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Temporal dynamics of morphogen-driven signalling events are critical for

proper embryonic development. During development, cells translate extracellu-

lar bone morphogenetic protein (BMP) gradients, often subject to noise, into

graded intracellular tail-phosphorylated SMAD (TP-SMAD) levels. Using mod-

elling and experimental approaches, we found that BMPs induce TP-SMAD

responses in neural precursor cells in a concentration-dependent manner,

which are semi-adaptive within a specific intermediate range of BMP concen-

tration. These semi-adaptive TP-SMAD responses involve an intrinsically

slow deactivation of BMP receptors, which attenuates noise by prolonging

SMAD deactivation time after BMP withdrawal, but increases response time.

Interestingly, negative feedback on BMP receptors is also required for

semi-adaptation, which benefits both noise attenuation and response time,

and therefore balances the trade-off seen with slow BMP receptor deactivation.

These results highlight the rich dynamics of SMAD regulation in response to

graded BMP concentration, and elucidate general design principles for

balancing noise attenuation and activation speed in signalling systems.

1. Introduction
Bone morphogenetic proteins (BMPs) play critical roles in embryogenesis and

tissue patterning [1–3]. As morphogens, BMPs regulate patterning by forming

concentration gradients within developing tissues [4] and specify multiple cell

fates in a concentration-dependent manner. Central to BMP-induced intracellular

signalling is the activation of SMAD transcription factors [5–7]. BMPs activate

SMADs 1, 5 and 8 by BMP receptor-mediated phosphorylation of C-terminal

SMAD residues, thus forming tail-phosphorylated SMADs (TP-SMADs) that

are imported into the nucleus to regulate transcription [6,8].

SMADs mediate a variety of BMP-induced cellular responses [9,10]. In neural

precursor cells (NPCs) of the developing cerebral cortex, steady-state TP-SMAD

levels form a dorsoventral gradient in vivo [11] and approximate extracellular

BMP concentrations in vitro [12], suggesting that TP-SMAD is a direct and pro-

portional readout of extracellular BMP concentration. (Although BMPs activate

multiple SMADs, we focus here on SMAD1 for simplicity.) In addition to

steady-state responses, pulse-like responses to morphogens can be critical for

tissue development [13]. While BMPs can generate this type of response at the

level of SMAD1 [10], the temporal dynamics of SMAD1 activation to graded

BMP signals is poorly understood.

The processing of spatial information encoded by morphogens is subject to

significant noise or fluctuations [14]. Mechanisms that attenuate BMP signalling

noise are required for accurate interpretation [15,16]. The signalling cascade

from BMP to TP-SMAD is controlled by a negative feedback loop, in which

SMAD1 target genes neutralize BMPs or their interaction with BMP receptors

[17–20]. While negative feedback can attenuate noise and maintain homeostasis

[21,22], its roles in graded BMP signal responses are unclear.
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Figure 1. Dose-dependent dynamic responses to graded BMP signals. (a) Schematic of the BMP signalling pathway. Target gene-mediated negative feedback on
BMP receptor activation is shown in red (edge no. 9). (b)(i) Simulations for low, intermediate and high doses of BMP. (ii) Western blot analysis on TP-SMAD1 during
BMP4-induced activation. Cells were treated with indicated BMP4 concentrations at time zero, then lysed and analysed at indicated time points. We obtained ‘relative
response’ by normalizing a group of trajectories to the maximum steady-state response in this group. (c)(i) Illustration of metrics used to describe responses.
(ii) Simulations of TP-SMAD1 response for graded BMP signals (see colour code), starting with no BMP initially. (d ) Adaptation index (AI, the difference between
peak and steady-state response levels) with respect to the output range.
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Here, we combine experimental and modelling approaches

