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Abstract

Graph learning, when used as a semi-supervised learning (SSL) method,
performs well for classification tasks with a low label rate. We pro-
vide a graph-based batch active learning pipeline for pixel/patch
neighborhood multi- or hyperspectral image segmentation. Our batch
active learning approach selects a collection of unlabeled pixels that
satisfy a local maximum constraint for the active learning acquisi-
tion function that determines the relative importance of each pixel
to the classification. This work builds on recent advances in the
design of novel active learning acquisition functions (e.g. the Model
Change approach in arXiv:2110.07739) while adding important fur-
ther developments including patch-neighborhood image analysis and
batch active learning methods to further increase the accuracy and
greatly increase the computational efficiency of these methods. In
addition to improvements in accuracy, our approach can greatly
reduce the number of labeled pixels needed to achieve the same
level of the accuracy based on randomly selected labeled pixels.
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1 Introduction

Image segmentation is a basic problem in the field of machine learning and
computer vision. One older approach involves partial differential equation
(PDE)-based methods, which segment an image by solving a PDE on the
image numerically, based on minimization of an energy functional [1–4].
More recently, graph-based methods have also been developed for both semi-
supervised and unsupervised learning on image processing [5–15]. Another
common choice is the neural network methods, including convolutional neural
networks (CNN) [16] and graph convolutional networks (GCN) [17, 18], with
trainable convolutional filters optimized by minimizing the difference between
predicted and ground-truth labels.

We employ a graph-based learning method where the feature vectors of
each pixel in an image are used to construct a graph whose edge weights
are determined by feature vector similarity [19]. This approach has proven
successful in noisy image recovery [7], studies using remotely-sensed images
to combine LIDAR and optical images [20], and blind hyperspectral unmixing
[21]. Graph learning is an approach that trains a classifier by minimizing a
graph-based energy function to directly identify a function on the nodes of the
graph. This is different from graph neural networks that train a convolutional
kernel and evolve the corresponding convolutional operator on the graph.

Active learning is a branch of machine learning that judiciously selects a
limited number of unlabeled data to query for labels, with the aim of maximally
improving the underlying classifier’s performance [22]. An acquisition function
is used to quantify which data would be useful to label from the set of available
unlabeled data. Active learning can significantly improve classifier performance
at very low label rates and minimize the cost of labeling data by domain
experts [22–25].

Traditional active learning selects labeled data sequentially; i.e., in each
step, only the global maximum of the acquisition function is selected. Batch
active learning selects a query set of multiple points in each step of the active
learning process. Batch active learning provides new challenges compared to
sequential active learning. Selecting data with similar information is redundant
and does not fully utilize the acquisition function. Some prior methods for
batch active learning imitate sequential active learning by selecting the batch
through a greedy sequential process [26–28]. Some other batch active learning
approaches segment the candidate set into several small subsets and select the
batch samples as the collection of the maximum points of each small subset [29,
30]. Here, we develop a novel batch active learning approach, called LocalMax,
to select a collection of unlabeled data that satisfy the graph local maximum
condition in each step of the active learning process. Compared with other
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batch active learning approaches, ours is more efficient while having almost
identical performance as sequential active learning.

1.1 Our Contributions

In this paper, we develop a graph-based active learning pipeline for image
segmentation tasks with very low label rates. Our novelties and major
contributions are:

1. Inspired by [25], we apply active learning to select pixels to label for the
graph Laplace learning classifier to process an image segmentation task.
We extract a non-local means feature vector of each pixel in the target
image and then build a similarity graph based on these feature vectors.
Such a feature extraction allows us to include contextual (i.e. neighborhood)
information for each pixel. Active learning reduces the number of labeled
pixels required for this semi-supervised image segmentation method. With
fewer than 0.5% labeled pixels selected by the active learning process, the
classifier reaches a similar accuracy as that with 10% randomly sampled
labeled pixels.

2. We introduce LocalMax, a novel batch active learning method. LocalMax
allows the selection of a batch of unlabeled pixels in each step of the active
learning process. LocalMax achieves nearly identical accuracies as sequen-
tial active learning while being more efficient since multiple query points
can be sent to the domain expert at each iteration. In addition, LocalMax
can be applied to any type of acquisition function.

2 Background for Graph-based Active
Learning Model

In this section, we review basic graph learning and some active learning tech-
niques applied to graph learning classifiers. We construct a similarity graph
via a K-nearest neighbors approach [31]. We apply graph Laplace learning [32]
with some labeled nodes to classify unlabeled nodes. The labeled nodes are
selected through the active learning process.

