↑ = 1|+ |↓〉〈n↓ = 1|. (5.3)

The resulted MPS is then brought back into the canonical form using singular value

decomposition. That is to bring all tensors into right– or left–isometry form except for a

single tensor that contains the singular values in the center. This tensor is now the center of

orthogonality because the set of Schmidt states on the right and left of this tensor form an

orthonormal set respectively [118]. One can also follow by a usual approximation step, that

is a SVD at the center of orthogonality accompanied by a singular value truncation step.

The sum of the truncated singular values is called the truncation error. It corresponds to

amplitude of the dismissed states compared to the remaining state.
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If the truncation error of the preparation of the parton MPS are ε then the tensor

product MPS will inherit the same error of ε. It seems reasonable to assume that the error

of Gutzwiller project state is also of order ε. This is not trivial, can we argue that the

Gutzwiller singular values have some equal density in the singular values of the original

state. [A better argument needs to be made for truncation error of Gutzwiller projected

states]. In order to test the truncation error of the Gutzwiller projected state we have

tested the fidelity of different Gutzwiller projected states for different values of initial MPS

truncation errors, from the Fig () it is clear that the truncation error of Gutzwiller projection

grows linearly with parton MPS error.

The above outlined procedure is quite inefficient. To illustrate this let’s pick a

parton MPSs of bond dimension m. The tensor product MPS has bond dimension m2

which requires memory of O(Ldm4) to store the state. After the Gutzwiller projection the

canonicalization step requires SVD which takes O(Ldm6). The canonical MPS can then be

approximated into a much smaller MPS by truncation. Thus this straightforward approach

is near impossible on an ordinary computers even for moderate values of m, that is about a

few hundreds. For example, for our available computer with 64GB of memory and 16core

- 3GHZ CPU power, we have only tried the m = 100 case for a small system of 64 sites for

comparison purposes. The interesting question is: can we achieve an approximated state of

much smaller size without generating the large tensor product MPS?

In the following we will consider an efficient approach at the expense of introducing

more errors in the Gutzwiller projected state.
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As long as the tensor product without projection is concerned, there exists an

efficient approach that leads to the same final truncated tensor product MPS. The key

observation is that if the two starting MPS are in canonical form with the same center

of orthogonlaity, then so is the resulting tensor product MPS. That is because the tensor

product of two right–/left–isometries is a right–/left–isometry. This allows for a much more

efficient but still straightforward method to approximate the tensor product MPS.

We start with the two MPSs in canonical form with the orthogonality center at

the first site and bond dimensions m` at bond `. The final result is an approximation to

the tensor product MPS with a bond dimension M`. At any step `, we follow these steps

(i) (zip) Make the matrix C ′` that is the tensor contraction of parton MPSs A`, B`,

that are tensors with dimensions (m`−1 × d ×m`), and the carry from previous step

E`−1 that is a (M`−1 × m`−1 × m`−1) tensor as in figure Fig. 5.2 (excluding the

Gutzwiller projection). This is just a multiplication step which for the best choice of

multiplication order takes approximately O(Mm3) or more precisely

O(M`−1m
2
`−1m`d+M`−1m`−1m

2
`d

2). (5.4)

(ii) (truncate) Bundle the physical dimension with the left index of C ′`, perform SVD,

C ′` = U`S`V
†
` and truncate. The SVD is on a (dM`−1 × m2

` ) matrix, which at best

takes

O(min(d2M2
`−1m

2
` , dM`−1m

4
` )) ≈ O(m2M2) (5.5)

(iii) Identify U` as the MPS tensor corresponding to the truncated tensor product MPS at

site `, that is C` := U`,
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(iv) Identify S`V
†
` as the carry matrix for the next step, that is E` := S`V

†
`

The procedure is initialized by defining E0 = I and is terminated by reaching the

last step and defining CL := C ′L. The resulted tensor product MPS is canonical with center

at the last site L.

We note that one may be tempted to avoid performing SVD on the full C ′ matrix

by defining the matrix–vector multiplication functions and then feed it to a sparse SVD

solver. To analyze the scaling of the matrix–vector multiplication and the sparse SVD

method, we start with the best tensor contraction possible for the multiplication to the

right vector (see Fig 5.2 bottom part). It can be done in approximately O(m2M) or more

precisely

O(dm`−1m
2
` + d2m2

`−1m` + d2m2
`−1M`−1) (5.6)

The same multiplication to the left vector again takes approximately O(m2M) or more

precisely

O(M`−1m
2
`−1 + dm2

`−1m` + d2m`−1m
2
` ) (5.7)

so both direction can be done in O(m2M) but since we require M` singular values, we

have to perform at least O(M) number of the above multiplications, which leaves us again

with O(M2m2). In practice, this approach works worse than the straightforward method!

Generally such approaches are only useful if making the large matrix is more memory

consuming or if better scaling matrix–vector multiplication function are available compared

to that of the straightforward approach. None of the two reasons applies to the current

situation.
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We now consider the application of the Gutzwiller projection. For the tensor

product MPS, the efficient method is also exactly the correct scheme to approximate the

state. For an efficient generation of Gutzwiller projected MPS the following two approaches

comes to mind:

1. Generate the truncated tensor product MPS first (by the same method described

above) and then apply the Gutzwiller projection tensor.

2. Apply the Gutzwiller projection at the same time during the zip and truncation

procedure. That is to include the multiplication by the Guzwiller projection tensor

into the definition of C ′ell tensor (see Fig. 5.2).

Both of the suggested approaches suffer from some shortcomings. Note that only a

tiny part of the wavefunction survives the Gutzwiller projection, because the overlap of the

Gutzwiller projected wavefunction with the tensor product state is exponentially small in

system size (about 1/2L). In the first approach, The effect of this premature truncation of

MPS before projection is in general not trivial. Therefore, in a careful study the application

of the projection before the truncation step should be preferred. However, we do expect

the Gutzwiller projection to require a smaller bond dimension (to achieve up to the same

approximation) since it reduces the complexity of the tensor product state.

The second approach performs the truncation after projection but it introduces

a source of uncontrolled errors. The problem here is that while the original MPS and the

tensor product are all in the canonical form, the Gutzwiller projected part is not. So,

in principle the SVD performed at each step is not a Schmidt decomposition of the final

wavefunction because the right vectors do not form an orthonormal basis. However, if one
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Figure 5.2: Illustration of the `th step of the Gutzwiller zipper method. The C ′` tensor is
formed by contracting the tensors inside of the dashed box and the undergoes SVD and
truncation to make C` and E`. Thick cross-out operator indicates the position of fermionic
swap. Arrows indicate the isometry direction (The carry tensor E` is not an isometry). The
left part of site ` are all left–isometry tensors, however note that while the parton tensors
are chosen to be right isometry on the right side of side `, the right part of the full MPS
is not right–isometry due to the presence of the non-trivial Gutzwiller projection operator.
Therefore we are not at the center of orthogonality of the Gutzwiller MPS. This is the main
source of uncontrolled errors. The svd–truncation step is shown underneath.

fixes the threshold for the truncation error to a small enough value, in practice, the final

MPS wavefunction could be found close enough to the target MPS, reducing the magnitude

of uncontrolled errors to a reasonable amount.

We will consider the source of errors and a more comprehensive discussion to the

section on error analysis.
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5.2 The tentative Gapless QSL on traingular lattice

In this section we present some numerical results for the study of gapless spin–

liquids using the introduced Gutzwiller zipper method. We comment on the entanglement

properties of the generated Gutzwiller state, as well as the state after performing one or two

steps of the usual DMRG. Other local properties such as spin–spin correlation functions are

also reported. For the DMRG studies the size of the Krylov space is chosen to be small;

the number of multiplication for each Lanczos step has been limited to a maximum of 20.

A choice of a small size of the Krylov space achieves two important goals. It prevents local

over–minimization before a global minimization in the system is reached, and makes the

illustration of the convergence more clear, as longer number of operations are required for

convergence.

A good example to illustrate the power of Gutzwiller zipper method in practice, is

to investigate the tentative gapless quantum spin liquid on triangular lattice. The SU(2)–

symmetric spin model Hamiltonian consists of NN Heisenberg AF augmented by the four–

spin ring exchange interaction defined on every possible diamond of triangular lattice. There

are three possible diamonds per unit cell that are shown in Fig. 5.3. The ring exchange

operator is defined by its circular shift action on the spins. For any chosen basis, the action

is Pijkl|σiσjσkσl〉 = |σlσiσjσk〉. We define the Hamiltonian (following the convention of

ref. [17]) as

H =
∑
〈i,j〉

2Jij Si · Sj +
∑
ijkl∈♦

K♦ (Pijkl + h.c.) (5.8)
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Where we study 4–leg and 6–leg lattices for the fully isotropic model where all

Js and all Ks are equal. A well–known result for the 2–leg ladder is also included for

comparison purposes. At K = 0 the Heisenberg AF model on the triangular lattice is

known to be in 120 degree ordered phase. With the introduction of K terms it has been

suggested that the model initialy transitions into a valence bond solid where patterns of

single strong bond (close to singlet) per each triangle form on the lattice. As we increase

K/J , it is reasonable to expect that the ring exchange term provides enough quantum

fluctuation for the singlets to disseminate and realize a spin liquid phase. Indeed, a number

of studies suggested that around K/J & 0.3 this model realizes a gapless quantum spin

liquid with incommensurate wavevectors, the so–called spin–Bose metal (SBM) [101, 17].

The quasi-1D systems are then considered to be cuts into the Fermi sea where each cut will

correspond to a partially filled 1D band. These theories are labeled as SBM–n where n is

the number of partially filled bands.