to investigate the dynamics of SMAD1 activation in NPCs

responding to graded BMP signals. We show that an inter-

mediate range of BMP concentration triggers semi-adaptive

SMAD1 responses, which differ from the non-adaptive

responses stimulated by higher or lower BMP levels and accel-

erate cell response. However, BMP receptor deactivation is

slow, which benefits noise attenuation, but exhibits the trade-

off of increasing response time. Interestingly, BMP receptor

inhibition through negative feedback, which is required for

the semi-adaptation, exhibits no such trade-off. Taken together,

these findings define a cell-intrinsic control mechanism for

creating fast adaptive responses with attenuated noise within

a morphogen gradient.
2. Results
2.1. Dose-dependent dynamic responses to graded

input BMP signals
To examine the dynamics of graded BMP signalling, we built

a model based on current knowledge of the BMP signall-

ing pathway (figure 1a; electronic supplementary material,

table S1 and text). Simulations of the model showed two

distinct types of responses. Low or high BMP concentrations

induced a non-adaptive response (no significant decrease of

response throughout the time frame; figure 1b(i)), whereas

intermediate BMP concentrations gave rise to a semi-adaptive

response in which TP-SMAD1 levels were significantly greater
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Figure 2. Characterization of semi-adaptive responses. (a) Comparison of open circuit/no negative feedback (blue), regular negative feedback (red) and strong
negative feedback (light green) on adaptation index (AI) (i), activation time (ii) and settling time (iii) with respect to the output range. Rate of target genes
production is varied to simulate different negative feedback strengths. (b) Relationships between mean AI and mean activation time (i) or mean settling time
(ii) when strength of negative feedback is varied (see colour code). Each point represents a group of graded TP-SMAD1 responses to graded BMP signals. See
electronic supplementary material, tables S2 for choices of parameters in the model.
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earlier compared with later (i.e. an ‘over-shooting’ phenom-

enon; figure 1b(i)). In addition, the responses to intermediate

and high BMP were generally rapid compared with those at

low BMP concentration.

To investigate these dynamics experimentally, we treated

E12.5 NPCs with low, intermediate and high BMP4 concen-

trations (1.5, 16 and 64 ng ml21) based on our previous

studies [12,23] and measured TP-SMAD1 levels at various

time points. Notably, we observed a semi-adaptive response

at 16 ng ml21 BMP4, while non-adaptive responses were seen

at 1.5 or 64 ng ml21. Moreover, activation at 1.5 ng ml21

BMP4 was slower than at the two higher concentrations (at 15

min, the mean responses were 0.45, 0.73 and 0.95 for BMP con-

centrations of 1.5, 16 and 64 ng ml21, respectively; figure 1b).

These experimental results confirmed predictions made

by the model regarding activation speed and semi-adaptive

TP-SMAD1 responses as functions of BMP concentration.

We then defined new metrics to further analyse these

responses (figure 1c). ‘Adaptation index0 (AI) represents the

difference between peak and steady-state response levels

(e.g. this index equals 0 for perfectly non-adaptive responses

and greater than 0 for adaptive ones). ‘Activation time’ refers

to the time needed to reach one-half of the steady-state

response level. ‘Settling time0 is the time required to reach

steady state, which is the state after which there is no more

than 1% fluctuation in response levels. These metrics capture

essential elements of the BMP-SMAD1 responses already

described (figure 1c,d ).

Using these metrics, we performed simulations with and

without target gene-mediated negative feedback on the BMP

receptor. We found that the decrease of TP-SMAD1 level is

accompanied by an increase of the SMAD1 target gene
products that are involved in the negative feedback (electronic

supplementary material, figure S2a), and the presence and over-

all dynamics of the semi-adaptive response strongly depend on

the negative feedback (electronic supplementary material,

figure S2b; figure 2a(i)). In particular, the presence of nega-

tive feedback resulted in faster activation time (figure 2a(ii)),

which was fastest in the adaptive domain (output range

approx. 0.5–0.9; figure 1c(ii)). Settling times were also shorter

in the adaptive region for intermediate-strength negative

feedback (figure 2a(iii), red curve), but interestingly, settling

time increased in the adaptive domain when negative feedback

was strong (figure 2a(iii), green curve).