2.1 Graph Construction

We generate a graph based on the dataset X = {x1, x2, . . . , xN} ⊂ Rd of d-
dimensional feature vectors. X is indexed by the index set Z = {1, 2, . . . , N}.
Consider the graph G(X,W ) with vertex (node) set X and edge weight matrix
W ∈ RN×N , where Wij denotes the edge weight between vertices i ̸= j. The
weightWij is chosen to be proportional to the similarity between corresponding
feature vectors xi and xj . In our model, we choose

Wij = exp

(
−∠(xi, xj)

2

√
τiτj

)
, (1)
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where ∠(xi, xj) = arccos
(

x⊤
i xj

∥xi∥∥xj∥

)
is the angle between feature vectors xi

and xj . The normalization constant τi is chosen according to the similarity
to the Kth nearest neighbor of i (i.e., τi = ∠(xi, xiK ), where xiK is the Kth

nearest neighbor to xi).
To improve computational efficiency, we require the N ×N weight matrix

W to be sparse. For each vertex xi, we only consider edges between xi and
its K-nearest neighbors (KNN) according to the angle similarity stated above.
This can be done by an approximate nearest neighbor search algorithm [31].
Let xik , k = 1, 2, . . . ,K be the K-nearest neighbors of xi (including xi itself)
according to angle similarity. Define a sparse weight matrix by

W̄ij =

{
Wij , j = i1, i2, . . . , iK ,

0, otherwise.
(2)

For practical purposes, K is chosen to ensure that the corresponding graph
G is connected. We symmetrize the sparse weight matrix to obtain our final
weight matrix by redefining Wij := (W̄ij + W̄ji)/2. Note that W is sparse,
symmetric, and non-negative (i.e. Wij ≥ 0). In the following experiments of
this paper, we choose the parameter K = 50 for the K-nearest neighbor search
algorithm.

2.2 Graph Learning

With a graph G(X,W ) constructed as described in the previous section, we
now describe a graph-based approach for semi-supervised learning and present
previous work in this field. Assume we have some observations of the ground-
truth labels on a subset of vertices Z0 ⊂ Z. Let y† : Z0 → {1, 2, . . . , nc} be
the ground-truth labeling function that maps each index j ∈ Z0 to exactly one
class label y†j = y†(j) ∈ {1, 2, . . . , nc}. The corresponding one-hot encoding

mapping is y† : Z0 → {e1, e2, . . . , enc
} defined by y†(j) = ey†(j), where ek is

the kth standard basis vector with all zeros except a 1 at the ith entry. The goal
for the semi-supervised learning task is to predict the labels of the unlabeled
vertices xi ∈ X, i ∈ Z − Z0.

Important geometric information about the dataset X is encoded in graph
Laplacian matrices [33, 34] defined on G. Define dj =

∑
k∈Z Wjk to be the

degree of node j and let D be the diagonal matrix with diagonal entries
d1, d2, . . . , dN . While there are various graph Laplacians one could define [34],
we use the unnormalized graph Laplacian matrix Lu = D −W in this paper.

The inferred classification of unlabeled vertices comes from thresholding
a continuous-valued node function u : Z → Rnc . In particular, the predicted
label of xi ∈ X is yi = argmax{u1(i), u2(i), . . . , unc

(i)}, where uk(i) is the
kth entry of u(i). Consider a N × nc matrix U , whose ith row is u(i); that
is, each node function u can be identified by a matrix U whose ith represents
the output of u at node i. The graph-based semi-supervised learning (SSL)
model that we consider obtains an optimal Û (i.e. optimal node function û)
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by solving an optimization problem of the form:

Û = argmin
u

Jℓ(U,y
†)

= argmin
U∈RN×nc

1

2
⟨U,LU⟩F +

∑
j∈Z0

ℓ(u(j),y†(j)),
(3)

where ⟨·, ·⟩F is the Frobenius inner product for matrices.
The loss function ℓ : Rnc × Rnc → R measures the difference between

the prediction u(i) and the ground-truth y†(i) for i in the observation set
Z0. While there are several choices for the loss function, we simply apply a
hard-constraint penalty

ℓh(x, y) =

{
+∞, if x ̸= y,

0, if x = y.
(4)

This hard-constraint penalty function ℓh forces the minimizer Û to be exactly
the same as the ground-truth y† on the observation set Z0. This SSL scheme
was introduced in [32] and we refer to it as Laplace learning. We can reorder the

vertices to be able to write U =

[
Ul

Uu

]
, where Ul corresponds to the submatrix

of U whose rows are in the labeled (observed) index set Z0 and Uu similarly
corresponds to the submatrix of U whose rows are in Z−Z0 (i.e. the unlabeled
index set). Likewise, we can split the weight matrix W and degree matrix D
into labeled and unlabeled submatrices as

W =

[
Wll Wlu

Wul Wuu

]
, D =

[
Dll Dlu

Dul Duu

]
. (5)

As a result of the hard-constraint labeling of Laplace learning, Ûl is fixed as
the one-hot encodings of the observations on the labeled set Z0. According to
[32], the optimizer Ûu of Laplace learning can be calculated explicitly as

Ûu = (Duu −Wuu)
−1WulÛl. (6)

The Laplace learning gives a harmonic solution û on the graph G. It infers
the sum-to-one property of the graph Laplace learning output node func-
tion û. If the ground truth labels are given in one-hot forms, for any node
i ∈ Z, we have ûk(i) ≥ 0, k = 1, 2, . . . , nc and

∑nc

k=1 ûk(x) = 1, where
û(i) = (û1(i), û2(i), . . . , ûnc

(i)). With this property, at node i ∈ Z, uk(i) can
be treated as the predicted probability that node i belongs to the class k.