Since the suggested spin–liquid is a projected Fermi surface spin–liquid, the parton

theories are chosen to be described by free fermion hoppings on the same lattice. For a

non–chiral periodic spin theory we have the choice of periodic and anti-periodic boundary

condition for the fermionic spinons (since the spin is made out of two copies). For systems

on a torus (periodic in both directions) the anti–periodic boundary conditions along the

larger direction (x) is chosen to avoid degeneracy of fermion theories at half–filling. The

anti–periodic boundary condition corresponds to spinons exposed to a π–flux when hopping

along a loop in that particular direction. It is worth noting that chiral spin theories can

also be generated for an arbitrary boundary condition at the expense of breaking the time–
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reversal symmetry, where the two flavors of spinon experience opposite fluxes, i.e. one flavor

experiences a θ–flux and the other (−θ)–flux for any θ ∈ [0, π]. For the systems on cylinder,

here we only consider periodic boundary condition in the shorter direction (y).

The general scheme of our study is as follows. We first build the spinon MPSs

and use the method explained above to build the Gutzwiller projected MPS. We will then

perform the regular DMRG initialized by the Gutzwiller MPS and monitor the behavior of

the state.

Let us start with the 2–leg ladder where it is well–established that the SBM phase

with the central charge of c = 3 is realized and is stable in an extended region of the phase

diagram [125]. We have picked t = 1.0, 0.7 for the Gutzwiller state model and J = 1.0,

K = 1.6 for the spin model to compare the results. The advantage of initializing DMRG

with the Gutzwiller state is quite remarkable as is shown in Fig. 5.4. Note that since the

entanglement of the Gutzwiller MPS is already high and the MPS is in the right phase, it is

quite incredible that only two sweeps of DMRG capture all long and short range properties

of the ground state with relatively good accuracy. Meanwhile even 6 sweeps of DMRG has

difficulty capturing the entanglement. This is expected because DMRG is a local iterative

method, which naturally captures the short range correlations more accurately while it

struggles to converge to complicated long range correlation functions. We note that if

conclusive studies did not exist for the 2–leg ladder, this behavior could have been taken

as strong evidence that the ground state of this Hamiltonian for the 2–leg ladder is the

suggested SBM–2 quantum spin liquid. This is indeed the approach we take for this model

on wider ladders of size 4, and 6 legs.
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We now try to reproduce the previous results found for the of 4–leg triangular

ladders. For the parton theories we pick the isotropic hopping t1 = t2 = t3. The quasi–1D

system has three filled 1D bands so the spin–less theories have a central charge of c = 3. The

resulting Gutzwiller projected state thus is expected to have c = 6− 1 = 5 where the single

species is subtracted because the integration of the gauge field pins the field corresponding

to the total charge fluctuations. In Fig. 5.5 we show that decent number of kept states for

open boundary conditions suggest the c = 5 value for central charge.

As the SBM phase is suggested for K/J > 0.3 we pick J = 1.0 and K = 0.6 that

is well inside of the SBM region of phase diagram. If the suggested projected Fermi surface

is the correct ground state of the spin model, same as in the 2–leg ladder, we expect that

the first few sweeps of DMRG only correct the short–range terms in the Hamiltonian and

minimize the energy while keeping the entanglement, the generic long–range property of

the state, at the same level. Contrary to the expected behavior for the ground state of a

gapless theory we observe the flattening of entanglement entropies cuts in Fig. 5.6. This is

a strong evidence that in contrast to the suggested phase diagram, the ground state of this

spin model is not the projected Fermi surface. Moreover, the flattening of entanglement

entropies for different system sizes is evidence for existence of a gapped state.

5.3 Error analysis of the Gutzwiller zipper method

As we have already mentioned, the efficient Gutzwiller zipper method introduced

in this chapter suffers from a mathematical limitation. At any step during the zipping
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process the right part of the MPS tensor network does not form an orthonormal basis

which is a consequence of the Gutzwiller projection. As a result, the singular values of the

tensor at site ` are not Schmidt values of actual Gutzwiller projected states and truncating

them introduced uncontrolled errors in the process. It is therefore important to analyse the

error produced by this method.

Here, we chose to perform the zipping from left to right at each step, `, and keep

the left unitary of singular value decomposition as the local MPS tensor the that site. This

means that at each step the left part of the tensor is already orthonormal by construction.

So in order to find the error generated at that step we need to exactly SVD the tensor

network from right and bring the center of orthogonality to site `, that is to make the

Gutzwiller contraction and subsequent SVDs exactly on the right side of site `. We will

then end up with a tensor of the form shown in Fig. 5.7. This tensor contraction measures

the uncontrolled error introduced in this process.

5.4 SBM theory for triangular lattice

A simple chain corresponds to a single cut in the BZ of the 2D system, it should

have two Fermi points at kf = π mod 2π, and a central charge of c = 1. For the two–leg

triangular ladder (zig–zag ladder) there are two cuts into the BZ, which correspond to two

Fermi seas with two pairs of Fermi points at ±kf1,±kf2. Again the Fermi surface has to

satsify the sum rule kf1 +kf2 = π mod 2π. The two–Fermi–sea SBM theory has been fully

studied with its instabilities and it has been shown that the SBM physics is realized on a
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two–leg triangular ladder of Heisenberg spin-1/2 in the presence of a sufficiently strong ring

exchange interaction.

In Fig. 5.8 we show the BZ of the 4–leg and 6–leg triangular ladders. Based on

the above discussion, since we see 3 and 5 cuts into the BZ respectively, it is reasonable to

expect that the Gutzwiller state should have the central charge of c(ly=4) = 5 and c(ly=6) = 9.

Large scale DMRG calculations can in principle probe these large central charges, however

in practice only c = 5 is reasonably accessible. Nevertheless, we have shown that for ly = 6

some evidence that the c = 9 is indeed the observed Gutzwiller state.

5.5 Gutzwiller zipper in action

For the calculations of the spin structure factors we have mainly used open bound-

ary conditions. However, we have since due to the averaging of the structure factors, there

is not a significant difference between open and periodic system. The structure factors are

defined as

〈Sq · S−q〉 =
1

L

∑
x

e−iqx
∑
i

〈Si · Si+x〉 (5.9)

The central charge has been calculated using the fitting of the scaling of von

Neumann entanglement entropy cuts to the Calabrese–Cardy [23] formula

S(`, L) =
c

6
log

(
L

π
sin

`π

L

)
+ · · · (5.10)

for the open boundary condition and twice that for system with periodic boundary condi-

tion.
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5.5.1 Simple 1D chain

In this section we test and benchmark the Gutzwiller tensor network method on a

simple chain of spin–1/2 Heisenberg antiferromagnet. The Gutzwiller state in this example

is known to be the ground state of the Haldane–Shastry model [123, 51] and is in the same

phase as the ground state of Heisenberg antiferromagnet. The model has a long range

interacting spin–1/2 interaction on a chain of size L

HHS =
∑
`

(
π

L sin(π`/L)

)2∑
i

Si · Si+` (5.11)

Both models are gapless and have a central charge of c = 1, and both show a feature of

algebraically decaying correlations at the wavevector kF = π which is consistent with the

theoretical and numerical prediction of Ref. [125].

5.5.2 The 2–leg triangular ladder (zig–zag ladder)

In this section we try to find the phase diagram of the 2–leg ladder given in

detail in Ref. [125] starting from the Gutzwiller mother state. We demonstrate that all

the phase diagram of the 2–leg ladder can be achieved despite the fact that the correct

parent double–parton fermi surface is not exactly constructed. In principle, one should

first minimize the energy (using VMC for example) and construct the correct parent state

with the correct(!) fermi surface(points) and perfrom the DMRG on that. However, as we

see this is not necessary as the correct state is picked up by the DMRG even without the

energy minimization step. This is because all the phase diagram could be though of as an

instability of mother state (as long as the correct number bands are filled) and the exact

wavevector is not important and it will be picked by a few sweeps of DMRG.
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Four of the possible phases in the 2–leg ladder is shown in Fig 5.9. Note that

the signature of all phases with apparent from the structure factors and the entanglement

entropy, even for very small bond dimensions M = 300.

5.5.3 Wider ladders of triangular lattice

Going to larger width ladders, the conjectured phase diagram of 4–leg ladder in

Ref. [17] has three separate phases, for isotropic J which we also considered here. The Rung

phase which we consider for parameters K/J = 0.1, the VBS phase which we consider for

parameters K/J = 0.25 and the tentative SBM phase which we consier for parameters

K/J = 0.6.

The different possible conjectured phases of the 4–leg ladder is shown in Fig 5.10.

Based on the behavior of entanglement entropy cuts, we conclude that the ground state of

the Heisenberg model augmented with the ring exchange is not the SBM theory which is

realized for the Gutzwiller state.

