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ABSTRACT 

 

Microsphere Traction Force Microscopy 

 

by 

 

Buğra Kaytanlı 

 

This work is a culmination of our efforts in understanding cellular mechanics at the scale 

of single cells and small tissues. We developed methods to quantify cell-generated traction 

forces using cell-sized, synthetic, functionalized hydrogel microspheres. Cell-sized solid 

microspheres can provide information regarding cell-generated normal and shear forces 

while allowing natural cell-cell interactions and facilitating a convex cell-hydrogel interface. 

Therefore, they are a better mimic than the current methods for understanding the natural 

cell-cell interactions in a physiologically relevant geometry. In the analysis of the 

microsphere deformations, we use a boundary spectral method based on spherical harmonics 

decomposition of the traction field on the spherical gel surface. Using the techniques 

developed here, we measure the boundary traction profiles that mammalian cells exert on 

the synthetic microspherical hydrogel bodies. In this report, we briefly review the state of 

the art in cellular force quantification methods and discuss the contributions of our work to 

the field and its strengths as well as its limitations. 
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I. Introduction 

 Cells mechanically interact with their external microenvironment throughout their 

lifetime through the constant application of traction forces to their surroundings. These 

forces are coupled to the internal signaling events via adhesion sites on the cell surface and 

have been shown to regulate broad cellular processes including cell morphology, 

differentiation, behavior, and internal transcription levels [1][2][3]. As our understanding of 

the critical importance of the interplay between mechanics and biology grows, so does the 

need for quantitative measurement tools to study these cell-generated traction forces. A 

comprehensive review of the recent advances and current force measurement techniques is 

given in [4]. Briefly, most traction force microscopy (TFM) methods rely heavily on the use 

of flat substrates that promote cell adhesion to the surface [5]. Common substrates to 

measure cell-generated forces in the planar (2D) geometry include relatively soft hydrogels 

(~ 1kPa) that are seeded with embedded particles to track the internal material displacements 

or microfabricated micropillars that can be bent by cells that have adhered to the tips of the 

pillar array [6][7]. Even though these methods successfully capture the nano-Newton forces 

that are generated by the cells, the contact geometry of cellular attachments with planar 

hydrogel surfaces and flat micropillars is not representative of natural cell-cell or cell-ECM 

interactions. The first big leap in moving toward fully 3D force measurements came in 2010 

when Legant et.al. encapsulated single cells in functionalized, elastic hydrogels and 

characterized the forces on the cell-hydrogel boundary by using finite element modeling 

(FEM) of the material displacements inside the hydrogel domain [8]. Using approaches from 
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solid mechanics, this technique allows measurement of the nominal values (with respect to 

load free conditions, i.e. zero kPa datum) of the full traction field along the cell periphery, 

including normal and shear force distributions. However, this method has been limited to 

use in single-cell systems where one cell is embedded in a synthetic hydrogel matrix and 

isolated from otherwise natural interactions with its neighboring cells. In 2014 Campàs et. 

al. showed that injectable, functionalized oil droplets can be used to characterize the 

anisotropic deviations in normal tractions around a mean hydrostatic pressure on the droplet 

boundary while allowing an ensemble of surrounding cells to maintain natural cell-cell 

contacts while interacting with the oil droplets [9]. This is technique is quite versatile in that 

it allows delivery of micro-droplets of a wide range of sizes into the intercellular spaces via 

microinjection. Also, since the functionalized micro-droplets return to their spherical state 

upon removal of cellular loading, they don’t require information about their “rest” 

configuration; therefore, enzymatic treatment of the cellular/tissue system is not required to 

measure cellular forces. However, since liquid droplets are effectively incompressible on the 

scale of tissue-generated stresses, they cannot capture the nominal values of the normal 

boundary traction forces. The droplet’s resistance to deformation arises from the surface 

tension on the emulsion boundary due to the dissimilarity of the internal oil phase and 

surrounding aqueous phase (containing cells and media); therefore, shear information is not 

captured by the deformations of the interface.  More recently, a similar approach that uses 

free, deformable bodies to measure stresses in cellular systems has been proposed by Dolega 

et. al. where the authors used compressible hydrogel microspheres to measure the 
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transmission of hydrostatic stresses inside cell-aggregates in response to externally applied 

osmotic pressures by quantifying the volumetric changes in the elastic microspheres [10]. 

These prior techniques have provided useful information on how forces are generated in 

single cells or small groups of cells and how the stresses are transmitted at cellular length 

scales. However, a method that can quantify the nominal values of normal and shear 

tractions while maintaining intra-cellular interactions is still lacking. Here we present the 

development of a force measurement method that uses cell-sized hydrogel microspheres 

(with diameters of 5-50 m) as force sensors, thereby providing a more natural interaction 

geometry where cells can apply both shear and normal tractions. In practice, we use 

poly(ethylene-glycol) diacrylate (PEGDA)-based hydrogel microspheres that are diffusely 

labeled with rhodamine-acrylate and are functionalized with RGD peptides that promote cell 

attachment. In the sections below we show that we have developed methods to quantify the 

nominal values of the normal component of the total traction forces that cells apply on the 

microspheres by using surface tracking of the diffusely labeled microspheres, as illustrated 

in Figure 1. In Chapter VI, we further discuss the experimental and computational methods 

to determine shear component of the cellular tractions by using fluorescent particles or 

additionally generated internal surfaces as reporters of internal material deformations and 

present our current progress and preliminary work on material tracer-based Microspherical 

Traction Force Microscopy methods. 



 

 

 

 4 

 

Figure 1. Schematic description of Microsphere Traction Force Microscopy (MTFM) 

geometry. The labeled and functionalized PEGDA microsphere is shown in red and cell 

boundaries are depicted in golden brown. The initially undeformed spherical hydrogels 

deform and change shape upon being subjected to cellular traction forces, T. 
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II. Mathematical Methods for MTFM 

An elastic body under boundary loading undergoes deformations throughout the bulk of 

the material. Here, our aim is to be able to uniquely define the force field �⃑�(𝜑, 𝜃) that is 

defined on the surface of the spherical body, that generates a given deformation field, 

�⃑⃑�(𝑟, 𝜑, 𝜃), inside the bulk of the body, where and r is the radial coordinate,  𝜑 and 𝜃 are the 

polar and azimuthal angles, respectively. In particular, we aim to solve for the boundary 

loading profile �⃑� by using the material deformations, �⃑⃑�, that are tracked by discrete 

fluorescent markers distributed in the microsphere. In the context of cellular traction force 

microscopy, solving for the boundary loading profile enables determining the traction 

profile that the cells apply on the spherical body to generate the observed deformations 

inside the hydrogel. In the following sections, we discuss the mathematical methods we 

employed to solve the problem mentioned here.   

1. Spherical Harmonics Expansion of Force Field in 3D 

The traction force field �⃑⃑�(𝜑, 𝜃) that is defined on the surface of the spherical body is a 3-

vector field and r is the radius, with independent components in all three directions, denoted 

by �⃑⃑�𝑥, �⃑⃑�𝑦 and �⃑⃑�𝑧.  

 �⃑⃑�(𝜑, 𝜃) = �⃑⃑�𝑥(𝜑, 𝜃) + �⃑⃑�𝑦(𝜑, 𝜃) + �⃑⃑�𝑧(𝜑, 𝜃) (1) 

   

Each component of the force field can be rewritten as a scalar and a unit vector field, 

𝑇𝑖(𝜑, 𝜃) and  𝑒𝑖(𝜑, 𝜃) respectively, such that: 
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 �⃑⃑�(𝜑, 𝜃) = 𝑇𝑥(𝜑, 𝜃)𝑒𝑥 + 𝑇𝑦(𝜑, 𝜃)𝑒𝑦 + 𝑇𝑧(𝜑, 𝜃)𝑒𝑧 (2) 

Therefore, each component of the force field is represented by: 

 �⃑⃑�𝑖(𝜑, 𝜃) = 𝑇𝑖(𝜑, 𝜃) 𝑒𝑖(𝜑, 𝜃) (3) 

The three scalar fields 𝑇𝑥, 𝑇𝑦 and  𝑇𝑧 are sufficient to fully describe an arbitrary field �⃑⃑�. 

Furthermore, each scalar field 𝑇𝑖 can be expanded as follows: 

 

where 𝑌𝑛
𝑚 denotes the spherical harmonic of order m and degree n.  

 

𝑌𝑛
𝑚(𝜑, 𝜃) =

{
 
 
 
 

 
 
 
 
√
2𝑛 + 1

2𝜋

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑃𝑛
𝑚(cos𝜑) cos(𝑚𝜃), 𝑚 > 0

√
2𝑛 + 1

4𝜋

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑃𝑛
𝑚(cos𝜑) ,                          𝑚 = 0

√
2𝑛 + 1

2𝜋

(𝑛 − |𝑚|)!

(𝑛 + |𝑚|)!
𝑃𝑛
|𝑚|(cos𝜑) sin(|𝑚|𝜃) ,𝑚 < 0

 

(5) 

where 𝑃𝑛
𝑚 are the associated un-normalized Legendre polynomials. 

Spherical harmonics, for which a graphical representation is given in Figure 2,  provide 

an orthonormal basis for expressing arbitrary functions on a spherical surface, which is 

analogous to the use of 2D Fourier Series in a planar geometry. Moreover, with the addition 

of six constraints to account for the six degrees of freedom in three-dimensions, spherical 

harmonics naturally provide a self-balanced force field on the free spherical body, since the 

individual harmonics greater than degree zero have zero mean. 

 
�⃑⃑�𝑖 = 𝑇𝑖𝑒𝑖 = (∑𝑎𝑛𝑚

𝑖 𝑌𝑛
𝑚

𝑛,𝑚

) 𝑒𝑖 
(4) 
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Figure 2. Scalar force amplitudes expressed in terms of spherical harmonics, 𝑌𝑛
𝑚.  Red: 

positive, blue: negative scalars, normalized to the largest number displayed. 

 

The laws of elasticity consider only deformations with respect to the center of mass of 

the free body. Therefore, rigid body translations and rotations, which are determined by the 

n = 0 and n = 1 terms respectively, must be specifically addressed. As shown in Figure 3, 

when evaluated in the x, y and z directions, �⃑⃑�𝑖 = 𝑌0
0𝑒𝑖 yield a positive net force (along the x-

y-z axes) that would cause rigid body translations of the free body rather than deformations 

around the center of mass. Thus, these are excluded from the series expansion. The rigid 

body rotations are prevented by imposing constraints on the coefficients associated with the 

first-degree harmonics, 𝑌1
𝑚, as illustrated in Figure 4. 
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Figure 3. Zeroth degree harmonics, 𝑌0
0, are associated with rigid body translations in all 

three directions. These are excluded from the series expansion by setting the associated 

coefficients to zero, as described. 
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Figure 4. Rigid body rotations are prevented by imposing constraints on the coefficients 

of first-degree harmonics, as described. 

 

Since the functions 𝑇𝑖 are represented as a truncated series of spherical harmonics, the 

maximum degree of the expansion, 𝑛𝑚𝑎𝑥, sets a bound for the spatial resolution of the 

reconstructed force field. Also, we assume that the cells are in full contact with the outside 

boundary of the microspheres and the cell-generated tractions are continuously 

differentiable with no jump-discontinuities in the force field; therefore, the possible issue of 

Gibbs phenomenon for spherical harmonics reconstructions is not considered here.  
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2. Displacement Field Inside Spherical Body  

For a free sphere loaded with surface spherical harmonics, the associated deformations 

inside the bulk of the material are studied in [11] and more explicitly presented in [12]. 

From [11-12], the solution to the displacement field is: 

 

2𝐺�⃑⃑� = �⃑⃑� 1 −
𝜈

1 + 𝜈
�⃑� ∇ ∙ �⃑⃑� 1                                                                              

+∑{
1

𝑛
𝛱𝑛⃑⃑⃑⃑  ⃑ +

�⃑� ×∇×�⃑⃑� 𝑛
𝑛(𝑛 − 1)

+
[(1 − 4𝜈)𝑛 − 2(1 − 𝜈)]�⃑� ∇ ∙ �⃑⃑� 𝑛
𝑛[𝑛2 − (1 − 2𝜈)𝑛 + 1 − 𝜈]

∞

𝑛=2

+
(2𝜈𝑛 + 1 − 𝜈)𝑅2∇∇ ∙ �⃑⃑� 𝑛

𝑛(𝑛 − 1)[𝑛2 − (1 − 2𝜈)𝑛 + 1 − 𝜈]

+
(𝑅2 − 𝑅0

2)∇∇ ∙ �⃑⃑� 𝑛
𝑛(𝑛 − 1)[𝑛2 − (1 − 2𝜈)𝑛 + 1 − 𝜈]

} 

(6) 

where,  

 
�⃑⃑� 𝑛 = (

𝑅

𝑅0
)
𝑛

𝑅0�⃑� 𝑛 
(7) 

and, 

 �⃑� 𝑛 = ∑ 𝑇𝑖𝑒𝑖
𝑖=𝑥,𝑦,𝑧

=∑(𝑎𝑛𝑚
𝑥 𝑌𝑛

𝑚

𝑚

𝑒𝑥+𝑎𝑛𝑚
𝑦
𝑌𝑛
𝑚𝑒𝑦 + 𝑎𝑛𝑚

𝑧 𝑌𝑛
𝑚𝑒𝑧) 

(8) 

 Where �⃑�  is the position vector measured from the center of the sphere, 𝑅 is the 

magnitude of �⃑� , 𝑅0 is the radius of the sphere, 𝐺 is the shear modulus, 𝜈 is the Poisson’s 

ratio and �⃑⃑�  is the solid spherical harmonic as defined in (7). 
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The solution to the displacement field can be implemented as the closed-form solution 

given in [12], otherwise equation (6) can be numerically computed at each material point 

using Mathematica [13]. Here, we used the closed-form solution to the elasticity problem as 

given in [12]. By using the analytical solution, we compute the associated deformations for 

each mode of loading and construct a basis for deformations in terms of the spherical 

harmonics force basis. Figure 5 illustrates the basis construction process.  

 

Figure 5. Force basis is evaluated in x, y and z and the displacement basis is constructed 

at select material points. For simplicity, the left-hand sides (m < 0) of the force and 

deformation bases are omitted from the graphical representation. 
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Once the deformation basis is constructed, we can determine how much each 

deformation mode contributes to the measured arbitrary deformation field inside the body. 

More precisely, we express the deformation field as a linear combination of deformation 

modes, �⃑⃑�𝑛𝑚
𝑖 , such that: 

 �⃑⃑�𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = ∑ 𝑎𝑛𝑚
𝑖 �⃑⃑�𝑛𝑚

𝑖

𝑖,𝑛,𝑚

 
(9) 

Graphically, the statement in (9) is equivalent to the deformations shown in Figure 6 

below: 

 

Figure 6. Arbitrary deformations are expressed as a linear combination of the modal 

deformations. Blue = inward deformation from spherical (effective compression). Orange = 

outward deformation from spherical (effective stretch). 

To carry out numerical computations with the displacement fields given in [12], the 

spherical surface is discretized and meshed as shown in Figure 7.  
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Figure 7. Spherical surface mesh with 1000 nodes. 

 

Once the material points are discretized, the displacement vector associated with each 

node is computed and the concatenated displacement vector 𝑢𝑛𝑚
𝑖  is defined as: 

 

𝑢𝑛𝑚
𝑖 = [

𝑢𝑛𝑚
𝑖 (𝑥)

𝑢𝑛𝑚
𝑖 (𝑦)

𝑢𝑛𝑚
𝑖 (𝑧)

] 

(10) 

where 𝑢𝑛𝑚
𝑖 (𝑥), 𝑢𝑛𝑚

𝑖 (𝑦) and 𝑢𝑛𝑚
𝑖 (𝑧) are N-by-1 coumn vectors denoting the displacements 

of N nodes in x, y and z, respectively, and 𝑢𝑛𝑚 is the concatenated 3N-by-1 vector of x-y-z 

deformations under the spherical harmonic loading 𝑌𝑛
𝑚𝑒𝑖. Figure 8 illustrates the material 

deformations inside the discretized body as a response to 𝑌1
1𝑒𝑥. 
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Figure 8. Surface rendering and internal material displacements in the deformed body 

under 𝑌1
1𝑒𝑥 loading. 

 

If we evaluate all deformations 𝑢𝑛𝑚
𝑖 , (9) now can be written as a linear system such that: 

 𝑢𝑚𝑒 = ∑ 𝑎𝑛𝑚
𝑖 𝑢𝑛𝑚

𝑖

𝑖,𝑛,𝑚

 
(11) 

 𝑢𝑚𝑒 = 𝑈𝑎 (12) 

where 𝑢𝑚𝑒is the measured pointwise displacements and 𝑈 is the displacement basis matrix 

given as: 

 𝑈 = [𝑢1,−1
𝑥 ⋯ 𝑢1,−1

𝑦
   ⋯ 𝑢1,−1

𝑧   ⋯] (13) 

Figure 9 illustrates the displacement basis matrix for 100 distributed nodes on the gel 

boundary (300 displacements total) and 45 loading modes (15 per dimension, corresponding 

to an expansion up to 𝑛𝑚𝑎𝑥=3); therefore, U is a 300-by-45 matrix.  
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Figure 9. Displacement basis, U, evaluated on the sphere surface. The colors represent 

the direction and of loading: Blue = inward deformation from spherical (effective 

compression); Orange = outward deformation from spherical (effective stretch); while white 

indicates no displacement. Darker shades of the colors correspond to larger magnitude 

displacements. U is close to block diagonal, in which the largest deformations occur along 

the direction of loading and the displacements on orthogonal dimiensions are due to material 

couplings through the Poisson’s ratio of the material, taken as 0.45 here. 

 

Clearly the deformations are maximal at the boundary and decay to zero at the center of 

mass. The radial decay rate of the deformations varies with ~𝑟𝑛, with n denoting the degree 

of the harmonic loading. This means that the internal points provide more information about 

the lower degree harmonics whereas the surface equally weights all degrees of loading. This 

property of the deformation field is extremely useful, and will be discussed in chapter IV. 

Solving the Linear System of Equations 

Given that the deformation basis matrix, 𝑈, is non-invertible, one could pose the 

problem as a minimization and solve the linear system of equations by: 

 min {||𝑈𝑎 − 𝑢𝑚𝑒||2
2} (14) 

However, the measured displacement vector, 𝑢𝑚𝑒, contains experimental measurement 

noise from imaging and bead tracking. Therefore, instead of (14), we employ the 0th order 

Tikhonov regularization, which ensures that the computed solution, 𝑎, will not be dominated 

by the inherent measurement noise, and solve for the following optimization problem: 
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 min {||𝑈𝑎 − 𝑢𝑚𝑒||2
2
+ 𝜆||𝑎||

2

2
 } (15) 

The problem is solved by singular value decomposition and the L-curve criterion [14] for 

choosing the optimum value for the regularization parameter, 𝜆, using the MATLAB 

routines by P.C. Hansen [15]. 
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III. Computational Methods for Surface-based MTFM 

In this work, we investigated two different approaches on performing MTFM; surface 

tracking- and particle tracking-based methods. In this chapter, we present the surface 

tracking-based MTFM methods and discuss their advantages and limitations in the context 

of experimental measurements in cellular systems. Possible improvements on the surface 

methods and our preliminary work on particle tracking-based methods are presented in the 

Chapter VI.  

A. Surface Reconstruction 

Fluorescent confocal microscopy image stacks are collected using a Leica SP8 confocal 

microscope equipped with a 40X water-immersion objective (N.A.=1.1). Subsequently, the 

image stacks are deconvolved using Huygens software to increase the definition and the 

signal to noise ratio of the fluorescence signal in the images. Following deconvolution, we 

use a commercial software, Imaris, for 3D rendering of the microsphere surfaces that are 

labeled with acrylated rhodamine-B dye which conjugates to the hydrogel backbone, as 

shown in Figure 10. During the reconstruction, the image stacks are locally thresholded 

using manual tuning of the parameters. Upon surface rendering in Imaris, the surface meshes 

are downsampled and smoothed using Taubin smoothing [16] to prevent shrinkage, using 

MeshLab. Although this method uses commercially available software and is thus relatively 

user friendly, it does require manual tuning of the local thresholding parameters, which may 

introduce variations in reconstruction of the gel boundary surface. In order to minimize 
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these effects, for a given data set on the same microspherical body, we normalize the pixel 

intensity distributions of the images and use the same settings for all time points. 

 

Figure 10. A representative image of a deformed hydrogel microsphere under cellular 

loading. The image on the left is a confocal microscope x-y scan of the deformed body 

(yellow) that has established surface attachments with the surrounding 3T3 mouse 

fibroblasts which are labeled with SiR actin (red). 3D rendering of the deformed hydrgel 

surface is shown on the right. The colors on the rendered surface indicate the total 

displacements on the boundary, orange = outward from the undeformed spherical surface 

normal, blue = inward displacements to the spherical hydrogel boundary. Scale bar is 5µm. 