There are various other graph SSL schemes based on the optimization prob-
lem (3). The main difference between them and the Laplace learning scheme is
the choice of penalty function ℓ. In this paper we use the multiclass Gaussian
regression (MGR) model [35, 36] which applies a L2-norm penalty function
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ℓγ(x, y) = 1
2γ2 ∥x − y∥22. The MGR model is an approximation of the graph

Laplace learning model in the sense that γ →∞.
Denote by G(N) the computation cost of a Laplace leaning process on

graph G = (X,W ) with the labeled set Z0. Assume the graph is constructed
with the KNN sparse similarity matrix W (Section 2.1) and that the size of
labeled set is much smaller than the number of nodes, i.e. |Z0| ≪ |Z|. Recall
the computational complexity of the conjugate gradient method to solve the
linear equation Ax = b (Chapter 10 of [37]) is O(m

√
κ), where m and κ

are the number of non-zero entries and the condition number of matrix A
respectively. If we solve the equation (6) by the conjugate gradient method,
we have G(N) = O(KN

√
κL), where κL is the condition number of the graph

Laplacian L.

2.3 Bayesian Interpretation and Truncated
Decomposition

A Bayesian interpretation of graph-based SSL models of the form Jℓ(U,y
†) as

in (3) provides further insight into the confidence of inferred classification on
the unlabeled nodes[38–40]. The minimizer in (3) is equivalent to the maxi-
mum a posteriori (MAP) estimate of a posterior probability distribution with
probability density function:

P(U |y†) ∝ exp(−Jℓ(U,y†)), (7)

The resulting form of the posterior P(U |y†) depends on the choice of loss
function ℓ. For example, when the MGR penalty function is applied, i.e.
ℓ(x, y) = ℓγ(x, y) = 1

2γ2 ∥x − y∥22, P(U |y†) is a Gaussian distribution. The
Bayesian interpretation serves as the fundamental of some acquisition functions
we introduce later.

L = Lu is a semi-positive definite matrix. By adjusting the number of
nearest neighborsK considered at each vertex, we can guarantee that the graph
G is connected. Further, the corresponding Laplacian matrix L has exactly one
zero eigenvalue. We may order the eigenvalues of L as 0 = λ1 < λ2 ≤ . . . ≤ λN ,
and then consider the truncated decomposition of L with the smallest M < N
eigenvalues as L̂ = V ΛV ⊤, where Λ ∈ RM×M is a diagonal matrix with
diagonal entries λ1, λ2, . . . , λM and V = [v1, v2, . . . , vM ] ∈ RN×M is the matrix
of corresponding eigenvectors. vi is the eigenvector of eigenvalue λi.

Define A = V ⊤U ∈ RM×nc and Â = V ⊤Û ∈ RM×nc , where Û =
argminU∈RN×nc J̃ℓ(A,y†). Let Am and Âm be the respective mth columns of A

and Â. When the MGR penalty function is applied, the posterior probability
distribution for Am|y† is given by the Gaussian distribution:

A|y† ∼ N (Âm, CMGR),

CMGR =

(
Λ + V ⊤

(
1

γ2
P⊤P

)
V

)−1

,
(8)
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Apply Laplace
learning on the
graph with the
current labeled set.

Build a graph on
the feature vector
set and randomly
choose an initial
labeled set.

Calculate the
acquisition function
value for each
unlabeled node.

Select a query set
according to the
acquisition
function value and
update the current
labeled set.

Human-in-the-loop labeling process

Fig. 1: Flowchart of the active learning process. The active learning loop is
based on a fixed graph. In each step, we apply Laplace learning on the graph
and update the labeled set with a query set selected based on the current
acquisition function values. It should be noticed that it might need the human-
in-the-loop process to obtain the label of the selected query set in each step of
the active learning process.

where P ∈ R|Z0|×N is a projection matrix onto the indices corresponding to
the labeled set Z0. When the graph G is connected, then the matrix CMGR is
guaranteed to exist, i.e. the matrix (Λ + V ⊤( 1

γ2P
⊤P )V ) is invertible.

2.4 Active Learning: Acquisition Functions

Active learning improves the performance of the underlying semi-supervised
learning (SSL) methods by carefully selecting unlabeled points to hand-label
via the use of an oracle or human in the loop. The aim of active learning is to
identify which unlabeled inputs (xi ∈ X with i ∈ Z − Z0) for which it would
be the “most helpful” to have a human in the loop observe and obtain labels.
The core of active learning is the acquisition function A : Z − Z0 → R, which
evaluates the benefit of obtaining the label of each unlabeled datapoint. The
query set Q ⊂ Z − Z0 of unlabeled points that are to be labeled is chosen
via the optimization of an acquisition function. Note that in this work, we
use Laplace learning [32] as the underlying semi-supervised classifier. Figure 1
is the flowchart of our active learning process based on the graph Laplace
learning classifier. The acquisition functions we introduce are designed for
the graph learning classifier, including the Uncertainty (UC)[38–40], Model-
Change (MC)[25, 39], Variance Minimization (VOpt)[26], and Model-Change
Variance Optimal (MCVOpt) acquisition functions [23].
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The UC acquisition function AUC quantifies the uncertainty of the classifier
u on each unlabeled node [38–40] by the current classifier’s output value for
that unlabeled node, (i). Uncertainty sampling thus prioritizes querying points
that are close to the current classifier’s decision boundaries. Various methods
can be applied to quantify the uncertainty based on û. Here we consider the
smallest-margin uncertainty acquisition function:

AUC(i) = 1−
(
uk0(i)− max

k=1,2,...,nc; k ̸=k0

uk(i)

)
, (9)

where i ∈ Z, k0 = argmaxj=1,2,...,nc
uk(x).