For the 4–leg ladder we have also calculated the central charge of the Gutzwiller

state for periodic boundary conditions. Despite keeping up to 7200 states for the MPS, the

entanglement entropy did not fully converge. However, it seems that the central charge is

approaching the expected c = 5, see Fig. 5.12
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Figure 5.3: The triangular lattice drawn for the size of L = 4× 6 with periodic boundary
conditions. Schematic representation of spin theory operators are depicted on the right. It
is believed that this spin model harbors a gapless QSL which well described by a projected
Fermi surface. The schematics of hopping amplitudes for the fermionic spinons are shown
on the left.
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Figure 5.4: For a triangular ladder of size L = 2 × 48. The DMRG has done with J2 =
J3 = 1.0, J1 = 0.8, and K1 = 1.0, a total of M = 900 states are kept as the bond dimension
of DMRG and Gutzwiller state while the initial parton MPSs has m = 200 state each with
hopping amplitude t2 = t3 = 1.0, t1 = 0.7. (top panel) comparison of measured energies
during sweeps of DMRG between a random state and the Gutzwiller state. (bottom panel)
Entanglement entropies at each cut.
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Figure 5.5: The entanglement entropy cuts for various system sizes for the open boundary
condition 4–leg ladder on a cylinder. The theory suggests a central charge of c = 5. The
direct fit on system size of L = 4× 50 comes out as a central charge of ≈ 4.6 and fit on the
average mid–lattice entropies for different sizes show a central charge of ≈ 4.75
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Figure 5.6: The Gutzwiller projected state before and after two sweeps of DMRG. The
entanglement entropy has completely flattened and and the spin–spin correlations features
are rounded up for the most part. This suggests that the suggested SBM phase is not the
correct ground state of 4–leg triangular ladder.
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Figure 5.7: (a) The gutzwiller projected MPS tensor network with center of orthogonality
at site `, i.e. all tensors on sites on the right/left are right/left isometry when the physical
leg is grouped with the right/left leg (b) The generated error can then be calculated. The
svd step is the middle figure. Finally the tensor contraction corresponding to fidelity of
approximated state at step l compared to doing step ` exactly are show underneath. The
colors match the svd–truncation figures making the argument easier to follow.
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Figure 5.8: The Brillion zone of the 4–leg (left) and 6–leg (right) triangular ladders with 24
sites in the other dimemsion. The halffilling is shown in filled blue colors and the discrete
state are filled for the 4× 12 and 6× 12 sites.
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Figure 5.9: Exploring the phase diagram of 2–legs ladder by applying 2 sweeps of DMRG
on a single two–band gutzwiller state. The spin–spin structure factors are shown on the left
and von Neumann entorpy of system cuts are shown on the right. All rows have k = j1.
The first row j2/j1 = 0.8 corresponds to the large wave–vector SBM, the second row j2/j1
correspond to VBS-3 state, the third row corresponds to the j2/j1 = 3.0 corresponds to the
small wave–vector SBM phase between VBS-2 and VBS-3, and the fourth row j2/j1 = 4.0
corresponds to the VBS-2 state. Note that a drop in the entanglement entropy dome
happens when the phase has a lower central charge.
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Figure 5.10: Exploring the phase diagram of 4–legs ladder along the line of isotropic J by
applying 3 sweeps of DMRG on a single three–band gutzwiller state that is the projection
of isotropic hopping fermionic ground states. The spin–spin structure factors are shown on
the left and von Neumann entorpy of system cuts are shown on the right. The first row
K/J = 0.6 corresponds to the tentative SBM phase, the second row K/J = 0.25 correspond
to VBS state, the third row K/J = 0.1 corresponds to the rung state.
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Chapter 6

Conclusion and remarks

The field of quantum spin liquids will remain one of most active areas of research

in condensed matter physics for the foreseeable time. This thesis presented two small but

significant contributions to this subject.

In chapter 4 we presented a convincing numerical evidence that the ground state

of the simple kagome strip Heisenberg model can be described as an intriguing C1S1 spin

liquid phase, a marginal instability of the spin Bose metal (i.e., U(1) spinon Fermi surface

with no flux) on this ladder. We emphasize that by employing fully controlled numerical

and analytical techniques we can understand the realized exotic phase very thoroughly in

terms of gapless fermionic spinons—indeed the ability to develop such a complete under-

standing of an exotic phase of matter in a simple nearest-neighbor Heisenberg spin model is

exceedingly rare. We have also demonstrated the contrast between our results and similar

c = 2 fixed points previously realized in frustrated spin ladders. In particular, our find-

ing is accessed through a non–perturbative description of only nearest neighbor Heisenberg
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antiferromagnet, possesses incommensurate wavevectors, and exists as a stable extended

quantum phase at zero temperature.

There are multiple questions that still remain to be answered. While the simplest

Dirac–spin–liquid–like starting point on this kagome strip leads to a fully gapped state at

the mean–field level, it would be interesting to search for other possible two-band scenarios

with the hope of connecting our results to recent work suggesting a gapless state in the

2D kagome Heisenberg antiferromagnet [55, 70, 87]. More generally, it is interesting to

ask why a state such as the C1S1 would be realized in our model: Previous realizations of

the spin Bose metal itself involved interactions appropriate for weak Mott insulators with

substantial charge fluctuations [125, 17, 99], while the simple Heisenberg model of our work

is appropriate only in the strong Mott regime. Thus, perhaps our work can give some

guidance on realizing exotic spin liquid states with emergent fermionic spinons in simple

models of frustrated quantum antiferromagnets.

To investigate the structure change of state going through Gutzwiller projection, in

chapter 5 we investigated the MPS representation of the Gutzwiller projection variational

wavefunctions and introduced an efficient method to generate large–scale MPSs suitable

for the study of spin–liquid states. The Gutzwiller zipper method is an extremely useful

alternative to the conventional approaches of VMC and DMRG/ED studies. In a sense,

this is an evolved method combining the power of both methods making it more practical

in the study of QSLs. A particularly important reason is the fact that the variational

wavefunction itself is the outcome of the Gutzwiller zipper algorithm and as a result the
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same wavefunction can be fed into any tensor network algorithm of choice. Such comparisons

undoubtedly make the derived conclusions more convincing.

Despite the fact that the Gutzwiller zipper method suffers from an orthonormality

issue, we have shown that in practice, it performs remarkably well. As a case study we

tested this approach on ladders of triangular lattice with an SU(2) symmetric Hamiltonian

and disproved the possibility of the SBM phase for a region of the suggested phase diagram

in literature.

Finally, we emphasize that while an efficient algorithm focused on matrix product

states was presented here, the generalization of such strategies to larger tensor networks

may as well be achieved and turn out to be quite useful. A possible extension as an

initial step could be an infinite MPS algorithm. Studies of 2D systems on a cylinder with

iMPS algorithms are increasingly more common in the community. Therefore, a variational

iMPS on a cylinder could open new pathways toward the study of 2D QSLs. The Gutzwiller

projection on the 2D tensor networks such as PEPS could also be simply constructed, though

much more costly. A thorough investigation of the accuracy and efficiency of methods could

also be a future direction.
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[108] R. Orús. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics, 349:117–158, October 2014.
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Appendix A

Fundamentals

A.1 Fourier transform conventions

Let us first go over the discrete fourier transform. For a function defined over

discete points 0, . . . , N − 1 with spacing a between them, we can assume it to be a periodic

function on the interval [0, L) where L = Na is the size of system. The allowed momenta

in the interval [0, 2π) are

k = 2π
na

L
where n = 0, . . . , N − 1 (A.1)

we can also have n = −N
2 , . . . ,

N
2 − 1 if we like to define the fourier transform function over

the [−π
2 ,

π
2 ) interval. The symmetric factor fourier transform is defined

f̃(k) =
1

V1/2

N−1∑
x=0

e−ikx f(x) (A.2)

f(x) =
1

V1/2

K∑
k=0

eikx f̃(k) (A.3)
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where we defined K = 2π(N − 1)a/L and V is the factor that corresponds to the volume of

the space, and here is V = N . In order to show this we perform the transform and inverse

transform

f(x) =
1

V
N−1∑
x

(
K∑
k

eik(x−x′)
)
f(x′) (A.4)

the expression in the paranthesis should be equal to Vδx,x′ . This is just a geometric series

K∑
k

eikm =
1− eiNkm

1− eikm
(A.5)

where we introduced m = x − x′ which can take values −(N − 1), . . . , N − 1. Since Nk is

always an integer multiple of 2π, the numerator is always zero. The denominator is nonzero

for m 6= 0 and for m = 0 we can use the L’Hospital’s rule to find the limit m→ 0. Therefore

for the expression of Kronecker delta function we have

δx,x′ =
1

N

K∑
k

eik(x−x′), δk,k′ =
1

N

N−1∑
x

e−i(k−k′)x (A.6)

If we now consider the continuous space [0−L) we use the notion of number of sites

in real space. Any integrable periodic function will have a fourier series with the allowed

values of momenta

k = 2π
n

L
, where n ∈ Z (A.7)

the fouries series transform and inverse are defined as

f̃(k) =
1

V1/2

∫
L

e−ikx f(x) dx (A.8)

f(x) =
1

V1/2

∞∑
k=−∞

eikx f̃(k) (A.9)
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where the factor V again corresponds to volume of space which is V = L for the case of

fourier series. To show this again we have to perform the transform and inverse

f(x) =
1

V

∫
L

( ∞∑
k=−∞

eik(x−x′)
)
f(x′) (A.10)

the term in paranthesis should be Vδ(x− x′). Indeed it a geometric series

∞∑
k=−∞

eikx = lim
N→∞

sin((2N + 1)πx/L)

sin(πx/L)
(A.11)

This function is a dirac comb, which is an infinite series of equidistant Dirac delta functions.

To show this we multipy this function together with an analytic function h(x) and integrate

by closing the contour C at the upper half of the plane. There exist infinite number of poles

on the real line at x = mL for m ∈ Z, so we get

g(x) ≡
∞∑

k=−∞
ei2πnx/L (A.12)

∫ ∞
−∞

g(x)h(x) dx = =
[∑
m

∮
C

exp (i(2N + 1)πz/L)

cos(mπ) πL(z −mL)
h(z)dz

]

= =
[
πi
∑
m

L

π

exp (i(2N + 1)mπ)

cos(mπ)
h(mL)

]

= L
∑
m

h(mL) (A.13)

we therefore conclude the following equation for the Dirac comb function

1

L

∞∑
k=−∞

ei2πnx/L =

∞∑
m=−∞

δ(x−mL). (A.14)

If we start by the transformed function and apply inverse and then transform again we will

find another equality for the Kronecker delta function for n, n′ ∈ Z that shows up in case

of fourier series

1

L

∫ L

0
e−i 2π

L
(n−n′) dx = δn,n′ (A.15)
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If the function is not periodic and is defined over the whole real space, then we

get the continuous fourier transform

f̃(k) =
1

V1/2

∫ ∞
−∞

e−ikx f(x) dx (A.16)

f(x) =
1

V1/2

∫ ∞
−∞

eikx f̃(k) dk (A.17)

In this case V = 2π to see this we need to look at the Dirac delta function definition as the

fourier transform of constact function

1

2π

∫ ∞
−∞

eikx dk = δ(x) (A.18)

there are various way to show this, a simple approach is

1

2π

∫ ∞
−∞

eikx dk =
1

2π

∫ ∞
0

2 cos(kx) dx

= lim
k→∞

1

π

sin(kx)

x

= lim
k→∞

k sinc(kx) = δ(x) (A.19)

or we can make use of the fourier transform of the (un–normalized) Gaussian e−x
2/2σ2

which

has hight 1 at x = 0 and take the σ → ∞ limit, which results in a normalized Gaussian

function over k with std limit to zero.

