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ABSTRACT

The  most  common  adenovirus  serotypes  1,  3,  5  and  7  can  cause  respiratory

infections,  and  serotypes  40  and  41  can  cause  gastrointestinal  infections.   Most

adenovirus infections are usually mild or asymptomatic, but a re-emerged serotype,

adenovirus 14, was reported to cause severe and fatal pneumonia in rare cases in

people of all ages.  Unfortunately, no antiviral compounds have yet been approved for

the treatment of such adenovirus infections.  Vaccines have been developed for only
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two  serotypes,  4  and  7,  to  prevent  acute  respiratory  diseases  (ARD)  in  military

personnel.   In  this  report,  four  nucleoside  analog  compounds,  octadecyloxypropyl

esters of 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl) derivatives of adenine  (ODE-

HPMPA), cytosine (ODE-HPMPC), guanine (ODE-HPMPG), and 2,6-diaminopurine (ODE-

HPMP-DAP),  were  evaluated  against  adenovirus  type  14  and  several  other

adenoviruses  in  vitro.   All  the  ODE-nucleoside  analogues  demonstrated  selective

antiviral activities in neutral red uptake and virus yield reduction assays.  Time-of-

addition  assays  revealed  that  the  efficacy  of  each  ODE-nucleoside  analogue  was

present  for  up  to  8  h  following  adenovirus  infection  of  cells.   Our  data  provide

important insight into a serious of compounds that might be advantageous in treating

adenovirus infections.    

Keywords: A549  cells,  adenovirus  type  14,  ODE-nucleoside  analogues,  2’,3’-

dideoxycytidine 

______________________________________________________________________________

Adenoviruses were first isolated in 1953 from human adenoids.  Human adenovirus

type 14 (AdV14) was first identified later in the 1950s.  Based on the report from

Centers  for  Disease  Control  and  Prevention  (CDC),  as  of  September  of  2007,

outbreaks of AdV14 have been identified in New York, Oregon, Texas, Washington

States with 10 deaths since May 2006  [1-4].  In February of 2007, an outbreak of

acute respiratory infection with high fever was reported among trainees at Lackland

Air Force Base (LAFB) in San Antonio, Texas [3, 4].  Among the patients tested, 268

were  positive  for  adenovirus.   Of  118  serotyped  patients,  106  were  identified  as

AdV14.  27 patients were hospitalized, one of whom, a 19 years old airman died of
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AdV14 in Intensive Care Unit (ICU).  In April of 2009, another airman died of this virus

infection.  On September 2008, another outbreak was caused by AdV14 in Prince of

Wales Island, Alaska [5, 6].  O’Flanagan et al. reported the first 9 confirmed cases of

AdV14 infection in Ireland from the October of 2009 to the July of 2010 [7].  All the

isolates were distinct from the AdV14 reference strain from 1950s.   A new AdV14

variant is termed the killer cold virus because of the high incidence of hospitalizations

and deaths attributed to the viral strain [1].   These data suggested the emergence

and spread of a new adenovirus 14 variant in the United States and Europe.  Most

recently,  Zhang et  al.  presented the  first  genome of  this  new human adenovirus

(referred to as – B14 strain), which had been isolated in Southern China [8].   Huang

et  al.  reported  an  outbreak  of  febrile  respiratory  illness  associated  with  human

adenovirus type 14p1 in Gansu Province, China [9].  

Adenoviruses are medium-sized (90-100 nm), non-enveloped icosahedral viruses

composed of a nucleocapsid and a double-stranded linear DNA genome.  There are 57

described serotypes in humans, which are responsible for 5-10% of upper respiratory

infections  in  children,  and many infections  in  adults  as  well.   The  most  common

adenovirus  serotypes  are  1,  3,  5  and  7  that  can  cause  respiratory  infections.

Serotypes 40 and 41 can cause gastrointestinal infections.  Most adenovirus infections

are usually mild or asymptomatic.  Viruses of the family  Adenoviridae infect various

species of vertebrates, including humans.  AdV14 viruses are passed from person to

person or  picked up from items touched by the infected people and then initially

invade the cells in the eye, nose, or mouth that subsequently allow further spread to

other organs.  AdV14 infections usually begin with cough, runny nose and fever as

well as throat irritation.  Some individuals have additional symptoms such as diarrhea,

bronchitis,  eye  infections,  bladder  infection,  rash,  high  fevers,  pneumonia,  and
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shortness of breath.  The vaccines have been developed for only two serotypes, 4

(AdV4) and 7 (AdV7), to prevent acute respiratory disease (ARD) in military personnel.