Overall, mean activation time was inversely dependent on

mean AI (figure 2b(i)), whereas mean settling time had a bipha-

sic relationship with mean AI—first decreasing, then increasing

with higher negative feedback strength (figure 2b(ii)). Varying

other parameters in the negative feedback loop, such as the

strength of receptor inhibition, has similar effects (electronic

supplementary material, figure S3). This suggests that negative

feedback can be a key point of regulation for optimizing

response speed.
2.2. Slow BMP receptor deactivation attenuates noise
by slowing SMAD1 deactivation, but increases
response time

We next studied how temporal fluctuations (noise) in BMP

affect the semi-adaptive responses. Previous studies have

shown that noise attenuation is associated with signed acti-

vation time (SAT) [24], defined as the difference between

deactivation time (deactivation time is defined as the time
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needed to reach one-half of the steady-state response level)

upon signal withdrawal and activation time upon signal

engagement (see Material and methods for details on com-

puting SAT), with larger SAT values leading to smaller

values of ‘noise amplification rate0 (NAR, see Material and

methods) [24,25]. To study SAT–NAR relationships, we per-

turbed each parameter in the BMP model and examined the

effects on SAT and NAR. We observed an inverse SAT–

NAR relationship for TP-SMAD1 (electronic supplementary

material, figure S4)—i.e. smaller SAT values led to larger

NAR values. Interestingly, perturbation of BMP receptor

deactivation rate (qRA) had the most prominent effect on

SAT and NAR values (electronic supplementary material,

figure S4), suggesting a critical role for receptor deactivation

in noise attenuation. A high BMP receptor deactivation rate
(large qRA value) yielded small SAT values and high NARs,

i.e. large response fluctuations (electronic supplementary

material, figure S4; figure 3a(ii and iii)).

To experimentally investigate TP-SMAD1 deactivation

kinetics, we treated E12.5 NPCs with BMP4 for 2 h, then

removed BMP4 and measured TP-SMAD1 levels over time.

Consistent with the modelling results (figures 3b(i) and 1b(i)),

the abundance of TP-SMAD1 decreased with a much slower

rate upon BMP withdrawal than the activation rate upon

BMP treatment (figures 3b(iii) and 1b(ii)), suggesting that the

system is using slow receptor deactivation as a strategy to

attenuate external BMP fluctuations.

While slow receptor deactivation can increase SAT and

decrease NAR, it can also slow down response time for the

semi-adaptation, as the mean NAR is inversely related to
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activation time as well as settling time (figure 3c). This indi-

cates a trade-off between fast activation and noise attenuation

in the presence of slow BMP receptor deactivation.

2.3. Negative feedback can increase activation speed
and attenuates noise

To investigate the role of negative feedback in noise attenu-

ation, we selected three typical responses with similar

steady states, but distinct adaptation indices due to different

negative feedback strengths (figure 4a). With fluctuating BMP

inputs, we observed the non-adaptive response had greater

fluctuations at its steady states than the two adaptive

responses (figure 4a,b, compare blue lines to others), and

the two adaptive responses had similar fluctuations (figure

4a,b, red and light green).

We found that negative feedback mainly decreased NAR

in the intermediate output range (figure 4c, red and light

green curves compared to blue curve), and negative feedback

strength had a positive relationship with mean activation
time and a biphasic relationship with mean settling time

(figure 4d; electronic supplementary material, figure S6),

suggesting that negative feedback can shorten the activation

time significantly and attenuate noise moderately. To com-

pare negative feedback with the slow receptor deactivation

in terms of how they attenuated noise, we selected a case in

which two parameter sets (figure 5a, blue and green curves;

compare them with red curve as a control), representing nega-

tive feedback and slow receptor deactivation, respectively,

produced similar levels of mean response and output noise

(figure 5b). Negative feedback sped up SMAD1 activation

significantly (figure 5a, upright triangles). By contrast, slow

receptor deactivation slowed down SMAD1 deactivation

significantly (figure 5a inverted triangles). This suggests that

the two strategies (negative feedback and slow receptor deacti-

vation) increased SAT and attenuated noise with distinct

mechanisms. Since slow receptor deactivation slowed acti-

vation time, to balance speed and noise attenuation, it must

be combined with other strategies, such as negative feedback,

to ensure fast activation speed. As expected, combining the
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two strategies produced a fast response with good noise

attenuation properties (figure 5, grey curves).