1

2π

∫ ∞
−∞

eikxe−x
2/2σ2

dx =
1

2π

∫ ∞
−∞

e−(x−ikσ2)2/2σ2
e−k

2σ2/2 dx

= lim
σ→∞

σ√
2π

e−k
2σ2/2 = δ(k) (A.20)

As for the choice of conventions, generally different choice of where to put factor

and sign is used for different purposes, so the choice of fourier transform is always mentioned.
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A.2 correlation functions vs density matrices

For free theories there is direct connection between two–point correlation functions

and their corresponding density matrices [110]. That is due to the fact that in free theories

all correlation function of any number of operators reduces to two–point correlation func-

tions, according to Wick’s theorem. As the correlation function should also be generated by

the reduced density matrix 〈O〉 = tr(ρO), the reduced density matrix is also exponential

of a free theory.

For free paring-free fermionic theories of the form H = −∑Tijc
†
icj the reduced

density matrix should be of the form

ρ ∝ e−K, K =
∑
ij

c†i K̂ij cj (A.21)

It is therefore not surprising that the same unitary diagonalization of the density matrix also

diagonalizes the correlation matrix Λij = 〈c†icj〉. To show this explicitely, U †K̂U = E where

we define the diagonal eigenvalue matrix E = diag(ε1, · · · , εN ). The correlation function,

writing the creation and annihilation operators in terms of the new diagonal operators,

ci = Uikfk, is now

Λij = 〈c†icj〉 =
∑
k,k′

1

Z
tr

(
exp

(
−
∑
k

εlf
†
l fl

)
U∗kiUjk′f

†
kfk′

)

=
∑
k

U∗kiUjk
1

eεk + 1
(A.22)

therefore the correlation matrix is

Λ =
(
U(eE + 1)−1U †

)T
(A.23)
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comparing with K̂ = UEU † we arrive at the relation between the density matrix and the

correlation function

K̂T = ln
(
Λ−1 − 1

)
(A.24)

What about a Hamiltonian with pairing? If the Hamiltonian has the form of

H =
∑
Tijc

†
icj + 1

2

∑
(∆ijc

†
ic
†
j + h.c.) then we should use the bogoliubov tranformation to

diagonalize the Hamiltonian and the relation should be established between the real fermion

(Majorana) correlation function and density matrix. For the density matrix it has the form

ρ =∝ e
i
4
A, A =

∑
ij

ηi Âij ηj (A.25)

where Â is an anti–symmetric matrix. If we anti–diagonalize the matrix with an orthogonal

bogoliubov transformation, meaning OT ÂO =
( E
−E

)
where again the diagonal eigenvalue

matrix is defined as E = diag(ε1, · · · , εN ). For the correlation function we now have

Mij = 〈ηiηj〉 =
∑
kk′

tr

(
exp

(1

2

∑
εi(iζiζi+N )

)
OikOjk′ζkζk′

)
(A.26)

=
∑
kk′

Oik

 I tanh(E/2)

− tanh(E/2) I

OTkj (A.27)

therfore we can write down the majorana correlation matrix

M = I +O

 tanh(E/2)

− tanh(E/2)

OT (A.28)

The usual complex fermionic correlation matrices can be writen in terms of the Majorana

correlations M =
(
M1,2 M2,2

M2,1 M2,2

)
Λij = 〈c†icj〉 =

1

4

(
M1,1 +M2,2 + i(M1,2 −M2,1)

)
(A.29)

Πij = 〈c†ic
†
j〉 =

1

4

(
M1,1 −M2,2 − i(M1,2 +M2,1

)
(A.30)
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and the conversly the Majorana correlation function with respect to

M =
1

2

 <(Λ + Π) =(Λ−Π)

−=(Λ + Π) <(Λ−Π)

 (A.31)

Same as in the hopping only case can compare the correlation matrix with Â = O
( E
−E

)
OT

therefore we have the relations

Â = ln
(
M(2−M)−1

)
(A.32)

A.3 Bogoliubov transformation

We are dealing with Gaussian (free) bosonic or fermionic theories of the from

H =
∑
i,j

a†iTijaj +
1

2

∑
ij

a†i∆ija
†
j + h.c. (A.33)

where the i, j goes over N sites of the system. The creation and annihilation operators a, a†

respectively, can be bosonic or fermoinic. In case of fermions the anit–comutation relations

{ai, a†j} = δij , {ai, aj} = 0, (A.34)

and in the case of bosons we have the commutation relations

[ai, a
†
j ] = δij , [ai, aj ] = 0. (A.35)

The hermiticity of H requires the hopping matrix T to be hermitian, that is T = T † and

the pairing matrix ∆ to be symmetric for bosons ∆† = ∆∗ and anti–symmetric for fermions

∆† = ∆∗.

The Bogoliubov transformation is a linear transformation of creation and annihi-

lation operators that leaves the particle (boson or fermion) algebra invariant. Let us show
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by A,A∗ the column vector 1 of all annihilation and creation operators respectively

A =


a1

...

aN

 A∗ =


a†1

...

a†N

 (A.36)

and by AT , A† their transpose respectively

AT =

(
a1 · · · aN

)
A† =

(
a†1 · · · a†N

)
(A.37)

the Bogoliubov transformation now generates γk, γ
†
k which obey the same particle algebras

γk = uki ai + vki a
†
i , [γk, γk′ ]∓ = 0, [γk, γ

†
k′ ]∓ = δkk′ (A.38)

With this definition the Hamiltonian can be written in matrix form in terms of

the creation and annihilation vectors

H − 1

2
tr(T ) =

1

2

(
A† AT

) T ∆

±∆∗ ±T ∗


A

A∗

 (A.39)

the + corresponds to bosons and − to the fermions. The constant trace term shows up

because we switch half of the T matrix. The Bogoliubov transformation with the matrix

notation is

Γ =

(
U V

)A

A∗

 , Γ∗ =

(
V ∗ U∗

)A

A∗

 (A.40)

where Γ (same notation as A) is the column vector of annihilations for the Bogoliubov

particles and U, V are N ×N matrices representing the transformation.

1These are not usual vectors over a field. The aia
†
j don’t constitute a field because the multiplication is

not commutative. Therefore, to be pedantic, the lists should be called modules overs the ring of creation
and annihilation operators.
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The conditions for the Bogoliubov particles to respect the corresponding algebra

is

[γk, γk′ ]± =
∑
ij

ukivk′j [ai, a
†
j ]± vkiuk′j [a

†
i , aj ]

=
∑
i

ukivk′i ± vkiuk′i = 0 (A.41)

[γk, γ
†
k′ ]± =

∑
ij

ukiu
∗
k′j [ai, a

†
j ]± vkiv∗k′j [a

†
i , aj ]

=
∑
i

ukiu
∗
k′i ± vkiv∗k′i = δkk′ (A.42)

the conditions can also be written more conveniently in matrix form

UV T ± V UT = 0, UU † ± V V † = IN (A.43)

where the + is for fermions and − is for bosons.

The conditions also conveniently determine the inverse of the Bogoliubov trans-

formation Γ

Γ∗

 =

 U V

V ∗ U∗


A

A∗

 ,

A

A∗

 =

 U † ±V T

±V † UT


 Γ

Γ∗

 (A.44)

one can check that the inverse transform matrix is indeed the right inverse of the transform

matrix using the conditions of Eqns. (A.43).

In case of fermions, one can diagonalize the extended Hamiltonian matrix using

the usual unitary rotation with eigendecomposition and read the U, V matrices and the

corresponding eigenvalues. There will be a double spectrum and the final Hamiltonian is of

the form

H − 1

2
tr(T ) =

(
Γ† Γ

)E
−E


 Γ

Γ∗

 (A.45)
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with the final Hamiltonian of the form, E = {ε1, · · · , εN}

H =
∑
i

εiγ
†
i γi (A.46)

A.3.1 transformation for real bosons and real fermions

The transformation is more natural to be considered in terms of real bosons and

real femions. The real operators are

ai = (ηi + iηi+N )/2, a†i = (ηi − iηi+N )/2 (A.47)

and the inverse relations

ηi = ai + a†i , ηi+N = i(a†i − ai) (A.48)

or written as a matrix, where the η< and η= are introduced as the real part and imaginary

part of the complex particlesη<
η=

 =

 I I

−iI iI


A

A∗

 ,

A

A∗

 =
1

2

I iI

I −iI


η<
η=

 (A.49)

The real operators are hemitian η = η† and they inherit the commutation relations from

the complex operators. For real boson

[ηi, ηj ] = 2i (δi,j−N − δi−N,j) (A.50)

or as a matrix of bilinear form Ωi,j ≡ [ηi, ηj ]

Ω =

 IN

−IN

 (A.51)
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and for the real fermions (Majoranas)

{ηi, ηj} = 2δij (A.52)

and as a matrix of bilinear form Ωi,j ≡ {ηi, ηj}

Ω =

IN
IN

 (A.53)

What is the most generic Bogoliubov transformation ζk = Pkiηi that leaves the

new particles ζ to follow the same algebras?