For the VOpt, MC and MCVOpt acquisition functions, in the interest of
numerical stability and similar to [23], we replace the hard-constraint penalty
function ℓh with the MGR penalty function ℓγ(x, y) = 1

2γ2 ∥x − y∥22 for MC

acquisition function calculations (but not for the underlying SSL model). The
MGR penalty ℓγ is a numerically stable perturbation of the hard-constraint
penalty function ℓh. When γ → 0+, ℓγ → ℓh.

The VOpt acquisition function AVOpt is developed to minimize the
expected error of the prediction results [26]. If we acquire the label of the unla-
beled node i ∈ Z \ Z0 and use labels of Z ∪ {i} to process the graph learning,
then the expected prediction error on the set Z \ (Z0 ∪ {i}) can be computed
as follows:

E

 ∑
i∈Z\(Z0∪{k})

∥u(i)− y†
i∥

2

 = Tr(L−1
k ), (10)

where L−1
k is the submatrix of the graph Laplacian L with both row and

column indices Z \(Z0∪{k}). Approximating the matrix L−1
k by the truncated

decomposition, we have the VOpt acquisition function:

AVopt(k) =
1

γ2 + v⊤k CMGRvk
∥CMGRvk∥22, (11)

where CMGR is given by (8) and vk is the kth column of V ⊤.
The MC and MCVOpt acquisition function [23, 25, 39] is developed based

on the look-ahead model with the objective energy:

Jk,ŷk

ℓ (U,y†; ŷk) =
1

2
⟨U,LU⟩F +

∑
i∈Z0

ℓ(u(i),y†(i)) + ℓ(u(k), ŷk). (12)

where ŷk is the one-hot pseudo-label for the currently unlabeled node k ∈
Z − Z0. Let Û = argmin(Jℓ(U,y

†) and Ûk,ŷk = argmin Jk,ŷk

ℓ (U,y†; ŷk).
Practically, ŷk is the one-hot thresholding vector of û(k) (the kth column of
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Û). With the spectral truncation, the MC acquisition function is given by:

AMC(k) = ∥Ûk,ŷk − Û∥F

=
1

γ2 + v⊤k CMGRvk
∥CMGRvk∥2∥Â⊤vk − ŷk∥2,

(13)

where Â = V ⊤Û ∈ RM×nc to be the projection of the matrix U onto the eigen-
vectors of the graph Laplacian. Similarly, the MCVOpt acquisition function
can be written as:

AMCVOpt(k) =
1

γ2 + v⊤k CMGRvk
∥CMGRvk∥22∥Â⊤vk − ŷk∥2, (14)

3 Batch Active Learning Pipeline for Image
Segmentation

In this section, we introduce our pipeline with the graph Laplace learning
classifier and batch active learning. Given an image for the segmentation
task, we extract a feature vector for each pixel and construct a similarity
graph based on the cosine similarity between these feature vectors according
to Section 2.1. Then we apply the graph Laplace learning (Section 2.2) with
labeled pixels selected by our batch active learning approach, LocalMax. The
node classification on the graph gives a segmentation of the given image.

3.1 Batch method

In the active learning process illustrated by Figure 1, we select a query set
according to a prescribed acquisition function A. In the sequential active
learning process, the query set Q ⊂ Z − Z0 is selected by

Q = {k}, k = argmax
k∈Z−Z0

A(k). (15)

For batch active learning with batch size B, simply selecting the top-B maxi-
mizers of the acquisition function likely includes nodes that are connected in
the graph. As an inductive bias, the graph Laplace learning would have similar
outputs with neighboring labeled nodes. Therefore, it is redundant to sample
neighbors in the graph.

We propose a batch active learning method named LocalMax. This method
was originally developed for the classification task of synthetic aperture radar
(SAR) datasets [41]. We define the local maximum of a certain node function
A : Z → R on a KNN-generated graph G according to Definition 1.