2.4. Nuclear SMAD degradation controls the domain
of semi-adaptive responses

It has been observed that nuclear linker-phosphorylation

of SMAD1 triggers its proteasome-mediated degradation

[26]. To understand the role of this regulation, we examined

the effect of nuclear DP-SMAD1 degradation on response

dynamics (edge 6 in figure 1a). As seen in the previous sec-

tions, strong negative feedback can increase the AI, but this

effect is restricted to a specific range of output, and the
adaptive domain did not change significantly with the

feedback strength (figure 2a). Interestingly, varying the

rate of nuclear DP-SMAD1 degradation altered the adap-

tive domain over the entire output range (figure 6;

electronic supplementary material, figure S7). When degra-

dation rate was low, almost the entire output range was

adaptive (figure 6a, blue curve). Increasing the degrada-

tion rate restricted the adaptive domain to higher output

ranges (figure 6a, purple, red and olive curves), and

with very high degradation rates, adaptive behaviour was

compromised and responses generally became non-adaptive

(figure 6a, light green curves); this was due to the loss of

negative feedback (not shown).
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Similar to its effect on the adaptive domain, DP-SMAD1

degradation rate regulated response speeds: changing

degradation rate resulted in the change of response domains

in which fast response is achieved (figure 6b). In general,

rapid DP-SMAD1 degradation slowed down the responses

(figure 6b, green curve), and slower degradation rate expanded

the fast-response domain towards the lower output range

(figure 6b, olive, red, purple and blue curves). These results

suggest that the DP-SMAD1 degradation must be controlled

in order to produce adaptive dynamics and fast response in a

defined range of the output. Moreover, intermediate degra-

dation rate decreased the settling time, which is generally

shorter than those obtained with fast or slow degradation

rates (figure 6c, cf. red curve with others). This implies that

the degradation rate might be optimized to shorten the time

that the system takes to reach steady state. Varying DP-

SMAD1 degradation rate did not have a pronounced effect

on the noise attenuation (electronic supplementary material,

figure S8). Overall, we suggest that the observed DP-SMAD1

degradation mediated by proteasome could be a strategy to

control the dynamics of graded responses to graded signals.
3. Discussion
Previous theoretical studies have revealed interesting dynamic

behaviours of TGF-b signalling networks [19,27–29], includ-

ing adaptive responses. Mathematical models concerning

BMP signalling mainly focused on receptor dynamics [30]

or steady-state behaviour of mutual-inhibition loops [23].

However, temporal dynamics of the BMP signalling network

including intracellular molecules and its role in noise attenu-

ation have not been studied. With a new mathematical model

for the BMP signalling network and experimental findings,

we showed that the regulatory system for processing graded

BMP signals has unique dynamic behaviours and noise

attenuation strategies that have not been examined previously.

Our study revealed a variety of temporal dynamics, includ-

ing the semi-adaptive responses produced through a negative

feedback through TP-SMAD1, in BMP signalling. Other mech-

anisms such as regulated receptor trafficking in TGF-b pathway

[31] or three-state regulation on signalling molecule IKK in

NFkB signalling [32,33] may also lead to adaptive responses.

Negative feedback is known for its role in reducing fluctuations

[22] and speeding up cellular responses [34]. Our work demon-

strates that the two roles of negative feedback can be connected

in a single framework. In addition, negative feedback can

produce oscillatory behaviours [35]. Although we did not

observe any sustained oscillation in our simulations, we can

reconcile the temporal variation arising from oscillation and

the seemingly contradictory effect on the noise attenuation by

the observation that strong negative feedback prolonged the

settling time, i.e. the effect of noise attenuation at steady state

can be masked by the increased time to reach the steady state

(note that the settling time for sustained oscillation is infinite).

It has been suggested that negative feedback loop and

enhanced degradation rate are two strategies for accelerating

the response to external signals [34,36,37], partially respon-

sible for the observed fast activation by BMP—an important

feature for timely tissue development. Interestingly, our

simulations suggest that high degradation rate sometimes

reduces the effect of negative feedback, slowing down the

response. This implies that a crosstalk and synergy of the
two regulatory components are needed to control the speed

of response.