 

In the time-lapse experiments, image stacks of the volume of interest are recorded over 

time while the free microsphere hydrogel body experiences rigid body motions as well as 

deformations around its center of mass. Since the analysis of elastic loading depends on the 
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deformations only, it is crucial to precisely and accurately locate the microsphere center of 

mass at each time point. This can be achieved using the surface rendering of the body under 

the assumption that the density of the gel remains constant despite the observed 

deformations. For our PEGDA-based hydrogels, the Poisson’s ratio is ~0.45 (see the 

materials characterization section in Chapter IV for full details), and this assumption of 

constant density across the body is reasonable. Once the rendered surface is constructed, it 

can be used to calculate the body’s mass center. 

 

B. Surface Tracking for MTFM 

1. Shortest Distance Mapping for Estimating the Displacement Field 

Surface shape-based formulation of the displacement tracking has experimental 

advantages over point tracking methods in terms of robustness to intercellular scattering, 

depth dependent signal to noise degradation and aniostropically distorted point spread 

functions observed inside thick (>100μm) tissues. This formulation is very robust to tissue 

dependent imaging artefacts since the geometrical information is collected from a two-

dimensional surface rather than point emitters, as in the case of particle-tracking MTFM 

methods. However, due to the experimental challenges in preparing mechanically controlled 

and well-characterized, multi-colored, multi-surface microspheres, and partly due to the 

computational challenges that require use of FEM methods, we have implemented an elastic 

shape matching algorithm for single-colored solid microspheres (Figure 11), using our 

spherical harmonics based approach.  
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In the case of single-colored microspheres, if an entirely boundary-based shape 

matching is employed, because of the homogenous labeling of the deforming body on the 

interior, the information about the in-plane deformations on the deformed body are lost; 

therefore, the minimization problem that is posed in equation (15) as: 

 𝐦𝐢𝐧 {||𝑼𝒂 − 𝒖𝒎𝒆||𝟐
𝟐
+ 𝝀||𝒂||

𝟐

𝟐
 } (16) 

where um is the measured pointwise displacements inside the body, transforms to the more 

general problem: 

  𝐦𝐢𝐧 {||𝑼𝒂 − 𝒖∗||
𝟐

𝟐
+ 𝝀||𝒂||

𝟐

𝟐
 | (𝑿 + 𝒖∗) ∈ 𝑺} (17) 

where 𝑋 is the spatial coordinates of the material points on the undeformed boundary, 𝑢∗is 

the displacements associated with the correspoding material points, and 𝑆 is the surface that 

the deformed body coordinates (𝑋 + 𝑢∗) exist on, which is given by the boundary surface of 

the deformed body. Therefore, rather than having a unique deformation field input, the 

problem posed in (17) relaxes the condition of meeting a point-wise defined specific 

displacement field, 𝑢𝑚𝑒, and replaces it by a weaker constraint which asserts that the 

displacement field, 𝑢∗, lies in a subspace of all admissible displacement fields which 

satisfies the condition (𝑋 + 𝑢∗) ∈ 𝑆, where 𝑆 is the boundary surface of the deformed body.  
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Figure 11. Illustration of single-colored hydrogel and cell geometry. Single-colored 

microsphere surface is used in predicting the minimal loading that generates the observed 

deformation. 

 

The lack of a measured, unique displacement field, therefore, calls for predicting the 

displacement field at each iteration in the minimization process. In order to achieve this, we 

implemented an iterative shortest distance mapping algorithm. As illustrated in Figure 12, at 

each iteration we first predict the final destination of the points, 𝑋, that are located on the 

undeformed boundary by using a shortest distance mapping from those points to the 

destination surface, 𝑆, (i.e. the surface of the deformed body). Upon mapping, we define the 

displacement field, 𝑢𝑖, as the difference between the destination points and the source points 

for the given iteration number, 𝑖. Although for early iterations being physically non-realistic, 

𝑢𝑖 provides an estimate of the displacement field at each iteration and we solve for (17) 

where 𝑢∗is set equal to 𝑢𝑖 such that: 

  𝐦𝐢𝐧 {||𝑼𝒂 − 𝒖𝒊||𝟐
𝟐
+ 𝝀||𝒂𝒊||𝟐

𝟐
 | (𝑿 + 𝒖𝒊) ∈ 𝑺} (18) 

where the condition (𝑋 + 𝑢𝑖) ∈ 𝑆 is naturally satisfied.  
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Figure 12. Summary of iterative shape matching algorithm. At each iteration, the source 

points are projected onto the destination surface by shortest distance mapping. At each 

iteration, the minimization problem posed in (18) is solved by providing the computed 

displacements as the observed deformation field. The best fitting elastic displacement field, 

𝑈𝑎𝑖, is then used as source points for shortest distance mapping onto the target surface. At 
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the final iteration, the shortest-distance estimate of the displacement field converges to a 

kinematically admissible field and the solution, 𝑎𝑖, converges to the solution to the 

corresponding equation. 

The minimization problem posed in (18) is solved at every iteration by providing the 

resulting displacements, 𝑢𝑖, as the observed deformation field. For a given, 𝑢𝑖, the computed 

elastic displacement field, 𝑈𝑎𝑖, is used as source points which are mapped onto the target 

surface. At the final iteration, the shortest-distance estimate of the displacement field 

converges to a kinematically admissible field and the solution, 𝑎𝑖, converges to the solution 

to the corresponding equation with the given kinematically admissible displacement field 

provided as its input. 

2. Local Interpolation of Target Surface Mesh 

Shortest distance mapping of the points on the microsphere onto the deformed boundary 

requires defining a closed surface which represents the rendered surface. It is rather intuitive 

to define this surface as the closed polygon, i.e. the rendered triangular surface mesh, of the 

deformed boundary. However, computing the shortest distance from a point to a closed 

polygonal surface is computationally expensive as the closest point could fall on a vertex, 

edge or a face – which necessitates going over all these elements. Another downside of 

working with polygonal surfaces is that, the error in the distances of the mapped points is 

linearly proportional to the element size.  
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Figure 13. Left: Distribution of edge lengths. Mean = ~12% of the microsphere radius, 

for the 1000-node surface mesh shown in the inset. Right: Geometric estimation of the error 

associated with the polygonal discretization of the overlaying curved surface for a 1000-

node surface mesh on the spherical body. 

 

For a typical mesh size of 1000 vertices, the mean edge length is ~12% of the 

microsphere radius. Therefore, by observing the right panel in Figure 13, a rough estimate of 

the error that is associated with the polygonal discretization is calculated as: 

 
𝒆𝒓
𝑹
≈ (𝟏 − √𝟏 −. 𝟎𝟔𝟐) ≈ 𝟐% (19) 

Assuming the observed displacements are between10-20%, the discretization due to 

meshing would create 10-20% error in the displacements measured on the surface.  

Therefore, to achieve computational efficiency and accuracy in mapping the undeformed 

surface points onto the deformed surface, as illustrated in Figure 14, we approximate the 

overlaying curve with local spheres that are fit to the first neighborhood of each vertex in the 

least squares sense using MATLAB routines developed by A. Jenning and explained in 

detail in [17]. In addition, since the spheres which have 4 free parameters are locally fit to 
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~7 points, they act as local low-pass filters and help reduce measurement and reconstruction 

errors by smoothing the geometry locally. 

 

Figure 14. Local sphere fitting to the first order neighborhood of each vertex. The source 

points land on the spheres that are locally fit to the polygonal vertices, increasing the 

efficiency and the acuracy of the shortest distance mapping. 

 

Upon approximating the overlaying curve with local spheres, the information (center and 

radius) for each sphere associated with a given vertex is stored in the memory. Therefore, 

during the iterative search for the shortest distance, each source point is matched to the 

closest polygonal vertex (shown in pink) using standard MATLAB routines. Once the 

closest-vertex match is made, the shortest distance from the source point to the target sphere 

is calculated algebraically. This approach increases the temporal efficiency of the 

search&map method by two orders and the numerical accuracy by an order of magnitude 

when compared to basic polygonal search&map algorithms; thus, enables efficient iterative 

computation of the surface displacements in reasonable time. 
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C. Traction Field Reconstruction Formulation1 

Upon iteratively solving for the convergent values of a kinematically admissible 

displacement field 𝑢 and the corresponding linear contribution vector 𝑎, from the 

displacement formulation as discussed above, we use the same modal coefficients to 

reconstruct the traction field applied on the undeformed body as illustrated in Figure 15, 

using: 

 

where the tractions, �⃑⃑�𝑖, in all three directions are expressed in terms of a unit vector field, 𝑒𝑖, 

and orthonormal spherical harmonics 𝑌𝑛
𝑚, as scalar fields that act on the unit vector field to 

change its magnitue at every point o the spherical body. Each mode (n,m) in the spherical 

harmonic expansion contributes to the  final deformation field in the i’th direction by a 

amount, 𝑎𝑛𝑚
𝑖 , that is determined from solving the optimization problem in (17). As 

illustrated in Figure 15. Upon determining all 𝑎𝑛𝑚
𝑖  from the deformations, a linear 

superposition of the correspoding loading modes is used to construct the total force field that 

is applied on the undeformed body to yield the observed material deformations. 

                                                 
1 I would like to thank Prof. Bob McMeeking for all his guidance and help with the 

methods explained below. 

 �⃑⃑�𝑖 = 𝑇𝑖𝑒𝑖 =∑𝑎𝑛𝑚
𝑖 𝑌𝑛

𝑚

𝑛,𝑚

𝑒𝑖 (20) 
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Figure 15. Force field reconstruction by summing the calculated individual contributions 

from the modal deformations. The modal contribution vector, 𝑎, is calculated from the 

displacements and used in reconstructing the force field from corresponding modal loads. 
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We note that it is crucially important that the calculated traction field as a result of (18) 

gives the loading profile, 𝑇0, that is applied on the undeformed body. Fortunately, the use of 

spherical harmonics expansion to express traction distribution on the undeformed spherical 

body gives a self-balanced loading field. However, under any given loading, the elastic body 

deforms and changes its geometry, thus the area that the traction is acting on. Therefore, the 

tractions that are applied on the undeformed body, 𝑇0, need to be scaled with the local 

change in the area in order to guarantee the force balance on the deformed boundary. Figure 

16 illustrates this concept on an area element, dA, that deforms under the action of 𝑇0.The 

force balance is established when: 

 𝑇0𝑑𝐴 = 𝑇′𝑑𝑎 (21) 

where 𝑑𝐴 and 𝑑𝑎 are the areas before and after deformation, respectively.  

 

Figure 16. Schematic showing how the tractions calculated on the deformed body must 

be scaled by the local area change (that is a result of the deformation) in order to establish 

force balance in the deformed configuration. 
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Rewriting (19), we obtain: 

 
𝑇′ =

𝑑𝐴

𝑑𝑎
𝑇0 

 

(22) 

Therefore, calculating the traction field on the deformed geometry, 𝑇′ , calls for 

calculating the quantity dA/da, which we accomplish using the well-known Nanson’s 

Formula: 

 𝑑𝑎 �⃑⃑� = 𝐽(𝐹𝑇)−1𝑑𝐴 �⃑⃑⃑� (23) 

Rearranging (21) yields: 

 𝑑𝐴 

𝑑𝑎
 =

1

𝐽 �⃑⃑�𝑇 (𝐹𝑇)−1�⃑⃑⃑�
=
 �⃑⃑⃑�𝑇𝐹𝑇 �⃑⃑�

𝐽
 

(24) 

where, 𝐹 is the deformation gradient and 𝐽 is the determinant of 𝐹, and  �⃑⃑⃑� and �⃑⃑� are the 

surface normals of the undeformed and the deformed body, respectively. 

Since we have the closed-form expression of deformation field everywhere on the 

body, we can calculate the deformation gradient 𝐹 by numerically differentiating the 

displacement field inside the hydrogel domain to get: 

 
𝐹𝑖𝑗 =

∂𝑥𝑖
∂𝑋𝑗

= 𝛿𝑖𝑗 +
∂𝑢𝑖
∂𝑋𝑗

 
(25) 

where 𝛿𝑖𝑗 is Kronecker delta, 𝑢 is the displacement field, 𝑋 and 𝑥 are the material 

coordinates before and after the deformation, respectively. Figure 17 illustrates the how the 

traction scaling factor dA/da varies locally for a sample deformation field. 
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Figure 17. Dimensionless traction scaling factor, dA/da is calculated from the 

deformation gradient and surface normals of the undeformed and deformed configurations. 

It is used to locally scale the applied tractions and ensure force balance in the deformed 

configuration. 

 

Figure 18 compares the local changes in the deformation field before and after applying 

the scaling factor. Although the effects are local and appear minor under heat map display, 

the transformation gives force balance on the body and ensures accurate traction calculation. 
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Figure 18. Normal and shear components of the traction fields with and without 

accounting for the local deformations on the boundary of the body. Heat map intensity is 

normalized to the maximal absolute intensity of the traction fields displayed. 
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D. Comparison of Simulated and Recovered Tractions in Surface-based MTFM 

Given the nature of the shortest distance displacement mapping between the rest and 

deformed configurations, it is expected that our method, as implemented on a single 

boundary, would predict a predominantly normal loading profile and would severely 

underestimate the shear component of the total traction field. This is the case since the 

shortest distance mapping from the spherical boundary to the deformed boundary favors 

displacements that are almost normal to the deformed boundary, with very small to no in-

plane displacements. To test this rather qualitative and intuitive prediction, we have 

implemented the surface based algorithm as described above and compared the simulated 

and predicted recovered tractions from single-boundary shape matching. Figure 19 shows 

that, as the truncation degree is increased in the spherical harmonics decomposition, the 

degree of freedom of the overall fit increases, which drives the solution to predict mostly 

normal forces, with shear components that are close to the noise levels (~10%). This 

confirms the naïve prediction that without point-wise deformation tracking, the single-

domain microspheres could predict the minimum loading that generates the observed overall 

shape which corresponds to a loading profile that is mostly dominated by normal loading. 
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Figure 19. Single-colored microsphere force estimation by surface matching. As the 

truncation number N increases, normal loading profile converges and shear profile decays. 

Color bar is normalized to the highest magnitude of traction displayed.  
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IV. Development and Characterization of Microspheres for MTFM 

To experimentally measure the traction forces exerted by cells, we employ the use of 

cell-sized solid hydrogel microspheres as force sensors. In selecting our components to 

synthesize these microspheres, we require a material that maintains low cytotoxicity, is 

elastic on the order of cell-exerted forces, and can be functionalized to promote cell-

attachments. To satisfy these requirements, we chose the synthetic polymer, polyethylene 

glycol diacrylate (PEGDA), as the main component of our microspheres. PEGDA consists 

of the water-soluble and flexible polymer-linker, polyethylene glycol (PEG), flanked by two 

reactive acrylate groups. Its neutral charge, hydrophilicity, and resistance to protein 

adsorption have made it an attractive biocompatible option for in vivo and in vitro 

experiments [18]–[21]. Polymerization of the acrylate groups results in a covalently cross-

linked solid PEG network. Changing the molecular weight of the PEG-linker or the weight 

fraction of monomers in solution allows for controlled and reproducible tuning of the elastic 

modulus [22]–[24]. Furthermore, exploiting the acrylate crosslinking permits the addition of 

other functional motifs into the cross-linked network, such as fluorescent probes to image 

microspheres or bioactive peptides to promote cell-attachments [25]–[27]. Specifically, we 

incorporated the polymerizable fluorescent monomer, rhodamine-B acrylate, to visualize the 

bulk and boundaries of the otherwise transparent microspheres via fluorescence microscopy. 

Furthermore, the inclusion of the integrin-binding peptide, Arg-Gly-Asp (RGD) coupled to a 

PEG-acrylate (PEGA) linker, promoted cell-adhesion to the surface of the microspheres. 

In order to characterize the mechanics of the microspheres, we performed mechanical 

testing both on macroscopic samples and the microspheres and saw good agreement when 



 

 

 

 36 

comparing the mechanical properties measured through macroscopic and microscopic 

methods. Assuming that hydrogels are linearly elastic, isotropic and homogenous materials, 

two independent material properties are necessary and sufficient to fully characterize their 

mechanical behavior. To this end, we chose to determine the shear modulus, 𝐺′, and 

Poisson’s ratio, ν, as these material properties can be directly measured using macroscopic 

mechanical testing of the hydrogels. To test the shear modulus of the hydrogels, we 

performed parallel-plate shear rheometry and for the Poisson’s ratio measurements we built 

a soft gel stretcher and performed image processing on the axially stretched samples to 

characterize the amount of lateral shrinkage with respect to the applied axial stretch. 

Furthermore, as a comparison between the macroscopic materials and microspheres, we 

independently measured the bulk modulus of the microspheres by osmotic compression. We 

compared the Poisson’s ratio values that we directly measured by the microscopic axial 

stretching tests, ν𝑀, and the value, νµ−𝑀, calculated from the microscopic hydrostatic 

compression tests, Kµ, and macroscopic measurements of shear modulus as: 

 
νµ−𝑀 =

3𝐾µ−2𝐺
′

3𝐾µ + 𝐺′
 

(26) 

1. Microsphere Synthesis 

To synthesize hydrogel microspheres, we exploited the high surface-tension between oil 

and water phases to form perfect spheres. A “pregel-in-oil” microscale emulsion containing 

droplets of an aqueous gel precursor phase was stabilized in a continuous oil phase by the 

addition of non-ionic surfactants [28], [29]. In detail, 3.9 mg/mL of Span 80 (Sigma; 85548) 
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and 1.1 mg/mL Tween 20 (Sigma; P1379) were dispersed into food-grade sunflower oil 

(Trader Joe’s) and stirred for 10 minutes to create the oil-surfactant solution. 

 50 μL of the gel precursor was prepared by mixing 5% (v/v) PEGDA monomer 

(Mn=700 g/mol; Sigma; 455008); 1.1 mM lithium phenyl(2,4,6-trimethylbenzoyl) 

phosphinate (Tokyo Chemical Industry; 85073-19-4) photoinitiator [30],  to enable 

crosslinking via UV excitation; 0.01% (w/v) rhodamine-B acrylate (Polysciences Inc.; 

25404-100); and approximately 1 mM of RGD-PEGA.  

The gel precursor solution was then added drop-wise to a vial containing 2 mL of 

continuously-vortexing surfactant-enriched oil. The shear forces created by vortexing the 

oil-phase cause the aqueous solution of gel precursor to break into poly-disperse micro-

droplets, where the final range of sizes can be tuned by modulating the oil-water surface 

tension by adjusting surfactant concentrations. The vial was then filled to the brim with oil-

surfactant solution, sealed, and sonicated using a benchtop bath sonicator for 10 minutes. 

Immediately following sonication, the vial containing the oil and suspended gel 

precursor droplets was exposed to UV light to photopolymerize the gel precursor into solid 

spheres. In practice, the vial was placed between two handheld UV flashlights emitting light 

at 365nm, 3W and 5W for 10 minutes. During exposure, the vial was continuously rotated to 

allow uniform illumination throughout the bulk of the solution and was placed inside a 

chamber coated by aluminum foil to prevent light loss. Photopolymerization of the 

microscale emulsion resulted in the formation of covalently-crosslinked microspheres with 

diameters ranging between 5-50 μm, functionalized for cell-adhesion with RGD, and labeled 

with rhodamine-B, as shown in Figure 21. Microspheres were subsequently rinsed several 
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times with deionized water under centrifugation to remove oil and unreacted materials and 

stored for up to 2 days in cell culture media until used. 

2. RGD conjugation to NHS-PEGA 

RGD-PEGA was synthesized by allowing cyclo(Arg-Gly-Asp-D-Phe-Lys) (Peptides 

International; PCI-3661-PI) to react with acrylate-PEG-NHS (Sigma; JKA5023) at a 1:1 

molar ratio in 50 mM sodium bicarbonate buffer at pH 8.4 at room temperature for two 

hours through an amine-ester reaction. Free (unreacted) RGD peptide was removed by 

dialysis with a Pur-A-Lyzer Midi Dialysis Kit with molecular weight cutoff of 1 kDa 

(Sigma; PURD10005-1KT) against 2 liters of deionized water that was replaced every 30 

minutes for four hours. The subsequent solution was aliquotted to contain approximately 60 

µg of conjugated RGD, lyophilized overnight, and stored at -20°C. Just before preparation 

of the hydrogel microspheres, the RGD-PEGA was added to the aqueous gel precursor 

solution to give a final RGD concentration of 1 mM.  

