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ABSTRACT

Bright field imaging of biological samples stained with antibo-
dies and/or special stains provides a rapid protocol for visualizing
various macromolecules. However, this method of sample staining
and imaging is rarely employed for direct quantitative analysis due to
variations in sample fixations, ambiguities introduced by color com-
position, and the limited dynamic range of imaging instruments. We
demonstrate that, through the decomposition of color signals, staining
can be scored on a cell-by-cell basis. We have applied our method
to fibroblasts grown from histologically normal breast tissue biopsies
obtained from two distinct populations. Initially, nuclear regions are
segmented through conversion of color images into gray scale, and
detection of dark elliptic features. Subsequently, the strength of stai-
ning is quantified by a color decomposition model that is optimized
by a graph cut algorithm. In rare cases where nuclear signal is signifi-
cantly altered as a result of sample preparation, nuclear segmentation
can be validated and corrected. Finally, segmented stained patterns
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Fig. 1. Computational steps in quantifying stained samples: in a single
image, the user initializes the stained region associated with a signaling
macromolecule. Learned parameters are subsequently used for the rest of
the dataset.

are associated with each nuclear region following region-based tes-
sellation. Compared to classical non-negative matrix factorization,
proposed method (i) improves color decomposition, (ii) has a better
noise immunity, (iii) is more invariant to initial conditions, and (iv) has
a superior computing performance.

macromolecule can be decomposed in the color space, and can ren-
der a scoring value on a cell-by-cell basis. Following this protocol,
protein, lipid, and DNA complexes are visualized with antibodies
and special stains and then imaged with a color CCD camera atta-
ched to a microscope.The key contributions of this paper are in (i)

formulating the color decomposition as a global optimization pro-

blem, (ii) representing the signal complexes, associated with protein
1 INTRODUCTION localization, with multiple prior models, and (iii) applying the pro-
Macromolecules (proteins, nucleic acids, lipids, and carbohydrated)oséd method to the analysis of an end point on a cell-by-cell basis.
can be rapidly visualized in cells and tissue via staining with anti-In this context, global optimization is realized through the graph
bodies and/or special stains, followed by bright field color imaging.cut method, multiple prior models are specified through user initia-
However, the quantitative analysis of such images is often hindelization, and signal analysis, on a cell-by-cell basis, is established
red by variations in sample preparations, the limited dynamic rang‘“t;hrough a best effort in establishing cellular boundaries. The logical
of color cameras, and the fact that image formation is not at a speloW of these various computational steps is shown in Figure 1, whe-
cific excitation and emission frequency, which is the hallmark of reby the user first specifies regions associated with positive staining
fluorescence microscopy. Through consistent sample preparatioiﬂ an image, the nuclear regions are then automatically detected as

fixation, and imaging, we suggest that the signals associated with & dark elliptic region Yang and Parvin (2003), and are later further
refined following color decomposition. The morphology and posi-

*Authors thank Drs. Colleen Fordyce and Kurt Thorn of UCSF for cell cul- .tlon of nuclear features allow the_ reglon'bas_ed t?sse”anon of the
ture support and imaging expertise. This research was supported in part tj@ge, and the subsequent scoring of the signaling complex on a

grants from National Cancer Institute (1P01CA107584-01A1) and the U.Slcell-by-cell'basis. ' . .
Department of Energy, Office of Biological and Environmental Research We applied our method to fibroblasts grown from histologi-
(DE-AC03 SF0098). cally normal breast tissue biopsies obtained from women from two
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distinct populations. The biopsies were digested in sotuéind the
fibroblasts purified and grown in vitro. These fibroblasts eviéren
grown under conditions that support adipocyte differeitiafor 5-
7 days before being fixed and stained witmatoxylin andOil Red
O, which stain DNA and lipids, respectively. Although hematin
and Oil Red O visualize nuclei in blue and lipids in red, respely,
there is still some overlap in the color space.

the nuclear stain. Finally, staining is associated witrhemuacleus
through region-based tessellation.

3.1 Nuclear Segmentation

Examples of treated and positive control images are showigure
2(a-b), respectively. The nuclear intensities, in the cefmce, are
quite similar to the surrounding background, thus hindgtire use

This paper has been organized as follows: Section 2 reviewgs yqitional delineation based on the color features. Eln, by

previous research in the area of color decomposition frosiolo-
gically stained tissues; Section Section 4 demonstratesfiec-
tiveness of our method when stains are co-localized; 3 desvi
the details of our method; Section 5 summarizes the restibsio
method and the application of our method to a large data selt; a
Section 6 concludes the paper.