Definition 1 (Local Max of a Graph Node Function) Consider a KNN-
generated graph G = (X,W ), where X is the set of nodes indexed by Z and W is
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the edge weight matrix. For a graph node function A : Z → R, k ∈ Z is a local max-
imum node if and only if for any j, A(k) ≥ A(j), if there is an edge between xj and
xk. Equivalently, k ∈ Z is a local maximum if and only if:

A(k) ≥ A(j), ∀J s.t. Wjk > 0. (16)

The LocalMax batch active learning method selects the batch query set to
be the top-B local maximums of the acquisition function A in the graph G.
Algorithm 1 shows the process of the LocalMax batch active learning method.
It should be noted that the batch size B can not be extremely large as there
might not be enough local maximums of the discrete set of acquisition func-
tion values at a given iteration. Algorithm 1 has the maximal computational
complexity O(KN), where K is the KNN parameter (Section 2.1) and N is
the number of nodes in the graph G. Usually K ≪ N , the computational
complexity is O(N).

Algorithm 1 LocalMax Batch Active Learning

Require: A KNN graph G = (X,W ), X is indexed by Z. A labeled index set
Z0. An acquisition function A : Z − Z0 → R+. Batch size B.

Ensure: The query set Q.
1: Extend the domain of A to Z by defining A(j) = 0, ∀j ∈ Z0

2: S ← Z − Z0; Q = ∅
3: while S ̸= ∅ and |Q| < B do
4: k ← argmaxk∈S A(k)
5: N(k) = {i ∈ Z : Wjk > 0}
6: if A(k) ≥ A(i), ∀i ∈ N(k) then
7: Q← Q ∪ {k}
8: end if
9: S ← S −N(k)

10: end while

This method has some important advantages. Practically, regions of high
acquisition value will only have a small number of local maxima, so the
LocalMax method obtains a batch of nodes from multiple regions of high
acquisition. Due to the complicated structure of data, there are often many
regions with high acquisition, so batches can be relatively large. This method
also selects what the model predicts to be the most important point from the
high-acquisition region.

According to Section 2.2, the computational cost of the graph Laplacian
learning is G(N) = O(KN

√
κL). If we want to sample a total number of M

query nodes from the whole active learning process, the computational com-
plexity of the sequential active learning process is MG(N) while the LocalMax
batch active learning with the batch size B has the computational complexity



Springer Nature 2021 LATEX template

Batch active learning for multispectral and hyperspectral image segmentation 11

Fig. 2: The feature extraction process for a single pixel. The feature vector is
a Gaussian-weighted patch centered on the pixel.

M/B[O(N)+G(N)]. This implies that the LocalMax batch active learning pro-
cess is much more efficient than the sequential active learning, proportionally
to the batch size B. This result is verified by experiments in Section 4.1.

3.2 Image Segmentation Pipeline

We develop an image segmentation pipeline with graph learning and batch
active learning approaches mentioned in Section 2 and 3.1. The first step for
pixel classification is to associate each pixel with a feature vector. One can
consider simply using the pixel values of all channels as the corresponding
feature vector. In this case, the dimension of a feature vector is the same
as the number of channels of the image. While this simple construction is
straightforward, it is useful to include neighborhood information of each pixel
for feature extraction.

For pixel i, consider a (2k+1)×(2k+1) neighborhood patch Pi centered at
pixel i. If pixel i is near the boundary of the image, apply reflection padding to
expand the image before taking the neighborhood patch. Inspired by the non-
local means method [42], we consider a (2k + 1)× (2k + 1) discrete Gaussian
kernel G with σ = k/2. Specifically,

G(i, j) =
α

2πσ2
exp

(
− (i− k − 1)2 + (j − k − 1)2

2σ2

)
,

where α is a constant such that
∑2k+1

i,j=1 G(i, j) = 1. The weighted patch is then
defined by

Pw
i (i, j) = Pi(i, j)G(i, j),

for each pair of pixels i, j = 1, 2, . . . , 2k+ 1. This feature process is illustrated
by figure 2.

We apply this non-local means weighting process to each of the C chan-
nels in the image. Flattening these weighted patches and concatenating them
together gives the non-local means feature vector for pixel i. The dimension of
the resulting non-local means feature vector for a given pixel is d = C(2k+1)2.

For a given image, we extract the non-local means feature vector for each
of its pixels to get the feature vector set X. Then we build a similarity graph
G = (X,W ) based on the feature vector set S and with the sparse similarity
weight matrixW via the KNN method based on these according to Section 2.1.
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An image to be segmented

Graph Construction:
Construct a similarity graph based 

on extracted feature vector set.

Active Learning Loop:
Select a labeled set of nodes via the 

LocalMax batch active learning.

Non-Local Means Feature 
Extraction:

Extract a feature vector for each 
pixel in the image. 

Graph Learning Classification: 
Apply Laplace  learning on this 

graph with the selected labeled set 
to classify other unlabeled nodes. 

Our Pipeline

The classification of graph 

nodes gives a segmentation 

of the image

Fig. 3: Our graph-based active learning pipeline for the image segmentation
task. Red box: feature extraction (Section 3.2); Blue box: Graph Construction
(Section 2.1); Yellow box: Batch Active Learning (Section 2.4 and 3.1); Green
box: Graph Learning (Section 2.2).

On the graph G, we randomly initialize a labeled node set and apply the
LocalMax batch active learning to select a labeled set of nodes Z0 according
to Section 2.4 and 3.1. Finally, we predict the labels of unlabeled nodes Z−Z0

in graph G with the graph Laplace learning classifier based on the selected
labeled node set Z0. This node classification on G gives a segmentation on the
given image. The flowchart of our pipeline is Figure 3.