 

3. Microsphere Attachment to Glass for Bulk Modulus Measurements  

Bulk modulus of PEGDA microspheres was measured by first attaching microspheres to 

glass coverslips and imaging before and after mechanical loading. To achieve this 

attachment, glass coverslips were functionalized with (trimethoxysilyl)propyl methacrylate 

(TMSM) (>98%; Sigma; M6514) to link reactive methacrylate groups to a hydroxylated 

glass substrate via silanization. Glass coverslips (#1.5, Corning; 2975244) were degreased in 

a 1:1 solution of hydrochloric acid and methanol for at least 30 minutes and then thoroughly 
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rinsed with deionized water. Coverslips were then treated with concentrated sulfuric acid 

solution (>99%; Sigma; 339741) for at least 30 minutes to hydroxylate the glass surface, 

followed by thorough rinsing with deionized water. After drying with nitrogen gas, 

coverslips were placed in an organosilane solution containing 0.5% (v/v) TMSM and 0.3% 

acetic acid (v/v) in ethanol and allowed to react for at least 5 minutes. Finally, excess 

organosilane solution was removed by rinsing with ethanol. Functionalized coverslips were 

stored in airtight containers for up to 2 days. To attach microspheres to glass surfaces, dilute 

microsphere solutions (~10k/mL) were pipetted onto functionalized glass and cross-linked to 

via acrylate polymerization to surface-methacrylate groups upon 1.5 minutes of exposure to 

UV light. 1.5 minutes of UV-exposure was determined to be the minimum time required to 

maintain microsphere attachment to the glass coverslip surface during solution-exchange. 

 

Figure 20. Side-view of microsphere attached to functionalized glass coverslips. 

Microspheres were covalently crosslinked to methacrylate linked to the substrate surface. 

The attachment area (as seen at the bottom of the image) is optimized to create a strong 
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enough bond to ensure that the microspheres do not float away during solution exchange, 

but that the flattened area does not substantially impact sphericity. Scale bar = 20µm. 

4. Microsphere Bulk Modulus Measurements  

The bulk modulus of the hydrogel microspheres was determined by measuring the 

change in volume under isotropic stress as described in [10][31][32]. The exclusion pore 

size of synthesized PEGDA microspheres was estimated to be less than 20 nm by 

fluorescence recovery after photobleaching (FRAP) measurements, which showed that 

fluorescent polystyrene particles with diameters of 20 nm do not diffuse through the 

hydrogel on the time scale of 1 hour as shown in Figure 21 [33][34]. An osmotic stress was 

externally applied by addition of a solution containing fluorescein-labeled, high molecular-

weight (HMW) dextran  (Mw=500 kD) (Sigma; FD500), which has a hydrodynamic radius 

of ~16 nm (and thus effective diameter of ~ 30 nm) [35].  Imaging of the fluorescent HMW 

dextran confirmed that no dextran penetrated microspheres.  
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Figure 21. FRAP experiments in PEGDA microspheres fluorescent nanoparticles with 

20-nm diameter. No fluorescence recovery is observed within one hour time window. Scale 

bar = 10µm. 

 

Figure 22 shows the calculated osmotic stress as a function of the concentration of 

dextran as previously described in [32]. This externally-applied osmotic stress results in the 

mechanical compression of the microspheres. By imaging before and after solution 

exchange, we measured the total volume change in the microspheres of polydisperse sizes. 

The osmotic stress is applied by pipetting the Dextran solution directly on the coverglass, 

and since the microspheres are attached on the glass surface, they stay in the field of view 

before and after the solution exchange. Imaging was performed using a Leica SP8 confocal 

microscope and volume-change was calculated in ImageJ by measuring the change in 

microsphere radius from maximum-intensity projections. Measurements were collected for 

multiple sample-preps. The bulk modulus, Kµ, was calculated to be 10.35 ± 1.0 kPa from the 
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linear regime of the resultant compression stress-strain curve, as shown in Figure 22 below 

and it is similar to the bulk modulus measurements in previously reported microspherical 

hydrogel systems, which are ~15kPa [10].  
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Figure 22. Microscopic bulk modulus, Kµ, is directly calculated on the microspheres 

from the volumetric strain and hydrostatic pressure caused by osmotic changes. Error bars 

are the standard deviation around the mean of a 4-7 samples measured at a given pressure. 

5. Shear Rheometry and Poisson’s Ratio Measurements on Bulk Samples 

Bulk rheometry measurements of 5% (v/v) PEGDA hydrogels were performed on 

ARES-LS1 (TA Instruments) in a parallel plate geometry with a 7-mm gap. To prevent 

slippage at the tool-hydrogel interface, tool surfaces were coated with 400 grit sandpaper on 

tool and then superglue was applied gently on the top sandpaper surface just prior to 

compression of the hydrogel. Bulk gels were cast into metal rings and gelled in an aluminum 

chamber, under a benchtop UV source (Spectroline XX-15A), at a distance ~3cm away from 

the UV lamp. Even though we haven’t seen any noticeable changes in the sample stiffnesses 

after 30 minutes, the samples are exposed for a total of 1 hour to ensure the 

photopolymerization reaction is completed. The rheological properties of the macroscopic  

gels  were determined using oscillatory shear-loading at frequencies ranging from 0.1-10 

Hz, at a fixed shear strain of 0.25%, which we confirmed was within the linear elastic range 

of the material (data not shown). The measured moduli show effectively no frequency 

dependence and the storage (elastic) modulus G' dominates the response, as expected [8].  

As shown in Figure 25, we measured the mean value of G' to be approximately 0.97+0.04 

kPa whereas the loss moduli were lower by at least an order of magnitude over the measured 

frequencies and for three measurements done on one sample. 
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Figure 23. Storage (elastic) modulus, G', of macroscopic 5% PEGDA hydrogels was 

determined using shear rheometry to be 0.97+ 0.04kPa by taking the value at the lowest 

frequency tested. This is because the timescales of the forces that cells apply are on the order 

of hours, and DC value of the shear modulus is physically the most relevant for the 

timescales involved in our system. Error bars are the standard deviation of three 

measurement points around their mean.  

 

The material Poisson’s ratio was independently measured using a custom benchtop gel 

stretching device. Poisson’s ratio is defined as: 

 
ν =  −

휀𝑙𝑎𝑡𝑒𝑟𝑎𝑙
휀𝑎𝑥𝑖𝑎𝑙

= −
(𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙
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1 )/𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙
1

(𝑙𝑎𝑥𝑖𝑎𝑙
2 −𝑙𝑎𝑥𝑖𝑎𝑙
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where 휀𝑎𝑥𝑖𝑎𝑙 and 휀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 are axial and lateral strains, and 𝑙𝑎𝑥𝑖𝑎𝑙
1   and  𝑙𝑎𝑥𝑖𝑎𝑙

2  are the 

distance between markers (steel shots) that are aligned in the axial (horizontal) direction, 

before and after the stretching, respectively. Similarly, 𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙
1  and  𝑙𝑙𝑎𝑡𝑟𝑒𝑎𝑙

2  are the distances 

between the top and bottom borders of the gel as measured orthogonal to the axial direction, 

halfway between each steel shot at every frame. 

Gel pre-cursor was cast into dog-bone-shaped PDMS molds and photocured. During 

attachment to the side walls of the gel stretcher with superglue, care was given to the 

alignment of the sample and the pulling axis of the stretcher. This was done by first bringing 

the flat side surface of the in contact with the fixed prong of the device (prong on the left), 

and slowly bringing the slider prong closer to the sample until chemical attachment is 

established between the hydrogel and the prong surfaces, ensuring that no noticeable 

compressive forces are applied on the gel that might cause off axis alignment and/or 

buckling of the hydrogel sample. The mounted samples are shown in Figure 24 below. Prior 

to curing, two pellets of steel shot were embedded on bottom of surface of the dish the gels 

were cast in and the displacement in their center of mass was detected using a standard 

MATLAB routine, activecontour(). We recorded the longitudinal displacement at the point 

that is halfway between the two steel shots in each frame recorded. This enables monitoring 

the gauge length for the same material points throughout the duration of the experiment. The 

RGB images were converted to greyscale and, at each frame, the crossing of the lateral axis 

and the gel boundary is detected by identifying the point of steepest descent to the pixel 

accuracy. By using (27) and relating the axial stretch and lateral shrinkage between loaded 

and unloaded states, we quantified the strains and their ratio, defined as ν.   
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Figure 24. Hydrogels were cast into dog-bone shaped samples to enable tensile 

stretching in order to determine the Poisson's ratio of the material, which appears pink due to 

the rhodamine labeling of the gel. a) Hydrogel prior to stretching. b) Hydrogel sample under 

axial stretch. c) Top view of hydrogel and material tracers using an RGB camera. d-e) 

Grayscale images for image processing under axial stretch. The detected outlines of material 

tracers and gel boundaries are labeled with red. 
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In order to estimate the uncertainty in the calculation of the Poisson’s ratio, we 

expressed the uncertainties associated with the strain measurements as: 

 

δ휀𝑗 = √(
δ𝑙𝑗

𝑙𝑗
1 )

2

+ (
𝑙𝑗
2δ𝑙𝑗

𝑙𝑗
12
)

2

 

(28) 

where j denotes the direction as lateral or axial, 𝑙𝑗
1 and 𝑙𝑗

2 are lengths in the j’th direction, 

measured in pixels, and δ𝑙𝑗 are the uncertainties associated with the axial and lateral 

directions. The stretch markers are detected by using active contours in MATLAB and the 

centroid of the segmented markers are assumed to have subpixel resolution and δ𝑙𝑎𝑥𝑖𝑎𝑙 is 

taken as + 0.5 pixels, whereas locating the gel boundary in the lateral direction has pixel 

resolution, so δ𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 is taken as + 1 pixels. The errors are propagated to the strain 

measurements as shown in (28), and the Poisson’s ratio is calculated from the slope of the 

line that if fitted to the 휀𝑙𝑎𝑡𝑒𝑟𝑎𝑙 vs. 휀𝑎𝑥𝑖𝑎𝑙 curve. The fit is carried out by using the MATLAB 

routine linfitxy() by J.Browaeys, (University of Paris, Diderot), which uses both x- and y-

error bars for calculating the best fitting parameters and computes the error bounds on the fit 

parameters using a Monte Carlo simulation, where each data point is Gaussian-distributed in 

x and y, with a standard deviation that is specified by the error bar. In our fit, we force the 

curve to go through (0,0), and report the 95% confidence bounds on the fitted value of the 

Poisson’s ratio, ν. 

As shown in Figure 27, the Poisson’s ratio for the PEGDA hydrogels was determined 

from the ratio of lateral and axial strain to be ν=0.45 + 0.035 As a consistency check, we 

compare the calculated values of Poisson’s ratio using the microscopically measured bulk 



 

 

 

 48 

modulus, Kµ, and the macroscopically measured shear modulus, 𝐺′, using the following 

equation:  

 
νµ−𝑀 =

3𝐾µ−2𝐺
′

3𝐾µ + 𝐺′
= 0.455 ± 0.005 

(29) 

The error bar in the above expression is calculated by propagating the uncertainties in the 

measurements of shear modulus, 𝜹𝑮′, and the microscopic bulk modulus, 𝛿𝐾µ, by following 

the formalism that is presented in (28), and using the equation (29). Looking at the 

macroscopically measured Poisson’s ratio, ν𝑀 = 0.45 +  0.035, and the calculated value,  

νµ−𝑀 = 0.455 ± 0.005,  we see that the mean values of these two measurements of the 

Poisson’s ratio compare well with each other. This might help provide an independent 

confirmation that the rheological and mechanical properties of the PEGDA-based hydrogels 

be are invariant over the length scales (> 5m) considered here. In the future, more careful 

measurements of the macroscopically measured Poisson’s ratio, ν𝑀, can help lower the error 

associated with ν𝑀. 
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Figure 25. Axially stretched macroscopic 5%PEGDA hydrogel samples show weak 

compressibility with a Poisson's ratio of 0.45±0.035. The error bounds shown are one 

standard deviation around the mean value of the fitted parameter, ν𝑀. 
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V. Experimental Methods and Cellular Studies 

In these studies, NIH-3T3 mouse fibroblasts were used to investigate mammalian cell 

adhesion, spreading, and force transmission on our microsphere surfaces. NIH-3T3 

fibroblasts were chosen because of their frequent use in TFM studies [6], [8], [36], [37]. 

Their integrin expression pattern, focal adhesion assembly, and spreading have been 

previously well-characterized [38]–[41]. Additionally, they have been used in studies of cell 

functions such as cell shape change, adhesion, movement, and to demonstrate key roles of 

cytoskeletal components in cell adhesion, division, and growth [42]–[44]. 

Briefly, we mixed RGD-functionalized microspheres into dense solutions of cells that 

were seeded into custom microwells treated to promote cell attachments. Using this method, 

we were able to obtain microspheres encapsulated within several layers of cells and fixed in 

position. We employed the use of high-resolution confocal microscopy to image optical 

sections that were then reconstructed to give three-dimensional information with high spatial 

resolution. By imaging both the deformed and the undeformed, load-free states of the 

microspheres, we were able to track the displacement of the microsphere surface and 

compute the nominal values for the normal component of the total active traction forces 

exerted by cells on the microspheres. We also labeled the living cells for actin and 

consistently observed that bundled actin cables in the cell cortex have a high spatio-temporal 

correlation with local microsphere deformations. 
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A. Experimental Methods 

1. Fabrication of custom PDMS-coverslip microwells for cell experiments 

To image multiple cell-microsphere interactions under different experimental conditions 

over several hours, custom microwells were constructed. Cured polydimethylsiloxane 

(PDMS) (Dow Corning; Sylgard 184) slabs of ~3 mm thickness were cut with 6-mm-

diameter holes, sterilized with 70% ethanol, and plasma bonded to glass coverslip substrates 

to form glass-bottomed, PDMS microwells. Microwells were then treated with either a 10 

μg/mL solution of fibronectin (Sigma; F2006) or 0.01% poly-L-ysine solution (Sigma; 

P4707) to promote cell adhesion and spreading and were subsequently stored in airtight 

sterile containers at 4º C for up to one week until used. 

2. Cell culture and staining: 

Mouse fibroblast (NIH 3T3) cells were obtained from the American Type Culture 

Collection (ATCC; CRL-1658) and maintained in high-glucose DMEM containing phenol 

red and supplemented with 10% calf bovine serum (ATCC; 30-2030) and 1% penicillin-

streptomycin (Life Technologies; 10378016). Cells were grown in 25 cm2 rectangular 

canted-neck cell culture flasks with vent-caps (Corning Life Sciences; 430639) at 37° C in 

the presence of 5% carbon dioxide, and were either passaged or used for experiments at 60-

80% confluency. Prior to experiments, cells were stained with Hoechst 33342 (Life 

Technologies; H3570) to label cell nuclei and a commercially-available live actin stain 

called SiR-actin to label filamentous actin throughout the cells (Cytoskeleton Inc.; CY-

SC001) and imaged immediately.  
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3. Cell microsphere experiments 

Mouse 3T3 fibroblasts at 60-80% confluency were detached from cell-culture flasks by 

addition of 0.05% trypsin containing 0.2 g/L EDTA (ThermoFisher; SH3023602), rinsed to 

remove trypsin-EDTA solution, and stained with 10 μg/mL Hoechst-dye 33342 and 1 µM 

SiR-actin label. RGD-functionalized microspheres were added to solutions of suspended 

3T3 cells at a 1:30 ratio (microspheres:cells) and the cell-microsphere solution was then 

diluted to a final cell concentration of ~1.5-2 million/mL. Approximately 50K-100K cells 

with microspheres were immediately seeded into the custom microwells and imaged. 

50-100 µm2 fields of view were imaged on a Leica SP8-TCS confocal microscope2 using 

a 40X water-immersion objective with numerical aperture of 1.1, at a 1000 Hz acquisition 

rate, and pinhole diameter of 1 Airy Unit. Imaging took place in a humidity-controlled 

environmental chamber with a temperature setting of 37ºC and 5% CO2. To minimize 

fluorescent bleed-through between imaging detectors, line-sequential scans were taken. The 

first sequence comprised a 405 nm excitation with 430-500 nm detection to image nuclei 

staining, as well as a 555 nm excitation with 600-680 nm detection to image diffuse 

rhodamine-B labeling of microspheres. The second sequence consisted of a 652 nm 

excitation with 665-730 nm detection to image the stained filamentous actin. Stacks ranged 

in height from 20-75 µm and took approximately 1-2 minutes to collect depending on stack-

height. 

                                                 
2
 NSF Award DBI-1625770, through the Major Research Instrumentation Program. 
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To observe initial cell interactions with microspheres and obtain microsphere loading 

information over small time increments, we conducted time-lapse experiments. Cells and 

microspheres were seeded into PDMS microwells and immediately imaged as described 

above. By using a motorized stage, multiple separate locations containing cells and 

microspheres were selected to be imaged overnight. Image stacks were collected every 30 

minutes at each location, generating time-series data for all selected locations. 

For the experiments to measure cell tractions, cells were allowed to settle on the surface 

in the presence of microspheres and allowed to establish attachments with and deform the 

microspheres for several hours. During this time, image stacks were collected as described; 

measurements were performed using a heated incubation chamber that maintained the 

appropriate temperature and CO2-concentration (37°C, 5%) to ensure cell health. After 

imaging, cells were released by either lysis using a low concentration sodium dodecyl 

sulfate solution (<0.1% w/v) (Sigma; 151-21-3), or through the disruption of cell 

attachments by proteases and chelating agents (in the form of trypsin-EDTA), inhibition of 

actin polymerization by 4 µM cytochalasin D (Sigma; C8273), or through inhibition of the 

contractile actin-binding motor protein myosin II by 50 blebbistatin µM (abcam; ab120425) 

as previously employed [8], [9]. Inhibiting the active force generation mechanisms of the 

cells and cleaving cell-hydrogel attachments, or lysing the cells removes the actively-

generated cellular loading on the microspheres and spheres go back to their load-free 

spherical configuration.  
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B. Experimental Results in Cellular Systems 

In this work we mainly used NIH 3T3 mouse fibroblasts as they are widely used and 

accepted models for validation and proof of concept for traction force microscopy studies, as 

discussed previously. The early experiments we conducted with 3T3s showed that the RGD-

functionalized microspheres were able to promote cellular contacts, resulting in substantial 

deformation under cellular loading. Figure 26 shows examples of natural cell-microsphere 

interactions where cells (shown in red, by SiR actin labeling) are able to form stable 

attachments with microspheres, while maintaining their natural contacts with the 

neighboring cells. In cases where the microspheres are small enough for the cells to fully 

wrap around, we occasionally observed complete engulfment of the synthetic hydrogels by 

the 3T3s. 

 

Figure 26. Representative examples of various natural cell-gel interaction modalities that 

are typical in cellular experiments. 3T3 mouse fibroblasts which are labeled with SiR actin 
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(red) are strongly interacting with the RGD-functionalized rhodamine PEGDA microspheres 

(yellow). Note the high levels of actin fluorescence around the regions of maximal hydrogel 

deformations. 

 

As we discussed in Chapter III, single-color solid microspheres can provide information 

about the normal component of the total traction field that is applied on the spherical gel 

boundary. However, in order to determine the nominal values of the boundary tractions 

rather than the anisotropic tractions around a mean value, we would additionally need to 

know the load-free configuration of the hydrogels. Since we know in the absence of external 

loads the gels assume a spherical shape, the only parameter needed to determine the nominal 

values of the normal tractions is the hydrogel radius in the rest configuration. This can be 

achieved either enzymatic or surfactant treatment of cells and/or cell-gel interactions. 

However, when the microspheres are imaged in their deformed configuration and no prior 

information is available, by invoking constant volume (not-incompressibility) between the 

rest and deformed states, we can measure local deviations around the hydrostatic component 

of the normal force, similar to [9]. An example of this is given in Figure 27. The left panel 

shows a 3D rendering (Leica Suite) of the rhodamine labeled and highly-deformed and 5% 

PEGDA microsphere (red) as well as the actin (pink) meshwork and actin cables going 

around the body. It is remarkable that the location and the orientation of the actin cables line 

up with the regions of maximal deformations on the hydrogel body. As described 

previously, upon 3D rendering of the deformed hydrogel surface, we are able to quantify the 

normal boundary forces by assuming different initial volumes, Vo, as the volume is the only 
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quantity needed in order to fully characterize the rest configurations of the microspheres. 

Clearly, different choices of the initial volume lead to predicting different loading profiles 

on the body. However, the main difference between the right and middle panels is the 

inward hydrostatic traction that is required to match the initial and final volumes in the right 

panel. Furthermore, what is common between the two calculated traction profiles is the 

deviatoric part of the boundary loading, which does not cause uniform volume changes 

across the body, but rather generates shape changes at constant volume.  

 

Figure 27. Left: A rhodamine labeled PEGDA microsphere (red) is deforming under the 

traction forces applied by the surrounding 3T3 mouse fibroblasts via actin cables that are 

labeled with SiR actin (pink). Middle: Anisotropic normal tractions relative to the mean 

(hydrostatic) traction show relative compressive stresses around the sites of actin cables. 

Right: Comparison of the volumetric changes before and after release experiments show that 

the microspheres are under overall compression.  Heat map on the middle and right panels 
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indicate the estimated values of the normal tractions on the deformed body. Scale bar is 

5µm. 