2 REVIEW OF PREVIOUS WORK

Current practices in the quantitative assessment of bigical
samples fall into two categories: standard imaging miapss
and specialized systems. Standard imaging microscopes cer

CCD camera and non-coherent light. The images are scoréd wit

non-negative matrix factorizatiod{M F') Rabinovichet al. (2003),

which models each dye as an additive factor in the color spac

where the resulting image is deconvolved by color unmixifigis
method is quite powerful; however, it ignores spatial rielaships
between nearby pixels, is sensitive to the initial conditiand may

e

converting the color image into a gray level image, distint¢nsity

features of the nuclear region are accentuated throughraateein
the intensity magnitude. This decrease in the intensitiufezhas a
trough that can be detected as a dark elliptic feature. Geioreto

a gray level image is as follows:

1)

whereR, G, andB are the red, green, and blue channels of the ori-
ginal color image, andr = 0.21, 8 = 0.72, andy = 0.07. Unlike
immunofluorescence labeling, thresholding is inadequatetHis
class of images. Our approach is to detect elliptic feat¥ieesy and
Parvin (2003) for the delineation of dark regions in the imalget
the linear scale-space representation of the original @dage, v)

at scales be given by:

I(z,y) = ax R(z,y) + B+ G(x,y) + v+ B(z,y)

)

whereG(z,y; o) is the Gaussian kernel with a standard deviation

I(z,y;0) = Io(z,y) * G(x,y;0)

not be able to deconvolve dyes that have too much overlapein thof . For simplicity I (, y; o) is also denoted ab(x,y) below. At

color space. In addition to its successful application tatisp data

Lee and Seung (1999)V M F' has also been used in the analy-

sis of gene expression data to reveal an intuitive meanirigrins

each poinf(z, y), the iso-intensity contour is defined by:

I(z+ Az,y + Ay) = I(z,y) 3)

of a small subset of metagenes Gao and Church (2005). Special

zed systems Papadaldgsal. (2003) leverage tunable illumination,
fast hyperspectral imaging, and monochromatic CCD camétaes
primary advantage of such an optical band-pass is in itstyalbd
resolve different stains whose spectra overlap when usiegtan-
dard system. However, it still requires additional proasgsfrom a
stack of band-pass images, for cell-by-cell analysis.

where(Az, Ay) is the displacement vector. Expanding and trunca-
ting the above equation using Taylor’s series, we have thaiing
estimation:

5(A$,Ay)H(l‘,y)(Al‘7Ay)T + (I»"C? [y)(A:rv Ay)T =0 (4)

Our approach relies on a standard microscope with a color CCDvhere

camera (e.g., bright field imaging) to demonstrate that ttopg
sed method (i) improves color decomposition, (ii) has ettése
immunity, and (iii) has superior performance.

3 APPROACH

In our computational protocol, nuclear segmentation ankbrco
decomposition proceed in parallel. Although nuclear segateon
is not the focus of our paper, it is an important step in carstr

1 1

H z, — TT Ty )

N

is the Hessian matrix af(z, ). The entire image domain is divided
by Equation 3 into two parts:

I(z+ Az,y + Ay) > 1(z,y) (5)

and

I(z+ Az,y + Ay) < I(z,y) (6)

ting a system, and a method is outlined here for completenes®" locally

However, this method can be replaced with other nuclear sagm
tation methods. In this system, segmentation of nucleaiomneg
is realized by detecting elliptic features Yang and PanZa0g)
corresponding to potential dark regions. These regiongatker
filtered for their intensities and shape features. At the eséime,
the amount of staining is characterized by a graph cut dlyori
through color decomposition. In rare cases, samples magdadly
corrupted with foreign materials leading to small dark patcthat
resemble the nuclear signature. These dark patches ahneiftitte-
red following color decomposition to eliminate false asation to

5 (A, Ay) H(a,5) (Az, Ay)T + (L, 1,) (Az, Ay)™ > 0 (7)
and

5 (A, Ay) H(a, ) (Az, Ay)T + (L, 1,) (Az, Ay)™ <0 @)
If H(z,y) is positive definite, then the region defined by Equation

5 is locally convex. Similarly, ifH (x,y) is negative definite, then
the region defined by Equation 6 is locally convex. To detaemi
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whetherH (z,y) > 0 or H(z,y) < 0, we analyze this feature
in both cases: ()H(z,y) > 0. Thenl,, > 0, I,, > 0, and
hencel.... + I,, > 0, and positive Laplacian means tHat y) is a
“dark point,” i.e., a point that is darker than its neighbcasd (II)
H(z,y) < 0. Thenl,, < 0, I, < 0, and hencd,, + I, < 0,
and negative Laplacian means tfiat y) is a “bright point,” i.e., a
point that is brighter than its neighbors.