For fermions we have

{ζk, ζk′} = PkiPk′j{ηi, ηj} = 2PkiPk′i = 2δkk′ (A.54)

Therefore the general bogoliubov transformation of real fermions is a member of orthogonal

group, i.e. P ∈ O(2N). Another way to realize that Bogoliubov transformation are operators

that leave the bilinear form invariant that is PΩP T = Ω.

For the boson we have

[ζk, ζk′ ] = PkiPk′j [ηi, ηj ]

= 2i (PkiPk′i+N − PkiPk′i−N ) = 2i (δk,k′−N − δk−N,k′) (A.55)

or in terms of the bilinear form matrix, linear transformations that leave the bosonic bilinear

form (symplectic matrix) invariant, PΩP T = Ω, therefore the allowed transformations are

members of the symplectic group P ∈ Sp(2N).

The relation between the real particle bogoliubov transformation and complex

particle trasnformation is easily to find. If we show the real transformation as P =
(
A B
C D

)
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then the complex particle would because

γk =
1

2
(ζk + iζk+N ) =

1

2

2N∑
i

(
Pki ηi + iPk+N,i ηi

)
=

1

2

N∑
i

(
Aki ηi +Bki ηi+N + i(Cki ηi +Dki ηi+N )

)
=

1

2

N∑
i

([
(A+D) + i(C −B)

]
ki
ai +

[
(A−D) + i(C +B)

]
ki
a†i
)

(A.56)

one can now read U, V matrices of the complex transformation from the above equations.

The Hamiltonian needs to be rewritten in terms of the real particles. For fermions

Hfermion =

(
η< η=

)
i

2

 =(T + ∆) <(T −∆)

−<(T + ∆) =(T −∆)


η<
η=

 (A.57)

and for bosons we have

Hboson =

(
η< η=

)
1

2

<(T + ∆) −=(T −∆)

=(T + ∆) <(T −∆)


η<
η=

 (A.58)

Now, in case of fermions we would like an orthogonal transformation P ∈ O(2N)

which anti-diagonalizes the Hamiltonian. By that we mean

P T ĤP =

 E

−E

 (A.59)

Note that the same orthogonal transformation also diagonalizes the square matrix, that is

P T Ĥ2P = −

E2

E2

 (A.60)

so one can diagonalize the square matrix and read off the the orthogonal transformation

and the square of the eigenvalues.
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A.3.2 translationally invariant systems

In case of translational invariance, where there are multiple species at each site

(shown by greek letters) that is if Tαβ;ij = tαβ(j− i) and ∆αβ;ij = dαβ(j− i), where d, t are

functions of distance. It is always prefered to use the fourier transform before the bogoliubov

transformation. This leaves the Bogoliubov transformation only in-between different flavors

of particles at each site and signifincantly reduce the computation.

A.3.3 The BCS Hamiltonian

For a translationally invariant system with hopping in each spin sector and the

most general possible pairing amplitudes we have the Hamiltonian,

H = Ht +H∆ − µα
∑
x

f †x′αfxα

Ht =
∑
x,x′

tα(x− x′) f †x′αfxα

H∆ =
∑
x,x′

∆αβ(x− x′) f †x′αf
†
xβ + h.c.

The chemical potential and pairing terms are already hermition, so the only hermiticity

condition is t(x− x′) = t∗(x′ − x).

The translational invariance allows for the usual diagonalization of the hopping

term in momentum space

Ht = −
∑
k

tαk f
†
kαfkα, tk ≡

∑
r

t(r)eik·r. (A.61)

For now we assume singlet pairing which means ∆↑↑ = ∆↓↓ = 0 and ∆ ≡ ∆↑↓ =

−∆↓↑, the pairing terms in the Hamiltonian can now be written as ∆(f †x↑f
†
x′↓ − f

†
x↓f
†
x′↑) +
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(h.c.), so each terms creates(annihilates) a singlet pair. The pairing term can also be written

in momentum space as

H∆ =
∑
k

∆k(f †k↑f
†
−k↓ − f

†
k↓f
†
−k↑) + h.c., ∆k ≡

∑
r

∆(r)eik·r (A.62)

more comments on ∆k properties for the case of singlet pairing.

The Hamiltonian can now be written in the BdG form, defining ξα ≡ −(tα + µα)

H =
∑
k

(
f †k↑ f−k↓

) ξ↑k ∆k

∆∗k −ξ↓−k


 fk↑

f †−k↓

+
∑
k

ξ↓k (A.63)

here we also choose a real ∆k (explain why), so ignoring the constant term the Hamiltonian

can be diagonalized using the Bogoliubov transformation. Defining ξ±k ≡ (ξ↑k ± ξ
↓
−k)/2 we

can write the matrix part of the Hamiltonian as

hk = ξ−k + ξ+
k τ

z + ∆kτ
x (A.64)

Now since the Hamiltonian is in the x, z plane a simple SU(2) rotation about the y axis with

the rotation matrix Uk ≡ ei(θ/2)τy where θ = arctan(∆/ξ+) diagonalizes the Hamiltonian.

The eigenvalues are E± = ±Ek ≡
√

(ξ+
k )2 + ∆2

k and the eigenvectors define the Bogoliubov

particles as γk↑

γ†−k↓

 = Uk

 fk↑

f †−k↓

 Uk ≡ ei(θ/2)τy =

 cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

 (A.65)

These particles are fermions because the transformation is unitary. More generally, if we

rename the elements unitary matrix Uk as follows

Uk ≡

 uk vk

−vk uk

 , =⇒
γk↑ = ukfk↑ + vkf

†
−k↓

γ†−k↓ = ukf
†
−k↓ − vkfk↑

(A.66)
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The final diagonalized Hamiltonian in terms of the Bogoliubov particles (dropping

constant terms) is then

H =
∑
k

(Ek + ξ−k ) γ†k↑γk↑ + (Ek − ξ−k ) γ†k↓γk↓ (A.67)

For the case of ξ↑k = ξ↓k which implies ξ−k = 0, the ground state is simply given by

no Bogoliubov quasiparticles, i.e. γkα|BCS〉 = 0,∀ k, α, so the BCS ground state can is pro-

portional to (
∏

k γk↑γk↓)|0〉. By the insertion of the definition of Bogoliubov quasiparticles,

the not yet normalized ground state is

|BCS〉 ∝
∏
k

(uk + vkf
†
k↑f
†
−k↓)|0〉 (A.68)

we can derive representation of the ground state by defining a new parameter gk ≡ vk
uk

=

tan θ
2 , and using the fact that the pairing terms commute,

|BCS〉 ∝
∏
k

(1 + gkf
†
k↑f
†
−k↓)|0〉 = e

∑
k gkf

†
k↑f
†
−k↓ |0〉 (A.69)

Now by restricting the BCS ground state to N fixed number of particles, with equal number

N/2 for each ↑, ↓ species, we have

|BCS〉N ∝
(∑

k

gkf
†
k↑f
†
−k↓

)N/2
|0〉 (A.70)

writing the Fourier transform of g as gk =
∑

x φ(x) exp (−ik · x), the real space wavefunction

becomes

|BCS〉N ∝

∑
x,x′

φ(x− x′)f †x↑f
†
x′↓

N/2

|0〉 (A.71)
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evaluated at the configuration of N/2 spin up at positions x1, . . . ,xN/2 and spin downs at

positions xN/2+1, . . . ,xN we have

ψ(x1, . . . ,xN/2;xN/2+1, . . . ,xN ) =

〈0|fxN↓ · · · fxN/2+1↓ fxN/2↑ · · · fx1↑

∑
x,x′

φ(x− x′)f †x↑f
†
x′↓

N/2

|0〉

(A.72)

now we can pass the double fermions terms so that the ↑ spins meet their corresponding

partner in each permutation term which lead to no sign change. Ignoring one general sign

term depending on whether N/2 is odd or even, we can bring all the ↓ spins out and now

the remaining N/2 spin ↓ fermions should find their partner by passing and odd or even

number of fermions based on the permutation of each specific term. This results in the

following N/2 determinant

ψ(x1, . . . ,xN/2;xN/2+1, . . . ,xN ) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(x↑,1 − x↓,1) φ(x↑,1 − x↓,2) · · · φ(x↑,1 − x↓,N/2)

φ(x↑,2 − x↓,1) φ(x↑,2 − x↓,2) · · · φ(x↑,2 − x↓,N/2)

...
...

. . .
...

φ(x↑,N/2 − x↓,1) φ(x↑,N/2 − x↓,2) · · · φ(x↑,N/2 − x↓,N/2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.73)

that can be used for Variational Monte Carlo purposes. The only problem is whether or

not this is normalized.

If the system is not translationally invariant, the same procedure can be followed

except that the U, V are now full vectors derived from the eigenstates of real space hopping

and pairing Hamiltonian and φ is a matrix given by (U †)−1V †. Derive and show!
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Appendix B

Tensor Network states

B.1 The AKLT class

The AKLT models has been introduced as the parent Hamiltonian for a particular

class of states constructed from valence bonds that does not break translational symmetry

of the original lattice [1, 2]. The authors call these states valence bond solid or VBS, since

the valence bonds follow the lattice bond structure.

