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Rhodium-Catalyzed Hydrofunctionalization: Enantioselective 
Coupling of Indolines and 1,3-Dienes

Xiao-Hui Yang, Vy M. Dong*

Department of Chemistry, University of California, Irvine, 4403 Natural Sciences I, Irvine, 
California, 92697 USA.

Abstract

We communicate a strategy for the hydrofunctionalization of 1,3-dienes via Rh-hydride catalysis. 

Conjugated dienes are coupled to nucleophiles to demonstrate the feasibility of novel C–C, C–O, 

C–S, and C–N bond forming processes. In the presence of a chiral JoSPOphos ligand, 

hydroamination generates chiral allylic amines with high regio- and enantioselectivity. Tuning 

both the pKa and steric properties of an acid-additive is critical for enantiocontrol.

Graphical abstract

Conjugated dienes are raw materials for polymerization and attractive building blocks for 

medicinal and natural product synthesis.1,2 Inventing enantioselective strategies for 

functionalizing dienes is an important challenge that has inspired Pd-catalyzed 

hydroamination,3 Co-catalyzed hydrovinylation,4 and Ru-catalyzed hydrohydroxyalkylation.
5 To expand the power of hydrofunctionalization, we envisioned using Rh-hydride catalysis 

to couple 1,3dienes and nucleophiles (Figure 1).6 Iridium and rhodium-hydrides have been 

used to transform allenes and/or alkynes into electrophilic metal-π-allyl intermediates, 

which undergo nucleophilic attack to form branched products (Figure 1,A).7 Building on 

this strategy, our laborator y achieved the first enantioselective C–N and C–C bond forming 

reactions with alkynes.8 In analogy to allenes and alkynes, we reasoned that conjugate d 

dienes could be transformed via Rh-π-allyl intermediates to produce the corresponding 1,2- 

and/or 1,4-addition products (Figure 1,B). Herein, we report the generality of Rh-hydride 

catalysis for enabling atom-economic C–C, C–O, C–N, and C–S bond forming reactions 
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with dienes. In addition, we demonstrate the first hydroamination of unsymmetric dienes 

with excellent regio- and enantiocontrol.9

The mechanism for our proposed hydrofunctionalization of dienes is depicted in Figure 2. It 

would be critical to identify the right combination of a rhodium catalyst and Brønsted acid 

(HX) to generate a Rh-hydride catalyst A capable of diene insertion. On the basis of steric 

preference, we reasoned that this Rh-hydride insertion would favor the terminal double bond 

to form Rh-π-allyl intermediate B. From this intermediate, there are two likely pathways for 

nucleophilic addition. One pathway (path a) involves anion exchange of B with nucleophiles 

to provide complex C. Reductive elimination of C releases 1,2-addition product D or 1,4-

addition product E. Alternatively, the nucleophile can attack via an SN2’ or SN2 type step 

(path b) to generate product D or E.

With this hypothesis in mind, we chose to investigate (E)-1-(4methoxyphenyl)-1,3-butadiene 

as the model substrate. We investigated a range of achiral bidentate phosphine ligands and 

acid additives. A summary of our most relevant findings is in Table 1. The 1,3-diene can be 

cross-coupled with various nucleophiles; promising yields were observed for C–C bond 

(51% yield), C–N bond (85% yield), C–O bond (37% yield), and C–S bond (61% yield) 

formations. In all cases, excellent regioselectivity for the 1,2-Markovnikov product was 

observed (>20:1 rr). Using acids with a wide pKa range (2.3 to 6.8) was necessary to 

encompass nucleophiles such as diketones,10 indolines,8a alcohols,11 and thiophenols.12 It 

appears that weaker nucleophiles performed better in the presence of stronger acid co-

catalysts. With this promising reactivity established, we chose to optimize hydroamination 

due to the value of enantiopure amines in drug discovery.13

While there has been interest in enantioselective hydroamination of 1,3-dienes,14 most 

studies have focused on intramolecular variants.15 Prior to our study, Hartwig demonstrated 

the only example of an enantioselective, intermolecular hydroamination of 1,3-dienes; this 

study focused on cyclohexadiene.3 In contrast, enantioselective hydroamination of 

unsymmetric dienes had yet to be achieved. In considering this challenge, we chose indoline 

1a and (E)-1-phenyl-1,3-butadiene 2a as model substrates (Table 2, A). Given our previous 

work on alkyne hydroamination,8a our initial studies focused on using [Rh(COD)Cl]2 as the 

precatalyst and m-xylylic acid A1 as the additive. Ligand (S,S)-BDPP L1, which gave high 

enantioselectivity for alkyne hydroamination, promoted diene hydroamination to form 

allylic amine 3aa in only 21% ee (17% yield, 12:1 rr). From an extensive ligand evaluation, 

we found the Josiphos ligand family L2–L4 gave excellent regioselectivity (>20:1 rr) but 

only modest reactivity and enantiocontrol. In comparison, the related JoSPOphos ligand 

L516 afforded 3aa in 84% yield, 82% ee and >20:1 rr.