  

Under these circumstances, the natural question of which initial volume to pick arises. In 

the absence of any additional information about the initial or the current state of the body, it 

is rather intuitive to set the initial volume to be equal to the final configuration and quantify 

the anisotropic deviations around the mean hydrostatic tractions, as in [9]. However, as 

demonstrated with the osmotic compression tests, PEG microspheres are compressible and 

they would undergo volumetric changes if the active tissue stresses are relieved by 

cytoskeletal inhibitors or surfactants until the gels assume sphericity.  In this case, hydrogel 

microspheres would predict the nominal values (with respect to 0 kPa) of the active forces 

that were originally applied on them, at the deformed configuration, which is an 

improvement over the microdroplet based methods. 

 

F. Conclusion 

Although the single boundary MTFM method only sets a lower bound on the arbitrary 

loading that might be applied by cellular systems to create the observed final shape of the 

microspheres and predicts mostly normal loading, it is very robust to tissue dependent 

imaging artefact which increases its potential utility in complex geometries and highly 

scattering tissues. Also, another major advantage of this method is the fact that because it is 

purely based on shape matching, it doesn’t require information about the starting 
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configuration of the system since the force transducers have fully spherical geometry at their 

rest configuration. Experimentally, this property removes the condition to release the cell-

gel attachments in order to get the load-free state of the microgels - which greatly simplifies 

the experimental procedure. This can be desirable for certain experiments, where the 

microspheres are placed inside a living organism or a tissue that needs to be kept functional 

following the experimental procedure. Furthermore, this method does not rely on particle 

tracking as material tracers, which eliminates the requirement to perform bead detection and 

tracking/point cloud matching of the bead coordinates between the deformed and 

undeformed configurations. This greatly reduces the computational challenges that are 

associated with particle tracking, especially in the case where the total displacements of the 

beads are larger than the average inter-bead spacing in the point clouds, ~1µm for 

microspheres, which is typical for the deformations that microspheres experience under 

cellular loading. 

Single-colored microspheres present cells with a geometry and surface with which they 

can mechanically interact more naturally than the current existing methods, in being able to 

apply both shear and normal forces on the solid microspheres, as well as maintaining 

contacts with the neighboring cells. Even though the shear loading applied by the cells on 

the microspheres mostly goes undetected with this technique, the total interactions between 

the cell and the microsphere mechanically mimic that of cell-cell interactions much more 

closely than the existing methods. In addition, under these more natural mechanical 

interactions we can still get a good estimate of the normal tractions applied on the body with 

minimal additional experimental and computational effort. 
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VI. Microsphere Traction Force Microscopy Future Work 

A. Particle Tracking-based MTFM 

1. Experimental and Computational Methods 

Determining the unique force field that cells apply on the solid microspheres requires 

having information about the displacements of the material points between the rest and 

deformed configurations. To achieve this and track the displacements of the material points 

inside the hydrogel bodies, we included 200 nm fluorescent particles that are trapped in the 

microstructure of the hydrogels. In our hydrogel preparation, we keep the fluorescent 

particle number density, 𝜌, constant, which means the number of particles inside the body  

scales with the volume. We define the number of beads, N, as: 

where we have optimized the bead density in our hydrogels such that the point spread 

functions have minimal overlap in z, giving ρ ≈ 1 beads/µm3. Figure 28 below shows an 

representative example of a hydrogel microsphere ~25µm in diameter, which is of the 

typical size used in our experiments. 

 

 
𝑁 = 𝜌𝑟3  

(30) 
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Figure 28. Example of a hydrogel cross section which shows the internal fluorescent 

bead distribution used in experiments. (The yellow circle outlines the microsphere boundary, 

with a diameter ~25µm.) 

Upon imaging the microspheres under cellular loading, we perform bead detection with 

the Kilfoil implementation of the Crocker-Grier particle tracking algorithm[45][46] in 

MATLAB. To quantify the measurement uncertainty in bead detection and tracking, we 

selected an undeformed microsphere that is located in between cells and we took five 

consecutive scans of the same image volume. Since the microsphere was known to be 

initially undeformed and is not expected to deform between such rapid consecutive image 

volume recordings, it served as a control. Upon performing fluorescent bead detection on the 

individual image volumes of the same physical microsphere, we obtained five particle 

clouds which only exhibit slight translations and rotations around the center of the hydrogel 

in which they are embedded. Therefore, we match the position and the orientation of these 

detected point clouds to each other using the Iterative Closest Point (ICP) cloud matching 

algorithm as explained in [18] and [48], and subtract out the rigid body translations and 

rotations of the point cloud from every point in the cloud. Upon matching the orientation 

and the position of the consecutive point clouds, we track the particles using the Crocker-

Grier algorithm, and establish one-to-one matching of the beads in all 5 time points. As seen 

in Figure 29, the resulting distributions for the bead displacements show that the 

measurement noise that is associated with bead detection and tracking is σbead = (0.039µm, 

0.045µm, 0.144µm) in x-y-z directions, respectively. 
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Figure 29. Bead displacement tracking error over five consecutive stacks of the same 

field of view. 

2. Deformation Simulations under Noisy Data 

In the previous section we characterized the errors associated with detecting and 

matching fluorescent particles between time-lapse volumetric imaging of particle clouds that 

are seeded in hydrogel microspheres. This is a typical experimental setting in which the 

microspheres are free to interact with the cells while being imaged at the same time. This 

means that the particle tracking errors that are characterized in the previous section can be 

modeled, and these models can be used as realistic predictors of the measurement noise that 

is inherent to the imaging, detection and tracking of the fluorescent particles in the 

experiments. However, it is typically experimentally challenging to apply controlled, known 

force fields to the microspheres and characterize effect of measurement noise on the ultimate 

fidelity and versatility of the traction reconstruction. Thus, we simulate known force fields 

and calculate the corresponding displacements, 𝑢𝑠,  for the given loading. Once the 
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simulated displacements are computed, we add the Gaussian noise, δ, which fits the 

experimentally observed tracking errors as shown in Figure 29 and previously discussed in 

[8]. We denote this noisy displacement field as 𝑢𝑠 + 𝛿.  By accounting for this 

experimentally-consistent system noise and by solving (15) and minimizing the residual, we 

recover a displacement field, 𝑢𝑟, that closely matches the simulated displacement field, 𝑢𝑠. 

In Figure 30 the corresponding displacement values for randomly picked surface points on 

the hydrogel boundary are plotted against the simulated displacements. The broken line is a 

guide for the eye that indicates one-to-one correlation between the simulated displacement 

field, 𝑢𝑠, and itself. Therefore, the amount of deviation from the diagonal is indicative of a 

deformation field that is not representative of the simulated, known displacement field, 𝑢𝑠. 

As seen in Figure 30  the recovered displacements, 𝑢𝑟, match the simulated displacements 

more closely than the noise added displacement field. This good agreement is due in part to 

the fact that we are using a spherical harmonics formulation where the basis functions are 

described over the whole boundary, thus, are robust to the deleterious effects of the local 

noise, as opposed to point load-based Green’s function formulations in finite element 

models of boundary loaded elastic deformations [8], [37].  
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Figure 30. Simulated and recovered displacement fields show that solving the 

minimization problem suppresses the high frequency noise in the displacement field 

inside the body and predicts a more regular solution, ur. 

 

3. Comparison of Simulated and Recovered Traction Fields 

To test the fidelity of our method and quantify the effects of measurement noise in the 

calculated boundary traction field, we carried out simulations by starting with a randomly 

chosen, known value of the modal contribution vector, 𝑎, and we forward simulate a traction 

field and the corresponding displacements. The left panel in Figure 31 shows the total 

simulated traction field, and the shear and normal decompositions. Then, based on our tracer 

tracking error measurements, we introduce a Gaussian noise on top of the simulated 

displacement field and solve the minimization problem posed in (17). Looking at the 
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agreement between the simulated and recovered displacements and tractions, we conclude 

that, our method is robust to the realistic experimental noise and can be used to succesfully 

reconstruct traction force profiles from experimental data. The resulting recovered traction 

field is displayed on the panel of Figure 31. It is clear that our method can capture the total 

traction field, and moreover allows the individual normal and shear components to be 

determined. In the middle panel, we display the local deviation from the simulated traction 

field by using the relative local error metric: 

 
Relative local error =

|𝑇′𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑇′𝑟𝑒𝑐𝑜𝑒𝑣𝑟𝑒𝑑|

|𝑇′𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|
 

(31) 

For the experimentally relevant noise levels, we find that the recovered tractions are in ~ 

+ 20% agreement with the simulated tractions, which is on the upper end of the predictive 

capabilities of most traction force microscopy methods at these short length scales, ~10-

20µm [8]. The middle panel in figure 19 displays the relative local error in the total traction 

field on the deformed boundary.  
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Figure 31. Simulated and recovered tractions show that the tractions calculated by our 

method agree well with the simulated values, with maximal local deviations of ~20%. Heat 

map intensity is normalized to the maximal value of the magnitude of the traction field. 
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4. Preliminary Experiments in Cellular Systems 

We recently started cell experiments using microspheres seeded with 200 nm fluorescent 

(excitation 505nm/emission 515nm) polystyrene particles and had great success in terms of 

optimizing the bead density inside the microspheres, setting up the experiments and 

establishing cell-gel attachments, as some of our pre-established expertise carried over from 

the previously described studies on developing and performing MTFM. In Figure 32, a 3D 

rendering of a preliminary study of particle based-MTFM is shown. The volume image is 

recorded while cells are establishing contacts with the fluorescent particle seeded 

microsphere and extending bundled actin cables on the microsphere surface.  

Even though we had some preliminary success with jump-starting this technique, 

particle-based MTFM has inherent experimental and computational challenges to itself. This 

is in part due to the fact that in the context of MTFM, the microspheres are free-floating 

sensors that are designed to be embedded in 3D cell aggregates and/or thick tissues; and 

depending on the cellular tissue that lies in the optical path, the point spread functions of the 

polystyrene particles can severely and anisotropically deteriorate. This directly impacts the 

accuracy of the bead detection and tracking, thus reducing the reliability and the utility of 

the method. We have attempted to minimize these optical aberrations by plating only a few 

layers of cells with microspheres with some preliminary success. Minimizing the number of 

cell layers that lie between the microspheres and the objective helps reduce the cell induced 

anisotropic absorbance, scattering and refraction; however, if microsphere based traction 

force microscopy methods are to be furthered, these challenges will have to be more 

systematically addressed. 
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Figure 32. Multiple mouse fibroblasts making contact with poly-l-lysine functionalized 

microsphere. Stable actin cable formation with PLL microsphere surface is apparent. 

Green=FITC particles, red=rhodamine-labeled PEGDA, magenta=SiR actin, blue=Hoechst. 
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Although under the current experimental condition, imaging limitations prevent the use 

of microspheres seeded with fluorescent particles for probing the mechanics of the interior 

of large cellular aggregates, further development of MTFM methods that are robust to 

imaging artefacts could help elucidate the full features of cellular traction forces in the 

natural context of cellular systems. In the next section, we propose and discuss methods that 

can provide future directions in achieving robust MTFM techniques.  

 

B. Current Challenges and Future Directions on MTFM 

In our work, we developed the mathematical, computational and experimental tools 

necessary to perform traction force measurements on “cell-like” free bodies and 

demonstrated the feasibility of using elastic solid bodies in performing TFM on live cellular 

aggregates. Recent developments in droplet-based force measurement techniques, pioneered 

by Campas et. al. paved the way toward measuring forces in the cells’ natural environment 

[9]. With the experimental advantages like the ease of droplet delivery to tissues through 

microinjections, their robustness inside living organisms and the technique’s versatility to be 

integrated to other technologies for measurements of cell mechanics [49], oil micro-droplets 

are continuing to provide biophysical techniques to quantify cellular forces in natural 

geometries. On the other hand, possible improvements over these techniques could involve 

developing local force sensors that can detect shear, and/or nominal values of the normal 

tractions applied on the sensor, rather than the anisotropic component of the normal traction 

field that droplets report when fully enclosed within tissues [9]. Also, microdroplet 

techniques fall short on capturing fully the natural cell-cell contact surface interactions.  
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Since the liquid surface cannot sustain shear, these methods not only cannot measure the 

shear loading, but more importantly they do not promote cells to interact with them through 

shear coupling, which is unnatural for cell-surface interactions. In the case of droplet-cell 

contacts, the cells do not experience shear resistance from the droplet surface; therefore, 

they cannot interact with droplet surfaces as they would with other cells, extra-cellular 

matrix, or solids that they establish contacts with. Our method is powerful in that, to the best 

of our knowledge, it is the first technique that provides a natural cell-like interaction surface 

and geometry for the cell-gel attachment in which the cell can apply both shear and normal 

forces at the same time, thus, more closely mimicking cell-cell interactions. However, as in 

all current hydrogel-based traction force microscopy techniques [50][51], calculating a 

unique boundary loading using elastic solids as force transducers requires knowledge about 

the pointwise displacement field inside the material. In terms of hydrogel microspheres, this 

requirement necessitates the use of fluorescent markers as material point tracers in otherwise 

transparent hydrogel bodies. However, the point spread functions of these sub-diffraction 

fluorescent emitters deteriorate rapidly inside thick specimens or large cellular aggregates 

due to the highly inhomogeneous scattering and absorption of fluorescence emission through 

the specimen. This, therefore, limits the use of the fluorescent particle-seeded microspheres 

in a variety of settings including tissues, tumors, and whole animals. 

Since the fluorescent particles are diffraction limited, thus practically zero-dimensional 

emitters, the centroid detection of their point spread functions which are sub-micron in x-y 

and on the order of a micron in z is highly prone to distortions from the local optical 

aberrations. We believe that moving to a surface based shape tracking method could side-
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step the deleterious optical effects of the cell layers that lie between the microspheres and 

the objective, thus greatly improving the technique’s overall performance and versatility. 

For this, first, it would be desirable to average the surface signal over a length scale that is 

greater than the point spread function dimensions. This means, in order to provide more 

reliable information, the internal surfaces would need to be larger than ~1-2 microns. In 

addition, the sample dependent length scale of the local anisotropy imposed by the cells also 

needs to be considered in choosing the size of the internal surfaces, which can be 

comparable to the cell size. Therefore, moving to microspheres that are ~2-3 cell diameters 

(~40µm) which contain smaller microspheres with ~5-10µm diameter can help provide more 

information about the internal deformation field of the bounding microsphere while 

tolerating the sample dependent anisotropic distortions in the image space. However, and 

unfortunately, the elastic deformation field that can give rise to a given surface shape is 

degenerate, thus preventing us from finding a unique loading that generates the observed 

boundary surface deformation, given the initial and final shapes of the elastic body. In order 

to uniquely determine the internal displacement field inside a deformed body, it is therefore 

necessary to gather information from additionally created internal surfaces. Ideally, one 

would have multi-colored microspheres that are embedded within and mechanically 

matched to the bounding multi-inclusion microsphere, as illustrated in Figure 30. This 

would enable the use of the closed form solution of the spherical harmonics formulation of 

the problem as given in (6), as the solution assumes homogenous, isotropic elasticity within 

the enclosing body. Inspection of equation (6) shows that the internal deformation field 

associated with each degree of surface harmonics decays with an exponent that is 
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proportional to the degree of the applied surface harmonic; meaning, the deformation from 

higher degree surface harmonics would decay on shorter length scales than the deformations 

that correspond to lower degree deformations. This feature of the deformation field 

effectively weights each degree of deformation field differently, thereby acting as an 

effective low-pass filter. The internal surfaces closer to the microsphere core would provide 

information about the slowly decaying modes, whereas for the surfaces that are closer to the 

bounding outer surface, contribution of all degrees of harmonics to the observed 

deformation would be similar.  

While analytically straightforward, there are significant experimental challenges in 

constructing a complex multi-inclusion microsphere with embedded multicolor 

microspherical hydrogels that have the same mechanical properties as the bounding 

material. The biggest challenge arises from the fact that the hydrogels have a highly porous 

microstructure on length scales less than approximately 10 nm, which would allow diffusion 

of free monomers in the gel precursor solution into the existing solid (inclusion) phases. 

Once present in the solid phase, these monomers could be incorporated into the existing gel 

through photo-initiated addition polymerization, thereby increasing the overall amount of 

material polymerized to the hydrogel backbone, and stiffening the inclusions beyond their 

original post-cure mechanical properties. The inclusions would therefore have different 

mechanical properties as compared to the enclosing microsphere and the analysis of the 

internal deformations inside the no-longer-homogenous domain would require knowledge of 

the mechanical mismatches and finite element modeling approaches to describe the 

deformations of the composite bodies. 
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Finite element analysis of the deformed body offers the further possibility of using 

immiscible liquid droplets as internal deformation reporters, as illustrated in Figure 30, 

rather than nanoscopic fluorescent particles distributed within the solid phase. In this 

approach, one would impose incompressibility and slip boundary conditions on the internal 

boundaries between the liquid inclusions and bounding material and numerically solve for 

the boundary loading on the enclosing microsphere. This is potentially complicated by the 

fact that the interfacial energy between two immiscible phases can impact the deformations 

observed in soft solids [52], [53] and they can be comparable to tissue elasticity [9] or 

higher. Therefore, if liquid droplets are used as interfaces, the interfacial tension must be 

quantified and accounted for. Alternatively, the immiscible phase can be chosen such that it 

could be replaced by a solvent exchange. (e.g. liquid inclusions of toluene in an aqueous 

hydrogel phase, that are later exchanged with a solvent such as THF, or acetone, and 

swollen in water.) Exchanging the immiscible phase with water would further simplify the 

problem and create mechanically free internal boundaries that are computationally easier to 

handle. Due to the porosity of the hydrogel, the water that is trapped inside the inclusions 

would be free to escape the hydrogel under deformations from cellular loading whose 

timescale can range from minutes up to several hours – thus, creating a mechanically free 

internal boundary. Such solvent exchange approaches would have to be tested thoroughly to 

ensure that all cytotoxic reagents (such a toluene) are fully removed prior to introduction to 

cells or tissues. 
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Figure 33. Illustration of multi-inclusion, multi-surfaced microspheres. Internally created 

surfaces can provide additional deformation information, while being robust to sample 

dependent optical aberrations. The internal surfaces can be created by solid inclusions, 

immiscible liquid phases, or aqueous inclusions. 
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C. Other Relevant Work and the Structure of the Appendices 

Development of microsphere traction force microscopy methods has been the focus of 

the main body of this report. However, during my time in the Valentine Lab, I have worked 

on other projects and been involved in various collaborations that aimed to study different 

cellular biophysical phenomena, that naturally led me to pursue an interest in development 

of MTFM methods. The appendices of this thesis serve as current reports of our efforts in 

studying these biophysical systems. Some of the work mentioned in the appendices is 

finalized and some are still in progress, which is indicated in the corresponding sections. 

Appendix A is a reprint of our work on in vitro rheology studies in chemically-

stabilized, entangled and sparsely-crosslinked microtubule networks, in collaboration with 

Dr. Yali Yang and Dr. Jun Lin, which appeared in Soft Matter in 2012 [54]. 

Appendix B is a summary of our current progress on the mechanics of non-stabilized 

microtubule networks, and can be regarded as a continuation of  [54] in the sense that we 

aimed to investigate the effects of microtubule polymerization/depolymerization dynamics 

on the overall architecture and mechanics of the microtubule networks. This work is still in 

progress and it is a collaboration with Charlotta Lorenz. 

Appendix C is a summary of our studies on investigating the effects of different degrees 

of mechanical confinement on cell division and cortical dynamics. 

Appendix D is a reprint of our work on development of elliptical feature detection 

algorithms on microscopy images, which appeared on the Journal of Microscopy in 2013 

[55]. 
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Appendix A: In vitro Microtubule Rheology Studies in Stabilized 

Entangled Networks (in Collaboration with Y. Yang and J. Lin)  

Journal Article: 

Direct correlation between creep compliance and deformation in entangled and 

sparsely crosslinked microtubule networks3 

Authors: Yali Yang, Jun Lin, Bugra Kaytanli, Omar A. Saleh, and Megan T. Valentine  

DOI: 10.1039/b000000x 

The microtubule cytoskeleton is essential in maintaining the shape, strength and 

organization of cells and its misregulation has been implicated in neurological disorders and 

cancers. To better understand the structure-mechanics relationships in microtubule networks, 

we measure the time- and force-dependent viscoelastic responses of entangled and sparsely 

crosslinked microtubule networks to precise microscale manipulation. We use magnetic 

tweezers devices to apply calibrated step stresses and measure the resultant strain as a 

function of time. At short times the material behaves as an elastic solid. The linear regime is 

large, with gentle stiffening observed in entangled networks above ~70% strains. 