4 Experiments and Results

This section shows the experiments and results of our graph-based active learn-
ing pipeline on the image segmentation tasks. Based on our contributions in
Section 1.1, we run two types of experiments: the comparison between Local-
Max and sequential active learning process and the application of our pipeline
on image segmentation tasks with low label rates.

4.1 Comparison between LocalMax and Sequential
Active Learning: Accuracy and Efficiency

We apply our graph-based active learning method to perform image segmen-
tation on the Urban dataset. The Urban dataset was recorded in October 1995
by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) over
the urban area in Copperas Cove, TX, U.S.. The ground truth labels are pro-
vided by Zhu. et al. [43] and include four classes: asphalt, grass, tree, and
roof. This dataset contains a hyperspectral image with a size 307× 307 pixels,
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each of which corresponds to a 2 square meters area. The raw image includes
210 channels, but we use the clean version with 162 channels after removing
certain channels due to dense water vapor and atmospheric effects. Figure 4
shows the raw image and ground truth labels of the Urban dataset.

Here we simply apply the hyperspectral pixel values as the feature vector,
i.e. for each pixel, the feature vector corresponding to it is the vector of 162
channels. With four acquisition functions, we sample up to 134 pixels (0.15%
of all pixels) with different active learning sampling methods. We initialize the
labeled set with 10 random pixels in each class (in total 40 pixels) and sample
extra 94 pixels according to the active learning methods. For a certain acqui-
sition function A, we consider four sampling methods: Sequential, Random,
Top-Max, and LocalMax, the last three of which are batch active learning with
a batch size B.

• Sequential sampling selects the global maximum node of A to update the
current labeled set. The query set Q = {k∗} and k∗ = argmaxk∈Z−Z0

A(k).
• Random sampling selects a batch of B unlabeled nodes according to the
uniform distribution on the unlabeled node set Z − Z0.

• Top-Max sampling selects a batch of B unlabeled nodes as the top-B
maximum of A, i.e. the query set Q = {i1, i2, . . . , iB} ⊂ Z − Z0 where
i1 = argmaxi∈Z−Z0

A(i) and ib = argmaxi∈Z−Z0−{i1,...,ib−1}A(i) for b =
2, 3, . . . , B.

• LocalMax sampling is the method we proposed in Section 3.1.

Figure 5 shows the curves between the accuracy and the number of labeled
pixels for the four acquisitions and Table 1 shows the time consumption
and accuracy values for label rates 0.1%, 0.15%. From these experiments, we
conclude the following:

1. Accuracy Performance: Sequential active learning has the best accu-
racy performance according to Figure 5 which shows its higher accuracy
for almost all numbers of labeled pixels. Our batch active learning method
LocalMax has the second-best accuracy values and performs almost iden-
tically as the sequential one, especially for larger numbers of labeled pixels
(i.e. [80, 130]). This is also verified by Table 1 which shows in bold the top-2
accuracy values. LocalMax consistently shows accuracies in the top 2 and
sometimes performs better than Sequential.

2. Efficiency Performance: According to the timings in Table 1, LocalMax
takes approximately the same time as the Random and Top-Max sampling
methods while the Sequential active learning takes around 8 times longer.
The time multiplier 8 is close to the theoretical multiplier 10 (same as the
batch size B) according to Section 3.1.

In summary, LocalMax batch active learning is much more efficient than
Sequential active learning without significantly sacrificing accuracy.
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(a) Raw image (b) Ground Truth Labels

Fig. 4: Urban Dataset. Panel(a) shows the raw hyperspectral image we used
for experiments. Panel(b) shows the ground-truth labels. Label information:
asphalt (navy blue), grass (light blue), trees (yellow), roof (red).

(a) Uncertainty Acquisition Function (b) MC Acquisition Function

(c) MCVOpt Acquisition Function. (d) VOpt Acquisition Function

Fig. 5: Comparison between batch active learning methods and sequential
active learning for four acquisition functions. Each panel includes four curves,
of which the X-axis is the number of labeled pixels and the Y-axis is the
accuracy. The blue, yellow, green, and red curves correspond to the Random,
Top-Max, LocalMax, and Sequential sampling method respectively for the
active learning process. More details on accuracy values and time consumption
are shown in Table 1. Descriptions of each sampling method are in Section 4.1.
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Table 1: Comparison between different Active Learning Sampling Methods

Label Percentage 0.1% 0.15%

Acq Sampling B Time(s) Acc(%) Time(s) Acc(%)

UC

Sequential 1 1290.13 94.90 2576.86 95.93
Random 10 180.42 92.86 358.84 93.69
Top-Max 10 169.59 94.03 343.24 95.22
LocalMax 10 165.30 93.81 326.56 95.78

MC

Sequential 1 1250.22 92.70 2505.60 94.40
Random 10 166.59 88.41 327.95 93.22
Top-Max 10 165.07 92.68 327.35 92.71
LocalMax 10 165.28 93.59 334.10 93.88