From a computational perspective, we have the followingnilefi
tion: a point is a bright (dark) elliptic feature at scalé the Hessian
matrix of I(z, y; o) is negative (positive) definite at that point. The
net result of applying dark elliptic feature detection isindnized
mask corresponding to foreground and background. Howeeey,
small regions may have been created as a result of inheres imo

In the case of a graph with two terminals, terminals are reteto

as the source (S) and the sink (T). The labeling problem issma

a unique labek,, (0 for background, and 1 for foreground) for each
nodep € V, and the image cutout is performed by minimizing the
Gibbs energy Geman and Geman (1984):

E=> FEi(z,)+ Y Ea(zp,z)

peV (p,a)EE

9)

Where E (z,,) is the likelihood energy, encoding the data fitness
cost for assigninge, to p, and Ez(xp, z4) is the prior energy,
denoting the cost when the labels of adjacent nogesnd ¢,

are z, and x4, respectively. The likelihood energy is compu-
ted in an 8-connected neighborhood. Figure 3 shows how a loca

the image, which are then removed based on a size threshiadd. T neighborhood is partitioned through a two terminal graphsmg-

threshold is determined by the correct segmentation fopaljadion
of nuclear features. In rare cases, the mask corresponalthg tlark
elliptic features may be corrupted by foreign objects, wahtan be
resolved and corrected after signal decomposition.

Fig. 2. Images of (a) human mammary fibroblasts and (b) mouse pre-

adipocytes (positive control) grown under conditions thapport adipocyte
differentiation for 5-7 days before being fixed and staineih Wwematoxylin
and Oil Red O.

Nuclear regions provide the basis for region-based tesgsil
along curvilinear boundaries. Formally, 1&f; correspond to the
ith € [0, K) nuclei in the image,g € N;, andp be a point
in the image. Then region-based tessellation is defined;by=
{p|dist(p, N;) < dist(p,N;),j € {0,1,...,K — 1} andj # i
wheredist(p, N;) = mingen, |p — ¢|. Computationally, this tes-
sellation is computed through the application of the wéteds
method Vincent and Soille (1991) to the distance transfdrat is
computed from binarized nuclear masks Jan and Hsueh (2000).

3.2 Signal Decomposition

Signal decomposition, through color unmixing, aims to iifgrihe
signaling macromolecules that are associated with each FEige
example, Figure 2 shows how labels for nuclei and lipids @stid
buted in theRG B space. The main contribution of this paper is
in characterizing color unmixing as a segmentation probtbat
incorporates neighborhood information through a globaiinp
zation framework. The optimization framework is based oa th
graph cut method Boykov and Marie-Pierre (2001), which isflyr
summarized. In this context, the image is represented agghgr
G = (V,E), whereV is the set of all nodes, anf is the set of
all arcs connecting adjacent nodes. Usually, nodes andsetige
respond to pixels®) and their adjacency relationship, respectively.
Additionally, there are special nodes that are known asiteais,
which correspond to the set of labels that can be assigneiddtsp

mentation. The optimization algorithms could be classifietb

+
/ { a

(b)

(d)

Fig. 3. An example of two-terminal (class) graph cut segmentat{ah:an
image grid 8 x 3), where “F” and “B” correspond to foreground and back-
ground seeds, respectively; (b) a graph constructed froag@(a); (c) an
optimum cut shown as a red line; and (d) a final labeling restikre grid
points are assigned to terminals S and T after the cut.

two groups: Goldberg-Tarjan “push-relabel” methods Geldlband
Tarjan (1988), and Ford-Fulkerson “augmenting paths” Famd
Fullkerson (1962) . The details of the two methods can bedoun
in Cooket al. (1998).