Crosslinked networks are stiffer, and show an extended linear regime. At longer times, we 

find a creeping regime, suggesting that structural rearrangements of the network dominate 

the mechanical response. To understand the molecular origins of this behaviour, we use a 

newly-developed portable magnetic tweezers device to observe the network morphology 

                                                 
3 Reprinted with Permission from Royal Society of Chemistry. 
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using a confocal microscope while simultaneously applying point-like stresses to embedded 

magnetic particles. We observe substantial network compression in front of the bead with no 

evidence of long-length scale filament flow, and find that the spatial extent of the 

deformation field depends sensitively on network architecture and connectivity. Our results 

are important to understanding the role of the cytoskeleton in regulating cargo transport in 

vivo, as well as the basic physics of non-affine deformations in rigid rod polymer networks.  

Introduction 

The microtubule (MT) cytoskeleton is a complex biopolymer network found 

ubiquitously in eukaryotes. MTs play important roles in cell division, where they move 

chromosomes and localize the cleavage furrow, and in intracellular transport where they 

form the tracks upon which the transport of secretory/synaptic vesicles, organelles, and other 

cargo occurs [1]. There is increasing evidence that the spatiotemporal organization of the 

MT cytoskeleton is essential for numerous other biological processes, ranging from axonal 

branching and neural pathfinding [2, 3], to the flow of actin in motile and developing cells 

[4, 5], to the regulation of protein synthesis6. For many of these processes, mechanical stress 

within the MT cytoskeleton is an important signaling mechanism: for example, tension 

promotes MT outgrowth at focal adhesion sites [7], regulates MT turnover and 

organization8, and silences spindle assembly checkpoints to enable cell cycle control9.  

In contrast to many biological polymers, mechanical measurements of isolated MTs have 

shown them to be extremely stiff. MTs are long hollow cylinders with an average contour 

length of order ~10 µm, large outer diameter of ~25 nm, and persistence length of ~1000μm 

[10, 11]. Because of this, MT networks lack the entropic contributions of elasticity that 
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dominate the mechanical response of most polymer gels, and are ideal model systems for 

athermal, rigid rod polymer materials. A limited number of prior studies have investigated 

the rheological properties of entangled or crosslinked networks of MTs [12-15]. The most 

comprehensive study investigated networks of fairly short MTs (characteristic length < 3 

µm) under uniform shear conditions. These were found to be soft elastic solids that softened 

above strains of ~10% and showed evidence of transient attractive filament-filament 

interactions that enhanced elasticity and suppressed reptation-induced terminal relaxation 

[13].  

In the current work, we explore the microscale mechanical response of networks of 

longer MTs (average length ~23 µm) subjected to highly localized forces applied using a 

magnetic tweezers device. This generates a non-uniform deformation field, with a 

characteristic bending radius dictated by the size of the embedded magnetic particles (~5 

µm) [16]. In this regime, filament bending dominates over stretching or compression, thus 

the physical origins of elasticity, dissipation, and nonlinearity differ from that of networks in 

which all deformations are affine. Thus, mean-field models that require uniform stretching 

or bending of filaments no longer apply, limiting the use of traditional continuum mechanics 

approaches for modeling [17]. This motivates the development and use of new 

characterization tools that enable direct measurement of structure-property relationships. 

Here, we show that upon sudden application of force, entangled MT networks are 

predominantly solids, with modest time-dependent network reorganization occurring at 

longer times. To understand the molecular origins of this behaviour, we observe the three-

dimensional MT network morphology using a confocal microscope, while simultaneously 
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applying localized stresses to embedded magnetic particles. We find that the network is 

substantially compressed in front of the bead, and observe no obvious long-length scale flow 

of material, suggesting that subtle reorganization of entanglements dominate the creep 

response. These results have important implications for understanding the mechanical 

properties of the cytoskeleton, in which rigid networks of MTs and actin bundles are locally 

deformed by transport of intracellular cargos, as well as large-scale structural changes in cell 

division, motility and morphogenesis. Importantly, we find that the spatial extent of the 

deformation field can be modulated by inclusion of a small number of rigid crosslinkers. 

This suggests that even sparse connections between filaments can play an essential role in 

regulating cell mechanics. 
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Figure 1:  Representative images of entangled and crosslinked MT networks obtained 

using fluorescence confocal microscopy.  Under our polymerization conditions, the 

entangled MT networks are isotropic and homogeneous. Mesh size is found to decrease 

monotonically with increasing tubulin concentration (solid symbols). Upon addition of 

crosslinkers, networks appear to be more structurally heterogeneous, and the average mesh 

size increases slightly (open symbol). Inset: Data plotted on a log-log plot, and fit to a power 

law 𝜉~𝑐𝛼 fit shown in solid line) where 𝛼 is found to be 0.76 ± 0.02.  

Results 

Microstructural properties of entangled and crosslinked microtubule networks 

One challenge in determining structure-mechanics relationships in soft biopolymer 

materials is the difficulty in generating homogeneous materials that can be imaged and 

mechanically manipulated without damage. To address this, we have developed a robust 

polymerization method that allows small volumes of MT networks to be generated in a 

chamber amenable to both fluorescence confocal imaging and manipulation by magnetic 

tweezers. We load ice-cold solutions of globular tubulin dimers into small capillary tubes in 

the presence of GTP (required for the enzymatic addition of tubulin) and taxol (a small 

molecule that promotes MT assembly), then seal and incubate the tubes at ~35℃ for ~1 hour 

to induce polymerization. For mechanical measurements, magnetic and latex beads are 

added to the solutions prior to loading and samples are rotated to prevent bead settling 

during the polymerization reaction. This protocol reliably produces MTs with mean filament 

length of ~23 µm. Although the MT length distribution is fairly broad, it is nearly 

independent of tubulin density, with good agreement observed even for the tails of the 
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distribution that represent the longest filaments (Fig S1). This reproducibility is critical, 

since even a small number of long filaments can have a disproportionately strong effect, 

particularly in the non-affine deformation regime18. By developing a protocol that results in 

a robust and concentration-independent length distribution, we can easily isolate effects due 

to MT density from effects due to changes in polymer length. Moreover, the long average 

length ensures that filaments are able to form multiple connections with neighbouring 

filaments, and thus generate fully entangled gels. 

Representative images of entangled MT networks, with concentrations ranging from 5 

µM to 20 µM are shown in Figure 1. For each condition, images are thresholded to generate 

a binary map of ‘bright’ pixels on a dark background. The spatial distribution of distances 

between nearest neighbour bright pixels is determined. The decay length of this exponential 

distribution gives the characteristic network mesh size, 𝜉 [19, 20]. We find to decrease 

monotonically with increasing tubulin concentration, with 𝜉~𝑐3/4 (Fig. 1). This scaling 

relationship is surprising, as it is generally expected that mesh size will scale with the square 

root of concentration, due to geometric arguments for filament crossing [21]. Although we 

do not understand the physical origins of this difference, our results are very reproducible, 

and we have not found any other experimental demonstration of mesh size scaling for MT 

networks that contradict this result. Upon crosslinking (using streptavidin and biotinylated 

tubulin), networks appear more heterogeneous, with the formation of tubulin-dense and 

tubulin-poor regions throughout the sample, and the characteristic mesh size increases 

slightly.   
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Local mechanical perturbations are used to probe microscale viscoelastic 

properties of MT networks 

To determine the microscale viscoelastic properties of entangled MT gels, we 

polymerize the networks in the presence of small magnetic particles, then apply controlled 

loads varying from 0–35 pN using a magnetic tweezers device (representative data trace is 

shown in Fig. S2) [22]. The magnetic field is supplied by a pair of permanent magnets 

whose position is varied to control the magnetic force at the sample plane. We choose to 

examine three tubulin concentrations: 18 µM, 26 µM, and 51 µM. We use magnetic particles 

with diameter of 4.5 µm, which is larger than the mesh size in each case to ensure that the 

particles are fully engaged with the meshwork and their displacement can be interpreted in 

terms of local network mechanical response. It is difficult to measure the mechanical 

properties of gels formed with lower tubulin concentrations because 4.5-µm beads tend to 

slip through the mesh, and the fragile networks do not easily support the weight of larger 

beads. Gels are observed via fluorescence confocal microscopy prior to each mechanical 

measurement to ensure that network quality is maintained from day to day. We measure 

particle displacement as a function of applied force, as previously described [22, 23]. 

 A typical creep response is shown schematically in Figure 2. When the force F is 

stepped up by the rapid motion of the magnets toward the sample, the bead position 

instantaneously jumps a distance d1, indicating a short-time elastic response. The bead 

displacement then slowly increases, indicating a long-time creep regime with average 

velocity v. The crossover time from the elastic regime to the creep regime is given by the 

time constant 𝜏. After a time T, which is typically 50-75 seconds, the force is abruptly 
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stepped down to zero by rapid retraction of the magnets, and the bead position rapidly jumps 

back a distance d2 to a final position given by ∆xf. After waiting a time that is typically 

comparable to T, another force pulse is applied. In order to maintain network quality, we 

complete all mechanical measurements within a few hours of forming the gels, and thus use 

the minimum waiting time that gives us reproducible results in order to maximize the 

throughput of our data collection. We have doubled both T and the waiting time between 

pulses and found no obvious effect on measured mechanical parameters.  

 

Figure 2: Schematic of typical creep response curve. The upper panel shows two 

representative images of a 4.5 µm diameter magnetic bead embedded in an entangled MT 

network at zero force (left) and F ≈ 10 pN obtained with our newly-developed portable 

magnetic tweezers device. The lower panel shows a typical creep response curve. Bead 
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displacement x (blue line) and the force pulse F (red line) are plotted as a function of time t. 

At short times, the bead responds elastically, followed by a relaxation into a creeping 

regime. To identify the onset of relaxation, we calculate the derivative of x(t)-vt (black line), 

which exhibits a maximum at the transition from elastic to creep regime. The typical range 

of applied forces is 1-30 pN, which induces micron-scale bead displacements. 

 To understand the molecular origins of network viscoelasticity and gain insight into 

the structure-mechanics relationships of these gels, we use a newly-developed portable 

magnetic tweezers device [24], which allows imaging of fluorescently-labelled MT 

networks using confocal microscopy while simultaneously applying controlled loads. As 

shown in the upper panel of Figure 2 and discussed in detail below, we find substantial 

compression of the MT network in front of the bead, and a rarefied network behind. We do 

not observe flow of polymeric material nor do we find any evidence of shear alignment of 

filaments near the particle, even under fairly high forces (>20 pN). We tested for effects of 

loading history by repeatedly applying the same force or by ramping the force up and then 

back down as a function of time, and in both cases we find a negligible effect on measured 

mechanical properties.  

 Additionally, we do not find evidence of nonspecific binding of microtubules to the 

magnetic beads: the network density at the bead surface is not enhanced before the force is 

applied, as we would expect if the bead was acting as a local nucleator or crosslinking site, 

and no filaments appear to remain attached at the rear of the bead when force is applied. We 

do occasionally observe abrupt motions of beads as they escape from the local cage of MTs 

that form the meshwork at the sphere surface, particularly at low polymer density or high 
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force. When identified, these abrupt slip events are excluded from analysis in order to isolate 

predominantly mechanical interactions from those dominated by local microstructure. 

  

Figure 3: Entangled MT stiffness, given by F/d1 as a function of (A) force and (B) strain, 

d1/𝜉. At low forces or strains network stiffness is roughly constant, while mild stiffening is 

observed for F above ~ 15 pN or strains greater than ~ 70% (dotted line). 

Entangled MT networks are mechanically elastic on short time scales 

Network stiffness can be estimated by dividing the applied force F by instantaneous 

bead displacement d1, as shown in Figure 3. We choose to present the localized elastic 

response in terms of gel stiffness, to distinguish the microscale mechanical response, which 

likely depends on the geometry of the network-probe interface, from the scale-invariant 

continuum elastic modulus. At small forces, the stiffness is nearly constant indicating an 

approximately linear elastic response (Fig. 3A). For forces greater than ~15 pN, gentle stress 

stiffening is observed for each tubulin concentration. This gentle transition is clearer when 

stiffness is plotted as a function of strain, which we approximate by dividing the jump 

distance d1 by the network mesh size 𝜉 that we determined via confocal microscopy. In this 

case, we see stiffening above strains of ~ 70% (as indicated by the dotted line in Fig. 3B). 

We find that the maximal force we can reliably apply to the network increases 

monotonically with tubulin concentration. At larger forces, beads tend to escape from the 

local cage of MTs that form the meshwork at the sphere surface, preventing measurement of 

gel properties. 
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Figure 4: MT stiffness depends linearly on tubulin concentration.  This indicates that the 

elastic response is dominated by mechanical, rather than entropic, stretching of polymer 

filaments. Inset: Data plotted on a log-log plot, and fit to a power law F/d1~[tubulin]α (fit 

shown in solid line). α is found to be 1.0 ± 0.3. 

 

Figure 5: Particle position before and after force step. (A) The ratio of d1/d2 is plotted as 

a function of force for each entangled MT network.  At the lowest forces, this ratio is 

approximately equal to 1, consistent with a linear elastic regime.  For force above the critical 
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force for stress stiffening (~15 pN), we find d2 > d1 with the strongest decrease observed for 

the densest MT network.  

At low forces (and strains) the network shows a force (and strain ) independent plateau. 

In this regime, stiffness increases linearly with tubulin concentration, as shown in Figure 4. 

This behaviour is consistent with networks of rigid rods, in which each new filament 

contributes equally to network elasticity, and contrasts that of entropic networks such as 

those formed from semiflexible entangled actin filaments, where stiffness tends to arise due 

to the stress-induced straightening of thermally-undulating filaments [25]. This suggests that 

entangled MT networks are primarily mechanical (enthalpic) networks. Similar trends are 

observed for the elastic transition in which force is abruptly stepped down to zero, as shown 

in Figure S3. 

Interestingly, we find that for large forces F > 15 pN, the bead jump distances upon 

application and removal of the force (d1 and d2, respectively) are not equal; rather d2 > d1, 

with the strongest decrease observed for the densest MT network. This suggests that at large 

forces, the network is permanently deformed upon application of force, and that the network 

the bead returns to when force is stepped down to zero is mechanically and structurally 

different than the original network that enclosed the bead. It is likely that d2 > d1 because the 

application of force leads to an asymmetry in polymer concentration at the bead surface. 

When the force is turned on, the bead engages with and compresses the network in front, 

whereas when the force is turned off, the bead returns to the original position through a large 

void. 
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Figure 6: Analysis of creep regime. (A) Creep velocity is plotted as a function of force 

for three different tubulin concentrations. (B) In each case, velocity increases linearly with 

force, as demonstrated by plotting the force-velocity data on a log-log plot. Dotted black line 

shows slope = 1. (C) Through a linear fit of the force-velocity data (panel A, solid line), an 

effective drag coefficient can be calculated at each tubulin concentration.  

On long time scales, entangled MT networks are restructured 

After the initial elastic regime, there is a crossover, on a time scale 𝜏 of ~ 10 seconds for 

all conditions studied, to a regime in which bead position increases linearly with time. This 

creep regime indicates a modest time-dependent rearrangement of the sample that might 

arise due to filament reorganization, bond breakage, or mechanical slippage of the bead 

through the network. Creep velocity v increases linearly as a function of force for each 

tubulin concentration (Fig. 6). Using Stokes’ Law F=γv, we can determine an effective drag 
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coefficient γ as a function of tubulin concentration. We find γ to nearly double when the 

tubulin concentration is increased from 18 µM to 26 µM, but no significant change in γ 

when the concentration is further increased to 51 µM.  

 To further investigate the origins of this creep regime, we compare the total distance 

the bead moves during the creeping phase ∆xc = vT to the unrecovered displacement ∆xf  (see 

Fig S4). As expected from our analysis of the creep velocity, ∆xc  increases monotonically 

with applied force. For small forces, ∆xf  ≈ ∆xc  , and both are on the order of ~ 100 nm, 

much smaller than the bead diameter or 𝜉, but larger than our estimated tracking error. We 

suspect this distance is determined by the time-averaged thermal fluctuations of the bead. At 

larger forces, ∆xf  >> ∆xc  due to force-induced slippage of the bead through the porous 

network. This allows some beads to become trapped in new "pores" when the force is turned 

off, with higher forces required to induce bead entrapment in denser networks.  

Sparse crosslinking enhances elasticity, suppresses strain stiffening, and increases 

deformation field penetration depth 

To examine the effect of crosslinking on MT networks, we generated sparsely 

crosslinked gels using biotinylated tubulin and streptavidin. For this work, the total tubulin 

concentration is fixed at 25 µM, 1 in 7 tubulin dimers is biotinylated, and the ratio of biotin 

moieties to streptavidin is fixed at 10 to 1. This leads to an average distance between 

crosslinkers of ~ 200 nm. We find the gels are roughly twice as stiff as entangled networks 

at the same tubulin concentration (Fig. 7A), and find no evidence of stress-stiffening for 

forces up to ~ 33 pN.  
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Figure 7: Mechanical response of sparsely crosslinked 25 µM MT networks. (A) MT 

stiffness is plotted as a function of force. At low force, the stiffness values are roughly twice 

those measured for a purely entangled network at the same tubulin concentration. In contrast 

to entangled networks, the linear regime is large, with no evidence of stress-induced 

stiffening (or softening) for forces as high as ~33 pN. (B) Creep velocity increases as a 

function of force, and is very similar in magnitude to that measured using purely entangled 

networks. The effective drag coefficient is (3.7 ± 0.4) ×10-3 N·s/m.  

 At this modest crosslinker density, we still observe a creep regime, and find the 

transition time 𝜏 and average flow velocity v to be very similar to the values obtained for the 

25 µM entangled gels (Fig. 7B). Consistent with our measurements of entangled networks, 

we find d1 < d2, although the ratio of d1/d2 is roughly constant as a function of force with a 

mean value of 0.7 ± 0.1.  

 At these modest crosslinking densities, the strongest mechanical difference between 

crosslinked and entangled networks is observed when measuring the extent of penetration of 
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the deformation field into the MT network. The spatial extent of deformation is measured in 

two ways:  using small non-magnetic latex beads as fiducial markers that can be visualized 

using transmitted light microscopy or by directly imaging the MT network using 

fluorescence confocal microscope. In both cases, we employ a portable magnetic tweezers 

device to enable the precision application of force while collecting high-resolution images. 

As shown in Figures 8 and S5, the depth of penetration is substantially increased upon 

crosslinking. The typical penetration distance for an entangled network is a few microns, 

similar to the size of the magnetic particle that is applying the force. By contrast, in 

crosslinked networks, the deformation field penetrates for tens of microns. This 

demonstrates that even subtle changes in network architecture and connectivity can have 

important consequences on stress transmission in MT gels.  Moreover, the deformation field 

is more uniform in the case of the crosslinked gels, indicating that even modest crosslinking 

can lead to a non-affine to affine network transition.   

 

Figure 8: Network crosslinking substantially increases the ability of deformation fields 

to penetrate deeply into MT networks. Images show the position of magnetic and latex beads 
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after application of applied force. The original magnetic bead position (with force turned 

off) is represented by a bold red circle, and original latex bead positions are represented by 

thin yellow circles for both entangled (left, F = 25 pN) and crosslinked (right, F =30 pN) 

MT gels. The direction of the force is indicated by the white arrow. The entangled gel shows 

very little deformation away from the magnetic sphere surface, whereas the crosslinked gel 

demonstrates long-length scale deformation. In the crosslinked case, latex beads separated 

by >3 magnetic bead particle diameters move substantially, indicating that long wavelength 

stress transmission is much more efficient in crosslinked networks. 

Discussion  

Unlike most biological polymers, we find that MTs form mechanical (enthalpic) 

networks, whose elasticity arises from bending and stretching of nearly rigid rods. This 

contrasts the entropic elasticity that dominates the mechanics of individual actin and DNA 

filaments, and which arises due to the straightening of thermally fluctuating polymers. At 

low forces, MT networks exhibit a linear elastic response, where network stiffness increases 

linearly with polymer concentration. At strains > 70%, we observe the onset of stiffening for 

all entangled gels. Although strain stiffening has been observed for many biopolymer 

networks, it is usually attributed to an entropic-to-enthalpic transition that occurs when the 

excess length of the flexible or semi-flexible filaments has been fully extended [26]. In the 

case of MT networks, this stiffening transition must have a different physical origin. Under 

our loading conditions, we find that a dense accumulation of filaments builds in front of the 

particle, and a void volume appears behind. We hypothesize that for large localized forces, 

this accumulation increases the effective polymer concentration near the bead, leading to a 
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nonlinear increase in stiffness. The threshold force associated with the onset of stiffening is 

~15 pN, a modest force that could easily be applied by a small number (~3-4) of kinesin 

motors in vivo during cargo transport or mitosis, suggesting this effect may have 

physiological relevance. 