MCVOpt

Sequential 1 1131.92 93.70 2257.06 94.99
Random 10 161.83 91.34 322.44 92.02
Top-Max 10 160.61 88.49 323.99 87.02
LocalMax 10 164.79 93.55 321.92 95.27

MC

Sequential 1 1289.92 92.60 2576.86 94.54
Random 10 175.99 86.80 346.61 91.91
Top-Max 10 169.91 88.75 339.96 85.62
LocalMax 10 175.61 90.24 357.60 93.91

This table shows the efficiency and accuracy performance of active learning sampling meth-
ods with different acquisition functions. The first row ’Acq’ refers to the acquisition function.
The second row ’Sampling’ refers to the choice of active learning sampling methods, includ-
ing Sequential, Random, Top-Max, and LocalMax-the last three of which are batch active
learning. The third row B is the batch size. We sample up to 0.1% and 0.15% labeled pixels
in the Urban dataset and show the timings and accuracies. The top two accuracy values are
bolded for each acquisition function. Descriptions of each sampling method are in Section 4.1

4.2 Semi-Supervised Image Segmentation with Low
Label Rates

Here we perform segmentation experiments on three datasets evaluated on
overall accuracy as a function of the amount of labeled data used in training.
Our method is compared with the graph-based semi-supervised method,
abbr. GL-SSL, and MBO unsupervised method, abbr. MBO-UN, pro-
posed in [14]. There are some differences between our graph learning method
and the GL-SSL proposed in [14], the foremost being that our method uses
the KNN approach to build a sparse similarity graph while the GL-SSL is
based on a fully connected graph and uses the Nyström extension method to
approximate the graph Laplacian matrix.

In the following experiments, we consider the overall accuracy (OA) at
different percentages of labeled pixels. The definition of overall accuracy is:

OA =
Number of Correctly Classified Pixels

Total Number of Pixels
. (17)
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4.2.1 Landsat-7 Dataset

We select a Landsat-7 multispectral image of the Colville River (Alaska, USA)
from the RiverPIXELS dataset [44], which provides paired Landsat and water-
and-sediment labeled patches of size 256× 256× 6, where the 6 multispectral
channels correspond to Blue, Green, Red, Near IR, Shortwave IR 1, and
Shortwave IR 2. Each pixel in the image covers roughly 900 m2. We aim to
segment them into three classes: land, water, and bare sediment as provided
by RiverPIXELS.

We use the non-local means feature vector of each pixel to build the sim-
ilarity graph. The neighborhood patch size is 7 × 7, which leads to a 294
dimensional feature vector for each pixel. We sample up to 200 pixels (0.3% of
all pixels) based on the random initialization of one pixel in each class (three
pixels in total for the initialization) via the LocalMax batch active learning
approach of batch size 20. Table 2 shows the overall accuracy results. In addi-
tion, we sample up to 3300 (around 5% of all pixels) labeled pixels based on
the random initialization of 10 labeled pixels in each class (30 in total) and
batch size 100. Both the UC and MCVOpt acquisition functions reach a better
accuracy with 0.3% labeled pixels than randomly selecting 5% labeled pix-
els. Figure 6 shows the segmentation result of our graph-based batch active
learning method with UC acquisition functions.

Table 2: Overall Accuracy of a Landsat-7 Multispectral Image (65536 pixels)

Labeled Percentages 0.1% 0.2% 0.3% 5%

Method Sampling

Ours LocalMax UC 25.17% 95.92% 96.23% 98.65%
Ours LocalMax MC 91.75% 95.04% 95.80% 97.50%
Ours LocalMax MCVOpt 94.81% 95.23% 96.25% 97.74%
Ours LocalMax VOpt 93.61% 94.4% 94.78% 96.44%
Ours Random 88.43% 91.38% 92.55% 96.12%

This table shows the overall accuracy of the Landsat-7 multispectral image among different
methods and under different label rates. ’Sampling’ shows how we selected training pixels
for this dataset. LocalMax batch active learning method has a batch size of 20 for columns
0.1%, 0.2%, 0.3%, while the batch size is 100 for column 5%.

4.2.2 Urban Dataset

The Urban dataset is introduced in Section 4.1. For these experiments, we use
the hyperspectral pixel values as the feature vector for each pixel. We sample
up to 286 pixels (0.3% of all pixels) based on the random initialization of one
pixel in each class (four pixels in total for the initialization) with LocalMax
with batch size 10. In addition, we sample 4700 (around 5% of all pixels) with
LocalMax with batch size 100 based on the random initialization of 10 pix-
els in each class. Overall accuracies of these two sampling processes together
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(a) Ground-truth labels (b) OA: 96.23%

Fig. 6: The ground-truth and segmentation result of the a Landsat-7 multi-
spectral image from the RiverPIXELS dataset. Panel (a): ground-truth labels;
Panel (b): Segmentation result with 0.3% labeled pixels sampled according to
LocalMax with a batch size of 20 and the UC acquistion function. The similar-
ity graph is based on non-local means feature vectors with the neighborhood
patch- of size 7× 7.

with the randomly selected labeled set and methods in the other paper are
shown in Table 3. It can be seen that LocalMax batch active learning with
the uncertainty (UC) acquisition function attains an accuracy of 97.30% with
only 0.3% labeled pixels, which is similar to the accuracy 97.76% with 10%
randomly selected labeled pixels. In addition, our graph learning classifier per-
forms better than the GL-SSL method with the same 10% randomly sampled
labeled pixels. Figure 7 shows two sampled segmentation results of the UC
and MCVOpt acquisition functions respectively.