With ligand L5 in hand, we next investigated the effect of the acid additive (Table 2, B). The 

structure and acidity of the carboxylic acid had a marked effect on both yields and 

enantioselectivities. As highlighted in Table 2, we found that the optimal acid additive was 

A4 (80% yield, 90% ee, >20:1 rr). In comparison, acids bearing less α-substitution, such as 

2-phenylacetic acid A2 and 2,2-diphenylacetic acid A3, provided lower ee’s, 52% and 78%, 

respectively. On the other hand, bulky acids that were less acidic, such as A5 and A6, gave 

diminished yields (40% and 38%, respectively). These results show the significance of 
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tuning both the pKa and steric properties of the acid-additive in Rh-hydride catalysis. We 

anticipated that the carboxylate would undergo exchange more effectively with a methoxide 

versus chloride ligand.17 Thus, in an effort to further improve selectivity, we switched from 

using [Rh(COD)Cl]2 to [Rh(COD)OMe]2 and observed the desired product in 81% yield 

and 96% ee.

With this protocol, we explored the hydroamination of 1,3-diene 2a with various indolines 1 
(Table 3). The substituent on the indoline had a negligible impact on the yield, regio- and 

enantioselectivity. In all cases, we observed excellent regioselectivity (>20:1 rr) for the 

Markovnikov 1,2-addition isomers in preference to the anti-Markovnikov 1,2-addition or 

1,4-addition isomers. This type of regioselectivity was observed by Meek, although via π-

acidic Rh-catalysis.9h In addition, we obtained the allylic amines with high 

enantioselectivities (>94% ee). A slight decrease in enantioselectivity was observed with 

indolines containing electron-donating substituents at the 5-position (3ah, 81% yield, 88% 

ee) compared with other substituents. Together, these results represent the first 

intermolecular hydroamination of unsymmetric1,3-dienes with high regio- and 

enantiocontrol.9

Next, we studied the hydroamination of various 1,3-dienes 2 with indoline 1a (Table 4). 

Products bearing both electron-donating and electron-withdrawing groups on the phenyl ring 

were observed in high regio- and enantioselectivities. Due to steric effects, the coupling of 

indoline with ortho-substituted substrates 2j and 2k gave a slight decrease in yields (73% 

and 69%, respectively). This protocol tolerated a heterocycle substituted 1,3-dienes such as 

2l (R = 2-furyl) and 2m (R = 2-thienyl) and afforded the corresponding allylic amines 

(R)-3la (78% yield, 95% ee) and (R)-3ma (73% yield, 92% ee). In addition, alkyl-

substituted 1,3-diene 2n provided the product 3na in 68% yield, however the regioselectivity 

(6:1 rr) and enantioselectivity (76% ee) were lower compared to aryl substituted 1,3-dienes. 

For 1,3-pentadiene 2o, the desired product 3oa was obtained in 73% yield with 75% ee. We 

derivatized indoline 3oa via oxidation with DDQ to generate the corresponding indole 5,18 

whose absolute configuration has been reported.19

Hydrofunctionalization represents a promising way to transform dienes into enantiopure 

allylic motifs. Krische established the use of Ru- and Ir-hydrides to generate nucleophilic π-

allyl species.5, 20 As a complementary approach, we developed Rh-hydride catalysts that 

transform dienes into electrophilic π-allyl species. By tuning the Rh-hydride’s structure and 

acidity, we achieved an enantioselective hydroamination for indolines and terminal dienes.21 

Future studies will focus on understanding the origin of 1,2-addition vs. 1,4-addition. 

Moreover, we plan to design catalysts to expand scope and variants for enantioselective and 

regioselective C–C, C–N, C–O, and C–S bond formations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rh-hydride catalyzed hydrofunctionalization of unsaturated compounds
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Figure 2. 
Reaction design for the hydrofunctionalization of 1,3-dienes
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Table 1.

Constructing different C–X bonds via hydrofunctionalization of 1,3-diene
a

a
Reaction conditions: NuH (0.2 mmol), 1,3-diene (0.3 mmol), [Rh(COD)Cl]2 (2 mol%), ligand (4 mol%), acid (50 mol%), DCE (0.4 mL), 24 h. 

Isolated yields.
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Table 2.

Ligand and acid effects on asymmetric hydroamination of 1,3-diene
a

a
Reaction conditions: 1a (0.1 mmol), 2a (0.15 mmol), [Rh(COD)Cl]2 (2 mol%), ligand (4 mol%), acid (50 mol%), DCE (0.2 mL), 60 °C, 24 h. 

Yields determined by 1H NMR using an internal standard. Regioselectivity determined by 1H NMR analysis of the unpurified reaction mixture. 
Enantioselectivity determined by chiral SFC.
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b
Using [Rh(COD)OMe]2 instead of [Rh(COD)Cl]2.
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Table 3.

Hydroamination using various indolines
a

a
Reaction conditions: 1 (0.2 mmol), 2a (0.3 mmol), [Rh(COD)OMe]2 (2 mol%), JoSPOphos (4 mol%), Ph3CCOOH (50 mol%), DCE (0.4 mL), 

60 °C, 24 h. Isolated yields. Regioselectivity determined by 1H NMR analysis of the unpurified reaction mixture. Enantioselectivity determined by 
chiral SFC.
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Table 4.

Hydroamination of various 1,3-dienesa

a
Reaction conditions: 1a (0.2 mmol), 2 (0.3 mmol), [Rh(COD)OMe]2 (2 mol%), JoSPOphos (4 mol%), Ph3CCOOH (50 mol%), DCE (0.4 mL), 

60 °C, 24 h. Regioselectivity determined by 1H NMR analysis of the unpurified reaction mixture. Isolated yields. Enantioselectivity determined by 
chiral SFC.
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