The simplest example is the 1D AKLT chain of spin–1s. We can start by writing

the 3 dimensional Hilbert space of each site in terms of the symmetrized (triplet) pair of

spin–1
2 as the symmetric tensor φα,β = (φα ⊗ φβ + φβ ⊗ φα)/

√
2 where φ1, φ2 = 1, 2 =↑, ↓

are a basis for spin–1
2 Hilbert space. We can create a valence bond between two sites in

this state by choosing a pair of indeces β, γ and multiply the state by the anti–symmetric

tensor εβγ . The result is the state ψαδ = (φαβ ⊗ φγδ)εβγ that can be written in terms of
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Ising configuration as

ψα,δ =
1

2

(
|α ↑↓ β〉+ | ↑ α ↓ β〉+ |α ↑ β ↓〉+ | ↑ αβ ↓〉

−|α ↓↑ β〉 − | ↓ α ↑ β〉 − |α ↓ β ↑〉 − | ↓ αβ ↑〉
)
. (B.1)

which is the sum of over all possible terms with one valence bond (singlet) between the two

neighboring sites. Here we have 4 possible choices for singlets, if we had three sites there

was 8 possible choice and in general 2L. This is exactly the AKLT state on a lattice of size

L, it is define as

ψαβ = (φαβ1 ⊗ φα2β2 ⊗ · · · ⊗ φαL,β)εβ1α2 · · · εβL−1αL . (B.2)

This is a remarkable state because it ensures the symmetry between exchange of the two

spin–1
2s on each site while maintaining a singlet bond between neighboring sites! A pictorial

representation of this states is shown in Fig B.1.

Figure B.1: A pictorial representation of the AKLT chain state. The dots are spin–1
2s, the

blue dashed circle indicates the symmetrization procedure and the solid lines are singlets.
Note that the ordering of dots inside a lattice site is irrelevant since they are enclosed in
the symmetrization operator.

So, we know that from the four spin–1
2s of every pair of neighboring spin–1s on

the chain, two of them are in a singlet state, therefore the total spin of these two sites can

only be 0, 1. This means that the P2 operator which projects to the spin–2 sector exactly

vanishes on these states. It is then natural to define the following Hamiltonian

H =
∑
i

P2(Si,Si+1) =
∑
i

(
1

2
(Si · Si+1) +

1

6
(Si · Si+1)2 +

1

3

)
(B.3)
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which, by definition, has the AKLT state as its ground state.

The authors have shown that the constructed VBS state is the unique ground state

of the period system with the above Hamiltonian with a finite gap. For an open system

all four possible ψαβ are ground states, notice the dangling spins at the ends of the open

boundary system. It is quite surprising how the SO(3) symmetric ground state of a system

made out of spin–1s exhibits fractional edge states that essentially behave as spin–1
2 . This,

probably, has been the first rigorous example of symmetry protected topological or SPT

phase in one spatial dimension.

This construction can be generalized to higher dimensions and more complicated

lattices. For example in 2D, a similar construction leads to spin–3/2s on a honeycomb

lattice with the Hamiltonian projecting to neighboring spins to the space of spin–3. More

generally, an AKLT state for spin–s can defined in terms of the basis of n = 2s spin–1
2s at

each site living on a lattice with exactly n neighbors. The state can be constructed in two

different ways: we can either (i) start by combining all n spin–1
2 on every site to form a

spin–s and then pick one spin–1
2 index from each pair of neighboring sites and multiply by

the anti–symmetric tensor which correspond to making a valence bond or a singlet, or (ii)

start with a set of neighboring singlets for each bond and then project down the spin–1
2s into

a spin–s state. The Hamiltonian is then constructed from the projection operators of neigh-

boring spin–s sites into spin–(2s) and because each neighboring sites has one singlet pair by

construction, the VBS state is clearly a ground state of this Hamiltonian.(improve/check,

does it make sense?)
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B.2 Quantum states as tensors

Let us start from the most general possible quantum state |ψ〉 for a physical system

consisting of N sites, each with a local Hilbert space hi where dim(hi) = d. Picking the

local basis ei, we have

|ψ〉 =
∑

ei,...,eN

Cei,...,eN |ei, . . . , eN 〉 . (B.4)

Note that the state is represented by a set of complex numbers that change with change

of basis, therefore the quantum state can be understood as a N–tensor represented in the

chosen basis by its coefficients.

B.3 Symmetry in tensor network states

B.4 The Matrix Product States

For a quantum state defined on a chain, at every site we assign a Mi×Mi+1 matrix

Aeii (provided that M is large enough!) and then rewrite the coefficient as the product of

these matrices. The new representation is called a Matrix Product State (MPS),

|ψ〉 =
∑
ei,...,ej

Tr(Ae11 · · ·AeNN ) |ei, . . . , ej〉 (B.5)

The MPS is representation given by d × N matrices that are local to site i instead of the

general N–tensor. Although looking more complicated at first it has a few advantages

over the usual representation. Symmetries of states are more natural to study for a MPS.

Topological nature of a phase is reflect in the transformation properties of local matrices.

And also the MPS also allows for a compression scheme for a class of states that obey the

area law which contain states that are ground states of some local Hamiltonian.
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[TODO] Derivation of MPS

• Group/space of A Matrices.

• How to generate them.

It is easy to start with Eq. B.4 and generate the A matrices by singular value decomposition

of the coefficient tensor. The process is as follows,

• At 1st level we start by a tensor with N legs of dimension d. By separating the

leftmost leg and considering this tensor as a linear map from d dimensional space to

a dN−1 dimensional space and performing the SVD we get the matrices of leftmost

site as U and then a new tensor to be used at the next level.

• At level ` we start by a tensor with one bond leg with dimension dmin(N−`,`) and N−`

physical legs that has dimensions dN−`. We then reinterpret this tensor as a linear

map between dmin(N−`,`) ⊗ d space (by considering the bond leg and the remained

leftmost leg together) and the remaining physical legs that has the total dimension

dN−`−1. We then perform SVD. The resulted U are the matrices at site ` and S ∗ V †

are the tensor for the next level. This process (if no truncation is required) can also

be done by a QR decomposition where the singular values are not generated at all.

• At the last level N , the SVD is no longer necessary since we need to take the whole

tensor as the matrices at site N .

We can perform almost the same exact procedure from the right, this alone implies that an

MPS representation is not unique. In fact the space of exact MPS representation is much

larger than the states.
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[TODO] Graphical representation of MPS For a better understanding one can

combine all A matrices for each site into a rank–3 tensor, A
ai,ai+1

i where the i is called

physical index that have the dimension of local Hilbert space d, and the ai and ai+1 are

called bond index with dimensions Mi and Mi+1 respectively. The bond dimension is

a property of the MPS.

B.4.1 The canonical form

An MPS is in canonical form with its center of orthogonalization at site `0 if all

the matrices at a given site left of the center form a left isometry (A†xAx = I for all x < `0)

and all the matrices at a given site right of the center, form a right isometry (AxA
†
x = I for

all x > `0). The canonical MPS is useful because an SVD on the matrices at the center can

be interpreted as the Schmidt decomposition of the MPS itself (see Fig).

U1
. . . U`−1 A` V †`+1

. . . V †L

Figure B.2: A canonical MPS before and after and SVD on the center of orthogonalization.

The singular value decomposition can be performed in two different ways depend-

ing on how to make a matrix out of the three–leg tensor: when the physical index σ is

bundled with the left bond index, there will be n ≡ min(mld,mr) singular values that

correspond to Schmidt values at link `, and when the physical index σ is bundled with the

right bond index, there are n′ ≡ min(ml, dmr) singular values that correspond to Scmidth

values at link `− 1

Al,σ,r`0
= U (l,σ),nSn,n`0 V †n,r = U l,n

′
Sn
′,n′

`0−1V
†n′,(σ,r). (B.6)
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If we assume the singular values of a given matrix at site A`0 are descending fast

enough a truncation on the singular values is an optimal approximation locally for that

matrix. However we do not expect such truncation to be the optimal approximation for a

generic MPS, since the left(right) matrices weren’t isometries to begin with, so the resulting

column(row) vectors in the left(right) vector space are not necessarily orthonormal.

The effect of truncation at a given site for a generic MPS depends on the size

of the overlap between left(right) vectors in the left(right) vector space. Note that if the

overlaps are large, one should not even expect the singular values to drop fast enough! and

a reasonable truncate may not be possible at all.

The situation for a canonical MPS at the center is the best it can be, the truncation

of singular values is an optimal approximation of the state represented by that MPS.

Tensor product of MPS states

If we start with two MPSs A,B made out of matrices Aαi , B
β
i respectively, their

tensor product MPS, C = A⊗B, can be found by the tensor product of the matrices. The

new MPS thus has a very large bond dimension Ml = ml(A)ml(B) which is not practical at

all. However, if the two MPS were canonical with the same center, then the tensor product

MPS is also canonical with centers at the same position. This allows us to optimally perform

truncation on the tensor product MPS without explicitly making it.

Let’s start with the two MPSs centered at the first site. At any step `, we follow

these steps
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1. we first make the matrix C ′` that is the tensor contraction of A`, B`, that are tensor

with dimensions (m`−1 × d × m`), and the carry from previous step E`−1 that is a

(M`−1 ×m2
`−1) tensor (see Fig). This step at best takes

O(M`−1m
2
`−1m`d+M`−1m`−1m

2
`d

2) ≈ O(m4) (B.7)

2. we then bundle the physical dimension with the left index, perform SVD , C ′` = U`S`V
†
`

and truncate. The SVD is on a (dM`−1 ×m2
` ) matrix, which at best takes

O(min(d2M2
`−1m

2
` , dM`−1m

4
` )) ≈ O(m4) (B.8)

3. the matrices of the truncated tensor product MPS at this site are then identified as

the left isometries, that is C` := U`,

4. and the rest of the SVD defines the carry matrix for the next step E` := S`V
†
`

The procedure is initialized by defining E0 = 1 and is terminated reaching the last step and

defining CL := C ′L. The resulted MPS is canonical with center at the last site L.

While the above method produces the desired MPS, it is not very efficient. So,

can we do better than O(m4)?