4.2.3 Kennedy Space Center (KSC) Dataset

The Kennedy Space Center Dataset is a hyperspectral image at the Kennedy
Space Center (KSC) in Florida, acquired by the NASA AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) instrument. This hyperspectral image
has size 512× 614. The raw image includes 224 channels, but we are using the
clean version with 176 channels after removing water absorption and low SNR
channels.

There are 314368 pixels in this dataset while only 5211 (around 1.66%) of
them have ground-truth labels. The ground-truth labels include 13 classes of
different kinds of land coverings in this region. It is visualized in Figure 8a.
We thus segment this hyperspectral image into 13 classes. Our results are
calculated based only on the 5211 pixels with ground-truth labels.
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Table 3: Overall Accuracy of Urban Dataset (94249 pixels)

Labeled Percentages 0.1% 0.2% 0.3% 5% 10%

Method Sampling

Ours LM UC 94.96% 95.56% 97.30% 99.71% N\A
Ours LM MC 90.71% 93.31% 94.84% 98.60% N\A
Ours LM MCVOpt 94.13% 95.33% 95.35% 98.94% N\A
Ours LM VOpt 91.32% 94.27% 94.52% 97.44% N\A
Ours Random 87.20% 91.93% 93.30% 97.20% 97.76%
GL-SSL1 Random N\A N\A N\A N\A 93.48%
UN-MBO1 Unsupervised 92.35% with No Labeled Pixel

This table shows the overall accuracy of the Urban dataset among different methods and
under different label rates. ’Sampling’ describes how training pixels were selected. LocalMax
batch active learning has batch size 10 for columns 0.1%, 0.2%, 0.3% while the batch size is
100 for column 5%.
1Method proposed in [14]

(a) OA: 97.30% (b) OA: 95.35%

Fig. 7: The segmentation result of the Urban dataset with 0.3% labeled pix-
els sampled according to LocalMax batch active learning with batch size 10.
Panel(a): UC acquisition function; Panel(b): MCVOpt acquistion function.
Label information: asphalt (navy blue), grass (light blue), trees (yellow), roof
(red). The ground-truth labels are in Figure 4b.

We sample up to 325 pixels (6% of all pixels with ground-truth labels)
based on the random initialization of 1 pixel in each class (13 pixels in total
for the initialization).

Table 4 shows the overall accuracy of the KSC dataset. LocalMax batch
active learning with the uncertainty (UC) acquisition function attains an accu-
racy of 89.83% with 6% labeled pixels, outperforming random selection of 20%
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(a) Ground-truth labels (b) OA: 89.83%

Fig. 8: The ground-truth and segmentation result of the KSC dataset. Panel
(a): ground-truth labels of 5211 pixels, including 13 classes; Panel (b): Seg-
mentation result with 6% labeled pixels sampled according to LocalMax batch
active learning with batch size 10 and the UC acquistion function.

pixels. Figure 8b shows the segmentation result of the our graph-based batch
active learning method with UC acquisition functions.

Table 4: Overall Accuracy of KSC Dataset (5122 pixels with ground-truth
labels)

Labeled Percentages 2.5% 4% 6% 20%

Method Sampling

Ours LocalMax UC 85.47% 88.66% 89.83% N\A
Ours LocalMax MC 82.04% 85.86% 87.85% N\A
Ours LocalMax MCVOpt 85.12% 85.86% 87.13% N\A
Ours LocalMax VOpt 83.22% 84.68% 86.66% N\A
Ours Random 82.22% 85.22% 85.83% 88.91%
GL-SSL1 Random 80.37% N\A N\A N\A

This table shows the overall accuracy of the KSC dataset among different methods and
under different label rates. ’Sampling’ describes how we selected training pixels. LocalMax
batch active learning is performed with a batch size of 5. Although the KSC dataset includes
314368 pixels, the accuracy values and the percentage of labeled pixels in this table are
calculated based on 5211 labeled pixels.
1Method proposed in [14]

5 Conclusion

We propose a graph-based batch active learning pipeline for multi- and
hyperspectral image segmentation . Our method showed excellent image seg-
mentation skill using very low percentages of available training data. Compared
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with a similar graph-based image segmentation method proposed in [14], our
method requires fewer labeled pixels to achieve better overall accuracy. This
suggests that careful selection points to label through active learning is ben-
eficial for this application of graph-based semi-supervised classification. In
addition, we introduced a batch active learning approach, LocalMax, to select
a batch of pixels in each step of the active learning process. According to
our experiments, LocalMax batch active learning not only accelerates the pro-
cess of sampling pixels but also retains similar accuracies as sequential active
learning using the same acquisition function.
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