 An accumulation of filaments under load was previously reported in magnetic-bead 

based microrheometry measurements of entangled actin networks [27]. However, in that 

case there was no evidence of strain stiffening, instead strain softening and force-induced 

fluidization of the network were observed, suggesting that unlike MT gels, entangled actin 

networks cannot support large stresses without some form of crosslinking. A number of 

actin-binding proteins (ABPs) promote the formation of bundles, which can in turn form 

networks of bundles in vitro and in cells. Although these bundles share some similarities 

with MTs, ABP-actin networks are extremely complex, and it is difficult to compare their 

rheology to that of entangled MT gels. For example: ABPs are typically dynamic and 

compliant and thus can contribute substantially to the network response; composite network 

rheology depends both on actin concentration and the ratio of actin:ABP; ABPs typically 

crosslink filaments in addition to bundling them giving rise to complex network architecture 

and topology; bundle formation can occur through aggregation-controlled growth, which can 

lead to the formation of frustrated out-of-equilibrium structures; and bundle diameter and 

length is typically polydisperse (and often unknown) leading to numerous length and time 

scales for stress relaxation [28-32]. 

 Previous measurements of the rheology of a suspension of very short MTs, with a 

characteristic length approximately equal to the mesh size, also reported strain softening for 
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strains above ~10% [13]. This suggests that the stiffening behaviour we observe may require 

either long MTs that can form truly entangled gels or the application of localized stresses 

that can lead to the microscale reorganization and densification of the network. Polymer 

length may be particularly important for rigid rod networks, since the distance between 

entanglements is much less than the persistence length, allowing a single filament to retain 

its identity in the network along its entire contour. For each entangled network, we find a 

transition after ~10 seconds to a creep regime, in which bead position increases slowly, but 

linearly with time. This transition time is much too long to describe the drainage time for 

fluid moving through the porous network, and much too short to describe the time for a 

thermally-driven filament to reptate along its contour [33]. When we image the network 

directly under load, we do not find any evidence of shear alignment of filaments or bulk 

flow of polymers on this (or any other) timescale. We therefore suspect that this time-

dependent rearrangement arises from the breakage of weak attractive bonds between 

neighbouring filaments. Our tubulin proteins are purified by multiple cycles of assembly and 

disassembly, followed by several rounds of phosphocellulose chromatography to remove 

any non-functional tubulin dimers and microtubule associating proteins (MAPs). Moreover, 

we find no evidence of MAP contamination using high-resolution gel electrophoresis or 

Western blotting, and therefore rule out any MAP-based crosslinking. Instead, we suspect 

that these attractive interactions may arise from salt bridging or divalent crosslinking 

mediated by the Mg2+ ions that are required for coordination of the GTPase activity of 

tubulin. Attractive interactions have been reported for other rigid rod suspensions, not only 

of MTs but also of surfactant-stabilized single walled carbon nanotubes, as well as networks 
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of actin or neurofilaments, two semiflexible polymers [13, 34-38 13, 39]. Identifying the 

molecular origins of these interactions is a clear future direction for this work.  

 When a modest number of crosslinks are introduced, we find an increase in gel 

stiffness and suppression of strain-stiffening, but still observe long-time rearrangement of 

the sample that is indistinguishable from that of an entangled network at the same polymer 

density. That suggests that the distance between rigid crosslinks is larger than the distance 

between physical entanglements. We estimate the average distance between streptavidin 

proteins to be ~200 nm, and thus conclude that only a fraction of these proteins is actually 

engaged in crosslinking at any time. Yet, even in this limit of sparse connectivity, we find 

that crosslinking has a substantial effect on the ability of the deformation field to penetrate 

the sample. This suggests that long range stress transmission can be controlled by subtle 

changes in network architecture and connectivity. Moreover, the transition from non-affine 

to affine network deformation can be controlled by varying crosslinker concentration even 

under the application of very localized force fields.  

Experimental 

Proteins: Unlabeled and rhodamine-labeled tubulin proteins are generously provided 

by Professor Leslie Wilson at University of California, Santa Barbara. Unlabeled tubulin is 

purified from bovine brain by cycles of assembly and disassembly and followed by 

phosphocellulose chromatography 40. Rhodamine-labeled tubulin is prepared by reaction 

with succinimidyl esters of carboxyrhodamine-6G (C-6157; Invitrogen). Commercial 

biotinylated porcine brain tubulin (T333P; Cytoskeleton, Inc.) with ~1:1 labeling ratio of 
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biotin to tubulin heterodimer is reconstituted to 10 mg/ml in G-PEM80 buffer (80 mM 

PIPES, 4 mM MgCl2, 1 mM EGTA and 1 mM GTP; pH = 6.9).  

 

Preparation of MT networks embedded with magnetic beads. Entangled MT 

networks are formed by combining the following reagents on ice: unlabeled tubulin, 

rhodamine-labeled tubulin, 1 mM GTP, 1 mM DTT, 10% (v/v) DMSO, taxol and PEM80 

(80 mM PIPES, 4 mM MgCl2, 1 mM EGTA; pH = 6.9). Although the total tubulin 

concentration is varied in this study, in all cases, the molar ratios of rhodamine-labeled 

tubulin to total tubulin was 1:6, and taxol to total tubulin was 1:2. When making crosslinked 

MT networks, biotin-labeled tubulin is also included into the ice-cold tubulin mixture with 

the molar ratio of biotin-labeled to total tubulin of 1:7. In each case, tosyl-activated 

magnetic beads with diameter of 4.5 μm (Dynabeads, Invitrogen) are added to the ice-cold 

mixture at final concentration of ~106 beads/mL. To facilitate visualization of the 

deformation field induced by the motion of the magnetic bead, 2.5-μm latex beads (PS05N; 

Bangs Laboratories Inc) are sometimes embedded as probing beads at a final concentration 

of ~5x107 beads/mL. 

 The ice-cold tubulin solution is then loaded into small rectangular tubes (0.1 x 1 x 50 

mm3; Friedrich & Dimmock, Inc) by capillary action. Prior to loading, the capillary tubes 

are cleaned by rinsing with 1M sodium hydroxide, then pre-coated with reference beads to 

enable the subtraction of artefactual mechanical or thermal drift, or vibration of the sample 

and/or the stage from the real motion of the embedded magnetic particles. To achieve this, 

5.43 μm latex beads (PS06N; Bangs Laboratories, Inc) are diluted in isopropanol to 5×105 
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beads/mL and loaded into the capillary tubes. The tubes are placed at a flat benchtop for 10 

minutes to promote sedimentation.  The tube is gently dried and the tube is baked at 150℃ 

for 2 minutes to partially melt the beads onto one side of the capillary tubes. After 

introduction to the capillary tube, entangled networks are immediately sealed with high 

vacuum grease, placed in a dry incubator at ~35℃, and incubated for ~1 hour under constant 

rotation to prevent the magnetic beads (and latex beads, if included) from settling. For 

crosslinked networks, the tubulin solution is first incubated at 35℃for 3 minutes in a small 

microcentrifuge tube, then streptavidin is added such that the molar ratio of 

streptavidin:biotin-labeled tubulin is fixed at 1:10. The solution is well mixed by gently 

pipetting using a cut-off P20 pipette tip, then immediately loaded into the capillary tube, 

which is sealed with vacuum grease and incubated at 35℃for ~1 hour under constant 

rotation, as described above.  

 

Confocal imaging for structure determination. Confocal microscopy images are 

obtained using an inverted Fluoview 500 laser scanning system (Olympus). Two-

dimensional slices of rhodamine-labeled MT networks are imaged using 561 nm laser 

excitation and a 60× N.A. 1.4 oil-immersion objective, with scan size of 1024 × 1024 

pixels2, scan rate of 9.59 seconds/scan, and magnification of 207.16 nm/pixel.  

 

Image analysis. To quantify the mesh size of the MT networks, image analysis is 

performed on two-dimensional confocal images [19, 20]. The images are first processed by 

thresholding. The threshold is chosen to remove as much noise as possible while retaining 
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the pixels that correspond to the MTs. This is done by comparing intensities of the brightest 

background pixels to those of the dimmest MT pixels, with the background and MT pixels 

being differentiated by visual examination. After thresholding, the distance between nearest 

neighbour MT pixels within each row and column is determined. Our analysis is similar to 

the radial distribution of distances between filament intersections, but is implemented in 

Cartesian coordinates to take advantage of the natural axes of the microscope images. The 

distribution of distances is plotted and fitted to an exponential P(ξ) = P0e
-r/ξ,  where r is the 

distance in microns and ξ is the characteristic mesh size (see Fig S6). Each measurement is 

averaged over 28-57 images. Based on our pinhole and oil-immersion objective lens, we 

estimate our z-resolution to be ~1 µm. Using 2D images provides a good approximation of 

the average 3D mesh size, but underestimates the maximum pore diameter [13]. 

 

Conventional magnetic tweezers: Mechanical measurements are performed using a 

custom-built magnetic tweezers system that enables precise manipulation of magnetic beads 

along the optical axis (the z-axis) and simultaneous three-dimensional tracking of bead 

position [23].  Briefly, a simple inverted microscope is constructed using an oil-immersion 

objective (100×, 1.25 N.A.) that is mounted onto a piezoelectric stage (P-725; Physik 

Instrumente) to enable nanopositioning of the focal plane. A 650 nm light emitting diode 

(Roithner Lasertechnik) provides illumination, and a CCD camera (CV-A10 CL; JAI) 

captures brightfield images at a frame rate of 60 Hz.  

 The applied magnetic field is generated by a pair of permanent rare-earth 

Neodymium Iron Boron (NdFeB) magnets (NS-505050; DuraMag) located above the 
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sample stage, and oriented such that the alignment of their magnetic moments is antiparallel. 

Variation of the magnetic field (and thus magnetic force) at the sample plane is achieved by 

vertically translating the magnets with a DC-servo motor (M-126.PD1; Physik Instrumente). 

Separation distances between the sample plane and magnet may range from 0–24 mm from 

the sample plane. Forces are calibrated by measuring the Brownian motion of a magnetic 

bead that is tethered to the coverslip by a single DNA molecule, and thus acts as a simple 

inverted pendulum41. The lateral spring constant is given by the ratio of the vertical force to 

the DNA length. This spring constant can be found by modeling the measured bead 

trajectory with an overdamped Langevin equation of motion for a particle in a harmonic 

potential, and fitting the measured power spectrum in position to that predicted from the 

Langevin model after accounting for issues of finite data sampling rate and instrumental 

low-pass filtering [42]. The best-fit spring constant, along with the measured length, gives 

an estimate of the force; this calibration is then repeated at each desired magnet position. In 

this study, the minimum separation used was ~7 mm (corresponding to a force of ~33 pN on 

a typical 4.5-μm magnetic bead). Real-time tracking of the three-dimensional bead position 

is achieved using custom image analysis routines written in LABVIEW (National 

Instruments) 43. In the presence of the MT gels, we achieve a resolution of ~ 10 nm in the x 

and y directions and ~15–20 nm in the z direction. 

 

Analysis of Magnetic Tweezers Data. Analysis of data traces (as shown schematically 

in Fig. 2) is performed as follows. We dissect the bead motion into three distinct regimes—a 

short-time elastic jump, a relaxation transition, and a long-time creep regime. Creep velocity 
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v is determined from the slope of a linear fit to bead displacement x versus time t for several 

(typically <10) seconds prior to the retraction of the magnet pair. We then determine the first 

order derivative of x(t)-vt. We define the elastic regime to start when the force is turned on 

and to end when the first order derivative reaches its maximum. This maximum also defines 

the beginning of the relaxation regime, which ends when the derivative drops to zero. For 

practical purposes, we define the end point by the time at which the moving average of the 

derivative drops below a threshold equal to 0.05% of the maximum value. The moving 

average is implemented using a Savitzky-Golay smoothing filter (polynomial order 2, 20 

point window). The flow regime follows and ends when the force is reduced at time t = T. 

After identifying these regimes, the following parameters are calculated: d1 is the distance 

the bead travels in the elastic regime and τ is the total time of the relaxation regime. When 

the magnets are retracted, we identify an elastic recovery regime that starts when the force is 

turned off and ends when the first order derivative reaches its minimum; d2 is the distance 

the bead travels in this second elastic regime. All uncertainties are reported as SEM values. 

 

Portable magnetic tweezers to determine structure-mechanics relationships. A 

newly-designed, custom-built portable magnetic tweezers device is used to apply calibrated 

stresses to microtubule networks, while their microscale deformation is simultaneously 

measured using confocal microscopy [24]. Briefly, two NdFeB rare earth magnets (N45, 

0.25×0.25×1 inch3; Applied Magnets) are mounted onto a two-axis translation stage and 

positioned near the focus of the objective lens in a manner that protects the imaging quality 

of the microscope. The distance between the magnets and sample is controllably varied, 
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leading to application of controlled forces to small magnetic particles at the sample plane. 

For a typical measurement, the magnets are moved toward the sample until they just touch 

the coverslip edge, to ensure application of the maximum force (which we call the ‘force-on’ 

condition). To reduce this force level, the magnets are moved away from the coverslip 

surface until the separation distance exceeds ~ 10 mm (which we call the ‘force-off’ 

condition). The rate of magnet retreat (and therefore of the rate of force reduction) can be 

varied through manual control of the translation stage. Forces are calibrated by measuring 

the velocity at which a free bead moved through a liquid of known viscosity using Stokes 

Law. At each force condition, the deformation of the microtubule networks and detailed 

interaction between the magnetic bead and the surrounding microtubule mesh are recorded 

using confocal microscopy. In this ‘sideways-pulling’ geometry, beads move perpendicular 

to the optical axis (the ‘x’ axis) when the force is on. Images are obtained using both the 

fluorescence (561 nm laser excitation) and the transmitted light channels using either a 60×, 

1.4 N.A. oil-immersion objective lens or a 60×, 1.2 N.A. water-immersion objective lens 

with coverslip thickness correction collar. A time series of two-dimensional image stacks is 

collected using a scan size of 512 × 512 pixels2 at a rate of 1.12 seconds/scan (4× digital 

zoom, magnification 103.6 nm/pixel).  

Conclusions 

We use a new experimental approach to measure structure-mechanics relationships in 

reconstituted MT cytoskeletons. We apply localized forces directly to MT gels in a 

physiologically-relevant manner using magnetic tweezers devices while observing network 

deformation using confocal microscopy. At short times, entangled gels are elastic, with 
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gentle stiffening observed above ~70% strains, which we attribute to a densification of the 

network in front of the bead. For entangled gels, network deformation is nonaffine, resulting 

primarily in bending of MTs near the particle surface. Crosslinking leads to a much more 

uniform deformation field that penetrates over distances of several particle diameters. This 

indicates that the spatial extent of the deformation field depends sensitively on network 

architecture and connectivity, and that even sparse crosslinking of networks can have a 

significant effect on long-range stress transmission. 
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SUPPLEMENTAL MATERIALS 

 

Figure S1: Contour length distribution for MTs is independent of tubulin concentration.  

The distribution of MT lengths is determined by attaching individual MTs to a coverslip, 

visualizing them using TIRF microscopy, and measuring their lengths manually using built-

in measurement tools in ImageJ. Under the polymerization conditions used for this work, we 



 

 

 

 115 

find the length distribution to be constant as a function of tubulin concentration.  The mean 

length for 25 µM tubulin is 23.9 ± 0.4 µm (SEM; 623 measurements) and for 50 µM tubulin 

is 23.3 ± 0.4 µm (SEM; 710 measurements), as shown. 

 

 

Figure S2: Representative traces showing force-dependent bead displacement as a function 

of time.  (Top) Force is ramped up from ~1–33 pN over the course of the measurement, 

which typically takes ~20-30 minutes per bead. For small forces the response is typically 
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elastic: bead position is approximately constant under constant force, and the bead returns to 

its original position when the force is stepped down to zero. At larger forces, a creep regime 

is observed, in which the bead position increases linearly with time. When creep is observed, 

the bead does not fully return to its starting position, due to energy dissipation and 

interactions with microstructure. (Bottom) The local network compliance can be determined 

by dividing the bead displacement by the applied force, as shown for a sampling of forces 

for entangled (red) and crosslinked (black) networks of 26 µM tubulin.  Each trace shows 

the behaviour of a single bead under force. The compliance is roughly constant for the 

entangled networks for forces below ~ 15 pN, then decreases slightly, as expected for a 

stress-stiffening gel.  The crosslinked networks are less compliant (stiffer) and less force 

sensitive. 
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Figure S3: Stiffness of entangled MT networks, given by F/d2 as a function of (A) force 

and (B) strain, d2/Overall, the trends for the force off transition are similar to that of the 

force on transition (as shown in Figure 3). There is a low force plateau, in which stiffness 

values increase linearly with tubulin concentration, followed by a stiffening regime at high 

force (or strain). In detail, the onset of non-linearity differs from that of the force-on 

transition data, in which all networks stiffen above strains of ~ 70%. For the force-off 

transition, we find that the 18 µM (□) and 26 µM (○) networks start to stiffen at strains of ~ 

30%, whereas the 51 µM () network response is linear across the range of forces probed.   



 

 

 

 118 

  

Figure S4: Comparison of the creep displacement ∆xc (solid symbols) to the unrecovered 

displacement ∆xf (open symbols). As expected from our analysis of the creep velocity, ∆xc 

increases monotonically with applied force. For small forces, ∆xf ≈ ∆xc. At larger forces, ∆xf 

>> ∆xf due to force-induced slippage of the bead through the porous network, which allows 

some beads to become trapped in new "pores" when the force is turned off. This behaviour 

is observed at all tubulin concentrations; however, higher forces are required to induce bead 

entrapment in denser networks. 
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Crosslinked network                          Entangled network 

 

Figure S5: Dual color images of networks showing force-induced network displacement. 

Here, representative images of weakly crosslinked (right) and entangled (left) 25 mM 

tubulin networks are shown. Each image is an overlay of an image collected under no force 

(red) and a second image collected under the application of ~25 pN force, which causes the 

bead and the entrained network to move toward the left (green). In places where the network 

is stationary upon application of force, the green and red images overlap and the composite 

image appears yellow. In the entangled case, the motion of the network is limited to the area 

just surrounding the bead, and highly bent filaments can be observed. By contrast, in the 

crosslinked cases, a much larger deformation zone extends for several particle diameters, 

and the filaments tend to collectively stretch rather than locally bend, indicating a more 

affine deformation field.  
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Figure S6: Example of raw data used for mesh size determination. To quantify the mesh 

size of the MT networks, image analysis is performed on two-dimensional confocal images. 

After thresholding, the distance between nearest neighbour MT pixels within each row and 

column of the binary image is determined. Here, two sample images (~ 65 × 65 µm2 field of 

view) are shown. This analysis is similar to calculating the radial distribution of distances 

between filament intersections, but is implemented in Cartesian coordinates to take 

advantage of the natural axes of the microscope images. The distribution of distances is 

plotted and fitted to an exponential P(ξ) = P0e-r/ξ, where r is the distance between pixels and 

ξ is the characteristic mesh size. There is a systematic deviation at the smallest 

displacements due to the limited resolution of the microscope. This method has been used 
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extensively in characterizing the structural properties of collagen and other extracellular 

matrix protein networks.  
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Appendix B: In vitro Microtubule Rheology Studies in Non-stabilized 

Entangled Networks (in Collaboration with C. Lorenz)  

In Appendix A, we discussed the methods we developed to assemble and study the 

structure-mechanics relationships in microtubule (MT) networks stabilized by taxol 

(paclitaxel) and DMSO (dimethyl sulfoxide). Here, building on the same experimental 

protocols and expertise, we aim to study the effects of MT growth and shrinkage dynamics 

on the overall mechanics of the in vitro MT networks. Such dynamics naturally occur in 

cellular microtubule networks and are essential for chromosome capture and regulation of 

the lamellar actin cytoskeleton [1-3]. To this end, we developed the methods for performing 

confocal microscopy imaging and passive microrheology using dynamic MT networks 

without the addition of chemical stabilizers. 

1. Structural Measurements on GMPCPP-stabilized and non-stabilized MT networks 

By reducing the filament stability, we increase substantially the concentration of tubulin 

dimers needed to form a microtubule filament, known as the critical concentration. 

However, we find that at large concentrations of soluble tubulin dimers it is not only 

possible to form space-spanning networks of microtubules in the absence of stabilizers, but 

that the networks have similar overall structural features as compared to chemically 

stabilized networks, albeit at higher overall tubulin concentration. Figure 1 below shows 

representative confocal images of networks formed using non-stabilized using 50µM and 

60µM free tubulin dimers, and networks stabilized by the non-hydrolyzable GTP analog 

GMPCPP formed using 17µM and 34µM of free tubulin dimers. Note that all tubulin 
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concentrations reported here are estimated to have + 2µM uncertainty associated with them. 

The morphology of these two types of networks Figure 1 (a)-(b) and Figure 2 (c)-(d) are 

similar in terms of average network mesh size, MT length, bundling and polymerized MT 

number density for the corresponding tubulin concentrations. There is a noticable increase in 

the fluorescence background of the non-stabilized network, consistent with the increase in 

free tubulin dimers in this case. 
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Figure 1. Representative images of (b) 50µM and (d) 60µM non-stabilized networks; and (a) 

17.4 µM (c) 33.1 GMPCPP-stabilized networks. The networks (a)-(b) and (c)-(d) show 

structural similarities in terms the average network mesh size, MT length, bundling and 

polymerized MT concentration. 