However, these two vaccines were used until the 1990s  [4].  They have been lost

when the production ceased.  A new question that could be asked is whether the

candidate AdV4 and AdV7 vaccines would protect against AdV14 [4].  In light of not

having an approved adenovirus vaccine, antiviral treatment remains the other option.

Unfortunately,  no  antiviral  agents  have  yet  been  approved  for  the  treatment  of

adenovirus infections.   Therefore,  development of  new antiviral  agents is  urgently

needed  for  the  treatment  of  patients  with  adenovirus,  particularly  serotype  14

infection.

Hartline  et  al.  reported  the  inhibitory  activities  of  ether  lipid-ester  prodrugs  of

acyclic  nucleoside  phosphonates  against  five  adenovirus  serotypes  [10].   The

compounds  were  cidofovir  (CDV)  analogues  and  analogues  of  (S)-HPMPA,

hexadecyloxypropyl-(S)-HPMPA  (HDP-HPMPA),  octadecyloxyethyl-(S)-HPMPA  (ODE-

HPMPA),  hexadecyloxypropyl-CDV  (HDP-CDV),  octadecyloxyethyl-CDV  (ODE-CDV),

oleyloxyethyl-CDV  (OLE-CDV),  and  oleyloxypropyl-CDV  (OLP-CDV),

tetradecyloxypropyl-CDV  (TDP-CDV)  and  eicosyloxypropyl-CDV  (ECP-CDV),  new

analogues of CDV with an alkoxyalkyl structure; and actyl-CDV (O-CDV), dodecyl-CDV

(DD-CDV),  eicosyl-CDV  (EC-CDV),  docosyl-CDV  (DC-CDV),  and  tetracocyl-CDV  (TC-

CDV), alkyl esters with no linker moiety.  Many of the alkoxyalkyl compounds had

excellent  in  vitro activities  with the high antiviral  selectivity.   One of  them, ODE-

HPMPA was also expected to be active when given orally and was considered a good

candidate  for  further  study.   In  the  current  report,  we evaluated  additional  ODE-

nucleoside analogues, especially against a clinical isolate of AdV14, and found to be

effective in vitro.     
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Materials and methods

Cells

A549 cells, a human lung carcinoma cell line, were obtained from American Type

Culture Collection  (ATCC,  Manassas,  VA,  USA).   The cells  were routinely  grown in

Dulbecco’s  minimal  essential  medium  (DMEM)  supplemented  with  10%  heat-

inactivated fetal bovine serum (FBS, Thermo Fisher Scientific Inc., Logan, UT).  For

antiviral  assay,  the  serum was  reduced to  2% and gentamicin  was added to  the

medium at a final concentration of 50 μg/ml.

Viruses

Human AdV14 (VR-15) was provided by the Centers for Disease Control Control

(CDC, Atlanta, GA).   The original  isolate was obtained from the throat washing of

recruit with acute respiratory illness in Netherlands, in 1955.  AdV1 (strain 65089),

which was isolated from the tracheal washing of a pediatric patient, was provided

from M.F. Smaron (Department of Medicine, University of Chicago, Chicago, IL).  AdV2

(strain  Miller),  AdV5  (strain  Adenoid  75,  VR-5),  and,  AdV7,  (strain  Gomen),  AdV7

(strain 97-185), AdV7 (strain Ferrell), AdV11 (strain Slobitski), AdV15 (strain B 1869),

were obtained from ATCC.  AdV48 (strain 10683), AdV48 (strain 28713), AdV48 (strain

7862), AdV48 (strain 9081), and AdV48 (strain 10884), were from ARUP Laboratories

(University of Utah, Salt Lake City, UT).  All the strains were propagated and titrated in

A549 cells.