We initialize our system with multiple models of foregrouadd
background, specified by the user stroke, from a subset ajema
An underlying feature distribution, corresponding to arusteoke,
is then represented with the Gaussian mixture model, in tfar ¢
space, i.e., each foreground and background signaturd iepie-
sented with a single Gaussian model. Let the conditionasiten
for a pixel featureC,,, belonging to a multi-colored objec? be a
mixture with M component densities:

GM Mo (Cy) = _Zp(cme(j) (10)
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where a mixing parametd?(j) corresponds to the weight of com- and contrast associated with complexes. Nuclear size apksire
ponent; and WhererM:1 P(j) = 1. Each mixture component is derived from the average behavior of nuclear featurespvoiig
a Gaussian with meanm and covariance matriX.. In RGB color segmentation, from a subset of images. Contrast is derirad f

space: the user-based annotation of regions corresponding tdiyemsind
1 . negative staining from the same subset of images. Gauseiaa n
p(Cplj) = — exp ( — 5(Cp _ Mj)Tg]fl(Cp _ uj)) is added, and the_ signal to noise ratio is changed from _12dB to
(2m)2[%|? 0dB, from left to right, respectively. Subsequently, segtagon
(11) error is quantified against the ground truth, and resultsarema-
Then the data fitness term is defined as, rized in Figure 4 and Table 2. This error corresponds to mishes
. ) (e.g., differences) between the known prior mask and thepcosa
M M . .
Br(e,) = { GAIMFCng)ngf];/[B(Cp)’ if 2, = Foreground segmentation.
GMMF(Cp)fGMpMB(cp)v if z, = Background
(12) Method | Fig 4(a)] Fig 4(b) | Fig 4(c) | Fig 4(d
in which GM Mr(Cp) andGM Mg (C,) are the probabilities of | L Fig 0( )| Fig 0( )| Fig 0( )| Fig 0( )]
featureC,, (in RGB space) from the foreground and background Graphcut| 0.5% | 12% | 3.5% | 5.4%
models, respectively. For example, NMFE | 0.8% | 4.7% | 31.2% | 43.3%
M Table 2. Comparison of segmentation errors for synthetic imagesig#F
GMMp(C,) = Zp(CpU)P(j) (13) based on graph cut an¥ M F', respectively. Errors are measured against

= known ground truth.
where M = 10 was manually selected in our implementation
to capture wide variations in stainingP(j) and (u;, ;) for
p(Cp|j) are estimated byr M algorithm Tomasi (2004). And the

smoothness term is defined as, 3.4 Comparison with Non-negative Matrix
Factorization (N M F)

" dist(p, q) (14) Figure 5 shows the signal decomposition results of the image
Figure 2a, based on graph cut and non-negative matrix faator
where |C}, — (4| is the Euclidean distance between feature vec-tion (N M F) with identical initialization. We used an improved
tors of C, andC, in RG B space, andist(p, q) is the Euclidean  version of N M F, based on sparseness constraints. The matlab code
distance betweep andq in the image grid. Next, we construct the s available online Hoyer (2004), and has been rewritten-is @r
graph G according to Table 1 and optimizing the objective func- comparative analysis. The sparseness constraint enablas/ery
tion with the graph cut algorithm Boykov and Marie-Pierr@Q2).  of parts-based representation, and is shown to have a betiity
After decomposition, nuclear segmentation is furtherdatied by  than standardVAM E. The results indicate thav M F decom-
removing nuclear candidates that partially overlap withdlgnaling  position is more noisy, mainly because it ignores neighboch
molecule. However, such an overlap is a rare event, andlivisya  information. Other linear unmixing techniques may alsodoice
due to sample contamination in a small area. In cases whes®ma noisy output, since regularization is often ignored. Itrigpbrtant
molecules of interest are localized in nuclei, then the @rpent  to note thatN M F is inherently a gradient descent method, and
needs to be designed properly, i.e., (i) assure that the dgeshif-  therefore, user-based initialization remains an integehponent.
ficient color separation with nuclear labeling hematoxylii) use Otherwise, the method converges to a wrong fixed point.
another dye for labeling nuclei, or (iii) label for cytoprasas a refe- Finally, with respect to the computational complexity, thusts
rence. IHC is a visualization and scoring protocol for paigists,  for graph cut andVM F, based on the same imag280 x 960),
and staining is always designed properly to assure col@raépn. are10 seconds and0 minutes, respectively.

Ea(zp,2q) = we(p, q) o« exp(—|Cp — Cq)

| Edge | Weight |  For |
G M7 (5)
p—5 G (p) L M M A R) pPEP
GM M5 ()
p—T NN, G ECM ML ) pEP
we(p,q) [ n-exp(=[Cp — C4) - gz | 0} €N

Table 1. Edge weights for the graph construction, whatés the neighbor-
hood system, and is the weight for smoothness.