Our result that slow deactivation rate of the receptor

kinase is important for reducing fluctuations of the responses

suggests that morphogens need long durations of occupancy

when binding to their receptors. This is consistent with the

previous studies showing that the slow deactivation in mor-

phogen–receptor interaction allows the cells to change their

response to an increase, but not a decrease, in morphogen

concentration [38–40], highlighting the importance of slow

deactivation in coupling with fast activation as an effective

strategy in noise attenuation.

Signalling events in individual cells are influenced by noise

in myriad ways: their external environments may fluctuate in

space and time, their internal properties (e.g. levels of gene

expression) may differ from cell to cell (i.e. variability) even in

a monoclonal population, and molecular fluctuations exist

in single cells owing to small numbers of regulatory genes,

mRNAs and proteins. In this study, we focused on the attenu-

ation strategy for fluctuations of a morphogen (BMP) that

plays an important role in specifying spatial information and

acting as a stimulus for downstream responses in a cell. Noise

in morphogen systems might be a major source for the roughness

of boundaries in early stages of patterning by morphogen gradi-

ents [16], and the noisy spatial distribution of the morphogen

has been observed in experiments at various stages of develop-

ment [14]. Nonetheless, cells are inevitably interfered by other

sources of noise at various levels in addition to noise in morpho-

gens, and different noise attenuation strategies are then needed

to reduce the overall stochastic effect during cell signalling.

Overall, our findings on cell-intrinsic dynamics during

telencephalon development suggest a mechanism that can

balance response speed and noise attenuation when multiple

performance objectives are taken into consideration. It

requires further study to integrate such mechanism centred

at SMAD into BMP signalling pathways to explore its role

in the cascades of signal transduction stimulated by BMP

signals that contain spatial information and noise.
4. Material and methods
4.1. Mice
Noon of the vaginal plug date was designated as day 0.5

for timed pregnancies. Crown–rump length was measured to

verify embryonic ages.

4.2. E12.5 dissociated neuronal precursor cell cultures
The cultures were performed as previously described [12,23].

Briefly, E12.5 embryos were dissected, then skin and mesenchy-

mal layers were removed from the head to expose the developing

telencephalon. Dorsal portions of the telencephalic vesicles were

harvested and incubated in 0.05% trypsin with 0.02% EDTA and

0.2% BSA in HBSS for 20 min at 378C for dissociation; 1 mg ml21

soy bean trypsin inhibitor (Sigma) in HBSS was used to inhibit

trypsin after dissociation. Tissues were pipetted up and down

to dissociate cells using P200 pipette. Cells were then washed

once with 0.2% BSA in HBSS and plated at 500 000 cells per

well on laminin-coated plates.

4.3. BMP activation and deactivation experiments
Twenty-four hours after plating, varying amounts of BMP4

(R&D Systems) were added to the cultures. For the activation
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experiments, the time of BMP4 addition represented time zero.

For the deactivation experiments, varying amounts of BMP4

were added to the cultures after the initial 24 h plating period.

Two hours after BMP4 treatment (which ensured attainment of

TP-SMAD1 steady state; see figure 1b(ii)), triple washout with

BMP-free media was performed, then BMP4-free media was

applied at time zero. Protein was extracted at specified time

points after BMP4 addition (activation, figure 1b) or after BMP4

washout (deactivation, figure 2b).

4.4. Protein extraction and LI-COR/Odyssey Western blot
Protein extraction was performed using RIPA lysis buffer supple-

mented with protease inhibitor cocktail (Roche) and phosphatase

inhibitor cocktail (Roche). Lysis buffer was applied to cells; cell

lysate was collected and incubated on ice for 10 min. Lysate was

centrifuged at 10 000 g for 15 min and supernatant was transferred

and stored at 2808C for further analysis. Laemmli sample buffer

(BioRad) was added to protein sample and run on 7.5% Mini-

Protean TGX gel (BioRad) in Tris Glycine SDS buffer (BioRad).

Sample was transferred onto 0.45 um nitrocellulose membrane

(BioRad) in Tris Glycine transfer buffer overnight. Primary

antibodies used: b-actin (Cell Signalling; 3700) and pSmad 1,5,8

(Chemicon; AB3848). Secondary antibodies used: IR Dye 680LT

anti-rabbit IgG and IR Dye 800 CW anti-mouse IgG (LI-COR).