Test compounds
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Octadecyloxypropyl  esters of  9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)-

adenine (ODE-HPMPA) (MW: 599.38), octadecyloxypropyl esters of 9-(S)-(3-hydroxy-2-

phosphonomethoxypropyl)-cytosine  (ODE-HPMPC)  (MW:  597.7),  octadecyloxypropyl

esters of  9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)-guanine  (ODE-HPMPG)  (MW:

615.74),  and  octadecyloxypropyl  esters of  9-(S)-(3-hydroxy-2-

phosphonomethoxypropyl)-2,6-diaminopurine  (ODE-HPMP-DAP)  (MW:  614.76)  were

obtained from University of California San Diego (La Jolla, CA).  2’,3’-Dideoxycytidine

(MW: 211.22)  [11,  12] was purchased from Sigma-Aldrich (St.  Louis,  MO).  All  the

ODE-nucleoside analogues were dissolved in phosphate buffered saline (PBS) for  in

vitro experiments.  2’,3’-Dideoxycytidine was dissolved in cell culture medium.   

Cytopathic effect (CPE) inhibition assay

A modified protocol of Barnard et al.  [13] was used for the  in vitro evaluation of

antiviral efficacy of the inhibitors of adenovirus replication.  A549 cells were seeded

onto  96-well  tissue  culture  plates  (Corning  Incorporated  Costar,  NY).   Each  ODE-

nucleoside  analog  and  virus  were  added  in  equal  volumes  to  near-confluent  cell

monolayers in 96-well tissue culture plates the next day.  The multiplicity of infection

(MOI) used was approximately 0.001 in order to produce complete virus cytopathic

effects  (CPE)  in  untreated  cell  monolayers  within  3–4  days.   The  plates  were

incubated at 37°C until the cells in the virus control wells showed complete viral CPE

as  observed  by  light  microscopy.   Each  concentration  of  drug  was  assayed  for

inhibition of viral CPE in triplicate and for cytotoxicity in duplicate uninfected wells.

Six wells per plate were set aside as uninfected, untreated cell controls and six wells

per plate received virus only and represented controls  for virus replication.   2’,3’-

6

                                



dideoxycytidine was tested as the positive control drug for each set of compounds

tested. 

Morphological changes resulting from cytotoxicity of each ODE-nucleoside analog

or virus CPE were graded on a scale of 0–5, with 5 defined as the appearance of

complete  cytotoxicity  or  CPE involving  the entire  monolayer  as  observed by  light

microscopy.  The values obtained were then converted to percentages of untreated,

uninfected  controls.   The  50% cell  cytotoxic  concentrations  (CC50)  and  50% virus

inhibitory concentrations (IC50), representing the putative concentration at which 50%

of the monolayers would show compound cytotoxicity or virus CPE, respectively, were

estimated by regression analysis.  A selectivity index (SI) value was calculated using

the  formula  as  SI = CC50/IC50.   The  activity  in  the  CPE  assay  was  then  verified

spectrophotometrically by neutral red (NR) uptake assay on the same plate.

Neutral  red (NR) uptake assay for determination of antiviral  efficacy and

cytotoxicity of the ODE-nucleoside analogues

This assay was done for each CPE inhibition test plate described above to verify

the inhibitory activity  and the cytotoxicity  detected by visual  observation.   In  our

experience, the usual correlation between visual and neutral red (NR) uptake assays

in our hands has been greater than 95%.  The neutral red (NR) uptake assay was

performed using a modified method of Cavanaugh et al. [14] as described by Barnard

et al. [15].  Briefly, medium was removed from each well of a plate, 0.034% neutral

red (NR) was added to each well of the plate, and the plate was incubated for 2 h at

37°C in the dark.  The neutral red (NR) solution was removed from the wells, the wells

were rinsed and any remaining dye was extracted using Sörenson's citrate buffered
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ethanol (pH 4.2).  Absorbances at 540 nm/405 nm were read with a microplate reader

(Opsys MR™, Dynex Technologies, Chantilly, VA).  Absorbance values were expressed

as percentages of untreated controls and IC50, CC50, and SI values were calculated as

described above.

Virus yield reduction assay

Virus  yield  reduction  (VYR)  assay  was  used  to  confirm the  results  of  the  CPE

inhibition/NR uptake assays.  Infectious virus yield from the CPE inhibition assay were

determined on the supernatant from the test well as previously described [15].  After

the CPE was scored as described above, each plate was frozen at −80oC and then

thawed.  Sample wells at the concentrations of  each ODE-nucleoside analog were

pooled  and  titrated  in  A549 cells  for  infectious  virus  by  CPE  assay as  previously

described by Barnard et  al.  [13].   A 90% reduction  in  virus  yield  (IC90)  was then

calculated by linear regression analysis.  This value represented a one-log10 inhibition

in titer when compared to untreated virus controls.