(b)

Fig. 5. A comparison of signal decomposition by graph put& 100)
. . . . (a) and non-negative matrix factorization (b) indicatepesior performance
3.3 Validation with Synthetic Data with the graph cut method.
To evaluate the performance and error rate of the systemmtaesy

tic image has been generated that simulates the nucleashage,
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Fig. 4. Noise is added to a synthetic image at 12 (a), 7 (b), 3 (c), af@JdB, and the segmentation results based on grapl cut(L00) and N M F' are
shown in the second and third rows, respectively.

4 SIGNAL DECOMPOSITION WITH
COLOCALIZED SIGNALS IN THE COLOR
SPACE

In the previous example, the signal from Oil Red O is regesier
outside of the nuclear regions, and therefore there i ldtlerlap
between stains in the color space. In order to examine theaeffiof
our proposed method for colocalized staining, we imagedosasn
stained for phosphorylategif 2 A X', which localizes to the nucleus.
In this experiment, the user provides examples of signalsaated
with each stain for establishing the prior knowledge. Sgbsetly,
energy functions were computed according to Table 1, anidhapt
partitions were computed. An example, shown in Figure 6icad
tes postive and negative staining, where the results anmiaed
against manual scoring. We have used three representatages
from a dataset for comparatlve_ anaIyS|_s. These three imagesh 5 BIOLOGICAL INVESTIGATION: A CASE STUDY
were selected to represent a diverse signature of sampbes,spo-

red by a pathologist, and then compared with automated sisaly We have applied our method to a dataset of 192 images of fibro-
Because the process is tedious, a minimal number of images ha blasts obtained from women from two distinct patient popares.
been selected. Results are shown in Table 3, where the sacond These samples are imaged oiNikon Eclipse TE 2000 E, which

third columns correspond to the number of positive and regat IS €quipped with a color camera with a spatial resolution 280
stained nuclei that have been misclassified when comparéeto by-960 pixels and a dynamic range of 8 bits per channel in RGB

ground-truth data. The last column lists the total numbegedis in ~ SPace. The illumination power is maintained at the samd, level
each image. The average error is less than 5%. allimages are automatically corrected for shading and nidormi-

ties against a blank slide. Images are processed, and then&iofo
lipid is quantified for each cell in each image. The net restiolor
decomposition is a binarized mask, shown in red in Figureo8, c
responding to positive stains, where the intensity in tlieatgannel
is aggregated on a cell-by-cell basis. In addition to colecam-

Fig. 6. Decomposition = 100) of color space when nuclear and anti-
body stains colocalize: (a) a bright field image of human mamyntissue
stained for phosphorylategH2AX and hematoxylin, and (b) its color
decomposition.

Table 3. Number of misclassified nuclei in each image for positive and
negative stains, followed by the total number of cells inheiacage.

| | # positive nuclei] # negative nuclef total # cells| position, Figure 8 indicates nuclear position, in greengd aow
Image 1 10 ) 715 Lhe space bﬁtv\{een_ nucllclear region_lc,I are pa}:'titionﬁd throagjblrr—
Image 2 17 7 305 tazed tesse ?tlé)n,.ltrll )t/;:' ow. Tesse ;tlon a ?wst ez;llg%?n[; ex
Image 3 7 = 381 o be associated with the corresponding nuclear region. i-

zed masks provide the context for aggregating intensitjufea in
the red channel, and associating them to each nucleus Iyk-ithed
results are represented as two probability density funstfor each
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population, as shown in Figure 7. The KS test between these twtwo distinct patient populations. The results show thatofdteists
G = e : E el PR q "m”;‘f«

distributions computes a p-value of less than 0.0001, thdiséting
that the two populations are different.

One of the concerns regarding population study is due to the

impact of error in nuclear segmentation for aggregatinigllgignals.
Our experience indicates that the error in nuclear segrtientés
less than a few percent. Therefore, given a very large ptipulaf
cells, such an error will be buried as noise. It will only beissue if
the central question is to search for outliers in a study.
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Fig. 7. Probability density functions corresponding to the fatteoh on a
cell-by-cell basis for each of the two populations, whepec@responds to
a population represented by Figure 8c and (b) correspondsptapulation
represented by Figure 8a. The KS test computes a p-valu@@i that these
two populations are different.

6 CONCLUSION AND FUTURE WORK

© | (d

Fig. 8. Segmentation and color decomposition from 2 images in thee skt
indicate how region-based tessellation enables quamgifyignal macromo-
lecules on a cell-by-cell basigu (= 100, o = 2.5)

derived from the two patient populations are different wipéaced
under adipocyte differentiation conditions. Our contiduesearch
will focus on other end points for these primary cells in arde
to visualize and quantify a more comprehensive representaf
active macromolecules.
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