 

Having established the protocols for controllable assembly of non-stabilized MT 

networks, we next wanted to observe time dependent changes in the network structure so 

performed time-lapse imaging of the networks on an Olympus Fluoview 1000 spectral 

confocal microscope, equipped with 60X oil immersion objective, N.A.=1.4. The results of 

these measurements are rather surprising in that we have not been able to directly observe 

restructuring events on the time scale of minutes, which suggests a possible stabilization 

mechanism is acting on these networks to prevent rapid MT dynamics. Also, as shown in 

Figure 2, it is difficult to distinguish between the inherent drift in the 50µM non-stabilized 

MT network sample versus possible dynamics of individual MTs. This is partly due to the 

slow raster scan speeds of the microscope, at ~5sec per x-y scan, coupled to our desire to 

acquire z-stacks on the order of ~20µm with ~1µm z-steps. Over these time scales, the 

filaments can reptate or diffuse out of the field of view, rendering it impossible determine 

length changes on individual MTs. 
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Figure 2. Time-lapse imaging of 50µM non-stabilized MT networks show that the networks do not show 

long-range restructuring events on the order of minutes. Bottom right panel shows an overlay of the images at 

0 and 4 minutes in green and red, respectively; it is hard to distinguish structural changes between the time 

points. 

 

 



 

 

 

 126 

2. Passive Microrheology Studies on GMPCPP-stabilized and non-stabilized MT 

networks 

After performing rather qualitative studies of structure determination of MTs via 

confocal imaging and established structural similarities between various concentrations of 

stabilized and non-stabilized networks, we performed passive microrheology on both types 

of networks using 2.5µm polystyrene particles and a Pointgrey Chameleon CM3-U3-

13Y3M camera with a time resolution of 8.2 ms. In Figure 3, representative trajectories are 

superimposed for particles moving within (a) 17µM stabilized (blue), 50µM non-stabilized 

(red), (b) 33µM stabilized (blue) and 60µM non-stabilized (red) MT networks for 60 time 

points. In all cases, a representative data trace of beads freely diffusing in water (green) are 

also included for comparison. The trajectories of beads moving in water appear to be 

qualitatively similar to those of beads moving in the MT networks, particularly for the more 

dilute suspension (Figure 3a) which suggests that in this case, the MT network forms a loose 

fairly open meshwork that allows particles to move within and between neighboring pores, 

thereby providing very little hindrance to long-range particle diffusion. 
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Figure 3. Representative time traces showing particle trajectories for 2.5µm polystyrene 

beads moving within (a) 17µM stabilized (blue), 50µM non-stabilized (red), (b) 33µM 

stabilized (blue) and 60µM non-stabilized (red) MT networks; trajectories of identical 

particles moving in water (green) show similarities between the corresponding stabilized and 

non-stabilized networks. The traces are plotted for 60 time points with a temporal resolution 

of 8.2 ms.  

To explore this more quantitatively, we calculate the ensemble-averaged mean-squared 

tracer displacement 〈Δ𝑥2(𝜏)〉 = 〈|𝑥(𝑡 + 𝜏) − 𝑥(𝑡)|2〉 as a function of lag time , angled 

brackets indicate an average over many starting times t and an ensemble of particles. For a viscous 

fluid, the particle motion is purely diffusive, and 〈Δ𝑥2(𝜏)〉 = 2𝑑𝐷𝜏 where d is the space 

dimension (here we track 2-dimensional particle motion only, so d=2), and D is the diffusion 

coefficient. For a simple fluid, D is related to the shear viscosity  through the Stokes-

Einstein relation: 

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑎
 

where kB is the Boltzmann constant, T is temperature, and a is the particle radius. When 

particles move in more complex environments, either due to complex, frequency dependent 

viscoelastic moduli of the surrounding material, or the presence of obstacles or pores (or both), 

then the mean squared displacement can provide information about the local mechanical and 

structural properties of the material [4].  In general, in complex passive materials (i.e. 

thermally activated materials lacking any biological or catalytic activity that would provide 

additional energy inputs beyond kBT) the mean squared displacements will show subdiffusive 

dynamics, in which 〈Δ𝑥2(𝜏)〉~𝜏𝛼 where  < 1. 



 

 

 

 128 

As shown in Figure 4, shows that the mean squared displacements (MSDs) of particles 

moving in non-stabilized 50µM non-stabilized networks show similar behavior as 

GMPCPP-stabilized 17µM networks. Similarly, the beads in 60µM non-stabilized networks 

show similar behavior as GMPCPP-stabilized 33µM networks. At short time scales the 

MSDs are roughly linear in lag time, suggesting a primarily viscous response; however, the 

value of the local effective viscosity decreases within increasing tubulin concentration (as 

shown by the y-intercept value of the log-log plot). Confinement of the bead by the 

surrounding network is indicated by deviation from linearity on long timescales. As seen in 

Figure 4, this is clearly the case for non-stabilized networks with concentrations above 

50µM and 17µM for GMPCPP networks. We also do not observe MT network formation 

below 25µM [tubulin] without stabilization, which sets a lower bound on the concentrations 

that can be studied in this framework. 
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Figure 4. Mean-squared-displacements of 2.5µM beads in stabilized and non-stabilized 

MT networks show sub-diffusion and network confinement in long timescales. A maximum 

lag time of 1.0 s is calculated to ensures that there are at least 30 beads per time trace in the 

recorded movies. Error bars are standard deviations around the mean values for six 

measurements. 
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In order to further study the potential effects of network dynamics in our system, we 

compared the distribution of particle displacements at a fixed lag time , P(x, ), known as 

the van-Hove correlation function for the GMPCPP and non-stabilized networks of 

matching morphology[4]. As seen in Figure 5, with a lag time of 1/121.25s the van-Hove 

correlation functions of 2.5µm beads moving in the corresponding stabilized and non-

stabilized networks is practically indistinguishable and they show clear deviation from 

Brownian diffusion which is indicated by the deviation from the Gaussian fits to the 

observed data for large displacements. The origins of these deviations are not yet clear.  It is 

possible that these arise from the superposition of many Gaussian distributions of single 

particles moving in slightly different local environments, which tends to broaden the 

probability distribution of the ensemble, particularly at large displacements.  It is also 

possible that the MTs form a complex, inhomogeneous network with several characteristic 

structural length scales that influence the trajectories, and therefore displacement 

distributions, of the particles moving within it.  In the future it may be possible to 

distinguish these possibilities by collecting more statistics on the motions of individual 

particles and also by simultaneously measuring the motions of the network and the particles 

using high-speed imaging and two-color visualization schemes. 
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Figure 5. Van-Hove correlation functions for particles moving in microtubule networks. (a) 

the distributions of bead displacements at 17µM GMPCPP 50µM GTP networks, and (b) 

33µM GMPCPP and 60µM GTP networks do not compare well with the Gaussian fit, 

particularly at large displacements. (c) Control measurements of van-Hove correlation 

functions of 2.5µM particles moving in water show good match between the expected 

Gaussian fit. 
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Conclusion: 

In this work aimed to develop a framework where we can study the effects of MT 

dynamics on the overall mechanics of in vitro microtubule networks. We established that we 

can assemble microtubules without chemical stabilizers such as taxol and DMSO. We have 

also created structural “control” networks that are stabilized with GMPCPP, which are 

similar to the non-stabilized networks in terms of their overall morphology. We have 

investigated both with structural imaging (via confocal microscopy) and microrheological 

characterization.  Taken together, these data suggest that non-stabilized networks might lack 

dynamics on the time scales of the imaging and microrheology measurements performed 

here (approximately 1-100 s). This could be due to a few factors including possible steric 

stabilization of microtubule polymerization/depolymerization events due to interaction of 

individual microtubules and/or some trace amount of residual GMPCPP (<1.7uM) that is 

present in all of the experiments discussed here. Even though we have shown that this 

amount of GMPCPP in the tubulin solution does not assemble stable microtubules at the 

tubulin concentrations considered here, it is possible that no matter how little of it is present 

in the solution, once incorporated into the MT lattice, GMPCPP might prevent 

depolymerization of the microtubules. In the future, Fluorescence Recovery After 

Photobleaching (FRAP) studies of these networks, and/or super-resolution microscopy may 

shed light on this issue.  At present, although we have made significant progress toward 

studying the effects of MT polymerization/depolymerization dynamics in microtubule 
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networks, this remains work in progress and as of today, observing “truly dynamic” 

behavior in MT networks stands as a challenge. 
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Appendix C: Investigation of Extracellular Stresses near Rounded 

Mitotic Cells under Confinement 4 

Mitotic cell rounding is now accepted as a universal mechanism by which cells that 

undergo division round up to provide space for dramatic intercellular reorganization events 

that take place during this period [1-2]. Due to the inherently large shape changes involved 

in mitosis and cytokinesis, cells that are embedded in tissues might experience substantial 

extracellular mechanical responses from their immediate microenvironment [3-4]. In order 

to understand the effects of confinement on the cell behavior we investigated the responses 

of fertilized white sea urchin (L.Pictus) eggs embedded in mechanically-controlled agarose 

hydrogels which provide a tunable confinement environment.  

As seen in Figure 1, fertilized urchin embryos assume a spherical geometry. This highly 

idealized geometry allows us to treat the cells as model spheres, which greatly simplifies the 

analysis and modeling.  Experimentally, we quantify the circularity of urchin embryos by 

thresholding a representative bright field image of a freshly fertilized batch, and compare 

their major, 𝑎𝑥𝑚𝑎𝑗𝑜𝑟, and minor, 𝑎𝑥𝑚𝑖𝑛𝑜𝑟,  axes of the ellipses fit to the outlines that are 

determined from the thresholded images. For the circularity metric, C, we use: 

 𝐶 =
𝑎𝑥𝑚𝑎𝑗𝑜𝑟 − 𝑎𝑥𝑚𝑖𝑛𝑜𝑟

(𝑎𝑥𝑚𝑎𝑗𝑜𝑟 + 𝑎𝑥𝑚𝑖𝑛𝑜𝑟)/2
 (32) 

where a perfect circle would have 𝐶 = 0.  

                                                 
4 I would like to thank Dr. Kathy Foltz and Dr. Carl Meinhart for their help and guidance 

through this project. 
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Figure 1. Bright field image of freshly fertilized white sea urchin eggs. The eggs round 

up upon fertilization. the image is thresholded and ellipses are fit to the detected boundaries 

on the thresholded image (right panel) and overlaid on the original image (left panel). 

 

For the image displayed above, the average circularity factor that is calculated for all 

cells that do not intersect with the image boundary is 1.22+0.8%, where 1.22% is the mean 

and 0.8% is the standard deviation around the mean for the 24 measurements shown above.  

In the context of tissues, the external confinement comes from the non-homogenous and 

highly dynamic cellular environment [4], which presents challenges for controlled tuning of 

the local physical properties. Upon fertilization, sea urchin embryos develop a protective 

mesh around the embryo, called the hyaline layer, which is crosslinked by divalent ions, 

especially calcium, that are abundant in sea water. As displayed in Figure 2, we found that 

by changing the calcium concentration of the medium in which the urchin embryos are 

suspended, it is possible to tune the stiffness of the hyaline layer, and therefore and induce 
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direct mechanical confinement of the embryos without the use of an external hydrogel. 

However, the amount of calcium that can be added to the solution without changing its 

osmolarity is bounded from above; therefore, tuning the hyaline layer stiffness by changing 

calcium concentration is not suitable for controlled studies of cell confinement.  

 

 

Figure 2. Calcium-dependent tuning of the hyaline stiffness shows that cells are 

mechanically confined by adjusting the calcium level in the suspension medium. Low levels 

of calcium dissolve the hyaline layer while higher levels induce more crosslinking, making 

the hyaline layer stiffer. (The osmolarity of the Calcium chloride solution is matched to that 

of sea water.) 

 

Through these same studies, we also observed that in the absence of solution calcium 

ions (i.e. in Calcium-free sea water), the daughter cells assume a fully spherical geometry 

(Figure 2, left panel), which suggests that the hyaline mesh is dissolved to the extent that it 

does not contribute to the overall mechanics of the embryo when compared with the forces 

that are associated with the basal acto-myosin activity in the cortex.  Therefore, to mimic the 
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mechanical effects of confinement and have controlled microenvironments we used 

calcium-free seawater (CFSW) in our encapsulation studies to ensure that the mechanical 

confinement effects are due to the presence of the external hydrogel only. To achieve this, 

we encapsulated fertilized embryos in soft gels made of ultra-low melting point agarose and 

used confocal microscopy and finite element modeling (FEM) to investigate their response. 

As described below, we observed that the mitotic rounding generates enough space for 

successful completion of division under all confinement conditions, and that the cells can 

complete mitosis regardless of the stiffness of the external environment 

We encapsulated freshly fertilized, spherical sea urchin embryos in hydrogels of varying 

stiffnesses and observed their geometry (Figure 3). We find that once the embryos assume 

their spherical geometry, they are extremely robust to different levels of mechanical 

confinement and are able to successfully complete cytokinesis and furrowing, even under 

conditions that allow for little to no compression of the external material. 
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Figure 3. Encapsulation experiments with urchin embryos in gels of increasing stiffness. 

Division in a) calcium-free sea water, b) 0.75% (w/v) soft agarose gels with moderate 

confinement, c) 1% (w/v) stiff agarose gels, shows that rounded up mitotic sea urchin 

embryos are robust to varying levels of mechanical confinement and they successfully 

complete cytokinesis, independent of the stiffness of the external microenvironment. 

To understand the biophysical mechanisms behind the observed behavior of dividing 

urchins and the stresses that develop inside the external matrix, we implemented a finite 

element model of the dividing cell using active gel theory, as explained in [5], using 

COMSOL; this allows for multiphysics simulations of cell-matrix interactions, without the 

need for manually implementing the force balance on the cell cortex-matrix boundary. We 

used the description of cortical stress generation and dissipation in [5], assumed 

axisymmetry, and modeled the overactivity of the myosin phosphorylation along the equator 

as a Gaussian defined on the curvilinear length from the equator as described [5]. Figure 4 

displays the immunostaining of dividing urchin cells, fixed and stained various time points 
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into division, which supports the assumption of Gaussian distribution of myosin overactivity 

along the equator. 

 

Figure 4. F-actin and phosphorylated myosin immunolabeling shows myosin over-activity 

along the equator, which is modeled as a Gaussian distribution along the contour of the cell 

cortex. (Scale bar is 20µm.) 

 

As shown in Figure 5, below, our COMSOL implementation of the active cortex model 

captures the main shape changes that occur during different stages of cell division, which is 

consistent with the results of [5] and our experiments with white urchin embryos. 
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Figure 5. Top panel, COMSOL simulations of a dividing rounded cell. The model 

successfully captures the main behavior of the dividing cell in terms of total shape changes 

induced by the acto-myosin contractility. (Scale bar is 20µm) 

 

Next, we used our model discussed above and placed it inside an elastic medium, shown 

in blue in Figure 5, below. Use of COMSOL allows multiphysics simulations of the cellular 

and external elastic domains. Figure 5, shows an example of simulated division inside a soft 

hydrogel, where the colormap represents Von Mises stress both inside the cortex and the 

elastic matrix. Inside the elastic medium, stresses develop at the poles of cells which are the 

points of maximal deformations.  
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Figure 5. Von Mises stress is plotted as calculated from the elastic stresses inside 

encapsulating soft material. The values of stress are arbitrary. Blue: no stress, red: high 

stress. 

 

Future Work and Challenges: 

In encapsulation experiments, otherwise transparent agarose hydrogels are seeded with 

fluorescent particles to track 3D material deformations inside the hydrogel. However, the 

first division in white urchin embryos is axisymmetric along the polar axis; therefore, in 

theory, knowing the displacement field everywhere along any plane that contains the polar 

axis would suffice to describe the entire deformation field. However, in practice it is not 

practical to image a single plane because the cells are randomly oriented within the hydrogel 

and the axes are almost never aligned with the x-y plane which requires collection of data in 

the form of x-y-z raster scanning, necessitating volume imaging. In addition, even if the fully 

aligned axis and imaging plane criteria was met, the material tracers are randomly scattered 

inside the hydrogel; therefore, only a very limited number of material points would fall in 

the imaging plane, providing scarce details about the displacement field in plane. 
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Additionally, depending on the orientation of the cell within the hydrogel, there is a 

significant effect of light scattering and intensity attenuation due to the presence of the gel 

and cellular structures; this makes quantitative comparisons of intensities from differing 

locations within the gel very challenging.  

Finally, the need for volumetric imaging substantially complicates the experiment. From 

the start of detectable shape changes to the completion of cytokinesis, the division takes ~10 

mins in the urchin embryos. And for a conventional confocal raster scan imaging setup, with 

reasonable resolution in z-direction, the volumetric image stack collection takes ~4 minutes. 

The lack of separation of timescales for imaging and dynamic structural rearrangements of 

cell division have stymied progress on this project. Therefore, a faster imaging system, such 

as SPIM microscopy or a resonant scanning confocal microscope would be better-suited for 

this experiment. SPIM is particularly attractive, as this method requires that samples be 

embedded inside agarose hydrogels, which naturally is the case for our experiments. 

Fortunately, both instruments have recently been acquired and are now in use in the 

NRI/MCDB confocal microscopy facility.  We anticipate that groundwork laid in these 

initial experiments and modeling efforts will allow for future investigation of cellular 

division dynamics at fast time scales.   
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Experimental Methods 

Immunofluorescence Protocol for encapsulating and fixing Urchin Embryos in 

Agarose Gels: 

(Optimized for imaging of cortical actin in L.Pictus embryos) 

Original author: Ian Townley, Foltz Lab, UCSB 

Updated by K. Foltz, June 19, 2015. 

Updated by B. Kaytanli, Feb 24, 2017 

See these references: 

Townley et al. (2009) Dev Biol, 327, 465 

Chan et al. (2013) Mol Biol Cell 24, 3472 

All washes are done in filtered sea water unless otherwise is stated. 

Spawn: 

1.  Spawn urchin (as described in “Urchin gametes”). 

• Wash eggs 5x, and once in 2mM 3-Amino-1,2,4-triazole solution in filtered seawater. 

2.  Fertilize eggs. 

• Predilute sperm in 2mM 3-Amino-1,2,4-triazole; add to eggs; mix with spatula. 

• The final sperm dilution should be between 1:10,000 and 20,000. 

• The total volume should be around 20ml. 

• Observe for fertilization envelope rise under scope (should take 30 to 45 sec for 95% of 

the fertilization envelopes to rise if eggs are healthy). 

3.  Strip off fertilization envelopes by passing eggs through 210uM Nitex mesh, 8x. 

4.  Settle, decant and wash 2x. 
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5.  Move to CFSW at 30 mins post-fertilization. Settle, decant and wash in calcium-free 

sea water 2x. 

Encapsulation: 

1.  Prepare 1% (w/v) Agarose, with calcium-free seawater and ultra-low melting point 

agarose (Sigma: #A2579 Type IX-A). Cool to room temperature. 

2.  Suspend fertilized embryos calcium-free seawater 1:4 in the agarose solution to have 

a final agarose concentration of 0.75% (w/v). (For softer gels, suspend 1:2 for 0.5%(w/v).) 

3.  Drop cast the agarose + embryo pregel solution on cover glass and immediately place 

on ice to prevent ebryos from settling, Gel on ice for 30 seconds. 

4.  Store at 10C room with a drop of calcium-free seawater to cover the gel surface in 

order to swell and prevent gel evaporation. 

5 Take for live imaging. 

Methods Used for Fixing and Immunolabeling: 

All staining and fixing is carried out by wicking out the excess solution on top of the 

gels and placing the solution of interest on top. 

1.  10 minutes prior to the time point the embryos want to be arrested (fixed), add 

FMFX-464 (Thermofisher #F34653) membrane dye at 5mg/ml in calcium-free seawater on 

top of the gel and let it perfuse all the way. 

2.  For fixing, add 5% glutaraldehyde-FSW on top of the gel and let it perfuse and fix for 

10 minutes. 

3.  Wash with wash buffer 3 x 10 minutes to permeabilize. 

4.  Block with blocking buffer for 2 hours. 
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5.  Incubate with secondary antibody, (Phalloidin conjugated to Alexa Fluor 488 or 

Phospho-Myosin Light Chain 2 (Ser19) Antibody (Cell Signaling Technology, #3671)) at 

1:200 in blocking buffer for 1 hour. 

6.  Wash with wash buffer 2 x 10 minutes and keep in wash buffer for an hour at 4C to 

reduce background. 

7. Wash with wash buffer one last time and image using Olympus-1000 confocal using a 

20X objective. 

Basic Materials: 

• 2 detergent free 200 mL glass beakers 

• 210 um Nitex filter for stripping the fertilization envelope (FE) 

• Cover glass (square and/ or 24 x 50) #1.5, washed. 