Time-of-addition assay

To determine the target step of the ODE-nucleoside analogues in the adenovirus

life  cycle,  the  time-of-addition  assay  was  performed  according  to  the  method

previously described [16, 17].

Results

Effects  of  various  concentrations  of  ODE-nucleoside  analogues on

cytotoxicity
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We  first  examined  the  effects  of  various  concentrations  of  ODE-nucleoside

analogues on the cytotoxicity to A549 cells.  This was calculated as the concentration

of the ODE-nucleoside analogues capable of reducing neutral red dye uptake by 50%

compared to untreated cells.  The ODE-nucleoside analogues were cytotoxic to A549

cells at high concentrations ranging from 420 ± 310 nM to 9600 ± 1100 nM after 3

days of incubation (Table 1). 

Effect of the ODE-nucleoside analogues on AdV14 infection in vitro

We  next  examined  the  effects  of  different  concentrations  of  the  four  ODE-

nucleoside  analogues on the AdV14 infection  in  A549 cells.   All  of  the four  ODE-

nucleoside analogues also inhibited the adenovirus 14 isolate with SI values ranging

from 32 ± 1.0 to 877 ± 287 as determined by neutral red uptake assay (Table 2).

ODE-HPMP-DAP was the most  potent  among them with  an IC50 of  1.7  ± 0.19 nM

determined by visual assay and, an IC50 of 1.4 ± 0.05 nM determined by neutral red

(NR) uptake assay (Table 2).     

The  activity  of  four  ODE-nucleoside  analogues was  confirmed  in  a  virus  yield

reduction assay.  ODE-HPMP-DAP reduced virus yields of the AdV14 by 90% at 4.1 ±

2.5  nM in  A549  cells,  which  correlated  well  with  the  potent  activity  detected  by

neutral red (NR) uptake assay.  The other ODE-nucleoside analogues, ODE-HPMPC and

ODE-HPMPA as well as ODE-HPMPG, also blocked AdV14 replication, reducing virus

yields by 90%, with IC90 values ranging from 6.5 ± 1.1 to 20 ± 4.2 nM (Table 2).

Effect of the ODE-nucleoside analogues on other adenovirus infections  in

vitro
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We also  examined whether  the  ODE-nucleoside  analogues inhibited  adenovirus

serotype 1, 5 and 7.  A549 cells were seeded and then infected with AdV1, AdV5, or

AdV7,  respectively.   ODE-nucleoside  analogues were  active  against  all  of  these

adenovirus strains with IC50 values ranging from 0.3 ± 0.1 nM to 61 ± 13 nM for the

visual assay, or from 0.2 ± 0.1 nM to 42 ± 17 nM for the neutral red uptake assay

(Table 3).  These results were also confirmed by the virus yield reduction assay, with

IC90 values ranging from 1.6 ± 0.85 nM to 120 ± 200 nM (Table 3).  Thus, the ODE-

nucleoside analogues inhibited the adenovirus infections in vitro.  

To  further  examine  the  effects  of  ODE-HPMPA  on  infection  with  additional

adenovirus serotypes such as AdV2 (strain Miller), AdV7 (strains 97-185 and Ferrell),

AdV11, AdV15, AdV48 (strains of 10683, 28713, 7862, 9081, 10884), the neutral red

uptake assay was performed as described above.  The inhibitory effects of the ODE-

HPMPA compound were similar, irrespective of whether A549 cells have been infected

with some other adenovirus serotypes (data not shown).  Similar results were also

obtained when A549 cells had been treated with ODE-HPMPC or ODE-HPMPG or ODE-

HPMP-DAP and then, infected with some other adenovirus serotypes (data not shown).

Effect of time-of-addition assay on a single cycle of virus replication

A549  cells  were  infected  with  adenovirus  type  14.   Then,  the  ODE-nucleoside

analogues (ODE-HPMPA, ODE-HPMPC, ODE-HPMPG, ODE-HPMP-DAP) at 100 nM, which

is much higher than the IC50,  were added to the cells at various time points after

infection.   The  ODE-nucleoside  analogues were  shown  to  inhibit  the  early  phase

(Table 4) after infection,  but not the late phase (8, 12 or 24 h after infection),  of

adenovirus life cycle.  Our data suggest that the ODE-nucleoside analogues act on an
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early step of adenovirus infection, presumably on DNA synthesis [18] and since these

are all nucleoside analogs.