Membranes were scanned and quantified using Odyssey IR scan-

ner (LI-COR). Results were normalized to b-actin and plotted as

a fraction of maximal TP-SMAD1 levels.

4.5. Mathematical model and simulations
We used ordinary differential equations to describe the inter-

actions of the molecules involved in BMP signalling pathways

(electronic supplementary material, figure S1). Based on a few

assumptions, we simplified the known interactions into a core

regulatory network (electronic supplementary material, text).

The influence diagram of the network is shown in figure 1a.

Equations, parameter values used for simulations and detailed

descriptions of quantities and model assumptions can be found

in the electronic supplementary material.

To ensure relevance to the BMP concentrations used and the

TP-SMAD1 responses observed, we ran many simulations with

varying BMP intensities and made sure that (i) maximum

steady-state TP-SMAD1 response was significantly different

from background, (ii) sufficient number of BMP intensities

were used, such that at least one response could be put in a

bin spanning one-tenth of the space between the minimum and

maximum response, thus allowing for the analysis of 10 bins

with varying intensities (we refer to these bins as ‘response

domains0), and (iii) sufficient maximum doses of BMP were

used so that any distinct high BMP responses were not missed.

After a group of graded responses were obtained, we normalized

the trajectories with the maximum steady-state response in the

group (i.e. relative responses).

4.6. Adaptation index
The AI is defined as the following:

AI ¼
cp � cs

c1 � c0
, (4:1)

where cp is the maximum response (peak) and cs is the steady-state

response. c0 and c1 are the minimum and maximum steady-state

responses to the graded signal, respectively (see below).

4.7. Signed activation time
We defined SAT as the following:

SAT ¼ toff � ton,

where toff is the deactivation time, i.e. the time needed for the

response to reach one-half of the steady-state response level
from its maximum steady-state level upon signal withdrawal,

and ton is the activation time, i.e. the time needed for the

response to reach one-half of the steady-state response level

from its maximum steady-state level upon signal engagement.

In our original definition of SAT, SAT is normalized by the

inverse of the frequency in the signal [24]. Since the noise fre-

quency is a constant (1 h21) in all of our simulations, we did

not consider this normalization in this study.

To obtain ton and toff, we first defined the following time

points at which the value of BMP signal was changed during

a simulation:

t0: time point at the beginning of the simulation (BMP signal is

off );

t1: time point at which BMP signal is turned on;

t2: time point at which BMP signal is turned off.

We performed simulations without BMP signal so that the

system was first stabilized at its ‘off0 steady state (from t0 to t1).

Next, we changed BMP signal to a positive value at t1 and con-

tinued the simulations so that the system was stabilized at its

‘on0 steady state (from t1 to t2). From the simulation trajectories

obtained here, we estimated ton. We next changed BMP signal

to zero again at t2 and continued the simulations so that the

system reached its ‘off0 state again. We estimated toff based on

the trajectories after t2. We chose t1 ¼ 100 min, t2 ¼ 1400 min

for this model to ensure that the steady states were reached.

4.8. Noise amplification rate
The temporal fluctuations and NAR are based on the previous

studies [24,25]. In particular, we define

NAR ¼ std(c)=(c1 � c0)

std(u)=kul
, (4:2)

where c is the level of response (TP-SMAD1) to a particular

signal input u at steady state in a time period of 1000 min. c0

and c1 are the minimum and maximum steady-state responses

to the graded signal, respectively. std(.) denotes the standard

deviation, and k . l denotes the mean. The coefficient of variance

of the input signal is identical for all signal levels that we used.

The mean NAR is defined as the mean of the NARs of the 10

representative responses from 10 graded response domains.

4.9. Sensitivity analysis
To screen for the parameters that have the most influence on

NAR, activation time and deactivation time, we perturbed each

parameter and checked the resulting change in these quantities.

In each perturbation, we first increased a parameter by fivefold

and ran a set of simulations with graded BMP signals, and

then reduced the parameter by fivefold and ran another set of

simulations. Subsequently, we computed the differences of the

three quantities between the two sets of simulations for each

one of the ten response domains. A positive change upon pertur-

bation means the quantity increases with increasing a particular

parameter value.
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