We can avoid making the matrix and performing a full SVD by defining the matrix–

vector multiplication function and then feed it to a sparse SVD solver. To analyze the

scaling of the matrix–vector multiplication and the sparse SVD method, we start with the

best tensor contraction possible for the multiplication to the right vector (see Fig). It can

be done in

O(dm`−1m
2
` + d2m2

`−1m` + d2m2
`−1M`−1) ≈ O(m3) (B.9)
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multiplication to the left vector takes

O(M`−1m
2
`−1 + dm2

`−1m` + d2m`−1m
2
` ) ≈ O(m3) (B.10)

so both direction can be done in O(m3) but since we need M` singular values, then we have

to perform at least O(m) number of the above multiplications, which leaves us with O(m4)

again. In practice, this approach works even worse than the straightforward method!

Iterative sparse SVD solvers

The simplest appraoch to find the largest singular values of a large matrix is by

converting the SVD problem to an eigen problem and then solve that using the existing

efficient eigensolvers. For a matrix Am×n There are two ways to do this

1. In the augmented method one solves for the eigen problem of the following matrix

B =

 0 An×m

A†m×n 0

 (B.11)

Assuming n < m, the matrix B has 2n nonzero eigenvalues that are ±si where si are

the n singular values of A.

2. The A†A or AA† method, solves for those eigen problems. The singular values of A

are the square root of the found eigenvalues, so the accuracy for small singular values

is not perfect!

B.4.2 Symmetry and Matrix Product States

The symmetry properties of the original state can be translated to the language

of MPS in a straightforward manner. For example, translational symmetry, parity, and
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time–reversal symmetry (in case of periodic boundary conditions) would imply Aαi = Aαj ,

A = AT , and A = A∗ respectively.

The implementation of local (internal) symmetries are also relatively easy as they

put specific constraints on the form of the A matrices. To see how this works we discuss a

common example, the Sztot (or fermion number ntot) conserving states.

Imagine an MPS for a chain of N sites of spin–1/2 Hilbert space. Let’s say the Sztot

is conserved, N is even, and the ground state is a total singlet (as in the ground state of the

Heisenberg model for a bipartite lattice or a spin–liquid state). These states live in subset

of the original Hilbert space (where the Sztot = 0) so we can restrict our representations to

only explore this smaller subspace. The questions is how does this restriction translate to

the MPS representation?

In a general case with no symmetries, the MPS representation at some site n < N/2

consists of two matrices which are linear maps between bond vector spaces, Vn → Vn−1,

where the bond dimensions are dimVn−1 = 2n−1 and dimVn = 2n. Defining m as the

number of down spins on the left of site n,

m :=
1

2

(
(n− 1)− 2

n−1∑
i=1

Szi

)
(B.12)

we can think of the left bond vector space Vn−1 as the direct sum of smaller vector spaces

with constant m denoted by V m
n−1,

Vn−1 =
n−1⊕
m=0

V m
n−1, dimV m

n−1 =

(
n− 1

m

)
(B.13)

and similarly for the right bond vector space. Vn This decomposition doesn’t do much for

the representation of some general state, since all linear maps of the form V m′
n → V m

n−1
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should be present. However, for a state that has the symmetry, the matrix corresponding

to spin ↑ only has of matrices with m + m′ = N/2 − 1, and the the matrix corresponding

to spin ↓ only has matrices with m + m′ = N/2 and the rest of the linear map can be

considered zero. This means:

• For the ↑ matrix, instead of a single matrix A↑n : Vn → Vn−1 we can use the following

set of smaller matrices

A↑,mn : V (N/2−m−1)
n → V m

n−1, m = 0, . . . , n− 1 (B.14)

• For the ↓ matrix, instead of a single matrix A↓n : Vn → Vn−1 we can use the following

set of smaller matrices

A↓,mn : V (N/2−m)
n → V m

n−1, m = 0, . . . , n− 1 (B.15)

in terms of the original matrices we can think that they consist of certain non-zero blocks ac-

cording to the symmetry rule. This reduces the complexity of representation and algorithm

based on the representations.

B.4.3 Tensor Product of MPS States

In practice we may sometimes need to make an MPS representation of a state

that is given as a tensor product of two other states each given by their respective MPS

representation. This is particularly useful, when we have a system with non–interacting

flavors of spin per site or a system with non–interacting flavors of fermions, as we can solve

for each individual flavor separately and then glue the MPSs together. For a spin system
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we have

|ψ〉a ⊗ |ψ〉b =
∑
{a}×{b}

(A1 · · ·AN )(B1 · · ·BN )(|a1, . . . , aN 〉 ⊗ |b1, . . . , bN 〉) (B.16)

the naive approach would be to make the tensor product of A and B matrices but this

approach would hugely increase the bond dimension of the MPS which is not practical.

Instead we can use the direct sum, with the bond dimension being the sum of the two bond

dimensions. The only problem is that now the result of multiplication of matrices is no

longer a number but a 2 × 2 matrix instead. This is not a problem from the definition we

see that it is diagonal and we only need to multiply the two numbers (they correspond to

the coefficients of individual configurations that make up the new state).

As for the fermions the situation is a little more complicated, because we need

to recover the Fock space convention and one has to include a negative sign when an odd

number of fermion swaps are required. Let’s first describe how to keep track of fermion

number parity in an MPS representation. Same as with the symmetry, here we think of

the left bond vector space at site n as the direct sum of two vector spaces with odd(−) and

even(+) left fermion number parity, that is V +
n−1 (V −n−1) is the vector space of all states on

the left of site n where the number of fermions are even(odd),

Vn−1 = V +
n−1 ⊕ V −n−1, dimV +

n−1 = dimV −n−1 = 2n−2 (B.17)

and the same for the right bond vector space Vn. Now

• The matrix ↑ or ni = 1 changes the fermion parity from left to right. So instead of

A1
n : Vn → Vn−1, we use the following two smaller matrices

A1,+−
n : V +

n−1 → V −n , A1,−+
n : V −n−1 → V +

n (B.18)
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• The matrix ↓ or ni = 0 leaves the fermion parity from left to right intacet. So instead

of A0
n : Vn → Vn−1, we use the following two smaller matrices

A0,++
n : V −n−1 → V −n , A0,−−

n : V −n−1 → V −n (B.19)

These other than keeping track of fermion parity, they will also compress the MPS repre-

sentation and may be employed in algorithms as well.

Now we can glue MPS states for multiple flavors of fermions together. Let us start

with two flavors f † and c† and assume c† fermions are in a MPS format that keeps track of

parity. At site n we have four matrices corresponding to physical dimension where each of

those are given by two matrices that keep track of left c† fermion number parity.

B.4.4 The Matrix Product Operator (MPO)

The Hamiltonian H at bond (i, i + 1) can be decomposed into a part that has

support only on sites [1, i] which we call Li, a part that has support only on sites [i+ 1, N ]

which we call Ri and ni number of parts that have support across the bond. So we can

write the Hamiltonian as

H = Li ⊗ I(i+1)→N +

ni∑
ai

`iai ⊗ riai + I1→i ⊗Ri (B.20)

where as ususal I stands for the identity operator and Ii→j is the tensor product of identities

from i to j. The above Hamiltonian decomposition may be written as a formal vector

196



product of two mi ≡ ni + 2 size vectors Λi and P i

H =

[
Li `i1 · · · `ini I

]
⊗



I

ri1

...

rini

Ri


= Λi ⊗ P i (B.21)

In order to find the MPO representation at ith site we need to find the formal matrix Wαβ

such that we can write

H = Λi−1
α ⊗W i

αβ ⊗ P iβ = Λiα ⊗W i
αβ ⊗ P i+1

β (B.22)

Writing the same Hamiltonian at Eq. B.20 with operators at the ith site explicitely we can

related to the decomposition at bond (i− 1, i),

H = Li ⊗ I(i+1)→N +

ni∑
ai

`iai ⊗ riai + I1→i ⊗Ri

=

Li−1 ⊗ Ii + I1→(i−1) ⊗
∑
di

H i +
∑
bi

`i−1
bi
⊗Oibi

⊗ I(i+1)→N

+
∑
ci

I1→(i−1) ⊗Oci ⊗ rici +
∑
di

`i−1
di
⊗Odi ⊗ ridi

+ I1→(i−1) ⊗ Ii ⊗Ri (B.23)

=

Λi−1
1 ⊗ Ii + Λi−1

mi−1
⊗H i +

∑
bi

Λi−1
bi
⊗Oibi

⊗ P i1
+ Λi−1

mi ⊗
∑
ci

Oci ⊗ P ici +
∑
di

Λi−1
di
⊗Odi ⊗ P idi

+ Λi−1
mi−1

⊗ Ii ⊗ P imi (B.24)
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Here, All terms with support only on site i are labeled as H i, where the indexes di runs

over the number of terms that has support both left and right of ith site, ci runs over terms

that start at site i and bi over terms that finish at site i. This means that ni = |di| + |ci|

and ni−1 = |di|+ |bi| and that W i is a mi−1 ×mi
1 formal matrix.

The formal MPO matrix would take the following form, note that the following

matrix form is simplistic meant just for general understanding.

W i =



I 0 0 0 0 0

Obi 0 0 0 0 0

0 Odi 0 0

0 Odi 0 0

0 Odi 0 0

H i 0 0 0 Oci I



(B.25)

In this sense the above calculations suggest the following algorithm, which can be thought

of as automata machine

A few examples are in order, the MPO for the quantum Ising model in transverse

field is

W i
QITF =


I

Sz

hSx gSz I

 . (B.26)

1or (ni−1 + 2) × (ni + 2)
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For the same model but with next nearest neighbors the above algorithm generates the

following MPO

W i
QITFnnn =



I

Sz

Sz

0 I

hSx 0 gSz g′Sz I


(B.27)

It should be noted that this may not be the most compact MPO representation. For example

the following two MPOs also generate the same nnn qitf Hamiltonian but they 4×4 instead

W1 =



I

Sz

0 I

hSx gSz g′Sz I


, W2 =



I

g′Sz

gSz I

hSx 0 Sz I


. (B.28)

Another important example is interaction with exponential decay, in the case of QITF

model the following MPO generates the exponential decay of Ising terms with powers of λ

WQITFexp =


I

Sz λI

hSx gSz I

 (B.29)

So one might ask how can we find the most compact expression of MPO matrix given a

Hamiltonian? One can in principle use the singular value decomposition technique to reduce

the size of the MPO matrix. More efficient and generic approached for MPO reduction

exist [59]. Regardless of the method, a compact MPO is an important step of the DMRG
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or other MPS based methods, as these algorithms usually scale with O(W 2), where W is

the dimensions of MPO on the state space.