Discussion

Acyclic nucleoside phosphonates (ANPs) represent a key class of antiviral agents

[19].  Various nucleoside derivatives of 3-hydroxy-2-phosphonomethoxypropyl (HPMP)

were shown to have the antiviral activities [20].  However, these types of compounds

were also shown to have poor bioavailability and renal toxicity [21, 22].  To overcome

these drawbacks, octadecyloxyethyl (ODE) esters were added to HPMP compounds to

increase  bioavailability  and  antiviral  efficacy  [23].   In  this  report,  we  tested  the

antiviral  activities  of  ODE-HPMPA,  ODE-HPMPC,  ODE-HPMPG  and  ODE-HPMP-DAP

against AdV14 and other adenovirus serotypes in A549 cells.  All the ODE-nucleoside

analogues demonstrated significant  antiviral  activities  in  neutral  red uptake assay

and virus yield reduction assay in vitro.  

9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)  adenine  [(S)-HPMPA]  is  an  acyclic

nucleoside phosphonate which Holý and his coworkers first reported in 1986 [20, 24].

(S)-HPMPA was one of a growing and important class of antiviral compounds which

now  includes  cidofovir,  adefovir  [9-(2-phosphonomethoxyethyl)  adenine],  and

tenofovir [9-(2-phosphonomethoxypropyl) adenine], which are used for the treatment

of virus infections [25].  (S)-HPMPA is a broad-spectrum antiviral which was shown to

inhibit  the replication  of  a wide variety of  double-stranded DNA viruses,  including

cytomegalovirus  [26-28],  orthopoxviruses  [27,  29],  herpesviruses  [26,  29],  and

adenoviruses [20, 24, 25].  (S)-HPMPA was also reported to be active in vitro against

HBV replication in HB611 cells [30] and 2.2.15 cells.  Morrey et al. demonstrated that

11

                                



oral treatment of HBV transgenic mice with HDP-(S)-HPMPA, 15M-HDP-(S)-HPMPA, and

ODE-(S)-HPMPA for 14 days reduced liver HBV DNA level by roughly 1.5 log units [31].

It  has  been  reported  that  alkoxyalkyl  esters  of  (S)-9-(3-hydroxy-2-

phosphonomethoxypropyl)  adenine  are  also  potent  inhibitors  of  hepatitis  C  virus

replication in genotype 1A, 1B, and 2A replicons  [32] and  HIV-1 replication  in vitro

[33, 34].  Hartline et al. tested the inhibitory effect of ODE-HPMPA on AdV3, AdV5,

AdV7 AdV8 and AdV31 in human foreskin fibroblast (HFF) cells by a plaque-reduction

assay [10].  ODE-HPMPA was shown to have an IC50 value of 40 ± 40 nM against AdV5

and, an IC50 value of 60 ± 80 nM against AdV7.  We determined that the ODE-HPMPA

had an IC50 of 21 ± 2.1 nM against AdV5 and, an IC50 of 2.6 ± 0.78 nM against AdV7 in

A549  cells.   However,  to  our  knowledge,  this  is  the  first  report  that  the  ODE-

nucleoside analogues inhibited AdV14 infection in vitro.

Mul et al. studied the mechanism of inhibition using a reconstituted in vitro DNA

replication system and found that (S)-HPMPA blocked adenovirus DNA polymerase at

the level of chain elongation [18], suggesting that the adenovirus DNA polymerase is

the prime target for the drug.  Our findings are consistent with their report: the ODE-

nucleoside  analogues  were  shown  to  inhibit  the  early  phase  (0,  2,  or  4  h)  after

infection,  but not the late phase (8, 12 or 24 h after infection),  of adenovirus life

cycle, suggesting that the ODE-nucleoside analogues would act on an early step of

adenovirus  infection.   Taken  together  the  ODE-nucleoside  analogues offer  low

micromolar  antiviral  activity  against  adenovirus  infections  and,  are  the  leading

compounds, which can be further modified.  Our data provide important insight into a

series of compounds that might be advantageous in treating adenovirus infections.
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