Reagents:  

• Calcium-free Sea Water pH 8.2 

• 3-Amino-1,2,4-triazole  

• 10x PBS pH 6.8, 7.4 or 8.0 (stock) 

• Block Buffer: 2% BSA in 1X PBS or 

2% BSA in 1X PBS with 0.03% TX-100, 1 mM Na3VO4, 1 mM NaF, donkey serum 

(1:60) to help with specificity; make fresh. 

• Fix Buffer: 5% glutaraldehyde in filtered sea water  

• Wash Buffer: 0.1% TX-100 in PBS OR 0.2% Tween-20, 1 mM Na3VO4, 1 mM NaF 

in PBS. 

Recipe for 10X PBS stock: Dissolve the following in 800 mL distilled H2O: 
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80g of NaCl, 2.0g of KCl, 14.4g of Na2HPO4, 2.4g of KH2PO4 

Adjust pH to 7.4 and working volume to 1L with additional distilled H2O. 

Note also that the phosphatase inhibitors – vanadate (Na3VO4) and sodium fluoride 

(NaF) – can be prepared as 100X or 1000X stocks, aliquoted and frozen. They should be 

added to the freshly prepared buffers just before use. 

Recipe for calcium-free sea water: Dissolve the following in 1 L distilled H2O: 

26.3g of NaCl, 0.67g of KCl, 6.3g of MgSO4.7H2O, 4.7g of MgCl2.6H2O, 0.18g 

NaHCO3.H2O 
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Appendix D: Development of a Novel Hough Transform Method for 

Efficient Detection and Characterization of Elliptical Features in 

Microscopy Images  

Journal Article: 

Evolute-based Hough transform method for characterization of ellipsoids5 

Authors: Bugra Kaytanli and Megan T. Valentine  

DOI: 10.1111/jmi.12004 

Copyright © 1999 - 2017 John Wiley & Sons, Inc. All Rights Reserved 

Abstract 

We propose a novel and algorithmically simple Hough transform method that exploits 

the geometric properties of ellipses to enable the robust determination of the ellipse position 

and properties. We make use of the unique features of the evolute created by Hough voting 

along the gradient vectors of a two-dimensional image to determine the ellipse centre, 

orientation and aspect ratio. A second one-dimensional voting is performed on the minor 

axis to uniquely determine the ellipse size. This reduction of search space substantially 

simplifies the algorithmic complexity. To demonstrate the accuracy of our method, we 

present analysis of single and multiple ellipsoidal particles, including polydisperse and 

imperfect ellipsoids, in both simulated images and electron micrographs. Given its 

mathematical simplicity, ease of implementation and reasonable algorithmic completion 

                                                 
5 Reprinted with Permission from Journal of Microscopy. 
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time, we anticipate that the proposed method will be broadly useful for image processing of 

ellipsoidal particles, including their detection and tracking for studies of colloidal 

suspensions, and for applications to drug delivery and microrheology.  

Introduction 

The detection of ellipses, circles, and lines is an integral part of experimental image 

analysis for a wide range of biological, chemical, and mechanical engineering applications. 

Of these three classic object shapes, the most general is the ellipse, as the remaining two 

objects can be expressed as special cases in which the major and minor axes lengths are 

equal or the length of the minor axis is zero. Ellipse detection enables the size, shape and 

orientation of naturally-occurring anisotropic structures (i.e. red blood cells and bacteria) to 

be determined. Further, it allows the characterization of synthetic ellipsoidal particles, which 

have become increasing important in colloidal studies (Keville et al., 1991, Crassous et al., 

2012, Sacanna et al., 2006, Champion et al., 2007, Ho et al., 1993). The shape anisotropy of 

ellipsoids gives rise to novel interparticle and hydrodynamic interactions, and allows 

ordered liquid crystalline phases to form at high volume fraction (Madivala et al., 2009, 

Zheng & Han, 2010, Melle et al., 2002, Güell et al., 2010, Han et al., 2009). Ellipsoidal 

particles have broad engineering applications, ranging from the self assembly of novel 

photonic band gap structures to the geometrically-controlled uptake of drug-infused 

structures through cellular phagocytosis (Ding et al., 2009, Champion & Mitragotri, 2006, 

Velikov et al., 2002).  

Due to the clear technological importance, a number of algorithms to detect and 

characterize ellipses in digital images have been developed (Fitzgibbon et al., 1999, Hahn et 
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al., 2008, Kawaguchi & Nagata, 1998, Yu et al., 2004). Unlike spherical particle detection, 

in which a small number of robust centroid tracking algorithms have emerged as standard 

tools, the computational requirements and algorithm complexity of ellipse detection 

software has largely limited its practical use in colloid science (Crocker & Grier, 1996, 

Jenkins & Egelhaaf, 2008). One of the most widely used computer vision tools is the Hough 

transform (HT) method, in which the features (i.e. size, shape, orientation) of a real-space 

image are transformed into discrete points of a parameter space (Duda & Hart, 1972, Hough, 

1962). This multi-dimensional parameter space is then searched to uniquely identify and 

characterize the original object. In this article, we report a new implementation of the HT 

that exploits the geometric features of ellipses to reduce algorithm complexity, provides 

rapid analysis of image quality and accurately determines the shape, size and orientation of 

even imperfect ellipses. We demonstrate its utility using both simulated and experimental 

images of ellipsoidal colloids. Our method provides accuracy and speed that is comparable 

to that of direct fitting by a least squares minimization approach, but additionally allows for 

rapid assessment of image quality and enables identification and characterization of adjacent 

or touching objects. 

Methodology 

Prior HT methods have been used successfully in the detection of spheroidal objects in 

two-dimensional images (Jenkins & Egelhaaf, 2008, Irmscher et al., 2012). Circles are 

represented using three independent parameters: the centre coordinates (xc, yc) and the radius 

r. The resulting Hough space is thus three-dimensional, and the classical circular HT 

algorithm has O(N3) space requirements and O(N4) time complexity for an image I(x,y) of 
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size N×N pixels. The memory requirements and completion time can be reduced by 

completing the search in two consecutive steps (Illingworth & Kittler, 1987, Peng et al., 

2007, Bennett et al., 1999, Kanatani & Ohta, 2004, Yoo & Sethi, 1993). First, the gradient 

of the image is determined by calculating the centred differences in intensity. For a circle, 

the gradient (
𝜕𝐼

𝜕𝑥
,
𝜕𝐼

𝜕𝑦
) consists of a radially-symmetric array of vectors that all intersect at the 

centre. Thus, it is possible to identify the circle centre by identifying the most likely point of 

intersection. In practice, this is achieved by creating a new accumulation array (typically 

N×N) in which the gradient vector at each pixel in the original image is represented by a line 

that emanates in both directions from the same pixel in the accumulation array, at an angle 

𝜑 = tan−1 (
𝜕𝐼

𝜕𝑦
/
𝜕𝐼

𝜕𝑥
) (Peng et al., 2007). Each line extends across the entire accumulation 

array, and each pixel intersected by the line receives one weighted vote, where the weight 

function is given by the gradient magnitude 𝑤 = [(
𝜕𝐼

𝜕𝑥
)
2

+ (
𝜕𝐼

𝜕𝑦
)
2

]
1/2

. If the expected range 

of circle radii are known, the length of the gradient vector can be truncated to minimize 

potential interference from neighbouring objects. The resulting accumulation array can be 

displayed graphically as an image. Pixels that accumulate the most votes when the 

contributions of all gradient vectors are summed qualify as candidate centres.  

Once the candidates for the centres are detected, the voting for the radius is performed. 

To accomplish this, each pixel is assigned a value equal to the radial distance r to the 

detected circle centre, rounded down to the nearest integer. The one-dimensional 

accumulation array is constructed by summing the image gradient magnitudes of all pixels 

with a given assigned value of r, then normalizing by the number of pixels in the set. This is 
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repeated for each possible radius, and the value of r that accumulates the most votes (i.e. the 

highest normalized sum) is considered the best candidate as the circle radius.  

 

Figure 1: (a) The evolute of an ellipse is an astroid with four bright cusps (red dots) that 

can be used to determine ellipse position, orientation, shape and size. (b) Schematic showing 

the ellipse centre (xc, yc), orientation θ and length of the major (a) and minor (b) axes. 

 

Applications of the HT to ellipse detection are substantially more complex, since ellipses 

are parameterized by five independent parameters: centre position (xc, yc), orientation θ, and 

the lengths of the major and minor axes, a and b, respectively (Aguado et al., 1996, 

Muammar & Nixon, 1989, Pao et al., 1993, Tsuji & Matsumoto, 1978, Yoo & Sethi, 1993, 

Xie & Ji, 2002). This typically requires a five dimensional parameter space with O(N5) 

space requirements and O(N6) time complexity. In this work, we reduce algorithmic 

complexity to O(N2) in space and O(N3) in time by using a gradient-based HT as described 

in (Peng et al., 2007), and by making use of the fixed points and the symmetry of ellipses. 

We further develop this method by exploiting the properties of the evolute of the ellipse. 

The evolute describes the envelope of surface normals of a geometrical object. The gradient 
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vectors along the perimeter of the ellipse create a radiant field in the shape of an astroid, as 

shown in Figure 1. For purposes of ellipse tracking, the most important points on this astroid 

evolute are the four cusps (indicated by red dots) where the normal rays of the ellipse are 

most concentrated. When the evolute is drawn over the original ellipse, two cusps lie along 

the major axis of the ellipse. These ‘major cusps’ are always found within the bounding 

perimeter of the ellipse, making them particularly good targets for identification by image 

processing. The two minor cusps can be found within or outside of the ellipse perimeter. 

Cusp positions are given by  

ca=±
𝑎2− 𝑏2 

𝑎
, cb=±

𝑎2− 𝑏2 

𝑏
     (1) 

where ca and cb are the distances from the ellipse centre to the position of the major and 

minor cusps, respectively. Once a pair of major cusps has been identified, the centre 

parameters (xc, yc) and the orientation θ are immediately determined. Equation 1 provides a 

unique relationship between the two remaining parameters a and b, which determine the 

shape of the ellipse. Therefore, for each valid pair, the ellipse detection is finalized by 

carrying out an additional one dimensional accumulator on an appropriately chosen variable. 

We choose this parameter to be the length of the minor axis, b, as its range is relatively 

small as compared to the alternatives, such as the length of the major axis (a), focal distance 

(𝑓 = √𝑎2 + 𝑏2) or the minor cusp distance (cb).  

In practice, ellipses are detected using custom-written algorithms implemented in 

MATLAB, following the methods described in (Peng et al., 2007). The original image is 

smoothed using a Gaussian kernel, and the image gradient calculated using centred 

differences at each nonzero pixel. The two-dimensional accumulation array is obtained by 
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voting along the gradient direction, with weighting by the gradient magnitudes. This array is 

convolved with a local maximum (LM) finding filter, such as a Laplacian of Gaussian (LoG) 

kernel or an equivalent disk filter where 𝐹𝑑𝑖𝑠𝑘 = 1 𝜋𝑟0
2⁄   when 0 < 𝑟 < 𝑟0, =

 −1.35 𝜋(𝑟1
2 − 𝑟0

2)⁄  when 𝑟0 < 𝑟 < 𝑟1,  and = 0 when 𝑟 > 𝑟1. Here, r0 = 0.6 r1 and r1 is a 

user defined input that scales with the size of the object of interest. In contrast to Gaussian 

filters, which are commonly used for maxima detection, we find the LoG filter naturally 

suppresses the background offset in pixel intensity and enhances the signal to noise 

ratio (Neycenssac, 1993).  

Cusp detection is carried out in two stages. As a first step, we multiply pixel-wise the 

values of the LM-filtered array and the original accumulator array, then threshold the result 

with a cutoff magnitude of ~10-25% of the maximum value. All pixels with values below 

this cutoff are set to zero, generating a two dimensional image of bright ‘islands’ on a dark 

background. We then determine the eccentricity 휀 using a built-in MATLAB function6 that 

assigns 휀 ≈ 0 to circular objects and 휀 ≈ 1 to lines. To isolate bright features that likely 

contain cusps, we reject candidates with 휀 > 0.9. In a second step, we threshold the original 

two-dimensional accumulation array a cutoff magnitude of 60% of the maximum value. For 

each region identified in step 1, we calculate the centroid of the equivalent region in the 

thresholded accumulator array. The resulting positions form a list of candidate cusp 

coordinates. 

                                                 
6 regionprops.m 
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From this list, we seek to identify valid pairs of major cusps, while eliminating minor 

cusps and image artefacts. Theoretically, any two peaks can be chosen to make a pair; 

however, if the range of expected ellipse shapes and sizes is known, we impose an upper and 

a lower bound to the interaction distance between maxima. Incorporating such a priori 

knowledge of the ellipse parameters not only constrains the possible size of the evolute to 

aid in cusp pairing, but also reduces the computation and storage requirements by reducing 

the search space.  

For each remaining pair, we then perform a one-dimensional vote on the minor axis (b). 

For each possible value of b, there is a unique value of a, given the observed value of ca 

(using Eqn. 1). To generate the accumulation array, we sum the image gradient magnitudes 

of all pixels that reside on an ellipse with this unique (a,b) pair with a given assigned value 

of b, then normalize by the number of pixels in the set. The best candidate of b is the value 

that accumulates the most votes by this normalized sum. In some cases, the detected cusps 

will not be a valid pair of major cusps, and the one-dimensional accumulation array will fail 

to produce a strong peak value; such pairs are eliminated. 

In the limit that a ≈ b, the four cusps collapse into a single point at the centre of the 

circle. Therefore, the gradient based circular HT method can be treated as a special case of 

the gradient-based evolute HT method proposed here. Although prior descriptions of 

elliptical HTs have described the evolute, to our knowledge a direct analysis of cusp 

positions has not been performed (Kanatani & Ohta, 2004, Luo et al., 1995). 

Results and Discussion 
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To demonstrate the utility of our method in detecting and characterizing the properties of 

multiple and polydisperse ellipses, we test our algorithm using simulated ellipses and 

experimental images of ellipsoids. First, we generate a simulated image containing four 

randomly oriented elliptical rings with different sizes and shapes (Fig. 2). All four ellipses 

are successfully detected by our algorithm; however, we find that the highly asymmetric 

distribution of the voting lines in the proximity of the cusp leads to a systematic 

underestimate of ca. Through careful analysis of a much larger ensemble of ellipses, we 

determined the measured ca to be underestimated by ~10% for all ellipse shapes and sizes. 

Therefore, in the implementation of the method, the detected cusp distances are corrected 

according to this criterion. With this correction in place, the parameters of the detected 

ellipses are in excellent agreement with the values used to generate the ellipses (see Table 

S1, Supplemental Materials). The uncertainty in centre finding is approximately one pixel 

and the orientation is reliably determined to within one degree.  

 

Figure 2: (a) Simulated image of 4 ellipses of differing size, shape, orientation and 

placement. Actual image consists of an ellipse with a boundary width of a single pixel. For 

display purposes, we have dilated that image with a 3-by-3 rolling ball structuring element. 
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(b) From this image, the two-dimensional accumulation array is constructed. (c) The ellipses 

are detected as described in the text, and displayed on the original image in yellow, with the 

detected cusps (red crosses) and the corresponding centres (yellow circles) indicated. 

based HT method on the original image. The positions and orientations of the two 

touching ellipsoids are correctly determined, as shown. 

 

To test the performance of our algorithm under more realistic conditions, we detect and 

characterize the properties of experimental electron micrographs of micron-scale 

polydisperse ellipsoids, prepared as described in (Champion et al., 2007). Images were 

obtained using an FEI XL40 Sirion FEG digital scanning electron microscope (SEM; 

Hillsboro OR, USA). In the case of an almost perfectly ellipsoidal single particle, our 

evolute-based algorithm accurately determines ellipse position, orientation, shape, and size 

(Fig. 3). Since the precise shape of the ellipsoid is not known prior to imaging, we verify the 

accuracy of our characterization method by comparing our results to those obtained using an 

ellipsoidal fit using a least squared minimization routine. Least squares fitting is performed 

by eroding the gradient image and removing the isolated and spur pixels (i.e. bright pixels 

that are connected to other bright features by 0 or 1 pixels), as described in detail in 

(Fitzgibbon et al., 1999). As shown in Figure 3 and Table S2 (Supplemental Materials), the 

approximation by our method and the least squares fit are practically indistinguishable.  
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Figure 3: EHT detected (dashed yellow) and least squares (soild cyan) fits to the 

ellipsoidal particle in an SEM image obtained using a FEI XL40 Sirion FEG digital 

scanning microscope, at 27500× magnification (Hillsboro OR, USA). The yellow circle is 

the centre of the detected particle and red crosses are the detected cusp points from the 

evolute-based HT. The cyan lines locate the ellipse centre determined by the least-squares 

minimization fitting.  

To further test this approach, we analyze an SEM image containing multiple imperfectly 

ellipsoidal particles on an uneven background. As demonstrated in Figure 4, these particles 

are also easily detected by our evolute-based HT method. In this example image, nine 

particles of different sizes and aspect ratios are located within the field of view. For each 

ellipse, reasonable estimates of particle position, orientation, shape and size are produced, 

and no false particles are detected. To verify the accuracy of our method, we again compare 

our results to those obtained with an ellipsoidal fit using a least squares minimization 

approach. We again find very good agreement between the results obtained with these two 

methods for (xc, yc), b and θ, with errors of less than 1 pixel or 1 degree, respectively (see 
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Table S3, Supplemental Materials). Since these particles are not perfect ellipses, but are 

truncated along their major axis to a blunt end, we find larger uncertainties in our 

determination of a than we observed for more perfect ellipses. Through visual inspection, 

we find that the HT method systematically underestimates the length of the major axis 

whereas the least squares method overestimates it. Thus, in this case, we independently 

determine the end-to-end length of the ellipses by a manual measurement of the edge-

detected and eroded image, and use this value to determine the error in a (Table S3).  

 

Figure 4: HT detected (yellow) and least squares fits (cyan) to the poly-disperse 

imperfectly shaped ellipsoids in an SEM image obtained using a FEI XL40 Sirion FEG 

digital scanning microscope, at 10000× magnification (Hillsboro OR, USA). The red crosses 

indicate the detected cusp points and yellow circles indicate the centres of the particles 

detected using the evolute-based HT method. The cyan lines locate the ellipse centres 

determined by least squares fitting. The white box contains a zoomed view of particle 3.  
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The overall performance of the evolute-based HT transform method is similar to that of 

direct fitting of ellipsoids using a least squares minimization approach. Each provides 

reasonable estimates of ellipse position and features. The detection of these nine particles in 

the 1303-by-725 pixel image displayed in Figure 4 is completed in less than two seconds by 

either method using a Windows 7 OS desktop computer with a Pentium Dual Core E5700 

3GHz CPU and 3GB RAM. In principle, our method reduces the space complexity of the 

elliptical HT from O(N5) to O(N2). However, in order to achieve execution times of ~ 2 

seconds, we have used a vectorized implementation that avoids the use of for loops, which 

are computationally costly in an interpreted language like MATLAB. This increases the 

space requirements to O(N3). If implemented in a compiled language (i.e. C++), this issue 

can be avoided, albeit at the loss of the numerous built-in functions for the easy display and 

manipulation of images that are available in MATLAB. 

There are unique advantages of the evolute-based HT method we present. First, visual 

inspection of the quality of the evolutes in the accumulation array image provides an 

immediate and direct readout of our ability to detect ellipsoids with this technique. This 

allows the effects of various illumination schemes, contrast microscopy methods, etc. to be 

quickly screened and the best imaging conditions to be determined without full analysis of 

all data. Additionally, as shown in Figure 5, the evolute-based approach allows for analysis 

of objects that are physically touching. This is possible since the major cusp positions are 

always found within the ellipse perimeter, and the parameter space used for feature detection 

is related to, but distinct from, the real space image. At very high volume fractions, the 

performance of HT methods tends to degrade, as it does for most particle detection 
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algorithms, due to interference effects between neighbouring objects during the Hough 

voting step; however, a priori knowledge of ellipse size and shape can substantially limit the 

search area, improving computational performance and detection accuracy. 

 

Figure 5: HT detected (yellow) and least squares fits (cyan) to two imperfectly shaped 

ellipsoids in physical contact, using an SEM image obtained using a FEI XL40 Sirion FEG 

digital scanning microscope, at 15000× magnification. (a) The cyan lines indicate the ellipse 

centres determined by direct least squares fitting of the edge-detected image (thin white lines 

on black background). This gives erroneous results since the continuous boundary of the edge-

detected object encloses both ellipsoids. (b) The red crosses indicate the detected cusp points, 

and the yellow circles indicate the centers of the particles detected using the evolute-based 

HT method on the original image. The positions and orientations of the two touching 

ellipsoids are correctly determined, as shown. 

 

Conclusion 

We have presented a new HT method which reduces the complexities of the classical 

elliptical HT by detecting the cusps on the ellipse evolute that is generated using the gradient 

information already contained in the image. This method accurately detects and 

characterizes multiple and polydisperse particles in a reasonable computational time, making 
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it a useful alternative for a wide range of image processing applications in colloid science, 

materials science and biomedical engineering. 
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