B.4.5 MPO for ring exchange operator

To demonstrate the MPO construction, here we lay out the details for a fairly

complicated operator, the ring exchange operator. The Hamiltonian for the ring exchange

operator is defined based on the permutation operator

H =
∑
x

(Px,x+2,x+3,x+1 + h.c.), P1234|σ1σ2σ3σ4〉 = |σ4σ1σ2σ3〉 (B.30)

Lets try to write this Hamiltonian in terms of spin operators. We know that the

Heisenberg operators is equal to

Si · Sj =
1

2
Pij −

1

4
P12|σ1σ2〉 = |σ2σ1〉 (B.31)

since the four–spin permutation can be written in terms of two–spin permutations

we have

Pijkl = PijPjkPkl (B.32)

= (2 Si · Sj +
1

2
)(2 Sj · Sk +

1

2
)(2 Sk · Sl +

1

2
) = (B.33)

+ 8 (Si · Sj) (Sj · Sk) (Sk · Sl)

+ 2
(

(Si · Sj) (Sj · Sk) + (Si · Sj) (Sk · Sl) + (Sj · Sk) (Sk · Sl)
)

+
1

2
(Si · Sj + Sj · Sk + Sk · Sl) +

1

8
(B.34)

200



lets start by the first term which is the multiplication of three Heisenberg terms

with sharing sites

(Si · Sj) (Sj · Sk) (Sk · Sl) = (B.35)

+
1

16
Szi S

z
l +

1

16
Szi S

+
k S
−
l −
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Szi S

−
k S

+
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+
1

8
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+
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−
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l +

1

8
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1

2
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+
1
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S+
i (

1

2
− Szj )S−k S
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l +

1

8
S+
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1

2
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1

2
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−
l − S−i S+

j S
z
l − S−i S+

k S
z
l + S−i S

z
jS

+
l + S−i S

z
kS

+
l (B.47)

+ 2Szi S
+
j S
−
k S

z
l − 2Szi S

+
j S

z
kS
−
l + 2Szi S

−
j S

+
k S

z
l − 2Szi S

−
j S

z
kS

+
l (B.48)

+ S+
i S
−
j S

+
k S
−
l − S+

i S
−
j S
−
k S

+
l − 2S+

i S
z
jS
−
k S

z
l + 2S+

i S
z
jS

z
kS
−
l (B.49)

− S−i S+
j S

+
k S
−
l + S−i S

+
j S
−
k S

+
l − 2S−i S

z
jS

+
k S

z
l + 2S−i S

z
jS

z
kS

+
l

)
(B.50)
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The second term is two Heisenberg terms with or without sharings, if they share,

(Si · Sj) (Sj · Sk) = (B.51)

+
1

4
Szi S

z
k +

1

4
Szi S

+
j S
−
k −

1

4
Szi S

−
j S

+
k (B.52)

+
1

4
S+
i S
−
j S

z
k +

1

4
S+
i (

1

2
− Szj )S−k + 0 (B.53)

− 1

4
S−i S

+
j S

z
k + 0 +

1

4
S−i (

1

2
+ Szj )S+

k (B.54)

=
1

4
×
(
Szi S

z
k +

1

2
(S+
i S
−
k + S+

i S
−
k ) (B.55)

+ Szi (S+
j S
−
k − S−j S+

k ) + Szk(S+
i S
−
j − S−i S+

j ) + Szj (S−i S
+
k − S+

i S
−
k )
)

(B.56)

=
1

4
(Si · Sk +

∑
{ijk}

εabcS
z
aS

+
b S
−
c ) (B.57)

and if they don’t share

(Si · Sj) (Sk · Sl) = (B.58)

+ Szi S
z
jS

z
kS

z
l +

1

2
Szi S

z
jS

+
k S
−
l +

1

2
Szi S

z
jS
−
k S

+
l (B.59)

+
1

2
S+
i S
−
j S

z
kS

z
l +

1

4
S+
i S
−
j S

+
k S
−
l +

1

4
S+
i S
−
j S
−
k S

+
l (B.60)

+
1

2
S−i S

+
j S

z
kS

z
l +

1

4
S−i S

+
j S

+
k S
−
l +

1

4
S−i S

+
j S
−
k S

+
l (B.61)
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So summing them all up the final answer is

Pijkl = S+
i S
−
j S

+
k S
−
l + S−i S

+
j S
−
k S

+
l + 2Szi S

z
jS

z
kS

z
l (B.62)

+ Szi S
z
j (S+

k S
−
l + S−k S

+
l )− Szi Szk(S+

j S
−
l + S−j S

+
l ) (B.63)

+ Szi S
z
l (S+

j S
−
k + S−j S

+
k ) + SzjS

z
k(S+

i S
−
l + S−i S

+
l ) (B.64)

− SzjSzl (S−k S
+
i + S−i S

+
k ) + SzkS

z
l (S−i S

+
j + S+

i S
−
j ) (B.65)

+
1

2
×
(

+ Szi (S+
j S
−
k − S−j S+

k ) + Szk(S+
i S
−
j − S−i S+

j ) + Szj (S−i S
+
k − S+

i S
−
k ) (B.66)

+ Szj (S+
k S
−
l − S−k S+

l ) + Szl (S+
j S
−
k − S−j S+

k ) + Szk(S−j S
+
l − S+

j S
−
l ) (B.67)

+ Szk(S+
l S
−
i − S−l S+

i ) + Szi (S+
k S
−
l − S−k S+

l ) + Szl (S+
i S
−
k − S−i S+

k ) (B.68)

+ Szl (S+
i S
−
j − S−i S+

j ) + Szj (S−i S
+
l − S+

i S
−
l ) + Szi (S+

j S
−
l − S−j S+

l ) (B.69))
+

1

2
(Si · Sj + Sj · Sk + Sk · Sl + Si · Sk + Sk · Sl + Si · Sl) +

1

8
(B.70)

Now for the Hamiltonian term Hijkl = Pijkl + h.c. we get all the terms with three spin

interactions to vanish (because they are anti-hermitian) and everything else double so:

Hijkl = 2×
(
S+
i S
−
j S

+
k S
−
l + S−i S

+
j S
−
k S

+
l + 2Szi S

z
jS

z
kS

z
l (B.71)

+ Szi S
z
j (S+

k S
−
l + S−k S

+
l )− Szi Szk(S+

j S
−
l + S−j S

+
l ) (B.72)

+ Szi S
z
l (S+

j S
−
k + S−j S

+
k ) + SzjS

z
k(S+

i S
−
l + S−i S

+
l ) (B.73)

− SzjSzl (S−k S
+
i + S−i S

+
k ) + SzkS

z
l (S−i S

+
j + S+

i S
−
j )
)

(B.74)

+ Si · Sj + Sj · Sk + Sk · Sl + Si · Sk + Sk · Sl + Si · Sl +
1

4
(B.75)
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Appendix C

The Variational Monte–Carlo

Method (VMC)

C.1 The General idea

Consider a (Hermitian) operator O : H → H and a quantum state |ψ〉 ∈ H. We

are interested in measuring the expectation value of the operator over the the quantum

state defined by

〈O〉 =
〈ψ|O|ψ〉
〈ψ|ψ〉 . (C.1)

The Hilbert space is extremely large and an actual representation of the state and operator

is not available to us. However, if we happen to know the action of the operator O and

projections of the state on some basis (spatial sites for example) then we can write the

204



following

〈O〉 =
∑
α,β

〈α|ψ〉〈α|O|β〉〈β|ψ〉
〈ψ|ψ〉

=
∑
α

|〈ψ|α〉|2
〈ψ|ψ〉

∑
β

〈β|ψ〉
〈α|ψ〉〈α|O|β〉

 =
∑
α

pαfα(O) (C.2)

where we have defined

pα :=
|〈ψ|α〉|2
〈ψ|ψ〉 , (C.3)

fα(O) :=
∑
β

〈β|ψ〉
〈α|ψ〉〈α|O|β〉 =

∑
β

〈β|ψ〉
〈α|ψ〉〈β|O

†|α〉∗. (C.4)

The parameter fα(O) can be interpreted as some magnitude of operator O at

configuration α, while pα has the properties of a probability distribution (in the Kolmogorov

sense) over all configurations for the given state ψ. These interpretations make it clear

that we can estimate the expectation values of the desired operators by sampling over the

configuration space.

C.2 VMC on Gutzwiller Projected Spinons

Here we have two flavors of spinons c↑, c↓, with the variational wavefunction of

free spinons hopping and Gutzwiller projection is implemented through manually explor-

ing(sampling) the single occupancy subspace. The spin operators at site i in terms of the

spinons are given by

Szi =
1

2
(ni↑ − ni↓), S+

i = c†i↑c↓, S−i = c†i↓c↑ (C.5)

The measurements of Sz and correlation functions of Sz is then trivial as it is

a diagonal operator in this basis. For non-diagonal operators let us consider the simplest
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non-trivial correlation 〈S+
i S
−
j 〉, we need to calculate

fα(S+
i S
−
j ) =

∑
β

〈β|ψ〉
〈α|ψ〉〈β|S

+
j S
−
i |α〉∗ (C.6)
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